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Abstract 

 
The recombining binomial tree approach, which has been initiated by Cox, Ross and 
Rubinstein(1979) and extended to arbitrary diffusion models by Nelson and Ramaswamy(1990) 
and Hull and White(1990a), is applied to the simultaneous evaluation of price and Greeks for the 
amortized fixed and variable rate mortgage prepayment option. We consider the simplified 
binomial tree approximation to arbitrary diffusion processes by Costabile and Massabo(2010) 
and analyze its numerical applicability to the mortgage valuation problem for some Vasicek and 
CIR like interest rate models. For fixed rates and binomial trees with about thousand steps we 
obtain very good results. For the Vasicek model we also compare the closed-form analytical 
approximation of the callable fixed rate mortgage price by Xie(2009) with its binomial tree 
counterpart. With respect to the binomial tree values one observes a systematic underestimation 
(overestimation) of the callable mortgage price (prepayment option price) analytical 
approximation. This numerical discrepancy increases at longer maturities and becomes 
impractical for a valuable estimation of the prepayment option price. 
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1.   Introduction 

     The valuation of the callable mortgage with its prepayment (and default) options is a difficult 
but widely discussed problem. Two recent thesis entirely devoted to this subject are 
Goncharov(2003) and Sharp(2006) (see also Goncharov(2004/05) and Sharp et al.(2008/09)). 
Among the many divers approaches we focus in this study on the option based approach, which 
has been discussed earlier among others by Siegel(1984), Hall(1985), Kau et al.(1992/93), Kau 
and Keenan(1995), Dickinson and Heuson(1994), Stanton(1995), Kalotay et al.(2004). 
     Since the prepayment option is of American type, there does not seem to exist to our 
knowledge any simple and general evaluation method, which yields simultaneously both price 
and Greeks. Pricing of the prepayment option can be classified into four categories: analytical 
methods, recombining binomial and trinomial trees, Monte Carlo simulation methods and finite 
difference methods. With the single exception of Agarwal et al.(2008) no analytical closed-form 
solution to the mortgage pricing problem is known. Some promising recent attempts by 
Xie(2008/09), Xie et al.(2007a/07b/10), and Lo et al.(2009), have been made to obtain analytical 
approximations for both the optimal prepayment rate and the callable fixed rate mortgage price 
within the Vasicek and the Cox-Ingersoll-Ross (CIR) model frameworks. In Section 4 the 
analytical approximations by Xie et al.(2007a) and Xie(2009) for the Vasicek interest rate model 
will be considered and tested in Section 5.1 against the recombining binomial tree methodology, 
which is the approach adopted in the present study. Another quite popular technique is Monte 
Carlo simulation applied in conjunction with the regression algorithm by Longstaff and 
Schwartz(2001), which has been recently extended to the computation of Greeks in the 
Bermudan case by Belomestny et al.(2007). Finally, it is known that pricing financial 
instruments can be done by solving partial differential equations (e.g. Tavella and Randall(2000), 
Duffy(2006)). In this situation it is possible to use Green’s function (e.g. Büttler and 
Waldvogel(1996)) and apply various more or less sophisticated finite difference numerical 
techniques. In particular, for the callable mortgage with prepayment and default options the basic 
partial differential equation is formula (1.17) in Sharp(2006). 
     The CRR approach, which has been extended to arbitrary diffusion models by Nelson and 
Ramaswamy(1990) and Hull and White(1990a), is applied to the simultaneous evaluation of 
price and Greeks for the fixed and variable rate mortgages. We consider the simplified recent 
binomial tree approximation to diffusion processes by Costabile et al.(2009) and Costabile and 
Massabo(2010) and analyze its applicability to the mortgage valuation problem for the Vasicek 
and CIR interest rate models. For fixed rates and binomial trees with about thousand steps very 
good results are obtained. The fact that the Vasicek and CIR models do not fit the initial term 
structure is not a disadvantage because these models have been extended to do so (e.g. Hull and 
White(1990b) and Hull(2003), Chap. 23.9, for the extended Vasicek or Hull-White model, Brigo 
and Mercurio(2001) for the CIR++ model, Chen and Scott(2003) for the multifactor CIR model) 
and are included in our general approach. The paper is organized as follows. 
     Section 2 introduces the pricing models for the amortized fixed and variable rate mortgage 
contracts. Section 3 recalls the construction by Costabile and Massabo(2010) of computationally 
simple binomial trees and shows how it applies to the evaluation of prices and Greeks for non-
callable and callable mortgages as well as the associated prepayment option. Section 4 is devoted 
to the fixed rate mortgage under the Vasicek/CIR models. We display some exact and limiting 
analytical formulas and approximations including a correction to a formula by Xie(2009) for the 
Vasicek model. Section 5 provides numerical comparisons, examples and further discussion. 
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2.   Pricing models for the default-free amortized fixed and variable rate mortgages 
 
     The pricing of amortized fixed and variable rate mortgages with given interest payment cycle 
is considered. In a variable rate mortgage the contract rate is adjusted periodically in order to 
reflect prevailing interest rates. Let us state some main features of our approach. We assume 
equal interest and amortization payment dates but distinguish between instantaneous payments in 
a continuous time framework and recurring discrete payments following a given payment cycle 
in a discrete time framework. The borrower has the option to prepay the mortgage at an arbitrary 
date prior maturity, the so-called prepayment option. For simplicity, no penalty is charged to the 
borrower at prepayment, but this assumption can be removed. Usually, the borrower has another 
option, the so-called default option, which consists in forfeiting the contract in exchange of the 
physical good underlying the mortgage. If the borrower exercises this option, then the lender 
does not receive any stream of payment anymore, but has the right to retain all previously done 
payments in addition to the underlying good. The prepayment and default options are alternative 
to each other in the sense that if one has been exercised, the contract expires and the other one 
cannot be exercised anymore. The borrower’s default risk can be taken into account by charging 
an appropriate default insurance premium (e.g. Schwartz and Torous(1992)). We assume that it 
is included in the mortgage’s servicing fee (e.g. Schwartz and Torous(1991), p.284). A 
simultaneous treatment of both options can be found among others in Sharp et al.(2008), Chen et 
al.(2009), and their references. In our approach, the latter requires the construction of a two-
dimensional binomial tree and goes beyond the scope of the present study. For an extended 
analysis we recommend De Rossi and Vargiolu(2010), Section 5. 
 
 
2.1.  Amortized fixed rate mortgage with given interest payment cycle 
 
     Consider the amortized fixed rate mortgage (AFRM) contract on an underlying good (e.g. 
house or another physical good). Assume that at time  0=t   the contract holder borrows an 
initial capital  P   at the nominal instantaneous rate  0>ρ   and pays it back over the time 

interval  [ ]T,0   with  T   the maturity of the contract. We distinguish between a continuous 

amortization rate  A   per unit time and a recurring discrete amortization payment  PA   at the 
end of each interest payment cycle of length  IP . To enable later on calculations in a discrete 
time setting we assume that the interval  [ ]T,0   is divided into  N   discrete time steps   

[ ] Niihhi ,...,1,,)1( =− , each of length   NTh /= . Set  IPTnP /=  (the number of recurring 
payments), hIPnI /=  (the number of discrete steps in each interest payment cycle), and assume 
that  IP/1   and  nI   are positive integers. Let  1−= h

N eρρ   be the interest rate per discrete time 

step and let  nINP ⋅= ρρ   be the interest rate per interest payment cycle. In the continuous time 

setting one has the basic equation 
 

ρ

ρ
ρ

TT
t e

AdteAP
−

− −⋅=⋅= ∫
1

0

.     (2.1) 

 
It corresponds in the discrete time framework to the relationship 
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( ) ( )( )nP
P

P

P
nP

k

k
PP

A
AP −

=

− +−⋅=+⋅= ∑ ρ
ρ

ρ 111
1

.   (2.2) 

 
The case (2.1) of continuous amortization payments is approximated in practical calculations by 
the limiting case (2.2) with interest payment cycle  hIP =   for which  1=nI . In this situation 
one has the relationship 

ρ
ρ N

P AA ⋅= .      (2.3) 

 
The borrower has the option to prepay the mortgage at an arbitrary date  Tt < . In case of 
prepayment the outstanding loan balance equals 
 

[ ]Tt
e

AdueAL
tTT

t

tu
t ,0,

1 )(
)( ∈−⋅=⋅=

−−
−−

∫ ρ

ρ
ρ ,   (2.4) 

 
in continuous time, resp. 
 

( ) ( )( ) 0,1,...,0,111
1

)( =−=+−⋅=∑ +⋅= −

+=

−−
⋅ T

nPk
P

P

P
nP

kj

kj
PPIPk LnPk

A
AL ρ

ρ
ρ , (2.5) 

 
in discrete time, where it represents the outstanding loan balance at time  IPkt ⋅= . If the 
prepayment option is exercised, the borrower must prepay the current outstanding loan balance 
plus any accrued interest since the last recurring payment. The charged amount is called face 
value and it is denoted and defined for each discrete time step by 
 

( ) .0,1,...,0,1,...,0,1 =−=−=⋅⋅+= ⋅+⋅ NIPkNmnIk FVnImnPkLmFV ρ  (2.6) 

 
Once the option is exercised the contract terminates. The prepayment option is therefore a 
contingent claim of American type. If the borrower exercises the prepayment option at time  t   
(resp. at time  ih   in discrete time) the lender receives immediately the face value  tt LFV =   

(resp. iFV   in discrete time) instead of the future stream of payments at the amortization rate  A   

per unit time  (resp. PA  at the end of each interest payment cycle). The market value at time  t   
(resp. at time  ih   in discrete time) of these future cash-flows, also called non-callable mortgage 
price, equals 
 

( ) [ ]TtduutPAV
T

t

nc
t ,0,, ∈⋅= ∫ ,    (2.7) 

in continuous time, resp. 
 

( )
[ ]

,0,1,...,0,,
1/

=−=∑ ⋅⋅=
+=

nc
N

nP

nIik
P

nc
i VNiIPkihPAV   (2.8) 
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in discrete time. In both cases  ( )stP ,   denotes the price at time  t   of a zero-coupon bond with 
maturity  ts ≥ . The lender is exposed to the risk of early exercise at time  Tt <   of an American 
option to exchange  nc

tV   for  tFV   (resp.  nc
iV   for  iFV   in discrete time). While the value of  

tFV   is deterministic the value of  nc
tV   depends upon the evolution of the term structure of 

interest rates (TSIR) described by the zero-coupon bond structure   ( ) [ ]TtsstP ,,, ∈ . The optimal 
exercise of the prepayment option is triggered by market conditions like interest rates falling 
under a certain level, called optimal prepayment rate. 
     For banks or mortgage companies who hold a large pool of such contracts with different 
outstanding loan balances, different maturity dates, or different payment schedules, it is crucial 
to know the fair value of AFRM contracts with prepayment option. The determination of this fair 
value is not a trivial task because it depends upon the behavior of the borrower, which may act in 
a financial rational way or not. Once the market value and the sensitivities or Greeks of each 
contract are known, the construction of hedging and risk management strategies can begin. 
     In a continuous time and complete market framework with filtered probability space  
( )QF ,,Ω   the market value at time  Tt <   of the mortgage with prepayment option, also called 
callable mortgage price, equals (e.g. De Rossi and Vargiolu(2010), equation (3)) 
 

[ ]
( )

( ) [ ]TtFFVVdurEV

FFVVdurEessVV

t
nc

t uQ
nc

t

t
nc

t uQ
Tt

nc
t

c
t

,0,exp

expsup

ˆˆ

ˆ

,

∈



 −⋅





−−=





 −⋅





−−=

∫

∫
∈

ττ
τ

ττ

τ

τ
,  (2.9) 

 
where the ess sup is taken over all )( iF -stopping times. The instantaneous interest rate is 

assumed to follow a diffusion process of the type 
 

( ) ( ) tttt dWrtdtrtdr ,, σµ += ,     (2.10) 

 
with  tW   the standard Wiener process, and  τ̂   is the optimal stopping time under the rational 

refinancing assumption. In later concrete calculations we assume for simplicity that the short rate 
is mean-reverting with drift ( ) ( )tt rrt −= βαµ , , and the instantaneous standard deviation is 

either constant  ( ) σσ =trt,   (model of Vasicek(1977)) or of square-root type  ( ) tt rrt σσ =,   

(model of Cox-Ingersoll-Ross(1985) or CIR model). The condition 22 σαβ >  for the CIR model 
guarantees that the process never touches zero and implies a stationary gamma distribution. 
Similar calculations can be done for the Hull-White model with  ( ) ( )tt rtrt −= )(, βαµ   and  

( ) σσ =trt,   following the specification and calibration in Hull(2003), Chap. 23. 

     It is important to note that in a pool of mortgages one can observe different prepayment times, 
optimal stopping times and non-optimal ones, for different borrowers. The pricing of such 
mortgages is done using the so-called prepayment function. Let  τ   be the (optimal or not) 
prepayment time of a “typical” single borrower, which is a  ( )tF -stopping time, that is a random 

variable with values in the time interval  [ ]T,0 . Let  ( )θ⋅H   be its cumulative distribution 
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function with respect to  Q   conditional on the state variable  θ , which is defined by  

( ) ( )θτθ tQtH ≤= . We assume that  τ   has a conditional density  ( ) ( )θθ tHth '= . Then the 

prepayment function, also called hazard function or risk function, which is similar to the default 
intensity in credit risk, is defined by 
 

( ) ( ) ( )[ ] 1
1

−−⋅= θθθπ tHtht .     (2.11) 

 
This function describes the density of prepayment at time  t   conditional on  θ   and the fact that 
the borrower has not yet prepaid. The price of the callable mortgage with prepayment function is 
(e.g. De Rossi and Vargiolu(2010), p.28) 
 

( ) ( )( )( )( )[ ] [ ]TtFduFVVdvvruEVV T
t tu

nc
u

u
t vQ

nc
t

prc
t ,0,exp, ∈∫ −∫ +−−= θπθπ . (2.12) 

 
Observe that (2.12) is similar to the pricing formula for a security under credit risk where the 
recovery value  ττ FVV nc −   is paid at default (e.g. Schönbucher(2000)). 

     In various model specifications the prepayment function depends on the fact that at a given 
time it is optimal or not to prepay, that is on the function 
 





=tθ
else

t

,0

ˆ,1 τ=
     (2.13) 

 
For example, in the model by Stanton(1995) one has  ( ) tt ηθλθπ += : an exogenous (non-

optimal) prepayment has a constant hazard function  λ , and if it is optimal to prepay the hazard 
function is augmented by the constant  η . In particular, solving the American option type 
valuation problem (2.9) is a necessary step towards solving the more general problem (2.12). In 
the following we focus solely on the equation (2.9). 
     We apply weak convergence of computationally simple trees to determine directly (2.9) as in 
De Rossi and Vargiolu(2010). Besides the Euler scheme for the stochastic differential equation 
the use of binomial trees is a simple and common calculation scheme in finance. In the discrete 
time setting the problem (2.9) consists to evaluate 
 

[ ]
( ) ( )[ ] ,1,...,0,expsup

,
−=−⋅∑− =

∈
NiFFVVrEess i

nc
ik kN

T
Q

Ni
ττ

τ

τ
  (2.14) 

 
where the ess sup is taken over all the    ( )iF -stopping times  τ   taking integer values between  i  

and  N ,  kr   is the short rate of type (2.10) taken at time  hk ⋅ ,  and  ττ FVV nc −   is determined 

by (2.6) and (2.8) with the zero-coupon bond values 
 

( ) ( )[ ] [ ] .,...,,,...,0,exp, 1 nPkNiFrEIPkihP nI
i

i
k

ij jN
T

Q ==∑−=⋅ −
=   (2.15) 
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If the short rates  ( )jr   build now a Markov chain, then the quantities (2.15) are deterministic 

functions of  i   and  ir . The conditional expectation in (2.14) is a function which only depends 

on  i , ir   and  i
nc

i FVV − . In this situation (2.14) can be evaluated by backward recursion using 

the Snell envelope as follows (e.g. De Rossi and Vargiolu(2010), formula (8)) 
 

( ) ( ) ( )
( ) ( ) ( ) ( ) ( )[ ]{ }

,0,1,2,...,2,1

,exp,max:

,0:

111

−−=

=⋅−−=

≡−=

+++

NNi

rrrUrErFVrVrU

rFVrVrU

iiiiN
T

Qi
nc

ii

N
nc

NN

  (2.16) 

 
where an optimal stopping time is determined by 
 

( ) ( ) ( ){ }iii
nc

iii rFVrVrUNi −=≤= inf:τ̂ .   (2.17) 

 
Given the initial short rate  0r   the computational cost for the evaluation of the functions  ( )iU   

depends on the chosen model for the discrete time evolution of the short rate. Applying binomial 
trees the state space for the short rate is a finite set, but its cardinality depends on the type of tree. 
If the tree is not recombining the state space for  ir   consists of up to i2  points. If it is 

recombining the state space grows at most linearly with  i . It appears thus most efficient to use a 
recombining tree dynamics for the short rate. We follow in Section 3 the approaches by Nelson 
and Ramaswamy(1990) and Hull and White(1990a) as simplified in Costabile et al.(2009) and 
Costabile and Massabo(2010). 
 
 
2.2.  Amortized variable rate mortgage with given interest payment cycle 
 
     Consider now the amortized variable rate mortgage (AVRM) contract with continuous and 
discrete amortization payments at equal dates of interest and amortization payments. In contrast 
to the fixed nominal interest rate  0>ρ   of an AFRM contract, which by given initial capital  P   
determines the fixed continuous amortization rate  A   in continuous time, resp. the fixed 
recurring discrete amortization payment  PA   in discrete time, our AVRM contract is based on a 

variable deterministic nominal interest rate  0)( >sρ   at time  [ ]Ts ,0∈ . The variable rate leads 
to a variable continuous amortization rate  )(sA   per unit time, resp. to variable recurring 

discrete amortization payment  )(sAP   at the end of each payment cycle of length  IP . We 
suppose yearly adjustments of the rate  )(sρ   at the times  1,...,0 −= Ts , that are settled at the 

initial time of contract agreement, such that  )(sA , resp.  )(sAP , are fixed over the time periods  

( ] 1,...,0,1, −=+ Tsss . However, the variability in payments is partly offset due to the 
presence of a lifetime cap  l   on the contract rate as well as a periodic cap and floor  y   that 
limits the possible change in contract rate at each adjustment date. It is usual to assume that the 
contract rate changes according to an index, where the precise specification may vary. Inspired 
by Sharp(2006), Section 2.3.1, we use a modified (forward) index, which depends on the initial 
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observed TSIR and a margin (denoted margin). Another example is found in Stanton and 
Wallace(1995), which use an index that lags behind shifts in the term structure. Moreover, there 
is often an initial teaser rate (denoted teaser) such that the initial contract rate is artificially set 
below the rate that the contract’s rules would otherwise offer. A detailed specification follows. 
     In practice, a deterministic set of variable one-year contract rates can be obtained from the 
initial bond price structure as follows. The (forward) index at time  1,...,0 −= Ts , denoted by  

)(sIY F , is the implied forward mortgage-equivalent rate of a one year default-free pure discount 
bond with maturity  sT > . It is defined by 
 

( )
sT

sPTP
TsRe

IP
sIY IPTsRF

−
−−=−⋅= ⋅ ),0(ln),0(ln

),;0(,1
1

)( ),;0( ,  (2.18) 

 
where  ( ) 1,...,0,,;0 −= TsTsR , denotes the continuously compounded forward rate for the time 

period  [ ]Ts,   contracted at the initial date of agreement (e.g. Björk(1998), Definition 15.2, 

p.230). The variable one-year contract rate, denoted by  )(sDρ , is defined recursively by 
 

( )
.1,...,1,

)1(

,)0(,)1(,)(min
max)(

,)0()0(

−=








−−
++−+

=

−+=

Ts
ys

ysmarginsIY
s

teasermarginIY

D

DD
F

D

F
D

ρ
ρρ

ρ

ρ

l  (2.19) 

 
At each adjustment date, the new contract rate is equal to the current value of the interest rate 
dependent index plus the margin, as long as this value does not increase beyond the initial level 
by more than the lifetime cap, or deviate from the previous contract rate by more than the 
periodic cap and floor. Similarly to the treatment in Section 2.1, let  IPss DP ⋅= )()( ρρ   be the 

interest rate per interest payment cycle over the time period  ( ]1, +ss , and let  hss DN ⋅= )()( ρρ   

be the interest rate per discrete time step. A corresponding approximate continuous contract rate 
is  { } hss N /)(1ln)( ρρ += . Once the contract rate is known at the beginning of the time period  

( ]1, +ss , the recurring discrete amortization payment  )(sAP   at the end of each payment cycle 

over this time period is determined by the current outstanding loan balance  sL   and the current 

contract rate  )(sPρ . This amortization payment is calculated under the assumption that the 
mortgage at time  s  is a fixed rate mortgage contract that fully amortizes the current outstanding 
balance over the remaining life of the loan, which implies that 
 

( )
.1,...,0,

)(11

)(
)(

)(
−=

+−
⋅= −−

Ts
s

s
LsA

IP

sT

P

P
sP

ρ

ρ
   (2.20) 

 
The outstanding loan balance at time  IPkst ⋅+=   after the  k -th amortization payment in the 
time period  ( ]1, +ss   is determined by 
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( )
( )

,
1

,...,0,1,...,0,
)(11

)(11
)(

)(

IP
kTs

s

s
LL

IP

sT

P

IP

sT
k

P
sIPks =−=

+−

+−
⋅= −−

−−

⋅+

ρ

ρ
  (2.21) 

where at initial time one has  PL =0 , the initial capital. If the prepayment option is exercised, 

the face value charged to the borrower at each discrete time step is given by (generalized 
equation (2.6)) 

( )

.0,1,...,0,1
1

,...,0,1,...,0

,)(1

=−=−=−=

⋅⋅+= ⋅++⋅+

N

IPksN
mnIk

h

s

FVnIm
IP

kTs

LmsFV ρ

  (2.22) 

Similarly to (2.8), the non-callable mortgage price at time  IPkst ⋅+=   is determined by 
 

( ) ( ) ( )

,1/1,...,0,1,...,0

,,)(,
1

1

1/1

0

1/1

1

−=−=

∑ ∑ ⋅+⋅+⋅+∑ ⋅+⋅+⋅=
−

+=

−

=

−

+=⋅+

IPkTs

IPIPksPAIPsIPksPsAV
T

s

IP

P

IP

k
P

nc

nIk
h

s
τ

ττ
ll

ll

     (2.23)  

 
with the convention that an empty sum is zero. At time  T   one has  0=nc

NV . To calculate the 

callable mortgage price defined in (2.9) we use again the backward recursion (2.16). A special 
case of the above structure has been considered in De Rossi and Vargiolu(2010), Section 3.5. 
 
 
3.   Prices and Greeks from computationally simple binomial trees 
 
     Recall the modification by Costabile and Massabo(2010) of the Cox and Rubinstein(1985) 
binomial approach to obtain a direct discrete scheme of the original heteroscedastic process (2.10) 
by means of a binomial tree with a number of nodes that grows linearly with the number of steps. 
Let  0r   be the initial value of the discrete time binomial approximation of the diffusion process. 

After the first time step, the process may jump up to  ( ) hrrr u
001 σ+=   or down to  

( ) hrrr d
001 σ−= . At the next time step, the process is forced to take one of three values: 

 

( ) hrrr uuuu
112 σ+=  :  two consecutive upward jumps 

( ) hrrr dddd
112 σ−=  :  two consecutive downward jumps 

022 rrr duud ==   :  upward (downward) jump followed by a downward (upward) jump 

 
To describe the evolution of the discrete process on the whole binomial tree, one uses the 
following state space notation: 
 

( )jir ,   :  value of the binomial process at the node  ( )ji,   reached after  i   time steps  
     with  j    upward steps and  ji −   downward steps,  ijNi ,...,0,,...,0 ==  
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In this notation one has at initial time  ( ) 00,0 rr = , after one time step 

 

 ( ) ( ) ( )( ) hrrr 0,00,01,1 σ+= ,  ( ) ( ) ( )( ) hrrr 0,00,00,1 σ−= ,   
 
and after two time steps 
 

( ) ( ) ( )( ) hrrr 1,11,12,2 σ+= ,  ( ) ( )0,01,2 rr = ,  ( ) ( ) ( )( ) hrrr 0,10,10,2 σ−= .  
 
This discrete scheme continues this way until the last time step  N   is reached by setting 
successively for the nodes located on the upper edge 
 

( ) ( ) ( )( ) hiiriiriir 1,11,1, −−+−−= σ , ,,...,1 Ni =    (3.1) 
 
for the nodes located on the lower edge 
 

( ) ( ) ( )( ){ }0,0,10,1max0, hiririr −−−= σ , ,,...,1 Ni =   (3.2) 
 
and for the nodes located on the internal nodes 
 

( )








=jir ,

( )
( )
( ) .,0,2

,,2,2

,,0,0 0

jjijir

jjiijijr

jjirr

>−−
<−−−

=−=
    (3.3) 

 
For example, the binomial tree of the Vasicek short rate diffusion process is obtained setting  

( ) 00,0 rr =   and applying the following recursive scheme for  ijNi ,...,1,,...,1 == : 

 

( ) ( ){ }
.),1,2(),(

,)1,1(),(,0,0,1max0,

ijifjirjir

hiiriirhirir

<−−=
+−−=−−= σσ

  (3.3’) 

    
The internal nodes are defined by generating horizontal layers of nodes, each one beginning at a 
node located on an upper or lower edge. Since negative values of the nominal interest rates have 
no economic significance, (3.2) shows that the approximating tree is truncated at the lower zero 
boundary. Later on this is taken into account using the following truncation index 
 

( ) ( ) ( ) ( ){ } ,,...,1,01,,1,00
1

0
Nijirjiriindexindex

i

j
=∑ =+−==

−

=
  (3.4) 

 
where  { }...1   is the indicator function. 
     It remains to define the transition probabilities associated with each node. A natural choice is 
to define these so that the local mean of the discrete process matches the drift of the limiting 
diffusion. This procedure yields the following probability for an upward jump at node  ( )ji,  
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( ) ( )( ) ( ) ( )
( ) ( ) .

,11,1

,1,,
,

jirjir

jirjirhjir
jip

+−++
+−+= µ

    (3.5) 

 
Unfortunately, this simple device does not define in general a legitimate probability, because the 
value (3.4) may fall outside the interval  [ ]1,0 . To overcome this difficulty multiple upward and 

downward jumps must be considered. A multiple upward jump at node  ( )ji,   is defined by 
 

( )jiJ u ,  :  the smallest positive integer  [ ]ij +∈ 1,1*   such that  

   ( ) ( )( ) ( )jirhjirjir ,,*,1 +≥+ µ  
 
A multiple downward jump at node  ( )ji,   is defined by  ( ) ( ) 1,, −= jiJjiJ ud . With this the 

probability for an upward jump at node  ( )ji,   equals in general 
 

( ) ( )( ) ( ) ( )( )
( )( ) ( )( )

( ) ).(,0,

,)(,0,
,,1,,1

,,1,,
max,

iindexjjip

ijiindex
jiJirjiJir

jiJirjirhjir
jip

du

d

<=

≤≤








+−+
+−+= µ

  (3.6) 

 
Clearly, the probability for a downward jump at node  ( )ji,   is  ( )jip ,1− . 
     As an application of this simple binomial interest rate tree model let us restate now the 
recursive algorithm (2.16)-(2.17) for the approximate numerical evaluation of the prepayment 
option associated to the AFRM/AVRM contracts and the corresponding optimal decisions for 
prepayment. First, one defines a matrix table  ( )jiMV nc ,   of non-callable AFRM/AVRM market 

values over the binomial interest rate tree by considering the present values at the nodes  ( )ji,   

of the current and future cash-flows. This table is generated as follows. Let  NiCFi ,...,0, =   be 

the deterministic cash-flows of the AFRM contract (AVRM contract) at each time step defined 
by  Pi ACF =   if  ,,...,1, nPknIki =⋅=  ( )(sACF Pi =   if   

IPh
s kTsnIki 1,...,1,1,...,0, =−=⋅+= ), and  0=iCF  otherwise. For  Nj ,...,0=   one sets  

( ) N
nc CFjNMV =,   in case  ( ) NjNindex ≤≤−1   and  ( ) 0, =jNMV nc   otherwise. Then one 

has recursively 
 

( ) ( ) ( ) ( )( ) ( )( ) ( )( )[ ]
( ) ( )

( ) ( ) ( ) ( )( ) ( )[ ].0,10,011,10,00,0

),1(,0,,1,1,...,1

,,,1,1,,1,,

0
0

,

ncnchrnc

nc

dncunchjir
i

nc

MVpMVpeCFMV

iindexjjiMVijiindexNi

jiJiMVjipjiJiMVjipeCFjiMV

⋅−+⋅⋅+=

−<=≤≤−−=

+⋅−++⋅⋅+=

−

−

   (3.7) 

 
The market value  ( )0,0ncMV   at initial time is an approximation of  ncV0 .  Next, one generates a 

matrix table  ( ) ( ){ }0,,max, i
nc FVjiMVjiIV −=   of intrinsic values of the prepayment option, 

where the face value  iFV   is defined in (2.6) for the AFRM contract, respectively (2.22) for the 
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AVRM contract. From this one obtains a matrix table  ( )jiCV ,   of continuation values of the 
prepayment option defined by 
 

( )

( ) ( ) ( ) ( ) ( )( )
( ) ( )( ) ( )( )
( ) ( )

( ) ( ) ( ) ( )( ) ( ){ }0,10,011,10,00,0

),1(,0,,1,1,...,1

,
,,1,1

,,1,,,
max,

,,...,0,0,

0

,

,

CVpCVpeCV

iindexjjiCVijiindexNi

jiJiCVjipe

jiJiCVjipejiIV
jiCV

NjjNCV

hr

dhjir

uhjir

⋅−+⋅⋅=

−<=≤≤−−=













+⋅−⋅+

+⋅⋅
=

==

−

−

−

  (3.8) 

 
It is known that the considered binomial process weakly converges to the diffusion process (2.10) 
(for a proof consult the papers by Costabile et al.(2009) and Costabile and Massabo(2010)). 
Therefore, the above calculations yield the following approximations at initial time 0=t : the 
non-callable mortgage price  ( )0,00

ncnc MVV ≅ , the prepayment option value  ( )0,00 CVV po ≅   

and the callable mortgage price  ( ) ( )0,00,00 CVMVV ncc −≅ . Binomial interest rate tree 

approximations of the optimal stopping times and the optimal prepayment rate are also obtained 
from the matrix table of indicators  ( ) ( ) ( ){ }0,,1, >== jiIVjiCVjiτ   of optimal decisions of 
prepayment. According to the binomial tree translation of (2.17) the optimal stopping time is 
attained at the first index  Ni ≤   for which there exists  ij ≤  satisfying ( ) 1, =jiτ . Since  ( )jir ,   
increases in the second argument by fixed first argument, the optimal prepayment rate is attained 
at the node with largest  ij ≤   satisfying ( ) 1, =jiτ . 
     Binomial interest rate trees have the advantage to provide additionally simple approximations 
for the price sensitivities or Greeks of financial instruments including options of American type. 
The most important Greeks are the delta  ∆   (sensitivity with respect to a change in the current 
market rate), the gamma  ∆   (rate of change of delta) and theta  Θ   (sensitivity to passage of 
time or time value). At initial time  0=t   one has the following well-known formulas 
 

( ) ( )
( ) ( )

( ) ( )
( ) ( )

poncc
ncnc

ncpo

rr

MVMV

rr

CVCV ∆−∆≅∆
−
−≅∆

−
−≅∆ ,

0,11,1

0,11,1
,

0,11,1

0,11,1
  (3.9) 

 
( ) ( )
( ) ( )

( ) ( )
( ) ( )

( ) ( )( )
( ) ( )
( ) ( )

( ) ( )
( ) ( )

( ) ( )( )
ponccrr

MVMV
rr
MVMV

ncrr
CVCV

rr
CVCV

po

rrrr

ncncncnc

Γ−Γ≅Γ
−

−
≅Γ

−
−

≅Γ −
−

−
−

−
−

−
−

,
0,22,25.0

,
0,22,25.0

0,21,2
0,21,2

1,22,2
1,22,2

0,21,2
0,21,2

1,22,2
1,22,2

   (3.10) 

 
( ) ( ) ( ) ( ) poncc

ncnc
ncpo

h

MVMV

h

CVCV Θ−Θ≅Θ
⋅
−≅Θ

⋅
−≅Θ ,

2
0,01,2

,
2

0,01,2
 (3.11) 

 
Improved methods to increase accuracy or accelerate convergence in binomial trees are found in 
Wallner and Wystup(2004) and De Rozario(2004) among others. Often, one extends the 
binomial tree on the left and use adjusted formulas for theta (e.g. Hull(1993), Chung and 
Shackelton(2002)). 
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4.   Some analytical approximations for the Vasicek & CIR models 
 
     While the binomial tree calculations of Section 3 apply to all diffusion processes of the type 
(2.10) their accuracy in dependence of the crucial number of steps  N   can be tested through 
comparison with the best known numerical or analytical approximations available. For the 
Vasicek and CIR models there are a lot of recent studies, which provide more or less reliable 
results for the AFRM contract with continuous amortization payments (e.g. Xie(2008/09), Xie et 
al.(2007a/07b/10), Lo et al.(2009)). 
     A first check of the accuracy of the binomial tree approximation can be done through 
comparison with the exact analytical bond price formulas as well as other analytical 
approximations for the price and Greeks of the corresponding non-callable mortgage. To begin 
with the zero-coupon bond price  ( )TP ,0   note that a binomial tree approximation following 
Section 3 yields the recursive scheme 
 

( ) ( )
( ) ( ) ( ) ( )( ) ( )( ) ( )( )[ ]

( ) ).1(,0,,)1(,1,...,1

,,,1,1,,1,,

),1(,0,,)1(,1,
,

−<=≤≤−−=
+⋅−++⋅⋅=

−<=≤≤−=
−

iindexjjiBijiindexNi

jiJiBjipjiJiBjipejiB

NindexjjNBNjNindexjNB
duhjir   (4.1) 

 
At initial time 0=t   one has the approximation 
 

( ) ( ) ( ) ( ) ( )( ) ( )[ ]0,10,011,10,00,0,0 0 BpBpeBTP hr ⋅−+⋅⋅=≅ − .    (4.2) 
 
On the other side, the exact bond price formulas are well-known. For the Vasicek process  

( ) ttt dWdtrdr σβα +−=   one has 

 

( ) ( ) ( ) ( ) ( ) ( )( ) ( )[ ]
.

4

1

2

1
,

1
,,0

22

0

α
σ

α
σβ

α

α uB
uuBuA

e
uBeTP

u
rTBTA −−





















−=−==
−

⋅−  (4.3) 

 

while for the CIR process  ( ) tttt dWrdtrdr σβα +−=   one has 

 

( ) ( ) ( ) ( ) ( )
( )( )

( )
( )

( )( ) .2,
21

2
ln

2

,
21

12
,,0

22
2

2
1

0

σαγ
γαγ

γ
σ
αβ

γαγ

γ

αγ

γ

γ

+=












+−+
=

+−+
−==

+

⋅−

u

u

u

u
rTBTA

e

e
uA

e

e
uBeTP

   (4.4) 

 
Costabile and Massabo(2010) have tested their binomial tree against formula (4.4) for the CIR 
process and have shown almost accuracy for  1000=N  steps. It is also possible to test analytical 
approximations for the non-callable mortgage price against the binomial tree value  

( )0,00
ncnc VV ≅   obtained from (3.7). For this, it suffices to remark that this price can be 

expressed as limiting discrete analytical approximation to the integral (2.7) as 
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( ) ( ) ( ) .,lim,0
1

0
0

0
0

M

T
hehAduuPAV M

M

k

rkhBkhA
M

h

T
nc MM

M

=⋅⋅=⋅= ∑∫
=

⋅−

→
  (4.5) 

 
Similar expressions can be obtained for the Greeks of the non-callable mortgage. One observes 
that (4.8) is in virtue of (4.3) and (4.4) an exact analytical formula. 
 

( ) ( ) ( ) .lim
1

0

0 0

0

∑
=

⋅−

→
=

⋅⋅⋅−=
∂

∂
=∆

M

k

rkhBkhA
MM

h
rr

nc
nc MM

M

ekhBhA
r

V
    (4.6) 

 

( ) ( ) ( ) .lim
1

2

02
0

2
0

0

∑
=

⋅−

→
=

⋅⋅⋅=
∂

∂
=Γ

M

k

rkhBkhA
MM

h
rr

nc
nc MM

M

ekhBhA
r

V
    (4.7) 

( ) ( ) ( )TPAdP
t

AduutP
t

A
t

V

t

tT

t

T

tt

nc
tnc ,0,0,

0000

⋅−=
∂
∂⋅=

∂
∂⋅=

∂
∂

=Θ
=

−

==
∫∫ ττ   (4.8) 

 
All these analytical exact formulas and limiting approximations are tested below in Section 5.1. 
     In the above cited references one also finds various numerical and analytical results for the 
optimal prepayment rate and the callable mortgage price of the AFRM contract with continuous 
amortization payments. We restrict ourselves to Xie et al.(2007a) and Xie(2009), who propose 
analytical approximations for the Vasicek interest rate model. 
     Consider first the optimal prepayment rate at initial time 0=t , which as function of the 
maturity  T   is denoted by  ( )TR . Bian et al.(2005) study the asymptotic behavior of the optimal 
prepayment rate near expiry or equivalently as  0→T   and obtain the result (see also Xie et 
al.(2007a), Theorem 3) 
 

( ) ,02~ →− TasTTR σκρ     (4.9) 
 
where the constant  33436.0≅κ   is the unique root of the integral equation 
 

( ) ( )
( )∫ +

+−=
−κ

κ
κκπ

0
522

22422

.
218

2

dz
z

zze z

   (4.10) 

 
Xie et al.(2007a) study the asymptotic behavior for an infinite maturity and obtain the analytical 
result (see Theorem 4 and formula (7.18)) 
 

( ) ,**~ ∞→+ − TaseRTR Tρρ     (4.11) 

( ) ( )
( )
( )*,

*,

*2*2
**,*

22

xH

xH

RR
xR x

α
ρ
α
ρ

µ
µ

ρ
ασ

ρα
σρ

α
σ

α
σβ

+
+

⋅
−

−
−

=+






−=   (4.12) 

 

with  ( )( )βµ α
σ

α −= 2

2
11 ,  ( )xH ,ν   the Hermite function, and  *x   implicit solution of 
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( )
( )

.,
,

,

*

*

2

2

2

αα
σξρ

µ

µ

α
σ

α
σβ

ξ

ξ

==+






−
∫

∫
∞ +−

∞ +−

x

yy

x

yy

dyeyH

dyeyyH
   (4.13) 

 
Combining (4.9) and (4.11) two simple global approximations are derived in Xie et al.(2007a), 
Section 8. For an approximation of the form 
 

( ) ,
1

2
b

e
TR

bT

I

−−−= σκρ      (4.14) 

 
which satisfies (4.9) and the behavior  ( ) ,*~ ∞→TasRTR   one finds (Xie et al.(2007a), 
formula (8.1)) 

( ) ( ) .
*

2exp1*
2






















−
−−−= T

R
RTRI ρ

κσρσρ    (4.15) 

 
On the other side, using the more detailed information (4.11)-(4.13), one shows the enhanced 
approximation 
 

( ) ( ) ( ).1**
1 22

2
TTT

T

II eRee
e

TR ρρρ
ρ

ρ
κσρρ

ρ
σκρ −−−

−

−













+−+−+−−=   (4.16) 

 
For a typical parameter set Xie et al.(2007a) find a relative error of the small order of magnitude 
 

( ) ( ){ }
%.4.0

*

max
≈

−

−
<

R

tRtR II
Tt

ρ
     (4.17) 

     From the contract holder’s point of view it is even more important to know the market value 
( )TxV c ,   or price of the callable AFRM contract given its maturity  T   and the current market 

return 0rx = . Assuming 1=A  in (1.1) and making the change of variable  

( ) ( ) ( )TRxyTyVTxV c −== ,,, , Xie(2009), formulas (21)-(22), derives the two asymptotic 
expansions 
 

( ) ( ) ,,~,,0,~, 132 ∞→→++ yTyVycybyaTyV y    (4.18) 

with 
 

( ) ( ) ( )( ) ( )( )( ).,11,1 22 3
111 bTRacebea TRTT −−=−−−=−= −− βα
σρ

ρ
σ

ρ
ρ   (4.19) 

 
From this Xie(2009), Section 3, derives two analytical approximations. Restrict the attention to 
the second more accurate one, which uses the full asymptotic information contained in (4.18). 
For this consider an approximation of the type 
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( ) ( ) ( ) ( ) ( ) ,0,, 2
222

2
111 ≥+++= yyQERFCXyPyQERFCXyPTyV λλ  (4.20) 

 

with ( ) ( ),2

zERFCezERFCX z= ( ) ( ) ( ) ,,22
2

2
1 ∫

∞ −=ΦΦ=
z

z dzezzzERFC
π

 the scaled 

complementary error function. To approximate (4.20) the asymptotic expansions (e.g. Jeffrey 
and Zwillinger(2000), 890-892) 
 

( ) ( )
( ) ,0,1~

,,~1~

2

1
...)2(

31
2
11

222

→−

∞→+− ⋅

zzzERFCX

zzERFCX
zzzz

π

ππ m

   (4.21) 

 
are introduced in (4.20), and this is compared with (4.18) to get the system of equations 
 

( ) ( ) .0,,
2

,
2

,0,,

2122112211

2121
2

2

1

1

>=+−=+−

=+=+=+

QQcQQbQPQP

aPP
QQ

λλ
ππ

λλπλλ

  (4.22) 

 
To solve this set  .1,, 212211 =+== xxaxPaxP   Inserting into the 4th equation one gets 
 

a

b
QxQx

22211

π−=+ .     (4.23) 

 
Elimination of  21, λλ   in the 1st, 3rd and 5th equations yields further  cQQ =212 . This allows for 

elimination of  2Q   in (4.23) and yields the quadratic equation for  1Q  
 

,02 21
2
11 =++ CxQ

a

b
Qx π      (4.24) 

 
which has a real solution if and only if  its determinant is non-negative, that is 
 

( ) ( ) .088 1
2
1

2
1 ≥−+=∆ cxcxx a

bπ     (4.25) 

 
The limiting case  ( ) 01 =∆ x   yields the solution 
 

( ) ( ) .1,,11 12
2

2

2

22
1

1 xxcx a
b

a
b

C −=>




 −+= ππ    (4.26) 

 

If the condition  ( )2

2 a
bc π>   is not satisfied, then choose simply  2

1
21 == xx , which implies that  

( ) ( ) .022

2
1 ≥−=∆ ca

bπ  In this situation (4.24) has a real solution. Summarizing the analysis, the 

coefficients in (4.20) can be specified explicitly and uniquely as follows: 
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Case 1:  ( )2

2 a
bc π≤  

 

( )

12
1

212
1

2

2

2
1

12
1

21

,,

,2,

121
λλλ

ππ

π −===






 −−−===

− ccQ

cQaPP

QQQ

a
b

a
b

    (4.27) 

 

Case 2:  ( )2

2 a
bc π>  

 

( )

12
1

212
1

24
1

1

12
2

22
1

12211

,,,

,1,11,,

1211
λλλπ π

π

−===−=

−=




 −+===

− ccQQ

xxxaxPaxP

QQQa
b

x

a
b

C
  (4.28) 

 
We note that the simplifying choice  2

1
21 == xx   is proposed in Xie(2009). However, this author 

does not state (4.27) and misses to mention that this simplifying assumption does not lead to a 

solution in case  ( )2

2 a
bc π> . With (4.20) the approximation of the callable mortgage price reads 

 

( )




=TxV c
I ,

( ) ( ) ( ) ( ) ( )
( ) .0,

,0,2
222

2
111

≤−=
>−=+++

TRxya

TRxyyQERFCXyPyQERFCXyP λλ
     (4.29) 

 
 
5.   Numerical examples 
 
     We illustrate numerically the findings of the preceding Sections for the Vasicek and CIR 
models of the TSIR with the following parameters: 
 
parameters \ TSIR model  Vasicek CIR 
speed of reversion  α 0.15 0.15 
long term mean level  β 5% 5% 
instantaneous volatility  σ 1.5% 6.5% 
initial short rate  r0 5.5% 5.5% 
 
This parameter choice generates similar zero-coupon bond prices for the Vasicek and CIR 
models, which are even almost identical for short and medium maturities up to 5 years. 
 
5.1. Comparison results for the AFRM contract with continuous amortization payments 
 
     We suppose that  %5.5=ρ   and  1=A . For the Vasicek model the analytical approximation 
formula (4.16) for the optimal prepayment rate is based on the parameters  

015.0,05.0,15.0 === σβα , which yield  0086.0*,029.0* == ρR   as defined in (4.12) and as 
stated in Xie et al.(2007a), Figure 4. The corresponding callable mortgage price is calculated 
with the analytical approximation formula (4.29). The calculation of prices and Greeks according 
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to Section 3 is done with 3 different numbers of binomial steps  ,1000,500,100=N  and allows 
for a qualitative assessment of the convergence of the binomial trees. Numerical results for 
smaller maturities up to 5 years are very satisfactory and not listed here. Results for the medium 
and larger maturities  20,10,5=T   and 30 years are found in the Tables 5.1-5.3 (Vasicek model) 
and the Tables 5.4-5.5 (CIR model). 
     In general, convergence of the binomial tree values to the exact and limiting analytical 
formulas for the prices of the zero-coupon bond and the non-callable mortgage is excellent. The 
same observation holds for the Greeks of the non-callable mortgage, where the Γ   
approximations for the CIR model converge better. For the callable mortgage we compare prices 
and Greeks of mixed binomial analytical values (=difference of analytical values for the non-
callable mortgage and binomial tree values for the prepayment option) with pure binomial tree 
values and obtain a satisfactory convergence, which for  Γ   is again better for the CIR model. A 
binomial tree approximation of the optimal prepayment rate is obtained following the 
computational procedure specified after formula (3.8). For the Vasicek model it compares quite 
favorably with the analytical formula (4.16), which requires unfortunately a tedious and 
cumbersome analytical determination of its parameters. 
     It remains to discuss Table 5.3 for the Vasicek model, which compares the analytical 
approximation of the callable mortgage price by Xie(2009) with its binomial tree counterpart. 
Compared to the binomial tree values one observes a systematic underestimation (overestimation) 
of the callable mortgage price (prepayment option price) analytical approximation. This 
numerical discrepancy increases at the longer maturities and becomes impractical for a valuable 
estimation of the prepayment option price. Based on these very promising results, we would like 
to recommend the simplified approach by Costabile and Massabo(2010) for a simultaneous 
evaluation of mortgage related prices and Greeks for diffusion models of the type (2.10). 
 
Table 5.1:  Binomial tree vs. exact analytical formulas and limits (Vasicek) 
 
model parameters α 0.15 β 0.05 σ 0.015 r0 0.055 ρ 0.055 A 1

maturity  T 5 10 20 30

number of steps   N 100 500 1000 100 500 1000 100 500 1000 100 500 1000

zero-coupon bond (100 face value)

exact analytical price 76.735 76.735 76.735 59.939 59.939 59.939 37.591 37.591 37.591 23.878 23.878 23.878

binomial tree price 76.729 76.733 76.734 59.917 59.925 59.926 37.500 37.517 37.520 23.727 23.757 23.758

non-callable mortgage

analytical limiting price 4.3852 4.3852 4.3852 7.7807 7.7807 7.7807 12.561 12.561 12.561 15.582 15.582 15.582

binomial tree price 4.3853 4.3853 4.3853 7.7810 7.7806 7.7806 12.560 12.558 12.558 15.574 15.569 15.569

analytical limiting  Δ -8.3294 -8.3294 -8.3294 -23.328 -23.328 -23.328 -51.308 -51.308 -51.308 -70.896 -70.896 -70.896

binomial tree  Δ -8.297 -8.323 -8.326 -23.332 -23.317 -23.315 -51.535 -51.226 -51.189 -71.425 -70.700 -70.598

relative absolute deviation 0.39% 0.08% 0.04% 0.01% 0.05% 0.06% 0.44% 0.16% 0.23% 0.75% 0.28% 0.42%

analytical limiting  Γ 20.347 20.347 20.347 87.383 87.383 87.383 251.664 251.664 251.664 378.715 378.715 378.715

binomial tree  Γ 19.710 20.178 20.237 84.655 86.018 86.179 241.538 243.857 244.225 361.303 363.989 363.894

relative absolute deviation 3.13% 0.83% 0.54% 3.12% 1.56% 1.38% 4.02% 3.10% 2.96% 4.60% 3.89% 3.91%

exact analytical  Θ -0.7674 -0.7674 -0.7674 -0.5994 -0.5994 -0.5994 -0.3759 -0.3759 -0.3759 -0.2388 -0.2388 -0.2388

binomial tree  Θ -0.7733 -0.7685 -0.7679 -0.6081 -0.6010 -0.6002 -0.3859 -0.3773 -0.3763 -0.2476 -0.2396 -0.2386

absolute deviation 0.59% 0.12% 0.06% 0.87% 0.16% 0.08% 0.99% 0.14% 0.04% 0.88% 0.08% 0.02%  
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Table 5.2:  Mixed binomial tree and exact analytical limits (Vasicek) 
 
 
model parameters α 0.15 β 0.05 σ 0.015 r0 0.055 ρ 0.055 A 1

maturity  T 5 10 20 30

number of steps   N 100 500 1000 100 500 1000 100 500 1000 100 500 1000

callable mortgage

mixed bin. anal. price 4.2864 4.322 4.3265 7.4627 7.5284 7.5366 11.586 11.712 11.727 13.905 14.083 14.105

binomial tree price 4.2865 4.3221 4.3265 7.463 7.5283 7.5364 11.585 11.708 11.723 13.897 14.071 14.092

relative absolute deviation 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.01% 0.03% 0.03% 0.06% 0.09% 0.09%

mixed bin. anal.  Δ -4.526 -4.823 -4.860 -12.516 -13.249 -13.334 -26.345 -28.249 -28.476 -35.108 -38.127 -38.442

binomial tree  Δ -4.494 -4.816 -4.856 -12.519 -13.238 -13.320 -26.573 -28.167 -28.358 -35.637 -37.932 -38.145

relative absolute deviation 0.72% 0.14% 0.08% 0.03% 0.09% 0.10% 0.86% 0.29% 0.42% 1.51% 0.51% 0.77%

mixed bin. anal.  Γ -210.46 -200.83 -199.83 -406.05 -382.62 -381.34 -649.49 -585.16 -577.73 -790.4 -678.12 -667.85

binomial tree  Γ -211.1 -201.0 -199.9 -408.8 -384.0 -382.5 -659.6 -593.0 -585.2 -807.8 -692.8 -682.7

relative absolute deviation 0.30% 0.08% 0.06% 0.67% 0.36% 0.32% 1.56% 1.33% 1.29% 2.20% 2.17% 2.22%

mixed bin. anal.  Θ -0.7441 -0.7435 -0.7433 -0.5549 -0.5531 -0.5527 -0.3123 -0.3117 -0.3116 -0.1776 -0.1786 -0.1783

binomial tree  Θ -0.7501 -0.7446 -0.7439 -0.5636 -0.5548 -0.5535 -0.3222 -0.3131 -0.3120 -0.1864 -0.1794 -0.1782

absolute deviation 0.59% 0.12% 0.06% 0.87% 0.16% 0.08% 0.99% 0.14% 0.04% 0.88% 0.08% 0.02%

prepayment option

binomial tree price 0.0988 0.0632 0.0588 0.3181 0.2523 0.2441 0.9753 0.8497 0.8343 1.6767 1.4982 1.4765

binomial tree  Δ -3.803 -3.5063 -3.4692 -10.813 -10.079 -9.9945 -24.962 -23.059 -22.831 -35.787 -32.768 -32.453

binomial tree  Γ 230.81 221.18 220.17 493.43 470.00 468.73 901.15 836.82 829.4 1169.1 1056.8 1046.6

binomial tree  Θ -0.0232 -0.0239 -0.0241 -0.0445 -0.0463 -0.0467 -0.0636 -0.0642 -0.0643 -0.0612 -0.0602 -0.0604  
 
 
Table 5.3:  Binomial tree vs. analytical approximations (Vasicek) 
 
 
model parameters α 0.15 β 0.05 σ 0.015 r0 0.055 ρ 0.055 A 1

maturity  T 5 10 20 30

number of steps   N 100 500 1000 100 500 1000 100 500 1000 100 500 1000

optimal prepayment rate

analytical approximation 4.07% 4.07% 4.07% 3.66% 3.66% 3.66% 3.26% 3.26% 3.26% 3.09% 3.09% 3.09%

binomial tree rate 4.16% 4.15% 4.12% 3.60% 3.80% 3.70% 3.49% 3.40% 3.38% 3.04% 3.30% 3.16%

absolute deviation 0.09% 0.08% 0.05% 0.06% 0.14% 0.04% 0.23% 0.14% 0.12% 0.05% 0.21% 0.07%

callable mortgage

analytical approximation 4.3153 4.3153 4.3153 7.4830 7.4830 7.4830 11.559 11.559 11.559 13.841 13.841 13.841

binomial tree price 4.2865 4.3221 4.3265 7.463 7.5283 7.5364 11.585 11.708 11.723 13.897 14.071 14.092

relative absolute deviation 0.67% 0.16% 0.26% 0.27% 0.60% 0.71% 0.22% 1.27% 1.40% 0.40% 1.64% 1.78%

prepayment option

analytical approximation 0.0699 0.0699 0.0699 0.2977 0.2977 0.2977 1.0021 1.0021 1.0021 1.7406 1.7406 1.7406

binomial tree price 0.0988 0.0632 0.0588 0.3181 0.2523 0.2441 0.9753 0.8497 0.8343 1.6767 1.4982 1.4765

absolute deviation 2.89% 0.67% 1.11% 2.03% 4.54% 5.36% 2.69% 15.24% 16.78% 6.39% 24.23% 26.40%  
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Table 5.4:  Binomial tree vs. exact analytical formulas and limits (CIR) 
 
model parameters α 0.15 β 0.05 σ 0.065 r0 0.055 ρ 0.055 A 1

maturity  T 5 10 20 30

number of steps   N 100 500 1000 100 500 1000 100 500 1000 100 500 1000

zero-coupon bond (100 face value)

analytical price formula 76.735 76.735 76.735 59.906 59.906 59.906 37.389 37.389 37.389 23.551 23.551 23.551

binomial tree price 76.730 76.734 76.735 59.899 59.905 59.906 37.389 37.393 37.393 23.554 23.559 23.558

non-callable mortgage

exact analytical price 4.3853 4.3853 4.3853 7.7802 7.7802 7.7802 12.549 12.549 12.549 15.542 15.542 15.542

binomial tree price 4.3853 4.3853 4.3853 7.7808 7.7803 7.7803 12.554 12.551 12.550 15.553 15.546 15.544

analytical limiting  Δ -8.280 -8.280 -8.280 -22.940 -22.940 -22.940 -49.500 -49.500 -49.500 -67.572 -67.572 -67.572

binomial tree  Δ -8.256 -8.277 -8.279 -23.021 -22.972 -22.962 -50.197 -49.718 -49.638 -69.107 -68.036 -67.863

relative absolute deviation 0.29% 0.04% 0.01% 0.35% 0.14% 0.09% 1.41% 0.44% 0.28% 2.27% 0.69% 0.43%

analytical limiting  Γ 20.060 20.060 20.060 84.037 84.037 84.037 232.28 232.28 232.28 341.41 341.41 341.41

binomial tree  Γ 19.462 19.932 19.993 82.359 83.671 83.842 230.22 231.89 232.09 340.36 341.38 341.46

relative absolute deviation 2.98% 0.64% 0.33% 2.00% 0.44% 0.23% 0.89% 0.17% 0.08% 0.31% 0.01% 0.01%

exact analytical  Θ -0.7674 -0.7674 -0.7674 -0.5991 -0.5991 -0.5991 -0.3739 -0.3739 -0.3739 -0.2355 -0.2355 -0.2355

binomial tree  Θ -0.7733 -0.7685 -0.7679 -0.6080 -0.6008 -0.6000 -0.3848 -0.3761 -0.3750 -0.2459 -0.2376 -0.2366

absolute deviation 0.59% 0.12% 0.06% 0.89% 0.18% 0.09% 1.09% 0.22% 0.11% 1.03% 0.21% 0.11%  
 
Table 5.5:  Mixed binomial tree and exact analytical limits (CIR) 
 
model parameters α 0.15 β 0.05 σ 0.065 r0 0.055 ρ 0.055 A 1

maturity  T 5 10 20 30

number of steps   N 100 500 1000 100 500 1000 100 500 1000 100 500 1000

callable mortgage

mixed bin. anal. price 4.2856 4.3215 4.3260 7.4607 7.5279 7.5364 11.582 11.714 11.731 13.894 14.085 14.110

binomial tree price 4.2857 4.3216 4.3260 7.4613 7.5280 7.5365 11.586 11.715 11.731 13.904 14.088 14.112

relative absolute deviation 0.00% 0.00% 0.00% 0.01% 0.00% 0.00% 0.04% 0.01% 0.01% 0.07% 0.02% 0.01%

mixed bin. anal.  Δ -4.648 -4.969 -5.013 -12.820 -13.647 -13.763 -26.537 -28.765 -29.080 -34.871 -38.367 -38.843

binomial tree  Δ -4.624 -4.966 -5.012 -12.900 -13.679 -13.784 -27.235 -28.983 -29.219 -36.406 -38.832 -39.135

relative absolute deviation 0.52% 0.06% 0.02% 0.63% 0.23% 0.16% 2.63% 0.76% 0.48% 4.40% 1.21% 0.75%

mixed bin. anal.  Γ -206.9 -196.7 -195.6 -395.8 -371.8 -370.0 -635.9 -567.0 -558.5 -776.8 -660.6 -648.4

binomial tree  Γ -207.5 -196.8 -195.6 -397.5 -372.2 -370.2 -637.9 -567.4 -558.7 -777.8 -660.7 -648.4

relative absolute deviation 0.29% 0.07% 0.03% 0.42% 0.10% 0.05% 0.32% 0.07% 0.03% 0.14% 0.00% 0.01%

mixed bin. anal.  Θ -0.7445 -0.7433 -0.7432 -0.5549 -0.5533 -0.5530 -0.3120 -0.3120 -0.3120 -0.1769 -0.1783 -0.1782

binomial tree  Θ -0.7504 -0.7445 -0.7438 -0.5638 -0.5550 -0.5539 -0.3229 -0.3142 -0.3131 -0.1872 -0.1804 -0.1793

absolute deviation 0.59% 0.12% 0.06% 0.89% 0.18% 0.09% 1.09% 0.22% 0.11% 1.03% 0.21% 0.11%

prepayment option

binomial tree price 0.0996 0.0637 0.0593 0.3194 0.2523 0.2438 0.9679 0.8355 0.8187 1.6484 1.4576 1.4324

binomial tree  Δ -3.632 -3.311 -3.267 -10.120 -9.293 -9.178 -22.962 -20.734 -20.419 -32.701 -29.205 -28.728

binomial tree  Γ 226.94 216.76 215.62 479.85 455.86 454.03 868.17 799.27 790.82 1118.2 1002.1 989.83

binomial tree  Θ -0.0229 -0.0240 -0.0242 -0.0441 -0.0458 -0.0461 -0.0619 -0.0619 -0.0619 -0.0586 -0.0573 -0.0573

optimal prepayment rate

binomial tree rate 4.20% 4.20% 4.18% 3.70% 3.89% 3.81% 3.59% 3.55% 3.54% 3.19% 3.45% 3.35%  
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5.2. Illustration for the AVRM contract with discrete amortization payments 
 
     First of all, some methodological and practical aspects must be discussed. As defined in 
Section 2.2, the deterministic contract rates do not depend on the future stochastic evolution of 
the short rates  1,...,0, −= Tsrs , that follow the Vasicek/CIR models. The contract rate structure 

depends upon the current market bond prices or equivalently on the current TSIR, which is used 
to estimate implied forward market mortgage equivalent rates in accordance with formula (2.19). 
Of course, the current market bond prices, which determine the contract rates, are inconsistent 
with the Vasicek/CIR bond prices because these one-factor models cannot reproduce in general 
the current TSIR whatever the choice of the parameters. However, fixing contract agreements 
based on the current state of the world (pricing activity) and valuation of contract features based 
on the unknown future using stochastic models (risk management activity) are not contradictory 
per se (they correspond to different activities within the organization of a financial institution). If 
current market bond prices must be in line with the interest rate models, then more complex 
models must be considered; e.g. the yield curve fitting models by Hull and White(1990b/2001), 
Black et al.(1990), Black and Karinski(1991), or the LIBOR market model by Brace et al.(1997), 
Jamshidan(1997)) and Miltersen et al.(1997). This important distinction is illustrated in Table 5.6, 
which displays the possible numerical differences between market forward prices and modeled 
forward prices. Note that our choice of market forward bond prices is arbitrary (it only fulfills 
the purpose of illustration) and does not rely on real-world forward bond prices. In practice, the 
latter are often derived from zero coupon bond yield curves published by national banks (e.g. 
“Statistisches Monatsheft der Schweizerischen Nationalbank”, available at www.snb.ch). Our 
deliberately simple AVRM contract definition makes it a path-independent financial instrument 
that can be valued with the same convenient backward recursion formula (3.8) as used for the 
AFRM contract. This contract is enough flexible to fit its variable deterministic contract rate 
structure to the current forward bond price structure. With this property, a valuable practical 
alternative to the AFRM contract has been introduced and motivated. 
     In contrast, the known AVRM contract from the literature is a path-dependent interest rate 
instrument (e.g. Sharp(2006)). This means that the contract rates are contingent on the historical 
evolution of the interest rates. In this situation, the amortization payments, the outstanding loan 
balance values and the face values in (2.20)-(2.22) will depend upon the lattice that describes the 
interest rate evolution involved in the backward recursion valuation formula (2.16). As a 
consequence the simple recursion (3.8) must be replaced by an algorithm of exponential time to 
maturity complexity (e.g. Hochreiter and Pflug(2006), Section 2.2). To reduce the involved 
computational complexity, it is common to use an auxiliary state variable (e.g. Hull and White 
(1993), Ritchken et al.(1993), Willmot et al.(1993), Barraquand and Pudet(1996)). Another 
promising approach is the “just-in-time” least squares Monte-Carlo method proposed in Dutte 
and Welke(2008), which includes the Vasicek/CIR models. The idea of this method consists to 
start from the final interest rate distribution and generate stochastic interest rates backwards as 
the mortgage prepayment option is priced. Some desirable objectives can be achieved this way: 
(i)   The backward option pricing algorithm is in line with the backward interest rate process. 
(ii)  The storage requirement is greatly reduced, which results in an increased efficiency. 
(iii)  The MC errors can be reduced, which results in an increased accuracy. 
     In our numerical illustration we set again  1=A . The adjustment in (2.19) is done with 

01.0=teaser , periodic cap and floor  005.0=y   and lifetime cap  10/02.0 T⋅=l . For 
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comparison purposes the initial approximate continuous contract rate is set equal to the initial 
short rate of the AFRM contract, i.e.  %5.5)0( 0 == rρ . To fulfill the latter condition we use a 

variable margin defined by )0(/)1( 0 Fhr IFheteasermargin −−+= . The calculation of prices 
and Greeks follows again Section 3. It is done with a fixed number of steps  1200=N . We vary 

hIP ,12/1,4/1=   over the maturity years  20,10,5=T . Results are summarized in the Table 5.7 
(Vasicek model) and the Table 5.8 (CIR model). It is interesting to note that the results for the 
limiting case  hIP =  (numerical approximation of the continuous payment case) are similar to 
those of Section 5.1. The higher prices are due to the yearly adjustment of the contract rates. The 
special case  0=y   of the extended AVRM algorithm reduces to an AFRM algorithm. Indeed, in 
this situation the variable contract rates (2.19) are all equal, i.e.  

.1,...,1),,0(),( 0 −== Tsrrs DsD ρρ  One observes that the prepayment option prices and their 

Greeks vary monotonically with the cycle length  IP . The binomial tree  Θ ’s  of the non-
callable and callable mortgages for discrete   12/1,4/1=IP  and continuous approximation  

hIP =   have different signs. This is due to the fact that the non-callable market values in the 
formula (3.11) are not influenced by cash-flow payments for these discrete values while they are 
for the continuous approximation. Finally, for further information, the Table 5.9 displays the 
dependence of the discrete amortization payments  )(sAP , that have been defined in (2.20), of 
the various AVRM contracts upon the different interest payment cycles. 
 
Table 5.6:  Market forward bond prices versus Vasicek and CIR forward bond prices 
 

Market Vasicek α 0.15 CIR α 0.15

model and TSIR TSIR β 0.05 TSIR β 0.05

parameters σ 0.015 σ 0.065

r0 0.055 r0 0.055

maturity  T 5 10 20 5 10 20 5 10 20

time  s

0 0.76735 0.59900 0.37600 0.76735 0.59939 0.37591 0.76735 0.59906 0.37389

1 0.81042 0.63300 0.39700 0.81042 0.63303 0.39701 0.81042 0.63268 0.39487

2 0.85520 0.66800 0.41900 0.85520 0.66801 0.41895 0.85520 0.66764 0.41669

3 0.90170 0.70400 0.44200 0.90170 0.70433 0.44173 0.90170 0.70394 0.43935

4 0.94995 0.74200 0.46500 0.94995 0.74202 0.46537 0.94994 0.74161 0.46286

5 0.78100 0.49000 0.78111 0.48989 0.78069 0.48725

6 0.82200 0.51500 0.82167 0.51532 0.82124 0.51256

7 0.86400 0.54200 0.86375 0.54172 0.86336 0.53885

8 0.90700 0.56900 0.90744 0.56912 0.90713 0.56616

9 0.95300 0.59800 0.95283 0.59758 0.95264 0.59457

10 0.62700 0.62717 0.62413

11 0.65800 0.65793 0.65491

12 0.69000 0.68995 0.68699

13 0.72300 0.72328 0.72045

14 0.75800 0.75801 0.75535

15 0.79400 0.79420 0.79179

16 0.83200 0.83194 0.82984

17 0.87100 0.87130 0.86960

18 0.91200 0.91237 0.91114

19 0.95500 0.95524 0.95458

Market forward bond prices Vasicek forward bond prices CIR forward bond prices
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Table 5.7:  Prices and Greeks for the AVRM contract with given IP  (Vasicek model) 
 
model parameters α 0.15 β 0.05 σ 0.015 r0 0.055

periodic cap and floor  y 0.005 teaser 0.01

margin 0.011692 0.011927 0.012038 0.013434 0.013654 0.013752 0.015817 0.016017 0.016097

maturity  T 5 10 20

number of steps  N 1200 1200 1200 1200 1200 1200 1200 1200 1200

cycle length  IP 0.25 0.083 0.004 0.25 0.083 0.008 0.25 0.083 0.017

parameter  nI = IP∙N/T 60 20 1 30 10 1 15 5 1

lifetime cap  ℓ 0.01 0.01 0.01 0.02 0.02 0.02 0.04 0.04 0.04

non-callable mortgage

binomial tree price 4.432 4.433 4.433 7.993 7.997 8.000 13.266 13.288 13.296

binomial tree  Δ -8.830 -8.566 -8.441 -24.576 -24.225 -24.066 -54.906 -54.568 -54.431

binomial tree  Γ 21.873 20.969 20.544 91.488 89.796 89.039 262.437 260.515 259.747

binomial tree  Θ 0.235 0.235 -0.765 0.411 0.412 -0.589 0.660 0.661 -0.340

callable mortgage

binomial tree price 4.111 4.268 4.341 7.386 7.537 7.603 11.723 11.869 11.927

binomial tree  Δ -2.869 -3.479 -3.848 -8.554 -9.375 -9.749 -18.662 -19.394 -19.681

binomial tree  Γ -182.360 -221.467 -212.945 -443.059 -449.570 -448.830 -791.321 -784.665 -782.895

binomial tree  Θ 0.244 0.257 -0.741 0.450 0.458 -0.539 0.720 0.727 -0.272

prepayment option

binomial tree price 0.322 0.165 0.092 0.606 0.461 0.396 1.544 1.419 1.369

binomial tree  Δ -5.961 -5.088 -4.593 -16.021 -14.849 -14.316 -36.244 -35.174 -34.750

binomial tree  Γ 204.233 242.435 233.490 534.547 539.366 537.868 1053.758 1045.181 1042.642

binomial tree  Θ -0.010 -0.022 -0.025 -0.039 -0.046 -0.049 -0.061 -0.066 -0.068

optimal prepayment rate

binomial tree rate 5.11% 4.53% 4.34% 4.68% 4.40% 4.13% 4.14% 3.95% 3.95%  
 
Table 5.8:  Prices and Greeks for the AVRM contract with given IP  (CIR model) 
 
model parameters α 0.15 β 0.05 σ 0.065 r0 0.055

periodic cap and floor  y 0.005 teaser 0.01

margin 0.011692 0.011927 0.012038 0.013434 0.013654 0.013752 0.015817 0.016017 0.016097

maturity  T 5 10 20

number of steps  N 1200 1200 1200 1200 1200 1200 1200 1200 1200

cycle length  IP 0.25 0.083 0.004 0.25 0.083 0.008 0.25 0.083 0.017

parameter  nI = IP∙N/T 60 20 1 30 10 1 15 5 1

lifetime cap  ℓ 0.01 0.01 0.01 0.02 0.02 0.02 0.04 0.04 0.04

non-callable mortgage

binomial tree price 4.432 4.433 4.433 7.992 7.997 7.999 13.258 13.280 13.289

binomial tree  Δ -8.778 -8.517 -8.393 -24.196 -23.854 -23.699 -53.228 -52.905 -52.775

binomial tree  Γ 21.603 20.714 20.298 88.982 87.357 86.629 249.411 247.621 246.905

binomial tree  Θ 0.235 0.235 -0.765 0.411 0.412 -0.589 0.661 0.663 -0.338

callable mortgage

binomial tree price 4.109 4.266 4.340 7.380 7.531 7.598 11.708 11.855 11.914

binomial tree  Δ -3.086 -3.698 -4.059 -9.262 -10.062 -10.422 -20.118 -20.834 -21.106

binomial tree  Γ -188.284 -221.092 -210.804 -445.756 -446.666 -443.257 -783.772 -771.665 -768.161

binomial tree  Θ 0.246 0.258 -0.740 0.451 0.459 -0.539 0.720 0.726 -0.272

prepayment option

binomial tree price 0.323 0.167 0.093 0.612 0.466 0.402 1.550 1.425 1.375

binomial tree  Δ -5.692 -4.819 -4.334 -14.934 -13.792 -13.277 -33.110 -32.072 -31.669

binomial tree  Γ 209.886 241.806 231.102 534.737 534.023 529.886 1033.183 1019.286 1015.066

binomial tree  Θ -0.011 -0.023 -0.025 -0.040 -0.047 -0.049 -0.059 -0.064 -0.066

optimal prepayment rate

binomial tree rate 5.11% 4.56% 4.38% 4.69% 4.19% 4.07% 4.20% 4.03% 3.86%  
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Table 5.9:  Dependence of discrete amortization payments  )(sAP   upon interest payment cycle 
 
maturity  T 5 10 20

number of steps  N 1200 1200 1200 1200 1200 1200 1200 1200 1200

cycle length  IP 0.25 0.083 0.004 0.25 0.083 0.008 0.25 0.083 0.017

time  s

0 0.25149 0.08350 0.00417 0.25130 0.08348 0.00834 0.25099 0.08346 0.01667

1 0.25405 0.08432 0.00421 0.25661 0.08523 0.00851 0.26101 0.08678 0.01734

2 0.25570 0.08485 0.00423 0.26065 0.08655 0.00864 0.26965 0.08965 0.01791

3 0.25559 0.08481 0.00423 0.26039 0.08647 0.00863 0.26907 0.08946 0.01787

4 0.25552 0.08479 0.00423 0.26008 0.08637 0.00862 0.26876 0.08936 0.01785

5 0.25989 0.08631 0.00862 0.26825 0.08919 0.01782

6 0.25966 0.08623 0.00861 0.26799 0.08910 0.01780

7 0.25955 0.08620 0.00861 0.26755 0.08896 0.01777

8 0.25957 0.08621 0.00861 0.26737 0.08890 0.01776

9 0.25946 0.08618 0.00860 0.26704 0.08879 0.01774

10 0.26697 0.08877 0.01774

11 0.26677 0.08870 0.01772

12 0.26665 0.08866 0.01772

13 0.26661 0.08865 0.01771

14 0.26648 0.08861 0.01770

15 0.26645 0.08860 0.01770

16 0.26637 0.08857 0.01770

17 0.26639 0.08858 0.01770

18 0.26640 0.08858 0.01770

19 0.26640 0.08858 0.01770  
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