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Abstract

The recombining binomial tree approach, which haenb initiated by Cox, Ross and
Rubinstein(1979) and extended to arbitrary diffasimodels by Nelson and Ramaswamy(1990)
and Hull and White(1990a), is applied to the siam#tous evaluation of price and Greeks for the
amortized fixed and variable rate mortgage prepaynoption. We consider the simplified
binomial tree approximation to arbitrary diffusignocesses by Costabile and Massabo(2010)
and analyze its numerical applicability to the ngage valuation problem for some Vasicek and
CIR like interest rate models. For fixed rates @mbmial trees with about thousand steps we
obtain very good results. For the Vasicek modelal® compare the closed-form analytical
approximation of the callable fixed rate mortgagee by Xie(2009) with its binomial tree
counterpart. With respect to the binomial tree galone observes a systematic underestimation
(overestimation) of the callable mortgage price efayment option price) analytical
approximation. This numerical discrepancy increasgslonger maturities and becomes
impractical for a valuable estimation of the prapayt option price.

Keywords

Callable mortgage, prepayment option, Vasicek moddlill-White model, CIR model,
recombining binomial tree, analytical limiting foutas, analytical approximations

JEL Classification

C61, C63, D81, G21



1. Introduction

The valuation of the callable mortgage withptepayment (and default) options is a difficult
but widely discussed problem. Two recent thesisira@wt devoted to this subject are
Goncharov(2003) and Sharp(2006) (see also Gonc{z04/05) and Sharp et al.(2008/09)).
Among the many divers approaches we focus in thidyson the option based approach, which
has been discussed earlier among others by Si@gdl(1Hall(1985), Kau et al.(1992/93), Kau
and Keenan(1995), Dickinson and Heuson(1994), G¢h®95), Kalotay et al.(2004).

Since the prepayment option is of Americanetythere does not seem to exist to our
knowledge any simple and general evaluation metidich yields simultaneously both price
and Greeks. Pricing of the prepayment option caglassified into four categories: analytical
methods, recombining binomial and trinomial tredsnte Carlo simulation methods and finite
difference methods. With the single exception ofAgal et al.(2008) no analytical closed-form
solution to the mortgage pricing problem is knowBome promising recent attempts by
Xie(2008/09), Xie et al.(2007a/07b/10), and Lo lg2809), have been made to obtain analytical
approximations for both the optimal prepayment eatd the callable fixed rate mortgage price
within the Vasicek and the Cox-Ingersoll-Ross (CiRpdel frameworks. In Section 4 the
analytical approximations by Xie et al.(2007a) aael(2009) for the Vasicek interest rate model
will be considered and tested in Section 5.1 agdimessrecombining binomial tree methodology,
which is the approach adopted in the present stédgther quite popular technique is Monte
Carlo simulation applied in conjunction with thegression algorithm by Longstaff and
Schwartz(2001), which has been recently extendedh& computation of Greeks in the
Bermudan case by Belomestny et al.(2007). Finallyjs known that pricing financial
instruments can be done by solving partial diffée¢requations (e.g. Tavella and Randall(2000),
Duffy(2006)). In this situation it is possible tosar Green’s function (e.g. Bittler and
Waldvogel(1996)) and apply various more or lesshsigated finite difference numerical
techniques. In particular, for the callable mortgagth prepayment and default options the basic
partial differential equation is formula (1.17)Starp(2006).

The CRR approach, which has been extendedbitraay diffusion models by Nelson and
Ramaswamy(1990) and Hull and White(1990a), is appto the simultaneous evaluation of
price and Greeks for the fixed and variable ratetgages. We consider the simplified recent
binomial tree approximation to diffusion procesbgsCostabile et al.(2009) and Costabile and
Massabo(2010) and analyze its applicability to ni@tgage valuation problem for the Vasicek
and CIR interest rate models. For fixed rates andrbial trees with about thousand steps very
good results are obtained. The fact that the Vesarel CIR models do not fit the initial term
structure is not a disadvantage because these snoae¢ been extended to do so (e.g. Hull and
White(1990b) and Hull(2003), Chap. 23.9, for théeexed Vasicek or Hull-White model, Brigo
and Mercurio(2001) for the CIR++ model, Chen andt§2003) for the multifactor CIR model)
and are included in our general approach. The pameganized as follows.

Section 2 introduces the pricing models far #mortized fixed and variable rate mortgage
contracts. Section 3 recalls the construction bgtélmle and Massabo(2010) of computationally
simple binomial trees and shows how it appliesh @valuation of prices and Greeks for non-
callable and callable mortgages as well as thecesgsd prepayment option. Section 4 is devoted
to the fixed rate mortgage under the Vasicek/CIRlaes We display some exact and limiting
analytical formulas and approximations includingoarection to a formula by Xie(2009) for the
Vasicek model. Section 5 provides numerical congoas, examples and further discussion.



2. Pricing modelsfor the default-free amortized fixed and variable rate mortgages

The pricing of amortized fixed and variabléeranortgages with given interest payment cycle
is considered. In a variable rate mortgage theraonhtate is adjusted periodically in order to
reflect prevailing interest rates. Let us state samain features of our approach. We assume
equal interest and amortization payment dates istinguish between instantaneous payments in
a continuous time framework and recurring discpetgments following a given payment cycle
in a discrete time framework. The borrower hasdpion to prepay the mortgage at an arbitrary
date prior maturity, the so-callgulepayment optianFor simplicity, no penalty is charged to the
borrower at prepayment, but this assumption caremmved. Usually, the borrower has another
option, the so-calledefault option which consists in forfeiting the contract in eaolge of the
physical good underlying the mortgage. If the baep exercises this option, then the lender
does not receive any stream of payment anymorehdmithe right to retain all previously done
payments in addition to the underlying good. Theppyment and default options are alternative
to each other in the sense that if one has beewisad, the contract expires and the other one
cannot be exercised anymore. The borrower’s defelltcan be taken into account by charging
an appropriate default insurance premium (e.g. &davwand Torous(1992)). We assume that it
is included in the mortgage’s servicing fee (e.ghvartz and Torous(1991), p.284). A
simultaneous treatment of both options can be famdng others in Sharp et al.(2008), Chen et
al.(2009), and their references. In our approaké, latter requires the construction of a two-
dimensional binomial tree and goes beyond the safpgbe present study. For an extended
analysis we recommend De Rossi and Vargiolu(208€gtion 5.

2.1. Amortized fixed rate mortgage with given inter est payment cycle

Consider themortized fixed rate mortgagdFRM) contract on an underlying good (e.g.
house or another physical good). Assume that at tinre O the contract holder borrows an
initial capital P at thenominal instantaneous rateo >0 and pays it back over the time

interval [0,T] with T the maturity of the contract. We distinguish betweercantinuous
amortization rate A per unit time and a recurrirdjscrete amortization paymenf,, at the

end of eachinterest payment cyclef length IP. To enable later on calculations ird&crete
time settingwe assume that the interval0,T] is divided into N discrete time steps

[(i —1)h,ih],i =1...,N, each of length h=T/N. Set nP=T/IP (the number of recurring
payments)nl = IP/h (the number of discrete steps in each interesnpay cycle), an@éssume
that 1/IP and nl are positive integers. Lep, =e” -1 be the interest rate per discrete time
step and letp, = p, [hl be the interest rate per interest payment cyeléhe continuous time
setting one has the basic equation

—e AT

.
P:A[je‘ﬂdt:A . (2.1)
> Vo

It corresponds in the discrete time framework ®rlationship



P=A D p,) =2 0,) ). @22)
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The case (2.1) of continuous amortization paymenépproximated in practical calculations by
the limiting case (2.2) with interest payment cydlé =h for which nl = 1 In this situation
one has the relationship

&:A@%. (2.3)

The borrower has the option to prepay the mortgatgan arbitrary datet <T . In case of
prepayment theutstanding loan balancequals

T —a Pt
H:Aqémﬂw:A&—%r—thhﬂ, (2.4)
t
in continuous time, resp.

h@:#¥D§@+mJ““:££$f@+myﬂﬂ k=0,..nP-1 L, =0, (2.5)

j=k+1 IOP

in discrete time, where it represents the outstapdoan balance at timet =kI[IP . If the
prepayment option is exercised, the borrower muspay the current outstanding loan balance
plus any accrued interest since the last recunpisigment. The charged amount is calfade
valueand it is denoted and defined for each discrete step by

FV,o.m =@+ 0y )L, k=0,..,nP-1 m=0,.,nl-1 FV, =0. (2.6)

Once the option is exercised the contract term@aide prepayment option is therefore a
contingent claim of American type. If the borrowexercises the prepayment option at tirhe
(resp. at timeih in discrete time) the lender receives immediataly face value FV, =L,

(resp.FV, in discrete time) instead of the future streanpa@fments at the amortization rai

per unit time (respA, at the end of each interest payment cycle). Thiketavalue at timet

(resp. at timeih in discrete time) of these future cash-flowspalallednon-callable mortgage
price, equals

V™© = A

t

P{t,u)du, tO[o,T], (2.7)

e

in continuous time, resp.

vre=a 0 SPhkOP), i=0,..N-1 V=0, (2.8)

k=[i /ni]+1



in discrete time. In both caseB(t,s) denotes the price at time of a zero-coupon bond with
maturity s>t. The lender is exposed to the risk of early eserait timet <T of an American
option to exchangev,” for FV, (resp.V,"™ for FV, in discrete time). While the value of

FV, is deterministic the value oV, depends upon the evolution of the term structire

interest rates (TSIR) described by the zero-coupmd structure P(t,s), sO[t,T|. The optimal

exercise of the prepayment option is triggered larket conditions like interest rates falling
under a certain level, callegptimal prepayment rate

For banks or mortgage companies who hold gelgool of such contracts with different
outstanding loan balances, different maturity dapedifferent payment schedules, it is crucial
to know the fair value of AFRM contracts with prgpgent option. The determination of this fair
value is not a trivial task because it depends uperbehavior of the borrower, which may act in
a financial rational way or not. Once the markdugaand the sensitivities or Greeks of each
contract are known, the construction of hedging Esldmanagement strategies can begin.

In a continuous time and complete market fraork with filtered probability space
(Q, F,Q) the market value at timeé <T of the mortgage with prepayment option, alsoechll

callable mortgage priceequals (e.g. De Rossi and Vargiolu(2010), equd{))

V,° =V, - esssup E{exp{—f rudu) [ﬂ\/rnc _ FVT)FI}

7]

v o - [ e -rv ) | tolor]

(2.9)

where the ess sup is taken over (&l -stppping times. Thenstantaneous interest ratis
assumed to follow a diffusion process of the type

dr. = u(t,r,)dt+oft,r, )dw,, (2.10)

with W, the standard Wiener process, and is theoptimal stopping timeinder the rational
refinancing assumption. In later concrete calcafeiwe assume for simplicity that the short rate
is mean-reverting with drifiu(t,r,)=a(8-r,), and the instantaneous standard deviation is
either constanta(t,rt) =0 (model of Vasicek(1977)) or of square-root typz(t,rt)= a\/f

(model of Cox-Ingersoll-Ross(1985) or CIR modeheTcondition2aB > g2 for the CIR model
guarantees that the process never touches zeromgoligs a stationary gamma distribution.
Similar calculations can be done for the Hull-Whitedel with u(t,r,)=a(B(t)-r,) and
olt,r,)= o following the specification and calibration ini{2003), Chap. 23.

It is important to note that in a pool of ngages one can observe different prepayment times,
optimal stopping times and non-optimal ones, fdfedent borrowers. The pricing of such
mortgages is done using the so-calfépayment functianLet 7 be the (optimal or not)
prepayment timef a “typical” single borrower, which is 4Ft)-stopping time, that is a random

variable with values in the time intervaf0,T]. Let H([|19) be its cumulative distribution



function with respect to Q conditional on the state variabled , which is defined by
H(tl6)=Q(r <t/6). We assume thatr has a conditional densityn(f|6)=H'(t|6). Then the

prepayment functigralso called hazard function or risk function, @rhis similar to the default
intensity in credit risk, is defined by

nft|6) = hitle)du-H (o). (2.11)

This function describes the density of prepaymetinge t conditional ond and the fact that
the borrower has not yet prepaid. The price ofcillable mortgage with prepayment function is
(e.g. De Rossi and Vargiolu(2010), p.28)

VP =V - Eq |JtT 7T(U|9)eXF{_ k (rv + ”(V|9)dV)XV u FVu)d“| F ] tofoT]. 212

Observe that (2.12) is similar to the pricing fotenor a security under credit risk where the
recovery valueV,” - FV, is paid at default (e.g. Schonbucher(2000)).

In various model specifications the prepaynfanttion depends on the fact that at a given
time it is optimal or not to prepay, that is on thaction

L t=7
t { 0, else 13)

For example, in the model by Stanton(1995) one In(s}e):A +n6,: an exogenous (non-
optimal) prepayment has a constant hazard functigrand if it is optimal to prepay the hazard
function is augmented by the constamt. In particular, solving the American option type

valuation problem (2.9) is a necessary step towsotlang the more general problem (2.12). In
the following we focus solely on the equation (2.9)

We apply weak convergence of computationatiypse trees to determine directly (2.9) as in
De Rossi and Vargiolu(2010). Besides the Euler mehéor the stochastic differential equation
the use obinomial treess a simple and common calculation scheme in firain the discrete
time setting the problem (2.9) consists to evaluate

esssup Eolexp- %zt )dv e -FV, )R] i=0..,N-1 (2.14)

where the ess sup is taken over all t|‘(§i )-stopping timesr taking integer values betweedn

and N, r_ is the short rate of type (2.10) taken at tirkéh, and V,” - FV, is determined
by (2.6) and (2.8) with the zero-coupon bond values

P(ih,kOP) = Eo|exp- L =%2r JF ], i=0..,N, k=[&]..nP. (2.15)



If the short rates(rj) build now a Markov chain, then the quantitiesl§}.are deterministic
functions of i and r,. The conditional expectation in (2.14) is a fuactwhich only depends
on i, r, and V,"™ - FV,. In this situation (2.14) can be evaluated by bautkl recursion using

the Snell envelope as follows (e.g. De Rossi andjighu(2010), formula (8))

UN(I’):=V,\TC(I’)—FVN(I’ =
U, (r):= mav,"(r) - FV, (r). E
iI=N-LN-2...,210,

Q[exd N |+1 |+1 |+1Xri :r]}’ (216)

where an optimal stopping time is determined by
Fi=infli < NU, () =V () - Vi (). (2.17)

Given the initial short rater, the computational cost for the evaluation of filmections (U, )

depends on the chosen model for the discrete tunkeition of the short rate. Applying binomial
trees the state space for the short rate is & fa@t, but its cardinality depends on the typeed.t

If the tree is not recombining the state space for consists of up t®' points. If it is
recombining the state space grows at most lineutly i. It appears thus most efficient to use a
recombining tree dynamics for the short rate. WlWoin Section 3 the approaches by Nelson
and Ramaswamy(1990) and Hull and White(1990a) raplgied in Costabile et al.(2009) and
Costabile and Massabo(2010).

2.2. Amortized variablerate mortgage with given interest payment cycle

Consider now the amortized variable rate nag#g(AVRM) contract with continuous and
discrete amortization payments at equal datestefast and amortization payments. In contrast
to the fixed nominal interest rat@ >  6f an AFRM contract, which by given initial cagit P

determines the fixed continuous amortization rafe in continuous time, resp. the fixed
recurring discrete amortization paymew{, in discrete time, our AVRM contract is based on a
variable deterministic nominal interest rajg(s) > & time SD[O,T]. The variable rate leads
to a variable continuous amortization rat&(s per unit time, resp. to variable recurring
discrete amortization paymenf,(s) at the end of each payment cycle of lengf. We
suppose yearly adjustments of the rabés at)the timess=0,...,T — [lthat are settled at the
initial time of contract agreement, such thafs , résp. A.(s), are fixed over the time periods
(s,s+1], s=0,..,T 1. However, the variability in payments is partlyfset due to the
presence of #ifetime cap ¢ on the contract rate as well aperiodic cap and floory that

limits the possible change in contract rate at estjbhstment date. It is usual to assume that the
contract rate changes according to an index, wtererecise specification may vary. Inspired
by Sharp(2006), Section 2.3.1, we use a modifiedvdrd) index, which depends on the initial



observed TSIR and a margin (denotergin. Another example is found in Stanton and
Wallace(1995), which use an index that lags bekHitts in the term structure. Moreover, there
is often an initial teaser rate (denotedsej such that the initial contract rate is artifityaset
below the rate that the contract’s rules would otiee offer. A detailed specification follows.

In practice, a deterministic set of variablee¢year contract rates can be obtained from the
initial bond price structure as follows. The (fordpindex at time s=0,...,T — 1 denoted by

1Y " (s), is the implied forward mortgage-equivalent rata one year default-free pure discount
bond with maturity T > s. It is defined by

_InP@O,T)-InP(0,s)

1 { ro
YT (s) == (""" -1 R@O;sT)=
(=51 ) ROsT) e

(2.18)

where R(0;s,T),s=0,..,T -1, denotes the continuously compounded forward fatéhe time
period [s,T] contracted at the initial date of agreement (8jgrk(1998), Definition 15.2,
p.230). The variable one-year contract rate, dehbye o, (s) , is defined recursively by

0, (0) = 1Y F (0) + margin—teaser
min(IY F(s) +margin o, (s-1) + v, o, (0) + ﬁ),
Po(s—D-y

(2.19)

pD(s)zmax{ },S::L...,T—l.

At each adjustment date, the new contract ratejisleto the current value of the interest rate
dependent index plus the margin, as long as thigew@oes not increase beyond the initial level
by more than the lifetime cap, or deviate from frevious contract rate by more than the
periodic cap and floor. Similarly to the treatm@mtSection 2.1, letp,(s) = p,(S) P be the
interest rate per interest payment cycle overithe period (s,s+1], and let p, (s) = p,(s) th

be the interest rate per discrete time step. Aesponding approximate continuous contract rate
is p(s) = In{1+ Pn (s)}/h. Once the contract rate is known at the begininthe time period
(s,s+1], the recurring discrete amortization paymeft(s) at the end of each payment cycle
over this time period is determined by the curm@umistanding loan balancé, and the current
contract rate p,(s). This amortization payment is calculated under @ssumption that the

mortgage at times is a fixed rate mortgage contract that fully atizess the current outstanding
balance over the remaining life of the loan, whlplies that

Ag=LO— PO oo 7-1 (2.20)

1-(1+ pp(s) P

The outstanding loan balance at time= s+Kk[IP after the k -th amortization payment in the
time period (s,s+1] is determined by



- k(%)
Lo = LSDI (1+10P(S)) TI_PS ., $=0,...T-1 k=0,...,i, (2.21)
1-(1+ pp(9) P P

where at initial time one had, = P, the initial capital. If the prepayment optionesercised,

the face value charged to the borrower at eachredesdime step is given by (generalized
equation (2.6))

FVs colm (L+ oy (9 [M) [ Ly,
E+ +m

. (2.22)
$=0,.T-1 k=0,.-2-1 m=0..nl-1 FV, =0

Similarly to (2.8), the non-callable mortgage pratdime t =s+KkI[IP is determined by

1/1P-1 T-1 1/1P-1
Ve = A(s) O3 P(s+kOP,s+/0OP)+ 3 A, (r)03 P(s+kOP,z+¢0P)
E+k| r=k+1 r=s+l /=0 (223)

$s=0,...T-1 k=0,..1IP-1

with the convention that an empty sum is zero.idet T one hasV“ = 0To calculate the

callable mortgage price defined in (2.9) we usemfze backward recursion (2.16). A special
case of the above structure has been considei2d Rossi and Vargiolu(2010), Section 3.5.

3. Pricesand Greeks from computationally ssmple binomial trees

Recall the modification by Costabile and M&asg2010) of the Cox and Rubinstein(1985)
binomial approach to obtain a direct discrete sahefrthe original heteroscedastic process (2.10)
by means of a binomial tree with a number of nddasgrows linearly with the number of steps.

Let r, be the initial value of the discrete time binoh@pproximation of the diffusion process.
After the first time step, the process may jump top r' =r, +a(r0)\/ﬁ or down to
r’=r, —a(rOW. At the next time step, the process is forcedke one of three values:

" =r' +0(r1u Nh . two consecutive upward jumps
4 =rf —a(rld Nh : two consecutive downward jumps

rd=r=r, . upward (downward) jump followed by a downwéugward) jump

To describe the evolution of the discrete processthe whole binomial tree, one uses the
following state space notation:

r(i, j) . value of théoinomial processt the node(i, j) reached afteri time steps
with j upward stepsnd i — ] downward stepsi =0,...,N, j =0,...,i



10

In this notation one has at initial timg(0,0) = r,, after one time step

r(11) =r(00)+a(r(00)Vh, r(10)=r(00)-a(r(00)Wh,
and after two time steps
r(22)=r(1)+o(r(@)Wh, r(21)=r(00), r(20)=r(10)-o(r(1L0)/h.

This discrete scheme continues this way until @t time step N is reached by setting
successively for the nodes located on the uppex edg

ri,i)=r(i-1i-2)+o(r(i-2i -)Wh,i=1...N, (3.1)
for the nodes located on the lower edge

r(i,0) = max{r (i - 10) - o(r(i - 10)Wh 0f,i =1.....N, (3.2)
and for the nodes located on the internal nodes

r(00)=ry, i-j=],
r(i,j)=1 r(2j-i2j-i) i-j<j, (3.3)
r(i-2j0), i-j>]j.

For example, the binomial tree of the Vasicek shat¢ diffusion process is obtained setting
r(0,0) =r, and applying the following recursive scheme for1,...,N, j =1...,i:

r(|0)= mgx{r(i .—lO)TU.\/ﬁ',O}, r@,i)=r(@i-1i-1)+avh, (3.3)
r,j))=r(i—-2j-7,if j<i.

The internal nodes are defined by generating hotadayers of nodes, each one beginning at a
node located on an upper or lower edge. Since ivegatlues of the nominal interest rates have
no economic significance, (3.2) shows that the @gprating tree is truncated at the lower zero
boundary. Later on this is taken into account usiegfollowingtruncation index

index0) =0, indexi)= ;%]{r(i, i)-r(i,j+)=0}, i=1..N, (3.4)

where ..} is the indicator function.

It remains to define theansition probabilitiesassociated with each node. A natural choice is
to define these so that the local mean of the elisgprocess matches the drift of the limiting
diffusion. This procedure yields the following pediility for an upward jump at nodé, j)
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oli, ) = ,U(rr(i(i’ i )lhj++r 1(I)_JZ(_| :(';J;a J)_ (3.5)

Unfortunately, this simple device does not defing@éneral a legitimate probability, because the
value (3.4) may fall outside the interv{iO,l]. To overcome this difficulty multiple upward and

downward jumps must be consideredm@ltiple upward jumpt node (i, j) is defined by

3%, ) . the smallest positive integej* O[11+i] such that
ri+15%)2 (i, i)h+r( )

A multiple downward jummt node (i, j) is defined by J%(i,j)=3"(,j)-1. With this the
probability for an upward jumpt node (i, j) equals in general

)= mad A0+ )0 (413G, 0) ) e < <
o=l N ) o) =i
p(i,j)=0 j<indexi).

(3.6)

Clearly, theprobability for a downward jumpt node (i, j) is 1- p(i, j).

As an application of this simple binomial st rate tree model let us restate now the
recursive algorithm (2.16)-(2.17) for the approxienaumerical evaluation of the prepayment
option associated to the AFRM/AVRM contracts and torresponding optimal decisions for

prepayment. First, one definesratrix table MV”C(i, j) of non-callable AFRM/AVRM market
valuesover the binomial interest rate tree by considgtime present values at the nod@sj)

of the current and future cash-flows. This tablgeserated as follows. Le€F,,i =0,...,N be
the deterministic cash-flowsf the AFRM contract (AVRM contract) at each tirsiep defined
by CF =A if i =kinl, k=1,...,nP, ( CE =A(9 if
i=2+kl,s=0,.,T-1,k=1..5), and CF = Ootherwise. For j=0,.,N one sets
MV™(N, j)=CF, in caseindeXN-1)<j<N and MV™(N,j)=0 otherwise. Then one
has recursively

MV™(i,j)=CF +e O dip(i, )MV (i +1,3°(i, §))+ @- p(i, ) Mv™(i +1,3%(, ))
i=N-1..1 inde{i-1)<j<i, MV™(i,j)=0 j<indexi-2), (3.7)
MV ™(00) = CF, +e™ [Jp(00) MV ™ (12) + (1— p(00)) MV ™(10)]

The market vaIueMV”C(O,O) at initial time is an approximation o¥,°. Next, one generates a
matrix table IV (i, j)=ma{MVv™(i,j)-FV,,0} of intrinsic values of the prepayment option
where the face value~V, is defined in (2.6) for the AFRM contract, resipesly (2.22) for the
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AVRM contract. From this one obtainsnaatrix table CV(i, j) of continuation values of the
prepayment optiodefined by

CV(N,j)=0,j=0,..N,

Ve v (i, j)e 0 o, ) ev (i +1,.9°G, )
cv(i, )= {+eﬂmeL—MLDﬁEVG+lJ%LH)}
i=N-1..1 indeXi-1)<j<i, CV(i,j)=0, j<indexi-1),
cVv(00)=e™" §p(00)cVv(11)+(1- p(00))cV(10}}

(3.8)

It is known that the considered binomial procesakieconverges to the diffusion process (2.10)
(for a proof consult the papers by Costabile €2@09) and Costabile and Massabo(2010)).
Therefore, the above calculations yield the follogviapproximations at initial time= :Qthe

non-callable mortgage priceVy OMV ™(00), the prepayment option valuev,” 0CV/(0,0)

and the callable mortgage price VS OMV™(00)-CV(00) . Binomial interest rate tree
approximations of theptimal stopping timeand theoptimal prepayment ratare also obtained
from the matrix table of indicators 7(i, j)=HCV(i,j)=1V(i,j)>0} of optimal decisions of
prepayment According to the binomial tree translation ofl(2). the optimal stopping time is
attained at the first index < N for which there existsj <i satisfying r(i, j) =1. Since r(i, j)
increases in the second argument by fixed firstraent, the optimal prepayment rate is attained
at the node with largesf <i satisfying r(i, j) =1.

Binomial interest rate trees have the advantagprovide additionally simple approximations
for the price sensitivities or Greeks of finanar@truments including options of American type.
The most important Greeks are telta A (sensitivity with respect to a change in the entr
market rate), thggamma A (rate of change of delta) atldeta © (sensitivity to passage of
time or time value). At initial timet = Oone has the following well-known formulas

MV (1) - MV "™*(10)

A [ , A0 , A OA™ -AP 3.9
((12)-1(20) ((1)-1(20) &9
cvgz,zg—c(v(z);) _ cvgz,lg—c(v(z),o) MV”CgZ,Z;—M(V”C)(Z,l) _ MV"°EZ,1;—M(V”°)(2,0)
I—po 0 r{2,2)-r(21 r(21)-r(2,0 ’ nc 0 r{2,2)-r(21 r(21)-r(2,0 ’rc Drnc _ I—po 3.10
05(r(22)=r(20)) 05(r(22)=1(20) (3-10)

MV "™(21) - MV "*(0,0)
2[h

cv(21)-cv(00)
2[h

, e[ , ©°0O™ -0 (3.11)

Clagln

Improved methods to increase accuracy or acceleoaiteergence in binomial trees are found in
Wallner and Wystup(2004) and De Rozario(2004) amotigers. Often, one extends the
binomial tree on the left and use adjusted formdtastheta (e.g. Hull(1993), Chung and
Shackelton(2002)).
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4. Some analytical approximationsfor theVVasicek & CIR models

While the binomial tree calculations of Sext® apply to all diffusion processes of the type
(2.10) their accuracy in dependence of the crumishber of stepsN can be tested through
comparison with the best known numerical or anedytiapproximations available. For the
Vasicek and CIR models there are a lot of recamdies, which provide more or less reliable
results for the AFRM contract with continuous aneation payments (e.g. Xie(2008/09), Xie et
al.(2007a/07b/10), Lo et al.(2009)).

A first check of the accuracy of the binomtedée approximation can be done through
comparison with the exact analytical bond pricemolas as well as other analytical
approximations for the price and Greeks of theasponding non-callable mortgage. To begin

with the zero-coupon bond priceP(O,T) note that a binomial tree approximation following
Section 3 yields the recursive scheme

(N j): |nde>(N H<j<N, B(N,j)=0 j<indexN-1),
+

)= dpfi, i) o8 +.3(, 1))+ (- el D) B +2.9°C, 1)) (@.1)

i= N ],...;L indexi —1) < j<i, B(i,j)=0, j<indexi-1).
At initial time t = 0 one has the approximation
P(0,T) OB(00) = e™" fip(0,0) B(11) + (1- p(0,0)) B(10)]. (4.2)

On the other side, the exact bond price formulas veell-known. For the Vasicek process
dr. =a(B-r )dt+adW one has

p(0.T)= e p(y) =€ A(u)=(g-i(ﬂjzj(a(u)-u)-%[OBC(;‘)]Z. (4.3)

while for the CIR procesdr, = a(ﬂ -, )dt + J\/de\{ one has

PlOT)=e 0, ()= cf)((ee ‘_11))+ 5

y+a)u
Alu)= 2623 In{ 2)e } y=+a?+20?.

(4.4)

o’ |(y+ale” -1)+2y

Costabile and Massabo(2010) have tested their baldree against formula (4.4) for the CIR
process and have shown almost accuracyMor BDEOs. It is also possible to test analytical
approximations for the non-callable mortgage priagainst the binomial tree value

Vy© OV™(00) obtained from (3.7). For this, it suffices to @ that this price can be
expressed as limiting discrete analytical approxiometo the integral (2.7) as
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T

Vg© = AL P(0,u)du = ALlim DZe (8o :%. (4.5)

o

Similar expressions can be obtained for the Greékbe non-callable mortgage. One observes
that (4.8) is in virtue of (4.3) and (4.4) an exacalytical formula.

e _ OVG©|  _ - N (ks )-B(kh)

o= S| = A DBl ), Y

nc 0 2VOnC Akt )-B(khy )T

re==> = ALlim h, DZB(km) (e : (4.7)
r =r,
ne T T-t

o = MV :AE—I‘sz(t,u L{ AE—l‘sz drj =-ArP(0T) (4.8)
ot t=0 ot? t=0 ot g t=0

All these analytical exact formulas and limitingpapximations are tested below in Section 5.1.

In the above cited references one also firatgous numerical and analytical results for the
optimal prepayment rate and the callable mortgage pf the AFRM contract with continuous
amortization payments. We restrict ourselves to &tial.(2007a) and Xie(2009), who propose
analytical approximations for the Vasicek intemage model.

Consider first the optimal prepayment ratendtial time t = 0, which as function of the
maturity T is denoted byR(T). Bian et al.(2005) study the asymptotic behavidhe optimal
prepayment rate near expiry or equivalently Bs-  afd obtain the result (see also Xie et
al.(2007a), Theorem 3)

R(T)~p-okJ2T as T -0, (4.9)

where the constank C 0. 33438 the unique root of the integral equation

Jr=]e b -2 v27),, (4.10)
) (Kz + 22)5

Xie et al.(2007a) study the asymptotic behaviordorinfinite maturity and obtain the analytical
result (see Theorem 4 and formula (7.18))

RT)~R*+p*e as T - o, (4.11)

AN o’ J\/_ H (/J+£ X*)
Re=fB-|—| +——=x*, = - DX a 4.12
R A e e e 0 MG

with u :ﬁ(%(i)z —,8), H(v,x) the Hermite function, andk *mplicit solution of
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yH(u, y)e ¥ *¥dy o
ﬁ-(aj + 7 I =p, f=——. (4.13)
\/_ j Iu ye y+{ydy 0’\/5

Combining (4.9) and (4.11) two simple global appnmuations are derived in Xie et al.(2007a),
Section 8. For an approximation of the form

1 _ e—bT
b

R (T)=p-ox,2 , (4.14)

which satisfies (4.9) and the behavidR(T)~ R* as T - o, one finds (Xie et al.(2007a),

formula (8.1))
- D _ KO ;
R(T)=p-o(p-R )\/1 ex%z( _R*) T} (4.15)

On the other side, using the more detailed infolwna4.11)-(4.13), one shows the enhanced
approximation

1-e" _ ; Ko ;
R, (T)=p-or +p*le” —-e? )+ R*-p+—= |[1-e" ). (4.16)
()= p-ox | P ( ) { p \/;J( )

For a typical parameter set Xie et al.(2007a) &nelative error of the small order of magnitude

maxRE) - R, (0}
= 04%. (4.17)
p-R*

From the contract holder’s point of view itegen more important to know the market value
V°(x T) or price of the callable AFRM contract given nitsturity T and the current market
return x=r, . Assuming A=1 in (1.1) and making the change of variable

Ve(x,T)=V(y,T), y=x-R(T), Xie(2009), formulas (21)-(22), derives the tweymptotic
expansions

V(y,T)~a+by? +cy’,y - 0, V(y,T)~1,y - =, (4.18)
with

a=3{i-e”) b=-1{-e”Ji-"1) c=2:(a-a(B-R(T)h) (4.19)

From this Xie(2009), Section 3, derives two anabfttiapproximations. Restrict the attention to
the second more accurate one, which uses the duthptotic information contained in (4.18).
For this consider an approximation of the type



16

V(y,T)= (R +A,y)ERFCXQy?)+ (P, + A,Y)ERFCX(Q,y?) y=0,  (4.20)

with ERFCX(z)=e? ERFQ(z), ERF(z)= 25(\/52), 5(2)=ﬁr e?dz the scaled
complementary error function. To approximate (4.2 asymptotic expansions (e.g. Jeffrey
and Zwillinger(2000), 890-892)

ERFCX(2)~ A -+ 8]~

4.21
ERFCX(z)~1-222 - 0, #21)

are introduced in (4.20), and this is compared \Wtth8) to get the system of equations

A teo P+P,=a A+4,=0,
Q Q

2

(4.22)
_ﬁ(PlQl + PzQz) =b, _%(A1Q1 +/12Q2) =G, Q1’Q2 > 0.

To solve this setP, = x,a, P, = x,a, X, +X, =1. Inserting into the A equation one gets

XQ, +X,Q, = —%g. (4.23)

Elimination of A, A, in the £, 3% and %" equations yields furthe2Q,Q, = c. This allows for
elimination of Q, in (4.23) and yields the quadratic equation fQr

24Q7 +VT2Q +%,C =0, (4.24)

which has a real solution if and only if its detémant is non-negative, that is

A(x,) = m) +8x2c-8x,c = 0. (4.25)

The limiting caseA(x,) =0 yields the solution
% =311 £ ) e> 40, x=1-x, (4.26)
If the condition ¢ >’—2T(§)2 is not satisfied, then choose simply = x, =3, which implies that

A(%): 77(%)2 —2c20. In this situation (4.24) has a real solution. Suaning the analysis, the
coefficients in (4.20) can be specified explicéhyd uniquely as follows:
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Case 1 c<z(e)

(4.27)
Q, =53¢ A=F5c A =-4
Case 2 c>z(b)
P=xa P =xa X :%(1-'"\/1_%(%)2 j’ X, =1=-X, ( )
4.28

—_1 b -1 —Jr_ 1 - _
Q=-2AVme, Q=4c A= loc A=-)

We note that the simplifying choice; = x, =3 is proposed in Xie(2009). However, this author
does not state (4.27) and misses to mention tietstmplifying assumption does not lead to a

solution in casec > L;(%)z. With (4.20) the approximation of the callable ngaige price reads

VexT)= { (P + LY)ERFCX(Qy? )+ (P, + YJERFOXQuy*) y=x-R(T)>0. .o

a, y=x-R(T)<o0.

5. Numerical examples

We illustrate numerically the findings of tipeeceding Sections for the Vasicek and CIR
models of the TSIR with the following parameters:

parameters \ TSIR model Vasicek CIR
speed of reversiom 0.15 0.15
long term mean levep 5% 5%
instantaneous volatilitys 1.5% 6.5%
initial short rate r0 5.5% 5.5%

This parameter choice generates similar zero-coupmmd prices for the Vasicek and CIR
models, which are even almost identical for shod medium maturities up to 5 years.

5.1. Comparison resultsfor the AFRM contract with continuous amortization payments

We suppose thap =55 %nd A=1. For the Vasicek model the analytical approxinratio
formula (4.16) for the optimal prepayment rate isasdéd on the parameters
a = 015, 5 = 005 0 =0.015, which yield R* =0.029 o* = 0. 0086 as defined in (4.12) and as
stated in Xie et al.(2007a), Figure 4. The corresiitg callable mortgage price is calculated
with the analytical approximation formula (4.29he€Tcalculation of prices and Greeks according
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to Section 3 is done with 3 different numbers afdonial steps N =100, 500 1000 and allows

for a qualitative assessment of the convergencthefbinomial trees. Numerical results for
smaller maturities up to 5 years are very satisfgcind not listed here. Results for the medium
and larger maturitiesT = 5,10, 20and 30 years are found in the Tables 5.1-5.3i¢¢ksnodel)

and the Tables 5.4-5.5 (CIR model).

In general, convergence of the binomial tredues to the exact and limiting analytical
formulas for the prices of the zero-coupon bond @rednon-callable mortgage is excellent. The
same observation holds for the Greeks of the ndabta mortgage, where thd
approximations for the CIR model converge better.the callable mortgage we compare prices
and Greeks of mixed binomial analytical values ffedence of analytical values for the non-
callable mortgage and binomial tree values forghepayment option) with pure binomial tree
values and obtain a satisfactory convergence, wioicH™ is again better for the CIR model. A
binomial tree approximation of the optimal prepawneate is obtained following the
computational procedure specified after formul®)3For the Vasicek model it compares quite
favorably with the analytical formula (4.16), whiatequires unfortunately a tedious and
cumbersome analytical determination of its pararsete

It remains to discuss Table 5.3 for the Vdsioeodel, which compares the analytical
approximation of the callable mortgage price by (X@®9) with its binomial tree counterpart.
Compared to the binomial tree values one obserggstamatic underestimation (overestimation)
of the callable mortgage price (prepayment optiaice) analytical approximation. This
numerical discrepancy increases at the longer miagiand becomes impractical for a valuable
estimation of the prepayment option price. Basethese very promising results, we would like
to recommend the simplified approach by Costabild 8assabo(2010) for a simultaneous
evaluation of mortgage related prices and Greekdiftusion models of the type (2.10).

Table5.1: Binomial tree vs. exact analytical formulas aindits (Vasicek)

model parameters a 0315 B 0.05 ¢ 0.015 r0  0.055 p 0.055 A 1
maturity T 5 10 20 30
number of steps N 100 500 1000 100 500 1000 100 500 1000 100 500 1000
zero-coupon bond (100 face value)

exact analytical price 76.735 76.735 76.735] 59.939 59.939 59.939( 37.591 37.591 37.591| 23.878 23.878 23.878
binomial tree price 76.729 76.733 76.734]| 59.917 159.925 59.926( 37.500 37.517 37.520f 23.727 23.757 23.758
non-callable mortgage

analytical limiting price 43852 4.3852 4.3852| 7.7807 7.7807 7.7807] 12.561 12.561 12.561| 15.582 15.582 15.582
binomial tree price 43853 4.3853 4.3853| 7.7810 7.7806 7.7806] 12.560 12.558 12.558| 15.574 15.569 15.569
analytical limiting A -8.3294 -8.3294 -8.3294|-23.328 -23.328 -23.328|-51.308 -51.308 -51.308| -70.896 -70.896 -70.896
binomial tree A -8.297 -8.323 -8.326|-23.332 -23.317 -23.315[-51.535 -51.226 -51.189(-71.425 -70.700 -70.598
relative absolute deviation 039% 0.08% 0.04%| 0.01% 0.05% 0.06%| 0.44% 0.16% 0.23%| 0.75% 0.28% 0.42%
analytical limiting T 20.347 20.347 20.347] 87.383 87.383 87.383(251.664 251.664 251.664(378.715 378.715 378.715
binomial tree T 19.710 20.178 20.237| 84.655 86.018 86.179|241.538 243.857 244.225|361.303 363.989 363.894
relative absolute deviation 313% 0.83% 0.54%| 3.12% 1.56% 1.38%| 4.02% 3.10% 2.96%| 4.60% 3.89% 3.91%
exact analytical @ -0.7674 -0.7674 -0.7674]-0.5994 -0.5994 -0.5994-0.3759 -0.3759 -0.3759|-0.2388 -0.2388 -0.2388
binomial tree © -0.7733 -0.7685 -0.7679| -0.6081 -0.6010 -0.6002-0.3859 -0.3773 -0.3763|-0.2476 -0.2396 -0.2386
absolute deviation 059% 0.12% 0.06%| 0.87% 0.16% 0.08%| 0.99% 0.14% 0.04%| 0.88% 0.08% 0.02%
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Table5.2: Mixed binomial tree and exact analytical limi¥&agicek)

model parameters a 015 B 0.05 o 0.015 r0  0.055 p 0.055 A 1
maturity T 5 10 20 30
number of steps N 100 500 1000 100 500 1000 100 500 1000 100 500 1000
callable mortgage

mixed bin. anal. price 42864 4322 4.3265| 7.4627 7.5284 7.5366| 11.586 11.712 11.727| 13.905 14.083 14.105
binomial tree price 42865 4.3221 4.3265( 7.463 7.5283 7.5364| 11.585 11.708 11.723| 13.897 14.071 14.092
relative absolute deviation 0.00% 0.00% 0.00%| 0.00% 0.00% 0.00%| 0.01% 0.03% 0.03%| 0.06% 0.09% 0.09%
mixed bin. anal. A -4.526 -4.823 -4.860(-12.516 -13.249 -13.334-26.345 -28.249 -28.476( -35.108 -38.127 -38.442
binomial tree A -4.494 -4.816 -4.856]-12.519 -13.238 -13.320| -26.573 -28.167 -28.358| -35.637 -37.932 -38.145
relative absolute deviation 0.72% 0.14% 0.08%| 0.03% 0.09% 0.10%| 0.86% 0.29% 0.42%| 1.51% 0.51% 0.77%
mixed bin. anal. T -210.46 -200.83 -199.83| -406.05 -382.62 -381.34|-649.49 -585.16 -577.73| -790.4 -678.12 -667.85
binomial tree T -211.1 -201.0 -199.9] -408.8 -384.0 -382.5| -659.6 -593.0 -585.2| -807.8 -692.8 -682.7
relative absolute deviation 0.30% 0.08% 0.06%| 0.67% 0.36% 0.32%| 1.56% 1.33% 1.29%| 2.20% 2.17% 2.22%
mixed bin. anal. © -0.7441 -0.7435 -0.7433] -0.5549 -0.5531 -0.5527]-0.3123 -0.3117 -0.3116|-0.1776 -0.1786 -0.1783
binomial tree © -0.7501 -0.7446 -0.7439] -0.5636 -0.5548 -0.5535]-0.3222 -0.3131 -0.3120| -0.1864 -0.1794 -0.1782
absolute deviation 0.59% 0.12% 0.06%| 0.87% 0.16% 0.08%| 0.99% 0.14% 0.04%| 0.88% 0.08% 0.02%
prepayment option

binomial tree price 0.0988 0.0632 0.0588| 0.3181 0.2523 0.2441] 0.9753 0.8497 0.8343| 1.6767 1.4982 1.4765
binomial tree A -3.803 -3.5063 -3.4692(-10.813 -10.079 -9.9945( -24.962 -23.059 -22.831|-35.787 -32.768 -32.453
binomial tree T 230.81 221.18 220.17| 493.43 470.00 468.73| 901.15 836.82 829.4| 1169.1 1056.8 1046.6
binomial tree © -0.0232 -0.0239 -0.0241| -0.0445 -0.0463 -0.0467| -0.0636 -0.0642 -0.0643| -0.0612 -0.0602 -0.0604
Table5.3: Binomial tree vs. analytical approximations (\tak)

model parameters a 015 B 0.05 o 0.015 r0  0.055 p 0.055 A 1
maturity T 5 10 20 30
number of steps N 100 500 1000f 100 500 1000 100 500 1000 100 500 1000
optimal prepayment rate

analytical approximation 4.07% 4.07% 4.07%| 3.66% 3.66% 3.66%| 3.26% 3.26% 3.26%| 3.09% 3.09% 3.09%
binomial tree rate 4.16% 4.15% 4.12%| 3.60% 3.80% 3.70%| 3.49% 3.40% 3.38%| 3.04% 3.30% 3.16%
absolute deviation 0.09% 0.08% 0.05%| 0.06% 0.14% 0.04%| 0.23% 0.14% 0.12%| 0.05% 0.21% 0.07%
callable mortgage

analytical approximation 43153 43153 4.3153| 7.4830 7.4830 7.4830[ 11.559 11.559 11.559| 13.841 13.841 13.841
binomial tree price 42865 4.3221 43265 7.463 7.5283 7.5364| 11.585 11.708 11.723| 13.897 14.071 14.092
relative absolute deviation 0.67% 0.16% 0.26%| 0.27% 0.60% 0.71%| 0.22% 1.27% 1.40%| 0.40% 1.64% 1.78%
prepayment option

analytical approximation 0.0699 0.0699 0.0699| 0.2977 0.2977 0.2977| 1.0021 1.0021 1.0021] 1.7406 1.7406 1.7406
binomial tree price 0.0988 0.0632 0.0588| 0.3181 0.2523 0.2441( 0.9753 0.8497 0.8343| 1.6767 1.4982 1.4765
absolute deviation 2.89% 0.67% 1.11%| 2.03% 4.54% 5.36%| 2.69% 15.24% 16.78%| 6.39% 24.23% 26.40%
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Table5.4: Binomial tree vs. exact analytical formulas aindits (CIR)

model parameters a 015 B 005 ¢ 0.065 r0  0.055 p 0.055 A 1
maturity T 5 10 20 30
number of steps N 100 500 1000f 100 500 1000 100 500 1000f 100 500 1000
zero-coupon bond (100 face value)

analytical price formula 76.735 76.735 76.735] 59.906 59.906 59.906| 37.389 37.389 37.389] 23.551 23.551 23.551
binomial tree price 76.730 76.734 76.735] 59.899 59.905 59.906| 37.389 37.393 37.393| 23.554 23.559 23.558
non-callable mortgage

exact analytical price 43853 4.3853 4.3853| 7.7802 7.7802 7.7802| 12.549 12.549 12.549| 15.542 15.542 15.542
binomial tree price 43853 4.3853 4.3853| 7.7808 7.7803 7.7803| 12.554 12.551 12.550| 15.553 15.546 15.544
analytical limiting A -8.280 -8.280 -8.280|-22.940 -22.940 -22.940| -49.500 -49.500 -49.500| -67.572 -67.572 -67.572
binomial tree A -8.256 -8.277 -8.279|-23.021 -22.972 -22.962|-50.197 -49.718 -49.638| -69.107 -68.036 -67.863
relative absolute deviation 0.29% 0.04% 0.01%| 0.35% 0.14% 0.09%| 1.41% 0.44% 0.28%| 2.27% 0.69% 0.43%
analytical limiting T 20.060 20.060 20.060| 84.037 84.037 84.037( 232.28 232.28 232.28| 341.41 34141 341.41
binomial tree T 19.462 19.932 19.993| 82.359 83.671 83.842| 230.22 231.89 232.09| 340.36 34138 341.46
relative absolute deviation 2.98% 0.64% 0.33%| 2.00% 0.44% 0.23%| 0.89% 0.17% 0.08%| 0.31% 0.01% 0.01%
exact analytical © -0.7674 -0.7674 -0.7674|-0.5991 -0.5991 -0.5991|-0.3739 -0.3739 -0.3739 -0.2355 -0.2355 -0.2355
binomial tree © -0.7733 -0.7685 -0.7679| -0.6080 -0.6008 -0.6000[ -0.3848 -0.3761 -0.3750{ -0.2459 -0.2376 -0.2366
absolute deviation 0.59% 0.12% 0.06%| 0.89% 0.18% 0.09%| 1.09% 0.22% 0.11%| 1.03% 0.21% 0.11%
Table5.5: Mixed binomial tree and exact analytical limi@GIR)

model parameters a 015 B 0.05 o 0.065 r0  0.055 p 0.055 A 1
maturity T 5 10 20 30
number of steps N 100 500 1000 100 500 1000 100 500 1000 100 500 1000
callable mortgage

mixed bin. anal. price 4,2856 4.3215 4.3260| 7.4607 7.5279 7.5364| 11.582 11.714 11.731| 13.894 14.085 14.110
binomial tree price 4,2857 4.3216 4.3260| 7.4613 7.5280 7.5365| 11.586 11.715 11.731| 13.904 14.088 14.112
relative absolute deviation 0.00% 0.00% 0.00%| 0.01% 0.00% 0.00%| 0.04% 0.01% 0.01%| 0.07% 0.02% 0.01%
mixed bin. anal. A -4.648 -4.969 -5.013-12.820 -13.647 -13.763( -26.537 -28.765 -29.080( -34.871 -38.367 -38.843
binomial tree A -4.624 -4.966 -5.012(-12.900 -13.679 -13.784-27.235 -28.983 -29.219( -36.406 -38.832 -39.135
relative absolute deviation 0.52% 0.06% 0.02%| 0.63% 0.23% 0.16%| 2.63% 0.76% 0.48%| 4.40% 1.21% 0.75%
mixed bin. anal. T -206.9 -196.7 -195.6[ -395.8 -371.8 -370.0f -635.9 -567.0 -558.5| -776.8 -660.6 -648.4
binomial tree T -207.5 -196.8 -195.6| -397.5 -372.2 -370.2 -637.9 -567.4 -558.7| -777.8 -660.7 -648.4
relative absolute deviation 0.29% 0.07% 0.03%| 0.42% 0.10% 0.05%| 0.32% 0.07% 0.03%| 0.14% 0.00% 0.01%
mixed bin. anal. © -0.7445 -0.7433 -0.7432] -0.5549 -0.5533 -0.5530 -0.3120 -0.3120 -0.3120-0.1769 -0.1783 -0.1782
binomial tree © -0.7504 -0.7445 -0.7438| -0.5638 -0.5550 -0.5539( -0.3229 -0.3142 -0.3131|-0.1872 -0.1804 -0.1793
absolute deviation 0.59% 0.12% 0.06%| 0.89% 0.18% 0.09%| 1.09% 0.22% 0.11%| 1.03% 0.21% 0.11%
prepayment option

binomial tree price 0.0996 0.0637 0.0593| 0.3194 0.2523 0.2438| 0.9679 0.8355 0.8187| 1.6484 1.4576 1.4324
binomial tree A -3.632 -3.311 -3.267(-10.120 -9.293 -9.178|-22.962 -20.734 -20.419(-32.701 -29.205 -28.728
binomial tree T 226.94 216.76 215.62 479.85 455.86 454.03 868.17 799.27 790.82 1118.2 1002.1 989.83
binomial tree © -0.0229 -0.0240 -0.0242{-0.0441 -0.0458 -0.0461|-0.0619 -0.0619 -0.0619( -0.0586 -0.0573 -0.0573
optimal prepayment rate

binomial tree rate 420% 4.20% 4.18%| 3.70% 3.89% 3.81%| 3.59% 3.55% 3.54%| 3.19% 3.45% 3.35%
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5.2. lllustration for the AVRM contract with discrete amortization payments

First of all, some methodological and pradtiaspects must be discussed. As defined in
Section 2.2, the deterministic contract rates dodepend on the future stochastic evolution of
the short ratesr,, s=0,...,T — ,Xhat follow the Vasicek/CIR models. The contnate structure

depends upon the current market bond prices ovalgutly on the current TSIR, which is used
to estimate implied forward market mortgage eq@rtlates in accordance with formula (2.19).
Of course, the current market bond prices, whiderd@&ne the contract rates, are inconsistent
with the Vasicek/CIR bond prices because thesefacter models cannot reproduce in general
the current TSIR whatever the choice of the parametHowever, fixing contract agreements
based on the current state of the world (priciniyayg) and valuation of contract features based
on the unknown future using stochastic models (mshagement activity) are not contradictory
per se (they correspond to different activitieshimtthe organization of a financial institutionf). |
current market bond prices must be in line with ithierest rate models, then more complex
models must be considered; e.g. the yield curtiaditmodels by Hull and White(1990b/2001),
Black et al.(1990), Black and Karinski(1991), oe thBOR market model by Brace et al.(1997),
Jamshidan(1997)) and Miltersen et al.(1997). Timigdrtant distinction is illustrated in Table 5.6,
which displays the possible numerical differencesMeen market forward prices and modeled
forward prices. Note that our choice of market fardvbond prices is arbitrary (it only fulfills
the purpose of illustration) and does not rely eal-world forward bond prices. In practice, the
latter are often derived from zero coupon bonddyiglrves published by national banks (e.qg.
“Statistisches Monatsheft der Schweizerischen Matlmank”, available atvww.snb.ch. Our
deliberately simple AVRM contract definition makiés path-independent financial instrument
that can be valued with the same convenient backwetursion formula (3.8) as used for the
AFRM contract. This contract is enough flexibleftbits variable deterministic contract rate
structure to the current forward bond price streeetiWVith this property, a valuable practical
alternative to the AFRM contract has been introdusmed motivated.

In contrast, the known AVRM contract from tliterature is a path-dependent interest rate
instrument (e.g. Sharp(2006)). This means thattmract rates are contingent on the historical
evolution of the interest rates. In this situatitme amortization payments, the outstanding loan
balance values and the face values in (2.20)-(2v8R)Ylepend upon the lattice that describes the
interest rate evolution involved in the backwardursion valuation formula (2.16). As a
consequence the simple recursion (3.8) must baceglby an algorithm of exponential time to
maturity complexity (e.g. Hochreiter and Pflug(2p06ection 2.2). To reduce the involved
computational complexity, it is common to use amrila@ary state variable (e.g. Hull and White
(1993), Ritchken et al.(1993), Willmot et al.(1998Barraquand and Pudet(1996)). Another
promising approach is the “just-in-time” least sqasaMonte-Carlo method proposed in Dutte
and Welke(2008), which includes the Vasicek/CIR eisedThe idea of this method consists to
start from the final interest rate distribution ageherate stochastic interest rates backwards as
the mortgage prepayment option is priced. Somealdsi objectives can be achieved this way:
(i) The backward option pricing algorithm is ind with the backward interest rate process.

(i) The storage requirement is greatly reducelictvresults in an increased efficiency.
(iif) The MC errors can be reduced, which resuidtan increased accuracy.

In our numerical illustration we set agaiA=1. The adjustment in (2.19) is done with

teaser= 001, periodic cap and floor y=0. 005and lifetime cap ¢ = 002[T /10 For
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comparison purposes the initial approximate comtirsucontract rate is set equal to the initial
short rate of the AFRM contract, i.eo(0) =r, =55 .%o fulfill the latter condition we use a

variable margin defined bynargin=teaser+(e*" -1)/h—IFF (0)The calculation of prices
and Greeks follows again Section 3. It is done ifixed number of stepdN = 120We vary

IP = 1/41/12,h over the maturity year§ = 510, 2@Results are summarized in the Table 5.7
(Vasicek model) and the Table 5.8 (CIR model)slinteresting to note that the results for the
limiting case IP =h (numerical approximation of the continuous paymeage) are similar to
those of Section 5.1. The higher prices are dukdgearly adjustment of the contract rates. The
special casey = (of the extended AVRM algorithm reduces to an AFRIlgorithm. Indeed, in
this  situation the variable contract rates (2.19)re a all equal, i.e.
oo (s 1) =p,0Or,),s=1...,T —1. One observes that the prepayment option pricestlasid
Greeks vary monotonically with the cycle lengtl® . The binomial tree ®’s of the non-
callable and callable mortgages for discretdP =1/4, 14121 continuous approximation
IP =h have different signs. This is due to the fact tihe non-callable market values in the
formula (3.11) are not influenced by cash-flow payns for these discrete values while they are
for the continuous approximation. Finally, for tuet information, the Table 5.9 displays the
dependence of the discrete amortization paymeiy$s) , that have been defined in (2.20), of
the various AVRM contracts upon the different ie&rpayment cycles.

Table5.6: Market forward bond prices versus Vasicek and folkiard bond prices

Market Vasicek o 0.15|CIR o 0.15
model and TSIR TSIR B 0.05|TSIR B 0.05
parameters o] 0.015 o] 0.065
r0 0.055 r0 0.055
maturity T 5 10 20 5 10 20 5 10 20
time s Market forward bond prices Vasicek forward bond prices CIR forward bond prices
0| 0.76735 0.59900 0.37600| 0.76735 0.59939 0.37591] 0.76735 0.59906  0.37389
1| 0.81042 0.63300 0.39700f 0.81042 0.63303 0.39701| 0.81042 0.63268 0.39487
2 0.85520 0.66800 0.41900 0.85520 0.66801 0.41895 0.85520 0.66764 0.41669
3 0.90170 0.70400 0.44200 0.90170 0.70433 0.44173 0.90170 0.70394 0.43935
4 0.94995 0.74200 0.46500 0.94995 0.74202 0.46537 0.94994 0.74161 0.46286
5 0.78100  0.49000 0.78111  0.48989 0.78069  0.48725
6 0.82200  0.51500 0.82167  0.51532 0.82124  0.51256
7 0.86400  0.54200 0.86375  0.54172 0.86336  0.53885
8 0.90700 0.56900 0.90744 0.56912 0.90713 0.56616
9 0.95300 0.59800 0.95283 0.59758 0.95264 0.59457
10 0.62700 0.62717 0.62413
11 0.65800 0.65793 0.65491
12 0.69000 0.68995 0.68699
13 0.72300 0.72328 0.72045
14 0.75800 0.75801 0.75535
15 0.79400 0.79420 0.79179
16 0.83200 0.83194 0.82984
17 0.87100 0.87130 0.86960
18 0.91200 0.91237 0.91114
19 0.95500 0.95524 0.95458
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Table5.7: Prices and Greeks for the AVRM contract with give (Vasicek model)

model parameters o 0.15 B 0.05 o 0.015 ro 0.055

periodic cap and floor y 0.005 teaser 0.01

margin 0.011692 0.011927 0.012038 0.013434 0.013654 0.013752 0.015817 0.016017 0.016097
maturity T 5 10 20

number of steps N 1200 1200 1200 1200 1200 1200 1200 1200 1200
cycle length IP 0.25 0.083 0.004 0.25 0.083 0.008 0.25 0.083 0.017
parameter nl =IP-N/T 60 20 1 30 10 1 15 5 1
lifetime cap € 0.01 0.01 0.01 0.02 0.02 0.02 0.04 0.04 0.04
non-callable mortgage

binomial tree price 4.432 4.433 4.433 7.993 7.997 8.000 13.266 13.288 13.296
binomial tree A -8.830 -8.566 -8.441| -24.576 -24.225 -24.066| -54.906 -54.568 -54.431
binomial tree T 21.873 20.969 20.544 91.488 89.796 89.039| 262.437 260.515 259.747
binomial tree © 0.235 0.235 -0.765 0.411 0.412 -0.589 0.660 0.661 -0.340
callable mortgage

binomial tree price 4.111 4.268 4.341 7.386 7.537 7.603 11.723 11.869 11.927
binomial tree A -2.869 -3.479 -3.848 -8.554 -9.375 -9.749] -18.662 -19.394 -19.681
binomial tree T -182.360 -221.467 -212.945| -443.059 -449.570 -448.830] -791.321 -784.665 -782.895
binomial tree © 0.244 0.257 -0.741 0.450 0.458 -0.539 0.720 0.727 -0.272
prepayment option

binomial tree price 0.322 0.165 0.092 0.606 0.461 0.396 1.544 1.419 1.369
binomial tree A -5.961 -5.088 -4.593| -16.021 -14.849 -14.316| -36.244 -35.174 -34.750
binomial tree T 204.233  242.435 233.490| 534.547 539.366 537.868| 1053.758 1045.181 1042.642
binomial tree © -0.010 -0.022 -0.025 -0.039 -0.046 -0.049 -0.061 -0.066 -0.068
optimal prepayment rate

binomial tree rate | 5.11%  453%  434%| 4.68%  4.40%  4.13%| 4.14%  3.95%  3.95%
Table5.8: Prices and Greeks for the AVRM contract with give (CIR model)

model parameters a 0.15 B 0.05 o 0.065 r0 0.055

periodic cap and floor y 0.005 teaser 0.01

margin 0.011692 0.011927 0.012038 0.013434 0.013654 0.013752 0.015817 0.016017 0.016097
maturity T 5 10 20

number of steps N 1200 1200 1200 1200 1200 1200 1200 1200 1200
cycle length IP 0.25 0.083 0.004 0.25 0.083 0.008 0.25 0.083 0.017
parameter nl=IP-N/T 60 20 1 30 10 1 15 5 1
lifetime cap € 0.01 0.01 0.01 0.02 0.02 0.02 0.04 0.04 0.04
non-callable mortgage

binomial tree price 4.432 4.433 4.433 7.992 7.997 7.999 13.258 13.280 13.289
binomial tree A -8.778 -8.517 -8.393| -24.196 -23.854 -23.699| -53.228 -52.905 -52.775
binomial tree T 21.603 20.714 20.298 88.982 87.357 86.629| 249.411 247.621 246.905
binomial tree © 0.235 0.235 -0.765 0.411 0.412 -0.589 0.661 0.663 -0.338
callable mortgage

binomial tree price 4.109 4.266 4.340 7.380 7.531 7.598 11.708 11.855 11.914
binomial tree A -3.086 -3.698 -4.059 -9.262  -10.062 -10.422| -20.118 -20.834 -21.106
binomial tree T -188.284 -221.092 -210.804| -445.756 -446.666 -443.257| -783.772 -771.665 -768.161
binomial tree © 0.246 0.258 -0.740 0.451 0.459 -0.539 0.720 0.726 -0.272
prepayment option

binomial tree price 0.323 0.167 0.093 0.612 0.466 0.402 1.550 1.425 1.375
binomial tree A -5.692 -4.819 -4.334] -14.934  -13.792  -13.277| -33.110 -32.072 -31.669
binomial tree T 209.886 241.806 231.102| 534.737 534.023 529.886| 1033.183 1019.286 1015.066
binomial tree © -0.011 -0.023 -0.025 -0.040 -0.047 -0.049 -0.059 -0.064 -0.066
optimal prepayment rate

binomial tree rate 511%  4.56%  4.38%| 4.69%  4.19%  4.07%| 4.20%  4.03%  3.86%
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Table5.9: Dependence of discrete amortization paymeAtgs) upon interest payment cycle

maturity T 5 10 20
number of steps N 1200 1200 1200 1200 1200 1200 1200 1200 1200
cycle length 1P 0.25 0.083 0.004 0.25 0.083 0.008 0.25 0.083 0.017
time s
0 0.25149 0.08350 0.00417| 0.25130 0.08348  0.00834| 0.25099 0.08346  0.01667
1] 0.25405 0.08432 0.00421] 0.25661 0.08523 0.00851| 0.26101 0.08678 0.01734
2| 0.25570 0.08485 0.00423| 0.26065 0.08655 0.00864] 0.26965 0.08965 0.01791
3] 0.25559  0.08481 0.00423] 0.26039 0.08647 0.00863] 0.26907 0.08946  0.01787
4( 0.25552  0.08479 0.00423| 0.26008 0.08637 0.00862| 0.26876 0.08936  0.01785
5 0.25989  0.08631 0.00862| 0.26825 0.08919 0.01782
6 0.25966  0.08623  0.00861| 0.26799  0.08910 0.01780
7 0.25955 0.08620 0.00861| 0.26755 0.08896 0.01777
8 0.25957 0.08621 0.00861| 0.26737 0.08890 0.01776
9 0.25946  0.08618 0.00860| 0.26704 0.08879 0.01774
10 0.26697 0.08877 0.01774
11 0.26677  0.08870  0.01772
12 0.26665 0.08366  0.01772
13 0.26661  0.08365 0.01771
14 0.26648  0.083861 0.01770
15 0.26645  0.08360 0.01770
16 0.26637  0.08857  0.01770
17 0.26639  0.08358  0.01770
18 0.26640  0.08858  0.01770
19 0.26640  0.08358 0.01770
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