
SDG:System Documentation Guidelines

Version: 0.0.0
Date: August 24, 2007
Purpose: Organization and content of P545 System Documentation. This

document serves as an example, implementing the requirements
in Latex

Status: in progress
Author: Steven D. Johnson

System Documentation Guidelines

Contents

1 Requirements 4

1.1 Structure and Purpose of System Documentation 4
1.1.1 Requirements . 4
1.1.2 Design . 5
1.1.3 Implementation . 5
1.1.4 Code . 6
1.1.5 Test . 6

1.2 Tagged Specifications . 6

2 Design 6

2.1 LATEXImplementation . 6
2.1.1 Document Organization 7
2.1.2 Tagged Specifications . 7

3 Implementation 8

3.1 LATEX . 8
3.1.1 Packages . 8
3.1.2 Document Information Header 8
3.1.3 Document Organization [§2.1.1] 8
3.1.4 Tagged Specifications . 8

4 Code 10

5 Test 11

CONTENTS 2

A Specification Digest 12

B Developer Instructions 13

C User Instructions 14

C.1 Using SDG . 14
C.2 Sectioning . 14
C.3 Document Information Header 15
C.4 Document Header . 15
C.5 Specification Tagging . 15

TECHNICAL PROFILE 3

Technical Profile

These guidelines outline the structure, purpose, and format of system documen-
tation for P545 projects. A “system” an entire system, a subsystem of some-
thing larger, a component—module, object, class, library, and API, or even a
single routine. This document also serves as an example, describing a Latex
implementation for formatting system documentation in Sections 2–5.

1 REQUIREMENTS 4

1 Requirements

1.1 Structure and Purpose of System Documentation

Specification 1.1 Section level organization of system documentation is given
in Figure 1.

The remainder of this section discusses the purpose and content of each section.
Generally, each section develops a successively more concrete view of the target
realization. In general, specifics are deferred to later sections insofar as it makes
sense. For instance, the requirements should not prescribe design decisions; and
the design should not prescribe representation details. However, there are no
precise “boundaries” for what is specified where. It depends on the nature of
the component being described. these sections, and they are all describing the
same thing at differing abstraction levels.

1.1.1 Requirements

The Requirements section specifies what the component under design does in
terms of its externally observable behavior. Requirement specifications may
include such properties as:

• Functionality, the input-output relations.

• Preconditions or “assumptions,” are conditions for correct use.

• Postconditions or “guarantees,” including not only output values but also
such things as effects on call-by-reference argements, file space, etc.

• Invariants, such as safety and liveness conditions that are preserved by
the executing component.

1. Requirements. What the system does.

2. Design. How the requirements are satisfied.

3. Implementation. Key representations, algorithms, etc.

4. Coding. Indexed presentation of source code.

5. Testing. Purpose and procedures.

A. Developer Instructions. make procedures, etc.

B. User Instructions. End-user procedures.

Figure 1: Organization of System Documentation

1 REQUIREMENTS 5

• Constraints on resources such as time, space, etc.

• Validation. The requirements may include a collection of specific observ-
able (i.e. input/output) behaviors to which the delivered realization must
comply. These may be thought of as being provided by the End User (or
customer) for determining minimal satisfactory functionality.

The “formal” requirements statement consists of a numbered sequence of in-
dividual requirement specifications, like Requirement 1.1 at the beginning of
Section 1. In critical applications, the subsequent sections are expected to ad-
dress each of these individually.

1.1.2 Design

The Design section explains how the requirements are satisfied. For this rea-
son, it is usually organized according to component functionality (rather than
architecture, as is the case in the Implementation section).
The design is presented abstractly, and routine representation details are de-
ferred. It typically includes, for example, graph depictions of data structures
or control-flow. Key algorithms may be presented in abbreviated form (e.g.
pseudo-code) the main goal being to show mathematically how requirements
are addressed.
Ideally, the design description gives just enough information for someone with
sufficient programming expertise to develop an equivalent implementation on
their own.
Design verification is a comparison of two levels of description (as opposed to
testing the actual realization, see Section 1.1.5). In critical applications, it is
necessary to explain how each requirement specification is satisfied by the design.
The means of verification ranges from demonstration by model simulation to
machine-checked mathematical proof, although in commone practice may be
merely a careful, more-or-less rigorous English explanation.

1.1.3 Implementation

The Implementation section presents “key” representation details, including the
overall architecture of the component. It should not include incidental coding
details that can be readily understood by inspection of the source code. Instead,
this section gives the “lay of the land,” that a competent programmer would
need to know before delving into the low-level coding details.
Specific design specification statements, if any, should be addressed. This is
another level at which the term “verification” is applicable.

2 DESIGN 6

1.1.4 Code

Source code is processed by a code documentation tool. Doxygen1 that generates
navigation indices, such as call graphs. These tools often have comment format-
ting provisions as well, allowing source-comments to be integrated logically in
the higher-level system documentation.
However, the primary purpose of source-comments to providing local guidance
in the immediate code context. Hence, these comments are generally insufficient
for the higher purpose of the Implementation section.

1.1.5 Test

In contrast to validation (Sec. 1.1.1) and verification (Sec. 1.1.2), testing refers
to execution of the component realization (hardware device, object code, etc.)
against a selected sample of inputs and expected outputs.
The test of interest in this section do not include routine tracing for the purpose
of programming, but rather, a cumulative suite of fixed tests whose purposes
include final validation against end-user requirements, and regression testing
against revisions, diagnoses of failures in the field, and so forth.
These tests should be automated for repeatability, and anomales in testing must
be tracked and resolved prior to release of a component. This section includes
both test specifications and documentation of repeatable test procedures.

1.2 Tagged Specifications

Specification 1.2 Formal specification statements are identified by locator tags
indicating the section in which they appear and a sequence number.

2 Design

2.1 LATEXImplementation

Support for system documentation as specified in Section 1 is provided in a
collection of macros [name] incorporated in the document prelude. The SDG
prelude loads packages makeidx, hyperref, and url to enable hyper-text linking.
Package moreverb is used for in-lining files and other similar purposes.
End users can use \label, \ref, and \pageref in the usual way to incorporate
hyper-text links, provided the document is generated with pdflatex, or its
equivalent.

1http://www.stack.nl/~dimitri/doxygen/index.html is used in P545 unless it is su-
perceded by an equivalent tool provided by the project development environment.

http://www.stack.nl/~dimitri/doxygen/index.html

2 DESIGN 7

\documentclass{article}

\input{../SDG-prelude.tex}

\begin{document}

\DocHeader{TAG}{TITLE}{VERSION}{DATE}{PURPOSE}{STATUS}{AUTHOR}

\begin{TechnicalProfile} ... \end{TechnicalProfile}

\begin{Requirements} ... \end{Requirements}

\begin{Design} ... \end{Design}

\begin{Implementation} ... \end{Implementation}

\begin{Code} ... \end{Code}

\begin{Test} ... \end{Test}

\appendix

\SpecDigest

\end{document}

Figure 2: SDG top-level template

2.1.1 Document Organization

Specification 2.1 Latex environments Requirements, Design, Implementation,
Code, and Test do the sectioning according to Specificication 1.1 (See Fig. 2).
They include provisions for inserting a digest of specification statements at the
end of each section.

Each of the sectioning environments creates and initializes an output file—
Rspec.tex, Dspec.tex, Ispec.tex, Cspec.tex, or Tspec.tex, depending on
which section is in effect. These files are used to accumulate specification state-
ments (See \Spec for inclusion later in a specification digest (See \SpecDigest).

2.1.2 Tagged Specifications

Specification 2.2 A specification statement is generated by the form \Spec{name}
... \EndSpec. A tag has the form §.n, where § is the section number and n is
a sequence number [Requirement ??].

Argument name is used to label the statement via \label, so that \ref{name}
generates a reference to the tag, and \pageref{name} generates the page num-
ber on which the specification statement appears. The hyperref package gener-
ates hyper-text links in PDF target documents.

3 IMPLEMENTATION 8

3 Implementation

3.1 LATEX

3.1.1 Packages

The following packages are used:

1. makeidx generates an index according to \index commands.

2. hyperref generates hyper-text links for \ref{label} and \pageref{label}
commands.

3. url generates links for \url{http : // . . .}

3.1.2 Document Information Header

The macro

\DocInfo{tag }{title }{version }{date }{purpose }{status }{author }

generates a header table identifying the document:

tag:title
Version: version
Date: date
Purpose: purpose
Status: status
Author: author

Ar-

gument tag is for external use in identifying the document.

3.1.3 Document Organization [§2.1.1]

Sectioning nvironments Requirements, Design, etc. [Spec. 2.1], invoke in-
stances of the

SDGsection{name }{file }

environment, which sets things up sectioning. It initializes an output file for
accumulating table entries generated by \Spec commands (Sec. ??, below). The
resulting table is read into the document at the close of the section to generate
a digest of specification statements.

3.1.4 Tagged Specifications

The command
\Spec{name } statement \EndSpec

3 IMPLEMENTATION 9

generates specification statements and caches them for later reproduction in the
Specification Digest table.2 Argument name is used to \label the statement.
The tag associated with the label is generated by a \newtheorem environment
called SpecStmt keyed to the section number.
\Spec puts LATEX into verbatim mode which reads the ensuing statement up to
the endmarker, \EndSpec. This “string” is copied to two files:

1. a cache file for immediate use. The cache copy is re-read immediately
using \input, which evaluates and formats it.

2. a file for accumulating a table of all the specification statements in the
section. \Spec appends a line of the form

\ref{name } & statement \cr\hline

2\Spec is almost but not quite and environment. It should be one.

4 CODE 10

4 Code

The SDG macro file is called SDT-prelude.tex.

5 TEST 11

5 Test

Specification 5.1 The source file for this document, SDG.tex, exercises all the
macros in SDG-prelude.tex. The command make sdg the formatted hypertext
document SDG.pdf

References

1. Leslie Lamport. Latex. . . .

2. The Latex Companion. . . .

A SPECIFICATION DIGEST 12

A Specification Digest

Requirements
1.1 Section level organization of system documentation is given in Figure 1.
1.2 Formal specification statements are identified by locator tags indicating

the section in which they appear and a sequence number.

Design
2.1 Latex environments Requirements, Design, Implementation, Code,

and Test do the sectioning according to Specificication 1.1 (See Fig. 2).
They include provisions for inserting a digest of specification statements
at the end of each section.

2.2 A specification statement is generated by the form \Spec{name} ...
\EndSpec. A tag has the form §.n, where § is the section number and
n is a sequence number [Requirement ??].

Implementation

Code

Test
5.1 The source file for this document, SDG.tex, exercises all the macros in

SDG-prelude.tex. The command make sdg the formatted hypertext
document SDG.pdf

B DEVELOPER INSTRUCTIONS 13

B Developer Instructions

See the Makefile. Debugging and enhancement are complicated by the fact
that some LATEXerrors may be propagated in the output files (e.g. Rspec.tex)
and will therefore persist across multiple calls to latex. Because of this it should
be a routine part of development to remove the .aux files before re-running the
formatter.

C USER INSTRUCTIONS 14

C User Instructions

The skeleton template for generating documentation using the SDG macros is
shown below

\documentclass{article}

\input{../SDG-prelude.tex}

\begin{document}

\DocHeader{TAG}{TITLE}{VERSION}{DATE}{PURPOSE}{STATUS}{AUTHOR}

\begin{TechnicalProfile} ... \end{TechnicalProfile}

\begin{Requirements} ... \end{Requirements}

\begin{Design} ... \end{Design}

\begin{Implementation} ... \end{Implementation}

\begin{Code} ... \end{Code}

\begin{Test} ... \end{Test}

\appendix

\SpecDigest

\end{document}

C.1 Using SDG

To generate a document from file.tex invoke

rm file .aux
pdflatex file

makeindex file

pdflatex file

pdflatex file

Note: The SDG-prelude.tex macros are rather sensitive to formatting errors,
whose effects often carry over repeated pdflatex invokations. Because of this, it
is a wise habit to remove the file.aux file between corrections.
Repeated invokations of pdflatex are needed to resolve internal cross-references.
The resulting document is named file.pdf.

C.2 Sectioning

\begin—tt{name} . . . \end{name}

The Latex environments TechnicalProfile, Requirements, Design, Implementation,
Code, and Test must appear in that order, although this isn’t checked. They

C USER INSTRUCTIONS 15

set up the bookkeeping to generate an index of specification statements (See the
\Spec command in Section ??, but otherwise are equivalent to \section{name}
commands.
The \appendix command and subsequent \sections are not required; they
illustrate how to append supplementary documentation.

C.3 Document Information Header

\DocInfo{tag}{title}{version}{date}{purpose}{status}{author}

\DocInfo generates a table of the form.

tag:title
Version: version
Date: date
Purpose: purpose
Status: status
Author: author(s)

tag is a prefix that may be used externally to identify this document. So it should
be a short string. The remaining arguments may be any length, but must be a
single paragraph; purpose, in particulasr, should be a short, description of the
subject of the documentation.

C.4 Document Header

\DocHeader{tag}{title}{version}{date}{purpose}{status}{author}

\DocHeader generates a \DocInfo table and adds a title line and table of con-
tents. Its arguments are passed directly to \DocInfo.

C.5 Specification Tagging

\Spec{label} statement \EndSpec

\Spec is an environment-like command in that its statement argument need
not be enclosed in braces but is instead terminated by the keyword \EndSpec
(Note: not \end{Spec}). statement can be any single paragraph. It is displayed
in place, NS statement is also recorded in one of the files Rspec.tex, Dspec.tex,
Ispec.tex, Cspec.tex, or Tspec.tex, depending on which section is in effect,
for re-use as an index elsewhere in the document (see \SpecDigest. Do not use
\Spec outside these predetermined sections.
label is an identifier used to label the statement for use in cross-referencing \ref
and \pageref commands.

C USER INSTRUCTIONS 16

Example

\Spec{rqmt:tags}
Formal specification statements are identified
by locator\index{locator} tags\index{tag} indicating
the section in which they appear and a unique
sequence number.
\EndSpec

results in the formatted statement

Specification 1.2 Formal specification statements are identified by loca-
tor tags indicating the section in which they appear and a unique sequence
number.

The locator 1.2 is generated by \Spec and may be referenced by \ref{rqmt:tags}.
The first number indicates the section number, and the second is a sequence
number.

Index

locator, 16

tag, 6, 16
testing, 6

validation, 5
verification, 5

17

