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Abstract

Market frictions limit arbitrage, but these frictions affect different stocks differently.
Using intraday data on a liquid single stock futures and spot market, we examine
the arbitrage efficiency of these two markets. We find evidence of significant cross-
sectional variation in the size and asymmetricity of no-arbitrage bands. To the extent
that market frictions affect all stocks similarly, commonality in the size of the bands is
expected. 17% of variation in the size of the bands is explained by the first principal
component. Changes in funding liquidity is a key factor that determines variation in
the common component.
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1 Introduction

“It is good for a scientific enterprise, as well as for a society, to have well-established
laws. Physics has excellent laws, such as the law of gravity. What does economics
have? The first law of economics is clearly the law of supply and demand, and a fine
law it is. We would nominate as the second law “the law of one price,” hereafter
simply the Law.”

– Lamont and Thaler (2003)

The law of one price is the basic building block of finance theory. It states that identical
goods should trade at identical prices. If not, arbitrage opportunities emerge and bring
back the prices to the same level. Theoretically, arbitrage requires no capital, involves no
transactions costs and is riskfree. However, in reality, limits to arbitrage in the form of market
frictions such as explicit (taxes, turnover charges) and implicit costs (liquidity costs), funding
constraints, regulatory restrictions like short selling constraints exist (Shleifer and Vishny,
1997; Gromb and Vayanos, 2002). These factors collectively make arbitrage difficult and
result in persistent deviations in the prices of similar goods. This results in formation of no-
arbitrage bands around the prices of the securities within which arbitrage is not profitable.
Arbitrageurs enter the market only when the deviations are large enough to compensate
them for the costs, that is, when the deviations are outside the no-arbitrage bands.

Substantial market microstructure literature has focused on identifying these market fric-
tions and its impact on the arbitrage efficiency in the capital markets. The pair of securities
examined include index futures and spot,1 stock options and spot (Ofek et al., 2004; Cre-
mers and Weinbaum, 2010), and very recently, internationally cross-listed securities such
as American depository receipts (ADRs), and their home-market security prices (Gagnon
and Karolyi, 2010). Though perfect substitutes by themselves, these set of pairs suffer from
various issues. For example, index futures and spot arbitrage suffers from stale price issues,
difficulties in trading the entire basket of securities with appropriate weights at the same time
(Miller et al., 1994). Similarly, studies on cross-listed pairs face challenges related to asyn-
chronous trading due to non-overlapping trading hours, complexities related to determining
the full extent of transactions costs, regulatory restrictions on foreign ownership (Gagnon
and Karolyi, 2010).

In contrast, single stock futures (SSF) and spot offer a clean setting to analyse arbitrage
efficiency and eliminate issues related to index trading, estimation risk in options and cross-
listed pairs of securities. Yet, not much empirical evidence exists regarding the arbitrage
efficiency of these markets. A probable reason for this could be the illiquidity of the SSF

1See (Cornell and French, 1983; Modest and Sundaresan, 1983; Figlewski, 1984; Mackinlay and Ra-
maswamy, 1988; Yadav and Pope, 1990; Klemkosky and Lee, 1991; Chung, 1991; Gay and Jung, 1999;
Yadav et al., 1994; Dwyer et al., 1996; Martens et al., 1998; Forbes et al., 1999; Ackert and Tian, 2001; Tse,
2001; McMillan and Speight, 2006; Kim et al., 2010).
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markets world over. We fill this missing gap by analysing the arbitrage efficiency in a market
with high liquidity on both the spot as well as the SSF market. Using intraday data over
the period between March 2013 to August 2013 on 141 pairs of single stock futures and spot
prices at the National Stock Exchange, India, we examine how market frictions shape-up
the no-arbitrage bands on the spot and SSF prices, and how these bands vary with varying
liquidity across stocks. Higher liquidity facilitates arbitrage by reducing costs (Roll et al.,
2007). Thus, the width of no-arbitrage bands for stocks with higher liquidity is expected to
be smaller than that of the stocks with lower liquidity.

In addition, the presence of short selling constraints on the spot market adversely affects
arbitrage on the negative side. Studies including Yadav et al. (1994), Dwyer et al. (1996),
Brooks and Garrett (2002), Fung and Draper (1999), McMillan and Speight (2006) analyse
index spot and futures prices and find that short selling constraints widen the no-arbitrage
bands on the negative side due to higher costs involved in entering the spot position. Using
data on options prices, Ofek et al. (2004) find that violations of put-call parity are asymmetric
in the direction of short sales constraints, and their magnitudes are strongly related to the
cost and difficulty of short selling. The recent research focusing on the 2008-09 short sales
ban in the US market also finds an adverse impact of short selling on the equity markets.
McMillan and Philip (2012) perform a cross-country analysis of the impact of short sales
ban during 2008-09 on the index spot-futures efficiency. They find that the ban caused the
basis to be lower than in the normal periods, with the speed of adjustment coming down.
For single stocks, we expect short selling constraints to affect different stocks differently,
depending on the ease with which the stocks can be borrowed.2 Thus, we examine if the
no-arbitrage bands exhibit an asymmetric behavior, and if there is cross-sectional variation
in the asymmetricity. Since it is relatively easier to borrow liquid stocks than the illiquid
ones, we expect larger asymmetricity in the bands for the illiquid stocks.

Using non-linear threshold autoregressive models, we find evidence of no-arbitrage bands
around spot and SSF prices. When mispricing is positive, we find that the average upper
threshold across all stocks is 3 basis points. This implies that when the SSF prices are
overpriced than the spot prices to the extent of 3 basis points, arbitrageurs are unlikely
to enter the market. On the negative side, that is, when spot is overpriced and SSF is
underpriced, the threshold limit is much higher, at 15 basis points. This asymmetricity in
the upper and lower threshold can be explained by the short selling constraints that exist
on the spot market. We also find significant cross-sectional variation in the size of the
bands across stocks. The size of the no-arbitrage bands and asymmetricity increases with
decreasing liquidity of the stocks.

We next examine the commonality in the no-arbitrage bands across stocks. The evidence so
far with regard to commonality relates to returns, trading activity, order flow, liquidity.3 We

2Factors determining the ease with which stocks can be borrowed include the percentage of stock available
in the market as floating stock, stock liquidity (Nagel, 2005).

3See Fama and French (1995), Chordia et al. (2000), Huberman and Halka (2001), Lee et al. (2012),
Karolyi et al. (2012).
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hypothesise that frictions related to arbitrage activity is composed of two major components:
frictions arising out of market factors such as taxes, market liquidity, market volatility,
funding liquidity, and idiosyncratic factors related to the stock specific liquidity, returns
volatility. To the extent that market frictions affect all stocks similarly, we expect a common
factor in the no-arbitrage bands that can be attributed to the systematic component of
trading frictions.

We further investigate the factors that drive the commonality, or the variation in the sys-
tematic factor. Changes in explicit trading costs, funding costs, microstructual variables
such as liquidity, liquidity risk, stock volatility are the factors that are likely to drive the
commonality. We examine the determinants of commonality using regression analysis.

Using principal component analysis, we find evidence of significant commonality in the size
of the no-arbitrage bands across stocks. We find that about 34% of the variation in the size
of no-arbitrage bands across stocks can be explained by the first three principal components,
with the first factor explaining about 17% variation. We refer to the first factor as the
systematic component. This finding links with the commonality literature which has so far
focused on commonality in returns, liquidity, order flow, trading activity, and very recently,
market efficiency (Rosch et al., 2014).

The period of the analysis covers an interesting phase of tightening of funding liquidity
in mid-July 2013. Due to an intense pressure on the exchange rate, the central bank of
India, intervened in the money markets by raising the interest rates. This sudden and
significant increment raised the funding costs for the traders and affected the arbitrage
efficiency adversely. We find evidence that the day when the interest rates were raised, the
systematic factor of the no-arbitrage bands went up significantly, indicating the worsening of
arbitrage efficiency in the equity markets. Our regression results provide further evidence of
how funding constraints are the most important factor in determining the arbitrage efficiency
even for SSF and spot prices.

The regression results indicate that explicit factors such as taxes, microstructual factors like
market liquidity and volatility play a significant role in explaining the variation in common-
ality of the size of no-arbitrage bands. We find that the factor that affects the commonality
most significantly is funding constraints. More than 18% of variation in the systematic com-
ponent of the no-arbitrage bands can be explained by funding constraints. This evidence
is consistent with the recent literature that asserts that funding liquidity is a key factor in
determining market liquidity and thus market efficiency (Brunnermeier and Pedersen, 2009;
Gagnon and Karolyi, 2010; Rosch et al., 2014).

The rest of the paper is organised as follows: Section 2 describes the market structure
at NSE, Section 3 explains data and variables used in the analysis. Section 4 documents
evidence on the presence of no-arbitrage bands and cross-sectional variation in bandsize and
asymmetricity. Section 5 discusses the results of principal component analysis providing
evidence of commonality in the size of no-arbitrage bands. Section 6 examines the factors
that determine the variation in commonality. Section 7 concludes.
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2 Market structure

This paper focuses on the equity spot and the futures market of the National Stock Exchange,
India (NSE). In contrast to the global markets, NSE has a unique setting where both, the
spot and the futures market trade at the same platform. Thus, there are no issues related to
time asynchronicity. Unlike the single stock futures market around the world, these contracts
are actively traded on the NSE platform, making it one of the top five exchanges in the world
that trades single stock futures.4 Some of the unique market features at NSE are described
below:

Trading Trading on both the spot and the futures market is done through a fully automated
electronic limit order book time with orders executed on a price-time priority basis. In
addition to NSE, Bombay Stock Exchange is another major stock exchange that offers equity
spot and futures trading. However, majority of volumes on both the markets are concentrated
on the NSE.

The current trading hours are between 9:00 am to 3:30 pm. Trading begins through a call
auction market which starts at 9:00 am and continues until 9:15 am. From 9:15 am onwards,
the markets enter the continuous trading system.

Out of about 1500 securities that are listed and traded on the NSE equity spot segment,
only about 141 securities are traded on the derivatives market during the period of study.
The selection of the securities to be traded on derivatives segment is made on the basis of
liquidity of the contract. The futures contracts are one-month, two-month and three-month
contracts. As in other global markets, most of the trading is concentrated in the near-month
contracts. The tick size on both the spot and the SSF market is 5 paise (5%).

Short selling constraints and the SLB scheme Short selling is not permitted on the equity
spot market. To enable traders to lend and borrow securities, Security Lending and Borrow-
ing Scheme (SLBS) was introduced by the NSE in April 2008.5 Just as the spot and futures
market, this platform enables lending and borrowing of stocks through an anonymous auto-
mated screen based mechanism with order matching done on price time priority. However,
the activity on the SLB scheme has remained relatively low.6

Trading costs Trading involves explicit costs that the traders are charged upfront, such as broker-
age, transaction charges, securities transaction tax (STT), and implicit costs that the trader
faces as liquidity costs of trading.

Table 1 gives a summary of the explicit transaction costs that a trader faces while trading
on equity markets in India. In addition to the costs mentioned in the table, the trader is
charged a brokerage fee which varies as per the turnover. Service tax of 12.36% is charged
on the brokerage and transaction charges.

Clearing and Settlement Settlement on the spot market is conducted on a T + 2 basis and on
a T + 1 basis for the SSF market. The SSF are cash settled instead of physically settled.

4http://www.world-exchanges.org
5See www.nseindia.com/products/content/equities/slbs/slbs_trades_archives.htm
6See Suvanam and Jalan (2012), Grover (2014).
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Table 1 Summary of explicit costs of trading

Summary of explicit transaction charges a trader faces on trading in the Indian equity markets in 2013. All

charges are charged as a percentage of total turnover.

Charges Equity Delivery Equity Intra-day Futures

Securities 0.100 % 0.025% only on 0.017% (until May 31, 2013)
Transactions Tax sell-side trade 0.010 % (w.e.f Jun 1, 2013)
(STT) only on sell-side trade

NSE Transactions 0.0035% 0.0035% 0.002%
Charges

SEBI Turnover NIL NIL 0.0002%
Charges

Stamp Duty 0.01% 0.002% 0.002%

Unlike most other global markets, traders pay daily margins on both the spot as well as the
SSF positions.

3 Data and market variables

3.1 Data details

The analysis uses intraday limit order book data from March 1, 2013 to August 31, 2013
(120 trading days) for all the 141 stocks traded on the derivatives segment of the NSE. The
data are obtained from the National Stock Exchange and comprise of price and quantity
information up to twenty best bid and ask quotes. We use near month SSF data, and rollover
to the next contract two days prior expiration. One-month Mumbai Inter-Bank Offer Rate
(MIBOR) is used as a proxy to capture the interest rate borne by the traders to borrow from
the market. MIBOR is a benchmark reference rate for the deals in the money market. It
is disseminated jointly by the Fixed Income Money Market and Derivatives Association of
India (FIMMDA) and NSE. In order to derive it, market participants are polled regarding
their expectations of the interest rates, and an average is taken after segregating the noise.

The period of study covers an interesting phase of tightness in funding liquidity. In mid-2013,
the Indian Rupee experienced significant volatility as a result of expectations of a tapering
of quantitative easing by the Federal Reserve Bank, US. The Indian currency depreciated by
about 17% in the period between May 15, 2013 to August 20, 2013. As a result, the central
bank of India undertook several measures to counter the significant currency depreciation.7

On July 15, 2013, the central bank indirectly intervened in the money markets by increasing

7See Shah (2013).
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the interest rates and constraining the funds available under the liquidity adjustment facility.8

These actions had a sharp impact on the short term interest rates, with MIBOR increasing
from 7.88% on July 15, 2013 to 9.23% on July 16, 2013. This tightening in the interest rates
provides an interesting event to analyse how changes in funding liquidity impacts traders
and thus the arbitrage efficiency of the markets.

In addition, the period also saw a microstructual change, in terms of a relaxation in the
securities transactions tax (STT) paid by the traders on the futures market. Beginning July
1, 2013, the STT was reduced from 1.7 bps9 to 1 bps.

Table 2 provides descriptive statistics of the sample used in the analysis. Average statistics
for the entire sample as well sub-samples based on liquidity costs are indicated. We use the
sum of the roundtrip bid-ask spreads on the spot and the SSF segment as a proxy to capture
liquidity costs for arbitrage.

Table 2 Sample characteristics

The table provides average daily descriptive statistics of the sample of stocks analysed in the study. The

statistics are presented for the full sample as well as sub-samples based on liquidity quartiles. The daily

values of each variable is first averaged across all days for a stock, then an average across all stocks in a set

is taken. Number of trades are reported only for the spot market. Q1 indicates the set of most liquid stocks,

while Q4 indicates the set of least liquid stocks.

Liquidity Market Cap Price # of trades Traded value
quartiles Spot SSF

(Rs.) (Rs.) (Rs. Million)

All 330,121 579.74 27,116 573 1,022

Q1 (Most) 837,658 828.13 55,879 1,491 2,635
Q2 295,613 614.79 25,793 422 770
Q3 81,306 226.89 16,436 208 392
Q4 (Least) 76,066 625.57 8,853 117 196

We next discuss the measurement of variables used in the analysis.

3.2 Market variables

Basis (zt) : We measure basis of a stock at time t as the deviation of the observed futures price of
that stock from the theoretical futures price as derived from the simple cost of carry model.
It is computed as:

zi,t =
Fi,t − Si,t × exp(rt − dt)(T − t)

Si,t

8See: RBI Press Release, July 15, 2013 http://www.rbi.org.in/scripts/BS_PressReleaseDisplay.

aspx?prid=29086.
9‘bps’ stands for basis points. 100 bps = 1%.
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where Fi,t is the midquote10 price of futures for stock i at time t, Si,t is the spot midquote
price for stock i at time t, rt is the risk-free rate for lending and borrowing over the remaining
life of the contract (T − t), and dt is the dividend yield over the contract lifetime. We use
MIBOR as the risk-free rate.11

Basis risk (σz) : Basis risk of a stock captures the variability in the basis. Higher basis risk
induces greater risk in the arbitrage position. We capture basis risk as the standard deviation
of the basis of a stock in a five minutes interval.

Liquidity costs (LiqCosts) : Beyond the explicit costs, an arbitrageur faces liquidity costs in
the form of price impact. In a cash-and-carry arbitrage (when zt is positive), the arbitrageur
incurs liquidity costs in buying spot and selling futures, and then reversing both the positions
whether before expiry or at expiry. Similarly for the reverse-cash-and-carry arbitrage (when
zt is negative). We use the sum of quoted bid-ask spread on the spot and the SSF market as a
proxy to capture the round-trip liquidity costs incurred in undertaking an arbitrage position.

Liquidity risk (σliq) : Just as basis risk, to capture variation in liquidity, we compute the stan-
dard deviation of quoted spread within every five minutes interval. This is done separately
for the spot and the SSF market.

Stock volatility (σr) : We capture intraday volatility of the stock as the standard deviation of
returns within a five minutes interval for the spot as well as the SSF market.

Barring the basis, higher values of each measure described above make arbitrage risky and
costly, which deter the arbitrageur from undertaking an arbitrage position. This results in
the basis (or the mispricing error) to be persistent for longer periods of time. Each measure
is computed at a 1-second frequency for each stock each day. The median value within the
day is used as the value for the day.12

Table 3 reports the summary statistics of market variables described above for the sample
as well as sub-samples based on liquidity costs. The table shows that for all stocks in the
sample, as well as across all liquidity quartiles, the median value of basis is negative. The
negative value is indicative of the effect of the short sales constraints that are prevalent on the
spot market. A positive basis can be corrected by selling SSF and buying spot. However, a
negative basis requires selling of spot and buying futures, which requires an active securities
lending market. The absence of an active securities lending and borrowing market in India
makes it difficult for arbitrageurs to borrow shares on the spot, and correct the mispricing
(Suvanam and Jalan, 2012; Grover, 2014).

The table also indicates the variability in the basis, captured by basis risk. Higher is the
basis risk, higher is the risk associated in undertaking an arbitrage position. As we move

10Midquote price is the average of the bid and the ask price.
11We do not account for dividend yield in the computation of basis. Miller et al. (1994) argue that since

stocks go ex-dividend overnight, if overnight price changes are excluded, the effect of dividend is completely
removed. In the analysis, we use intraday values of the basis at one second frequency.

12All risk measures (σz, σliq, σr) are annualised by multiplying the daily value by
√

252.
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Table 3 Sample summary statistics of market variables

The table reports summary statistics of market variables for full sample as well as sub-sample of stocks based

on liquidity costs quartiles. For each stock each day, we compute these values at one second level, and then

take the median value for the day. We average these values across all days for a stock, and then average

across all stocks. Liquidity costs (LiqCosts) are the roundtrip costs incurred on the SSF and spot market

proxied by quoted spread. Basis (zt) and liquidity costs (LiqCosts) are indicated as % of midquote price.

All risk measures captured by σr, σz, σliq are annualised values.

All values in %

Liquidity # of zt σz LiqCosts σliq σr
quartiles stocks Spot SSF Spot SSF

All 141 -0.06 1.43 0.18 0.48 0.32 34.6 44.9

Q1 (Most) 37 -0.07 0.95 0.09 0.32 0.16 29.3 36.4
Q2 34 -0.07 1.27 0.16 0.48 0.32 33.7 40.7
Q3 34 -0.04 1.59 0.24 0.64 0.48 38.8 51.1
Q4 (Least) 36 -0.03 1.90 0.33 1.11 0.69 39.0 53.1

away from the most liquid to the less liquid securities, basis risk increases which raises the
risk in the arbitrage position and thus, reduces the incentive for arbitrageurs to correct the
mispricing.

The next column in the table indicates the roundtrip liquidity costs incurred by the arbi-
trageur to undertake the two positions. We observe a significant variation in the liquidity
costs across sub samples as proxied by the roundtrip bid-ask spread. For the most liquid
stocks, liquidity costs are at an average 9 bps, while that for the least liquid is 33 bps. Also,
it turns out that liquidity risk is higher on the spot market than on the SSF market. The
last two column indicate the returns volatility on the spot and the SSF market. As expected,
returns volatility is higher for illiquid stocks than the liquid stocks. We also observe signifi-
cant difference in the variance of returns on the spot and the SSF market for stocks in the
least liquid quartile.

4 Market frictions and the no-arbitrage bands

In perfect markets with no market frictions, the value of zt is expected to be zero. However,
in reality, market frictions exist, and cause zt to be a non-zero value. These frictions include:
transactions costs, short selling constraints and funding constraints.

Transactions costs include explicit and implicit costs that are incurred when positions are
opened or closed (Modest and Sundaresan, 1983; Yadav and Pope, 1990; Brenner et al., 1990).
Explicit costs include brokerage fees, commissions, and taxes that are levied upfront. Implicit
costs are liquidity costs captured by bid-ask spread, market impact and vary dynamically.
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Though the explicit costs are common across all stocks, the implicit costs can differ depending
upon the stock (il)liquidity. Higher are these costs, higher is the deviation which will not
get corrected by arbitrageur.

Short selling constraints are regulatory constraints which prohibit the arbitrageur from naked
shorting of the stock on the spot market. These constraints require the arbitrageur to borrow
the stock from the market which imposes search costs on him. If the stock is limited in supply,
or lending is limited, the cost of borrowing it increases (DAvolio, 2002; Ofek et al., 2004).
Besides, there is also a risk of early re-call of the stock by the lender.

While the transactions costs have a symmetric impact on the positive as well as negative
deviations, short selling constraints have impact only on the negative deviations, by making
reverse-cash-and-carry arbitrage difficult.

In addition to the transactions costs and short selling constraints, there are funding con-
straints. Unlike in the perfect world, taking arbitrage positions requires capital. If access
to capital becomes difficult in the form of higher fund raising costs, arbitrageurs maynot be
able to enter the market and correct the mispricing (Shleifer and Vishny, 1997; Gromb and
Vayanos, 2002). Thus, higher funding constraints increase the size of deviation which may
persist for longer periods of time.

The market frictions described above collectively make arbitrage risky13 and costly. Oppor-
tunities for arbitrage arise only when zt is large enough to compensate for costs arising out
of these frictions. That is, when

|zt| ≥ Ct

where Ct represents the costs beyond which expected returns from an arbitrage position is
higher than the expected costs at time t. Thus, Ct constitutes an imaginary no-arbitrage
bands that get created around the theoretical futures price within which arbitrage is not
profitable. Depending on the level of transactions cost, the threshold level, Ct can vary
overtime. Ct can be asymmetric due to market frictions such as short selling constraints.
Our first focus is to determine the no-arbitrage bands for the sample of stocks analysed in
this study.

While some of the market frictions noted above can be observed directly (e.g explicit costs
such as taxes), others such as the implicit costs, effect of short selling constraints cannot
be observed directly. This motivates the need for an econometric approach to estimate the
upper and the lower thresholds within which arbitrage is not profitable. We follow Yadav
et al. (1994) and use a three-regime threshold autoregressive (TAR) model to estimate these
bands. Several subsequent studies including Dwyer et al. (1996), Martens et al. (1998),
Kim et al. (2010) use the same approach. Even though these models allow for multiple
regime TAR models, we constrain this exercise to a three-regime model. Multiple regimes in
no-arbitrage bands can be expected because different arbitrageurs may face different costs,

13High variation in stock liquidity and high stock volatility increase the riskiness of the arbitrage position
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especially in the case of constrained arbitrage capital. Forbes et al. (1999) however argue
that arbitrage is undertaken by large sophisticated financial institutions, and it is less likely
that these institutions will leave opportunities for less equipped arbitrageurs. Besides, the
upper and the lower thresholds immediately outside the no-arbitrage bands indicate the
minimum level of costs faced by the arbitrageurs.

The three regime TAR model on the basis for a particular stock is given as:

zt = φ
(1)
0 + Σp

k=1φ
(1)
i zt−k + ε

(1)
t zt−d ≤ C1,t

zt = φ
(2)
0 + Σp

k=1φ
(2)
i zt−k + ε

(2)
t C1,t ≤ zt−d ≤ C2,t

zt = φ
(3)
0 + Σp

k=1φ
(3)
1 zt−k + ε

(3)
t zt−d > C2,t

where, k indicates the lag structure to be imposed on zt, C1,t is the lower threshold when
zt is negative at time t , while C2,t is the upper threshold when zt is positive. Arbitrage
opportunities emerge only when zt exceeds either C1,t or C2,t. ‘d’ is the delay parameter. It
determines the lag with which arbitrageurs enter the market. εjt is i.i.d (0, σ(j)2), j indicates
the upper (zt−d ≤ C1,t), middle (C1,t ≤ zt−d ≤ C2,t) or the lower regime (zt−d > C2,t).

If arbitrageurs enter the market, the next observations of zt will move rapidly towards zero.
However, when the absolute value of zt is small, arbitrage will not be profitable and zt
may not change much (Martens et al. (1998)). Thus, in the upper and the lower regime,
zt is expected to follow a stationary process, while in the middle regime, it may follow a
non-stationary process.14

We estimate the model on each stock each day using 1-second frequency data. We use Akaike
Information Criterion (AIC) to determine the lag length. We also need to select the set of
delay parameters, S, to be used in the model estimation. Since different stocks have different
liquidity costs, the delay parameter is expected to differ across stocks. We use a variety of
values for delay parameters, S = 1, 5, 15, 20, 30, 45, 60, 75, 100, 120, 140, 160, 180, 240, 300 and
then pick the model which meets the stationarity condition as well as has the minimum AIC
value.15 Since a minimum percentage of observations are expected to be in the no-arbitrage
regime, we constrain a minimum percentage of such observations to 40%.16 The difference
between the estimated upper and the lower threshold constitutes the size of the no-arbitrage
band, or the bandwidth (bw).

Table 4 presents the estimates of the upper and lower thresholds obtained from the estimation
of the TAR model for the full sample as well as sub-samples based on liquidity costs quartiles.

14For zt to be stationary, the sum of the coefficients (φji ) in the upper and the lower regime should strictly
be less than 1.

15In some cases, we find that the basis is negative (positive) for the entire day. In that case, the model
estimates both the thresholds as negative (positive) values. In such cases, we constrain the upper (lower)
threshold as zero, and use the regime from zero to the upper (lower) threshold obtained from model estimation
as the no-arbitrage zone.

16We repeat the exercise by changing this to 30%, 50%, but it does not have any impact on the results
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Table 4 Estimated no-arbitrage bands from TAR model

The table presents the estimated values of the upper and the lower thresholds obtained from the estimation

of a three-regime TAR model for all stocks in the sample. Quartiles are based on liquidity costs as defined

in Section 3.2. For each stock, we first estimate the threshold values for each day, and then take an average

across all days.

Liquidity Lower threshold Upper threshold
quartiles Mean SD Median MAD Mean SD Median MAD

All -0.15 0.16 -0.12 0.04 0.03 0.04 0.02 0.04

Q1 (Most) -0.13 0.09 -0.11 0.04 0.01 0.01 0.00 0.00
Q2 -0.14 0.09 -0.12 0.06 0.02 0.02 0.01 0.01
Q3 -0.18 0.27 -0.12 0.03 0.04 0.03 0.04 0.03
Q4 (Least) -0.15 0.11 -0.13 0.04 0.07 0.06 0.04 0.05

The reported values are the mean and median values of the lower and upper threshold across
stocks (obtained after an averaging on all the dates for each stock). The table shows that
on an average, the lower threshold is 15 bps away from the midquote price when the basis
is negative, and upper threshold is 3 bps higher than the midquote price. The size of the no
arbitrage band (or the bandwidth), thus, on an average is 18 bps. The asymmetricity in the
estimated upper and lower threshold reflects the effect of the short selling constraints in the
market. These constraints increase the costs for the arbitrageur resulting in the deviation
persisting for longer periods of time when spot is overpriced and futures is underpriced.

Across liquidity quartiles, the table indicates a significant cross-sectional variation in the
upper as well as the lower threshold. The size of the bandwidth increases as we move
from the most liquid to the least liquid stocks, consistent with the hypothesis that higher
liquidity costs raise the transactions costs of arbitrageurs. For the most liquid stocks, the
upper threshold is zero, indicating not much obstruction due to liquidity and explicit costs.
The lower threshold is negative and significantly different from zero, once again indicating
the impact of short selling constraints. For the least liquid quartile, we see that both the
upper and the lower thresholds are large, but continue to be asymmetric in nature. The
average value of the lower threshold is 15 bps away from the midquote price (when the basis
is negative), while the upper threshold is 7 bps when basis is positive.

We compare the size of the no-arbitrage bands with the proxy for liquidity costs: the sum of
the roundtrip bid ask spread on the spot and the SSF market shown in Table 3. We observe
that only for Q1 and Q2, the estimated bands completely capture the liquidity costs, not so
much for Q3 and Q4. We, however, do not put much emphasis on this mismatch since each
of these measures are averages of averages of the intraday spread, and these costs fluctuate
significantly during the day.
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5 Commonality in no-arbitrage bands

In the previous section, we estimated the no-arbitrage bands constituted by the costs (Ct) due
to market frictions. Market frictions are however likely to impact different stocks differently
(Nagel, 2005). For example, stocks with higher liquidity are expected to have lower width
of no-arbitrage bands, in comparison to stocks with lower liquidity. Similarly, higher levels
of liquidity risk on a stock make arbitrage risky, and reduce the incentive for arbitrageurs
to enter the market. These stock-specific factors cause significant cross-sectional variation
in the size of no-arbitrage bands.

However, to the extent that these factors affect all stocks similarly, some commonality in
no-arbitrage bands is expected. Just as common factors such as market volatility, market
return and market liquidity affect the systematic liquidity and systematic risk of firm’s
returns (Kamara et al., 2008),17 these factors also result in a commonality in the no-arbitrage
bands. This commonality is the systematic component in the size of bands which is non-
diversifiable. Thus, we conjecture that the size of the no-arbitrage bands is determined by
C, which in turn can be decomposed as

Ct = Cs,t + Ci,t

where Cs,t represents the systematic component, while Ci,t represents the idiosyncratic com-
ponent. The subscript t indicates that both the systematic and the idiosyncratic factor can
differ overtime. Changes in market liquidity, market volatility, funding constraints, and taxes
can cause Cs,t to vary. Similarly, changes in the stock specific liquidity, and volatility Ci,t

can cause Ci,t to vary overtime.

In this section, we examine if such commonality (or the systematic component) exists in
no-arbitrage bands on the SSF and the spot market. We investigate the commonality by
using principal component analysis (PCA) as proposed by Hasbrouck and Seppi (2001).18

The technique uses linear combinations of the original variables (example, cross-sectional
data of no-arbitrage bands in our case) to explain the variance-covariance structure of the
underlying data. The linear combinations are chosen to maximise the explanatory power,
with the first linear combination having the maximum explanatory power.

Let xi,t be a variable observed for security i at time t. In our case, xi,t represents the no-
arbitrage band. For N securities and T periods, let X1, X2, . . . , XN be vectors of length T
such that XT

i = [xi,1, xi,2, . . . , xi,N ], let X be the matrix [X1, X2, . . . , XN ], and let Σ be the
covariance matix of X. A combination such as:

Yj = γTj X = γ1,jX1 + γ2,jX2 + · · ·+ γN,jXN

17Kamara et al. (2008) argue that the common factors capture the market conditions that affect the supply
of liquidity of market makers and produce correlated trading by investors.

18Subsequent studies including Corwin and Lipson (2011), Lee et al. (2012) also followed this technique
to extract common components from microstructural variables such as order flow, trading volumes.
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represents one of the linear combinations that could represent one common factor Yj. The
variance of Yj is defined as γTj Σγj.

If γj maximises the variance of Yj, then Yj is referred as the first principal component. The
second component is the linear combination that maximises the variance of Yj subject to the
condition that it is uncorrelated with the first principal component. There can be as many
as N principal components extracted in this manner, conditional on each being uncorrelated
with all previously extracted principal components (Corwin and Lipson, 2011).

In terms of eigenvalues and eigenvectors, the variance of the first principal component,
λ1 = V ar(Y1), equals the first eigenvalue of Σ and the coefficient vector, γ1, equals the
first eigenvector. Similar notation can be used for each of the N principal components.
Eigenvalues are used to determine the strength of the commonality, and individual security
loadings of the eigenvector are used as a means of interpreting the common component.

Hasbrouck and Seppi (2001) suggest standardizing all the variables of the underlying data to
unit variances while performing principal component analysis. In our analysis, this is not a
concern since, the elements of Xi,t only represent the no-arbitrage bands for different stocks,
and are therefore consistent in units. We still standardize all the values for each stock to
zero mean and unit variance.19

After standardization, total variation in X equals the number of original variables (the
number of stocks in our context). Thus, the proportion of total variation explained by the
jth principal component equals:

λj
λ1 + λ2 + · · ·+ λN

=
λj
N

Conditional on the first component explaining a significant variation in the underlying data,
we propose to use the first component as the systematic component of the no-arbitrage
bands.

We perform PCA on the no-arbitrage bands estimated for all the 141 stocks. We find that the
first three components explain about 37% of total variation in the no-arbitrage bands across
stocks, with the first component explaining 17% variation. The second and third components
explain 11% and 8% variation respectively. This provides evidence of commonality in the
size of the no-arbitrage bands.

Economic interpretation of the first component of bandwidth

We examine the loadings allocated to different stocks in the first principal component to
draw inferences on economic interpretation of this factor. Figure 1 plots the loadings of
the first component. The two plots show the loadings on stocks sorted by liquidity costs (in
ascending order) and market capitalisation (in descending order). While we see that for most
of the stocks the loadings are positive, there does not emerge any clear pattern in weights
allocation in terms of market capitalisation or liquidity costs.

19We do not find any difference in the results without standardization.
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Figure 1 Eigenvector of the first component from PCA on bandwidth

The figure plots the eigenvector loading on stocks from the first principal component for no-arbitrage bands.

The first plot shows the loadings on stocks sorted by increasing liquidity costs, while the second plot shows

the loadings on stocks sorted by decreasing market capitalisation.
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We use the first component as the component reflecting the systematic factor in the no-
arbitrage bands. We derive it by multiplying the matrix of stock-wise bandwidth with
the vector of the loadings attached to each stock. Figure 2 plots the time-series of the first
component. The higher values of the measure indicates a worsening of the arbitrage efficiency
in the market, reflected by wider size of the bands. We observe a significant surge in the size
of bands in mid-July when the Reserve Bank of India intervened in the money markets by
raising interest rates to contain the exchange rate volatility.20

6 Determinants of variation in the systematic compo-

nent

Given the evidence of commonality in no-arbitrage bands, we now turn to examining its
sources. We describe the factors that may affect the systematic component below:

1. Funding liquidity: Brunnermeier and Pedersen (2009) argue that the ease with which an asset
is traded depends on the ease with which traders can obtain funding. Higher fund raising costs
affect traders adversely by increasing the inventory carrying costs for market makers, and
cost of capital for arbitrageurs (Shleifer and Vishny, 1997; Gagnon and Karolyi, 2010; Rosch

20See Section 3.1 for more details on the intervention.

15



et al., 2014). Tightness in funding liquidity not only affects the market liquidity (Rosch
and Kaserer, 2013; Hu et al., 2013), but also the arbitrage activity in the market. Thus,
fluctuations in the cost of accessing capital is likely to have an impact on the systematic
component of the size of the no-arbitrage bands. As described earlier, we use MIBOR to
capture tightness in funding liquidity.

2. Market variables: The systematic component of no-arbitrage bands is also expected to be
affected by aggregate market variables such as market liquidity (Liqm), market liquidity
risk (LiqRiskm), and market volatility (V olm). Higher market volatility increases the risk
of maintaining inventory which puts an upward pressure on spreads that market makers
charge (Chordia et al., 2000). The commonality in these market variables constitute the
non-diversifiable risk making arbitrage risky. We use the aggregate market values of each of
these variables as possible sources of variation in the systematic component.

To derive the aggregate market component of each of these market variables, we follow two
approaches: One, we use equally weighted average of each of these variables across all stocks
(as followed in Chordia et al. (2000) as measure of market liquidity). As a second approach,
we conduct a PCA on the standardized values of each of these measures and use their first
component as the market component.

3. Explicit costs such as change in taxes: To the extent that the values of explicit costs (see
Table 1) are constant during the period, the explicit costs get accounted by the mean of the
systematic component. However, the period under study also saw a reduction in the STT
on the derivatives market. We account for that by including a dummy in our regression
framework.

We use these variables in a regression setup to determine the extent to which they affect the
systematic component.

6.1 Univariate analysis

We estimate the following regression using each factor conjectured as a possible source of
variation in the bands:

PBW
t = α + β0 × Factort + β1 ×Dummyt + εt (1)

where PBW
t denotes the first principal component (or the systematic factor) on the size of the

no-arbitrage bands (or the bandwidth) on day t; Factort ∈ (MIBOR, Liqm, Volm, LiqRiskm);
Dummyt accounts for STT reduction during the period of analysis. It takes value 1 for days
after May 31, 2013, 0 otherwise.

Table 5 presents regression estimates of Equation 1 with each factor in one model. Panel
A shows regression results with equally weighted average market variables such as liquid-
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ity, liquidity risk and volatility as market outcomes.21 We find a positive and significant
association of liquidity, liquidity risk and stock volatility with the systematic component. A
one standard deviation increase in market (il)liquidity brings about 23.5 standard deviation
increase in the size of the bands. Similarly, higher levels of liquidity risk and price risk have
an adverse impact on market efficiency by widening the size of the systematic component
of the bands. The dummy variable turns out to be negative and significant, indicating that
a decline in STT in June 2013 improved market efficiency by bringing down the size of the
bands. However, it should be noted that a regression with only the dummy variable by itself
had a negligible explanatory power.

Panel B of the table reports the regression results with market values computed using the
first principal component of each of the market variables.22 The findings based on the
first component are similar to the findings from the equally weighted average of each market
variable measure. The R2 using each of these market variable related measures range between
4-10%.

The last panel of Table 5 indicates the regression results with MIBOR as the explanatory
variable. We find a positive and significant relation between MIBOR and the systematic
component of no-arbitrage bands. A 1 standard deviation increase in MIBOR results in 1.22
standard deviation increase in the size of the systematic component of the bands. The R2 also
turns out to be 18% indicating MIBOR has a significant explanatory power in determining
the size of the bands.

6.2 Multivariate analysis

Each of the factor used in the regression in Table 5 is likely to be correlated to the other
factor. For example, funding costs determine the capital available to traders to trade in the
market, which affects the market variables: liquidity, liquidity risk as well as volatility. In
addition, each of these three variables exhibit significant correlation between each other.23

Thus, a regression with all these variables in one equation will result in issues related to
multicollinearity.

We eliminate the correlation between these variables by performing a principal component
analysis on the average market values of each of these variables.24 We use the first principal
component from the PCA on these market variables and re-estimate the regression specified
in Equation 1.

The first principal component (PMF ) extracted from a PCA on Liqm, LiqRiskm and V olm

21We derive the market-based value of these measures by taking an equally weighted average of each of
these measures across all stocks.

22Appendix A describes the principal component analysis results on each variable in detail.
23These three variables amongst themselves have a correlation coefficient greater than 0.75.
24We use our first approach, that is, equally weighted average across stocks in the principal component

analysis.
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Table 5 Regression results on systematic component of bandwidth

The table reports regression estimates for the equation:

PBW
t = α+ β0 × Factort + β1 ×Dummyt + εt

where PBW
t denotes the first principal component (or the systematic factor) on the size of the no-arbitrage

bands (or the bandwidth) on day ‘t’; Factort ∈ (MIBOR, Liqm, Volm, LiqRiskm); Dummyt accounts for

STT reduction during the period of analysis. It takes value 1 for days after May 31, 2013, 0 otherwise. Panel

A indicates the results based on equally weighted average of each market variable across all stocks. Panel

B indicates the regression results based on the first principal component of each market variable. Panel C

reports the regression results with funding constraints as the explanatory variable in the regression. The

regression estimates are robust to the outliers in the data. The values in parenthesis indicate the t-statistic

of the estimated coefficient.

Factor β0 β1 R2 # of obs.
Panel A
Liqm 22.28 -0.91 0.04 113

(2.27) (-1.87)
LiqRiskm 97.34 -0.63 0.04 113

(1.89) (-1.27)
V olm 0.10 -1.29 0.09 113

(3.33) (-2.96)

Panel B
Liqpc1,m 0.13 -1.25 0.09 113

(3.66) (-3.21)
LiqRiskpc1,m 0.08 -0.81 0.06 113

(2.43) (-1.89)
V olpc1,m 0.13 -1.30 0.10 113

(3.47) (-2.96)

Panel C
MIBOR 1.06 -0.90 0.18 113

(6.56) (-2.74)

explains 76% variation in these factors collectively, indicating a significant correlation across
the three variables. Further, since all these market variables are also affected by changes
in funding liquidity, we cannot include MIBOR in the same regression. The correlation
coefficient between MIBOR and PMF turns out to be 0.77. To eliminate multicollinearity,
we repeat the principal component analysis exercise by adding MIBOR as the fourth factor
along with the market values of the three market variables (Liqm, LiqRiskm and V olm). The
first component from these four variables (PMF,MIBOR) explains 76% of the variation.

Figure 2 plots the time-series of the systematic component of no-arbitrage bands along with
the first component based on the three market variables (PMF ) and with the first component
based on all the four variables including MIBOR (PMF,MIBOR). We also add MIBOR to the
plot to indicate changes in the costs of funding during the period under study. The dashed
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Figure 2 Time series of the systematic factor with other factors

The figure plots the systematic factor along with the first component extracted from a principal component

analysis on only the three market variables: market liquidity, market liquidity risk and market volatility;

and from the three market variables and MIBOR. The figure also plots MIBOR. The dashed line indicates

the date of intervention by the Reserve Bank of India to contain exchange rate volatility.
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line in the graph indicates the date of intervention by the central bank of India, when the
interest rates in the money market were increased to contain exchange rate volatility. The
graph shows an increase in the systematic component with the date of increase in the interest
rates, indicating how sudden tightness in the funding liquidity affected the arbitrage trades.
The increase in the systematic component of the market variables continues until a few days
after the increase in MIBOR.

The above observations are reflected in our regression results as well. Table 6 reports the
estimates results using PMF as a factor, along with the STT dummy (See M1). As we
observed in the univariate results, there is a positive and significant association between the
systematic component of the size of no-arbitrage bands and market variables. A deterioration
in the market variables causes an increase in the systematic component of the size of the
bands. Model 2 (M2) in Table 6 shows the regression results by using (PMF,MIBOR) as the
explanatory variable along with the STT dummy. We find similar results as in M1, with
the explanatory power of the model improving from 7% to 10%. The results suggest that
funding constraints have a key role in determining arbitrage efficiency in the markets. The
results are similar to the findings by Rosch et al. (2014) who also find that funding liquidity
plays a significant role in determining aggregate market efficiency.
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Table 6 Multivariate regression results

The table presents results of the regression estimated for the equation:

PBW
t = α0 + β0 × PMF,t + β1 ×Dummyt + εt

where PBW
t denotes the first principal component (or the systematic factor) on the size of the no-

arbitrage bands (or the bandwidth) on day ‘t’; PMF,t is the first component on the market variables

(Liqm, V olm, LiqRiskm), with and without MIBOR. Dummyt accounts for STT reduction, taking value

1 for days after May 31, 2013, 0 otherwise. The regression estimates are robust to the outliers in the data.

The values in parenthesis indicate the t-statistic of the estimated coefficient.

M1 M2
Dummy -1.03 -1.08

(-2.94) (-2.69)
PMF 0.54

(2.94)
PMF,MIBOR 0.55

(3.64)
R2 0.07 0.10
# of obs. 113 113

7 Conclusion

Several papers in the past have explored the effect of limits to arbitrage in the context of
index futures and spot, but none on the stock futures and spot data. This study attempts
to fill this gap by investigating the effect of market frictions on arbitrage in(efficiency) in
a much more cleaner setting of stock futures and spot prices. Market frictions result in
no-arbitrage bands around the theoretical prices of futures. We find that on an average,
when there is negative deviation, the mispricing persists atleast until it is less than equal
to 15 bps away from the midquote price. On the positive side, this limit is smaller, to the
extent of 3 bps. Consistent with the prior literature, this asymmetricity in the upper and
the lower limit, reflects the effect of the short selling constraints on the spot market (Ofek
et al., 2004). Evidence of significant cross-sectional variation in the size of the bands is also
found, which can be explained by the differences in the liquidity of the stock.

We also explore the possibility of commonality in the size of no-arbitrage bands. We con-
jecture that a part of these bands can be explained by market-related factors common to all
stocks (the systematic factor) and the rest to the stock-specific factor (the idiosyncratic fac-
tor). We find evidence of such commonality. 17% of the variation in the size of no-arbitrage
bands can be explained by the first principal component, which we refer as the systematic
component. This finding links with the commonality literature which has so far focused on
the returns (Fama and French, 1995), liquidity (Chordia et al., 2000), and very recently,
market efficiency (Rosch et al., 2014).

We delve into the factors that can be attributed to the variation in the systematic component.
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We find that explicit factors like taxes, market factors like liquidity and volatility have a
significant explanatory power in explaining the variation. The factor that has maximum
explanatory power turns out to be funding constraints captured by MIBOR. This evidence
is consistent with the recent literature which asserts that funding liquidity is a key factor
in determining market liquidity. We find that tightening of the interest rates in the money
market by the central bank worsened the arbitrage efficiency of the equity markets, an
unintended consequence of an action by the regulator.
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A Principal component analysis results on market vari-

ables

Table 7 presents the results of principal component analysis on each of the market variable:
Liquidity, liquidity risk and stock volatility. The eigenvalues of the first component on these
variables range between 44-50%, indicating a significant level of commonality. The first
component on liquidity variable explains about 45% of the total variation in liquidity across
all stocks. Similarly on liquidity risk and stock volatility, the first component explains about
49% and 44% of total variation. The second and the third component share for each of these
variables is less than 10%.

Table 7 Eigenvalues obtained from PCA on market outcomes

Mean Median SD Eigenvalues Cumulative
1 2 3 explained

variance (%)
Liquidity 0.21 0.18 0.13 45.09 7.40 3.68 56.17
LiqRisk 0.03 0.02 0.02 49.52 7.41 5.97 62.90
V olatility 39.42 34.66 19.97 44.75 4.68 3.86 53.29

Figure 3 also plots the weights assigned to each stock in the first component computation. We
see that for all the three variables, the weights are generally positive and similar, indicating
that this component captures the systematic component of each of these variables.

Figure 3 Loadings on the first component from PCA on market outcomes
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