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STEP V-- VALIDATING MEASURES
Measure validation or demonstrating the adequacy of the study measures, appeared to be the least consistent of the six steps above (see Peter and Churchill, 1986 for similar findings). Perhaps this was because there are several issues that should be addressed in validating measures. Measures should be shown to be unidimensional (having one underlying construct), consistent (fitting the model in structural equation analysis), reliable (comparatively free of measurement error), and valid (measuring what they should). Demonstrating validity has also been called measure validation (see Heeler and Ray, 1972). However, I will use the term measure validation to mean demonstrating measure unidimensionality, consistency (i.e., model-to-data fit), reliability, and validity.

While measure validation is well-covered elsewhere, based on the articles reviewed it appears to merit a brief review. I begin with unidimensionality and consistency, then proceed to reliability and validity.

UNIDIMENSIONALITY
Assessing reliability usually assumes unidimensional measures (Bollen, 1989; Gerbing and Anderson, 1988; Hunter and Gerbing, 1982). However, coefficient alpha, the customary index of reliability in Marketing, underestimates the reliability of a multidimensional measure (Novick and Lewis, 1967). Thus, unidimensionality is actually required for the effective use of coefficient alpha (Heise and Bohrnstedt, 1970-- see Hunter and Gerbing, 1982) (other indexes of reliability such as coefficient omega have been proposed for multidimensional measures -- see Heise and Bohrnstedt, 1970). Thus reliability of a measure, as it was typically assessed in the studies reviewed (i.e., using coefficient alpha), should be assessed after unidimensionality has been demonstrated (Gerbing and Anderson, 1988).

A unidimensional item or indicator has only one underlying construct, and a unidimensional measure consists of unidimensional items or indicators (Aker and Bagozzi, 1979; Anderson and Gerbing, 1988; Burt, 1973; Gerbing and Anderson, 1988; Hattie, 1985; Jöreskog, 1970 and 1971; McDonald, 1981). In the articles reviewed, unidimensionality was typically assumed in the specification of a model estimated with structural equation analysis. Perhaps this was because authors have stressed the need for unidimensionality in structural equation analysis models in order to separate measurement issues (i.e., the relationship between a construct and its observed variables or indicators) from model structural issues (i.e., the relationships or paths among constructs) (Anderson, Gerbing and Hunter, 1987; Anderson and Gerbing, 1988; Bentler, 1989; Bollen, 1989; Burt, 1976; Jöreskog, 1993) (however, see Kumar and Dillon, 1987a and 1987b for an alternative view). Separating measurement issues from model structural issues in structural equation analysis avoids interpreta​tional con​found​ing (Burt, 1976), the interac​tion of measurement and structure in structural equation models. In particular, an item or indicator x can be viewed as composed of variance due to its construct X and variance due to error, and thus

Var(x) = λ2Var(X) + Var(e) ,
(2

if X and e are independent, where Var denotes variance, λ or lambda is the path coefficient on the path connecting X with x (also called the loading of item x on X), and e is error. Intrepretational confounding in structural equation analysis means that changes in model structure (i.e., adding or deleting paths among constructs) can produce changes in the measurement parameter estimates of a construct (i.e., changes in item loadings, in measurement errors, and in construct variances). Thus, with interpretational confounding, changes in the structural equation model can affect the empirical meaning of a construct.

CONSISTENCY
Many criteria for demonstrating unidimensionality have been proposed (see Hattie, 1985). Perhaps in response to calls for more work in this area (e.g., Lord, 1980), Anderson and Gerbing (1982) proposed operationalizing unidimensionality using the structural equation analysis notions of internal and external consistency (also see Kenny, 1979; Lord and Novick, 1968; McDonald, 1981) (however see Kumar and Dillon, 1987a and 1987b for an alternative view).

Consistency has been defined as the structural equation model fitting the data (see Kenny, 1979). It is important because coefficient estimates from structural equation analysis may be meaningless unless the model adequately fits the data (Bollen, 1989; Jöreskog ,1993:297). As Anderson and Gerbing (1982) defined consistency, two indicators of X, x1 and x2, are internally consistent if the correlation between them is the same as the product of their correlations with their construct X. Similarly an indicator of X and an indicator of Z, x and z, are externally consistent if the correlation between x and z is the same as the product of three correlations: x with its construct X, z with its construct Z, and X with Z. Thus if X is internally and externally consistent, it is also unidimensional, and I will use the term consistent/unidimensional for Anderson and Gerbings (1982) operationalization of consistency.
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Anderson and Gerbing (1982) also proposed assessing consistency/unidimensionality with what they termed similarity coefficients (see Hunter, 1973; Tyron, 1935). The similarity coefficient for items a and b (in the same or different measures) is derived from the dot (inner) product, or angle, between the vector of correlations of a with the other study items, and the vector of correlations of b with the other study items, and is given by

where Va is the row vector of correlations between a and the other study items, (including b), Vb is the column vector of correlations between b and the other study items (including a), VaVb is matrix product of row vector Va and column vector Vb , |V| is the length of a correlation vector (= (Σri2) , the square root of the sum of the square of each correlation ri), and cos v is the coefficient of similarity (i.e., the cosine of the angle v between the correlation vectors). Items that are similar have a small angle between their correlation vectors, and they have a cosine of this angle that is near one. Specifically, Anderson and Gerbing (1982) proposed that a and b have high internal consistency if their correlation vectors lie sufficiently close together, and suggested a similarity coefficient of .8 or above. External consistency is suggested by items that cluster together in a matrix of sorted or ordered similarity coefficients (Anderson and Gerbing, 1982:458) (see Appendix F for an example).

Consistency/unidimensionality is also suggested by a structural equation model that fits the data when its constructs are specified as unidimensional (i.e., each observed variable or indicator is connected to only one construct). With consistency/unidimensionality there is little change in measurement parameter estimates (i.e., loadings and variances-- see Equation 2) between the measurement model and subsequent structural models (Anderson and Gerbing, 1988) (i.e., differences in second or third decimal digits only). Thus consistency/unidimensionality can also be suggested by showing little if any change in measurement parameters estimates between a full measurement model (i.e., one containing all the model constructs, and their indicators, with correlations among all the constructs) and the structural model (i.e., one that replaces certain correlations among the constructs with paths).

PROCEDURES FOR ATTAINING UNIDIMENSIONALITY AND CONSISTENCY
Procedures for attaining unidimension​ality using exploratory (common) factor analysis are well known. However, procedures for obtaining consistent/unidimensional measures are less well documented. Procedures using ordered similarity coefficients are suggested in Anderson and Gerbing (1982:454), and Gerbing and Anderson (1988). The ordered similarity coefficients help identify inconsistent items. Alternatively, consistency/unidimensionality for constructs specified unidimensionally (i.e., each observed variable or indicator is "pointed to" by only one construct) can be attained using a procedure that has been in use for some time (see Dwyer and Oh, 1987; Kumar and Dillon, 1987b; Jöreskog, 1993) (however see Cattell, 1973 and 1978 for a dissenting view). The procedure involves estimating a single construct measurement model (i.e., one that specifies a single construct and its items) for each construct, then measurement models with pairs of constructs, etc., through estimating a full measurement model containing all the constructs. Items are omitted as required at each step to obtain adequate measurement model fit (and thus consistency/unidimensionality because the process begins with single construct measurement models) while maintaining content or face validity (content or face validity is discussed later and should be a serious concern in omitting items using any consistency-improvement procedure). Standardized residuals, or specification searches (e.g., involving modification indices in LISREL or LMTEST in EQS) can also be used to suggest items to be omitted at each step to improve model-to-data fit.

However, these methods are not particularly efficient, they do not identify multiple consistent subsets of indicators, and they may not produce the largest consistent/unidimensional subset of indicators. Instead, partial derivatives of the likelihood function with respect to the error term of the indicators could be used to suggest inconsistent items (see Ping, 1998a). This approach involves the examination of the matrix of these derivatives in a single construct measurement model. The item with the largest summed first derivatives without regard to sign that preserves the content or face validity of the measure is omitted. The matrix of first derivatives is then re estimated without the omitted item, and the process is repeated until the single construct measurement model fits the data (see Appendix E for an example of this procedure).

Items with similarly large summed first derivatives without regard to sign suggest that there are at least two consistent subsets of items, and in general for a measure with n items there are

      n!

-----------

            3! (n-3)!

subsets of items that are internally consistent (i.e., will fit the data), where ! indicates factorial (e.g., n! = n(n-1)(n-2)...1). The constant 3 is the minimum number of items in a consistent measure (i.e., a 3 item measure fits the data exactly). Thus for an 8 item measure there are 8!/(3!(8-3)!) = 56 subsets of items that fit the data perfectly. With proper item development and real-world data however, the number of subsets of items that will fit the data acceptably is

      n!

-----------

            
6! (n-6)!

or less (see Bagozzi and Heatherton, 1994). Thus for an 8 item measure there may be

      8!

-----------  = 28

            
6! (8-6)!

subsets that are all sufficiently consistent (i.e., fit the data sufficiently to perfectly). Again with proper item development and real-world data however, there are usually one or two small subsets or kernels of consistent items that serve as attractors of the other items. This usually means that with proper item development and real-world data there are one or more large clusters of sufficiently consistent items, and many 3-item clusters that fit the data perfectly.

My experience with this procedure and real-world survey data sets is that it produces one or more maximally internally consistent item subsets. The approach is similar to Saris, de Pijper and Zegwaarts (1987) and Sörboms (1975) proposal to improve model-to-data fit using partial derivatives of the likelihood function with respect to fixed parameters (i.e., to suggest paths that could be freed, e.g., modification indices in LISREL). The internally consistent measures produced are frequently externally consistent. Nevertheless, the procedure could also be used on a full measurement model containing all the constructs specified unidimensionally (i.e., each observed variable or indicator is connected to only one construct). This full-measurement-model variant of the first derivative approach is useful if several study measures are inconsistent, because the most inconsistent item in each measure can be identified with a single measurement model.

COMMENTS ON UNIDIMENSIONALITY AND CONSISTENCY
Unidimensionality in the exploratory common factor analytic sense is required for coefficient alpha, and consistency/unidimensionality is required for structural equation analysis. Further, it is well known that the reliability of a measure is necessary for its validity. Thus, there is a sequence of steps in validating a measure: establish its consistency/unidimensionality for structural equation analysis, or establish its unidimensionality using maximum likelihood exploratory common factor analysis (i.e., not principal components factor analysis) for regression (however, regression is considered inappropriate for latent variables-- e.g., Bohrnstedt and Carter, 1971; Cohen and Cohen, 1983; Rock, Werts, Linn and Jöreskog, 1977; Warren, White and Fuller, 1974), then show its reliability, and finally its validity.

Unidimensionality in two and three item measures is difficult to demonstrate using exploratory or confirmatory factor analysis because these measures are under- or just determined. However, ordered similarity coefficients will gauge both internal and external consistency and thus unidimensionality using the criteria discussed above. If the matrix of similarity coefficients for the two or three item measure has similarity coefficients of .8 or above, this suggests internal consistency/unidimensionality. The matrix of similarity coefficients for all the study measures can be sorted by the sum of coefficients for each item, and if the items for the two or three item measure clustering together in the sorted matrix this suggests external consistency.

While Churchill and Peter (1984) found no effect on reliability when positively and negatively worded or reverse-polarity items are mixed in a measure, subsequent studies suggest that mixing positively and negatively worded items can adversely affect measure consistency/unidimensionality (see the citations in Herche and Engelland, 1996). If concern for acquiescence bias (see Ray, 1983) produces a measure with positively and negatively worded items that produces consistency/unidimensionality problems, inconsistent items might be retained as a second facet in a second-order construct (see Bagozzi, 1981 for a similar situation) (second-order constructs are discussed later).

Similarly, I have noticed that changes in verb tense among items in the same measure can lead to internal consistency problems. Similarly, in interorganizational research changes in the subject of the item stem (i.e., I versus company) among items in the same measure can also lead to consistency problems.

My experience with the above procedures for obtaining consistency/unidimensionality is that they are all tedious, especially the first derivative procedure. An alternative is to avoid consistency problems by summing one or more constructs items and use regression (however, see Step VI-- Violations of Assumptions for cautions about regression), or use single indicator structural equation analysis (which will be discussed next). In addition, ordered similarity coefficients do not always suggest maximally consistent item clusters in survey data. Instead they usually suggest sufficiently consistent clusters of items that are also sufficiently reliable (see Appendix F for an example).

In survey data it is easy to show that unidimensionality obtained using maximum likelihood exploratory common factor analysis does not guarantee consistency/unidimensionality in the Anderson and Gerbing (1982) sense. Thus, consistency/unidimensionality is a stronger demonstration of unidimensionality than a single factor solution in maximum likelihood  exploratory common factor analysis.

Based on the articles reviewed and my own experience, there seems to be an upper bound for the number of items in a consistent/unidimensional measure of about six items (also see Bagozzi and Baumgartner, 1994 for a similar observation). Thus larger measures, especially older measures developed before structural equation analysis became popular, usually required extensive item omission to attain consistency/unidimensionality in the articles reviewed. While the resulting consistent/unidimensionality submeasures were invariably argued or implied to be content or face valid, they often seemed to be less so than the original full measures.

In fact, a common misconception in the reviewed articles that used structural equation analysis was that consistent measures are more desirable than less consistent fuller measures, especially older measures developed before structural equation analysis became popular. Many articles appeared to assume that older full measures were inherently flawed because they were typically inconsistent and required item omission to attain a consistent subset of items. However, authors have criticized dropping items from psychometrically acceptable (i.e., unidimen​sional, valid and reliable) measures to attain model fit on the grounds that it impairs content validity (e.g., Cattell, 1973, 1978; see Gerbing, Hamilton and Freeman, 1994). Cattell (1973) observed that the resulting measures are typically bloated specific (operationally narrow) instances of the target construct.

It is well known that fit improves by dropping items from a measure. Stated differently, fit declines as items are added to a measure, and, as noted earlier, it is practically impossible to obtain model-to-data fit in a measure with more than 6 items using survey data. Thus, itemizing a latent variable with each of its individual indicators may be inappropriate for a unidimensional measure with more than 6 items in structural equation analysis.

In addition, it frequently seemed that the full measures (i.e., the measures before items were dropped) were more desirable than the proposed more consistent reduced measures for reasons of face or content validity. Thus, I will discuss an alternative to item omission to attain consistency/unidimensionality in structural equation analysis.

SINGLE INDICATOR STRUCTURAL EQUATION ANALYSIS 
Item omission to attain acceptable measurement model-to-data fit may not always be necessary in order to use structural equation analysis. In situations where it is desirable to not drop items from unidimensional measures (in the exploratory factor analysis sense), in order to retain face or content validity, the items in the measure could be summed and regression could be used to validate a UV-SD model (however see Endnote 2). Alternatively Kenny (1979) hinted at an approach involving summed items and reliabilities that can be used with structural equation analysis to validate a UV-SD model. Variations of this approach have been used elsewhere in the social sciences (e.g., Heise and Smith-Lovin, 1982; James, Mulaik and Brett, 1982; and Williams and Hazer, 1986). The approach involves summing the items in a measure that is unidimensional using maximum likelihood exploratory common factor analysis, then averaging them to provide a single indicator of the unobserved construct.

This approach has several merits besides permitting the use of older well-established measures having more than 6 items with structural equation analysis. One of the assumptions underlying structural equation analysis is that the observed data (i.e., the indicators) are continuous. When averaged, a summed indicator produces more nearly continuous observed data which better approximates the continuous data assumption in structural equation analysis assumption, and thus reduces the (unknown amount of) bias that attends the (much criticized--see  Bollen, 1989: 438, Jöreskog and Sörbom, 1996b:239) use of structural equation analysis with ordinal data (such as that produced by rating scales). Summed indicators also substantially reduce the size of the input covariance matrix, and thus its asymptotic incorrectness for a given sample size. In different words, this enables the proper use of the smaller samples typical in social science model tests (e.g., 200-300) with larger structural models by improving the ratio of the sample size to the size of the covariance matrix (e.g., a model with just-identified latent variables (3 items per latent variable), and 5 latent variables requires 240 completed questionnaires to produce at least two cases per input covariance matrix element-- the same model with summed indicators and 240 cases would have 16 cases available to compute each input covariance matrix element). Finally, the use of summed indicators eliminates interpretational confounding by separating measurement issues from model structure in structural equation models (see Anderson and Gerbing, 1988 for a consistency-based approach to separating measurement from model structure).
 Thus, for unsaturated structural models, lack of fit in a summed indicator model unambiguously suggests structural model misspecification, rather than suggesting a combination of measurement model difficulties and structural model misspecification.

On the negative side, summed indicators are non traditional and they are not particularly elegant in structural equation analysis. It is also sometimes assumed that indicators must be tau equivalent to be summed (however, Bagozzi and Heatherton's 1994 results suggest that structural equation analysis used with reliable measures and survey data is robust to lack of tau equivalency in the items to be summed); and it is believed that reliability underestimates the loading of the summed item when the factor analytic loadings of the individual items vary widely in size (however, for unidimensional measures with reliabilities of .70 or above and real-world survey data, individual loadings typically vary only a few points, and any extremely low loading items can safely be dropped).

Authors have defined the reliability of an indicator as the square of the coefficient on the path between the indicator and its latent variable (see Bollen, 1989). Thus, the loading of an indicator is the square root of its reliability. It is also well known that the measurement error variance, θX, of an indicator X is given by

θX = Var(X)(1 - ρX) ,

where Var(X) is the variance of X and ρX is the latent variable reliability of X.

Anderson and Gerbing (1988) pointed out that for unidimensional measures there is little practical difference between coefficient alpha (α) and latent variable reliability ρ.

Thus, for a single indicator specification of an unobserved construct, its loading is estimated by the square root of its coefficient alpha reliability, and its measurement error variance is estimated by Var(X)(1 - αX), where αX is the coefficient alpha reliability of X, and Var(X) is the variance of the averaged indicator available in SAS, SPSS, etc. (see Appendix I for the details and an example).

RELIABILITY
Unfortunately the term consistency has been used in connection with reliability (see for example DeVellis, 1991:25). In fact there has been considerable confusion over reliability and consistency (see Hattie, 1985). After discussing reliability I will discuss the distinctness of reliability from consistency as Anderson and Gerbing (1982) have defined it.

Measure reliability was usually reported in the articles reviewed. The reliability of a measure is suggested by agreement of two efforts to measure its construct using maximally similar methods (Campbell and Fiske, 1959). Thus it is frequently characterized as the "repeatability" of a measure, and types of reliability include a measures stability over time or subjects (see Bollen, 1989; Nunnally, 1978). It is also described in terms of the amount of random error in a measure (Lord and Novick, 1968; see Bollen, 1989 and Nunnally, 1978). For example, the variance of an indicator x of a construct X could be viewed as composed of variance due to its construct X and variance due to error (see Equation 2). As a result, The reliability ρ of a consistent/unidimensional item x has been operationalized as the ratio of its variance due to its construct, λ2Var(X), and the total variance of x,

        λ2Var(X)
           λ2Var(X)

ρx = ------------  = ----------------------  ,
(3

           Var(x)
     λ2Var(X) + Var(e)

if X and e are independent, where Var(X) is the disattenuated (measurement-error-free) variance of X available in a structural equation measurement model (Werts, Linn and Jöreskog, 1974).

While there have been many proposals for assessing reliability (see Hattie, 1985; Nunnally, 1978), coefficient alpha (Cronbach, 1951) is generally preferred (Peter, 1979) because it does not depend on the assumptions required of other indices of reliability (see Bollen, 1989). However, coefficient alpha assumes that its items are perfectly correlated with their underlying construct (i.e., measured without error) (see Bollen, 1989). Because this assumption is almost always unreasonable in practice, coefficient alpha underestimates reliability (see Smith, 1974).

There have been several proposals for computing reliability of items that are measured with error (see Gerbing and Anderson 1988 for a summary). The most frequently used formula is due to Werts, Linn and Jöreskog (1974) (see Bagozzi, 1980b; Bollen, 1989; Dillon and Goldstein, 1984; Fornell and Larker, 1981). This Latent Variable Reliability of a measure X, with indicators (items) x1, x2, ... , xn, is given by,

        (Σλi)2Var(X)

ρX = ----------------------------  ,
(4

         (Σλi)2Var(X)+ΣVar(ei)

where λi is the loading of xi on X, ei is the error term for xi, Var(X) is the disattenuated (measurement error free) variance of X (i.e., available in a structural equation measurement model), and Σ denotes a sum.

However as previously mentioned, Gerbing and Anderson (1988) pointed out that for unidimensional measures there is little practical difference between coefficient alpha and Latent Variable Reliability. Thus to demonstrate reliability, it may be sufficient to report coefficient alpha because at worst it provides a conservative estimate of reliability.

COMMENTS ON RELIABILITY
Reduced reliability produces biased and inefficient coefficient estimates in regression (Bohrnstedt and Carter, 1971) (see demonstrations in Cohen and Cohen, 1983; Aiken and West, 1991). However, while coefficient estimates are unbiased in structural equation modeling (i.e., the average of many samples approaches the population value), reduced reliability degrades the efficiency of these estimates (i.e., it increases the variability of these estimates from sample to sample). Thus while in an individual data set reduced reliability will not inflate or attenuate structural coefficients, it will inflate their standard errors, and reduce their significance.

As a result, reduced reliability in a variable increases the likelihood of false negative (Type I) errors in estimating its relationships with other variables in structural equation modeling, and it increases the likelihood of false negative (Type I) and false positive (Type II) errors in regression.

Historically, high reliability has been difficult to attain. In a meta analysis of social science studies, random error accounted for 32% of the variance (see Cote and Buckley 1987) . This suggests that the average reliability of these studies was below .7, the suggested minimum for reliable measures (see Nunnally 1978). Similarly, in a meta analysis of marketing studies Churchill and Peter (1984) found that the average reliability of 154 measures was .75.

Based on the articles reviewed, it is important to note that reliability and consistency as it was just discussed are distinct notions (Green, Lissitz and Mulaik, 1977). An item could be consistent with other items but unreliable because of measurement error (see Equation 3). It is also easy to show using survey data that maximizing reliability (see Churchill, 1979) may not maximize consistency, and that reliable measures may not fit the data well using structural equation analysis (see Gerbing and Anderson, 1988 and Appendix E).

There are few generalities when it comes to designing reliable measures. For example, in their meta analysis of marketing studies Churchill and Peter (1984) found that reliability was associated with few characteristics of the study. They found that with one exception sampling characteristics (i.e., number of samples, response rate, probability sample, type of subjects, data collection method, and correlational versus experimental research design) were not associated with reliability (sample size was curiously negatively associated with reliability). Similarly they found that many characteristics of the measures had no association with reliability (i.e., number of dimensions, item difficulty, reverse scoring, scale type, numerical versus verbal labels, extent of labeling, forced choice versus neutral point). They also found that measure development (i.e., new versus borrowed scales, defined domain, multiple procedures, apriori and empirically investigated dimensions) had no association with reliability. Only the number of items in the measure and the number of points on the scale were positively associated with reliability.

VALIDITY
There was considerable variation in the demonstrations of validity among the articles reviewed. This may be because methods authors do not all agree on what constitutes an adequate demonstration of validity. Item validity is how well an item measures what it should, and a valid measure consists of valid items. Validity is important because theoretical constructs are not observable, and relationships among unobservable constructs are tested indirectly via observed variables (Jöreskog, 1993; see Bagozzi, 1984). Thus validity reflects how well a measure reflects its unobservable construct. It is established using relationships between observed variables and their unobserved variable, and observed variables relationships with other sets of observed variables (Jöreskog, 1993).

 The following discussion assumes unidimensional and reliable measures. While methods author do not agree on a maximal set of validity tests, validity should be gauged using at least the following criteria: content or face validity (how well items match their conceptual definition), criterion validity (measure correspondence with other known valid and reliable measures of the same construct), and construct validity (measure correspondences with other constructs are consistent with theoretically derived predictions) (e.g., Bollen, 1989; DeVellis, 1991; Nunnally, 1978). Overall measure validity is then qualitatively assessed considering its reliability and then its performance over this minimal set of validity criteria.

The above terms for validity criteria are from the psychological and sociological literatures. However, other labels have been used, especially in Marketing. For example, content validity has been called face or consensus validity (see Heeler and Ray, 1972). Construct validity was used by Peter (1981) for content validity. Construct validity has been called nomological validity (see Peter, 1981). Trait validity has been used for a combination of reliability, and convergent and discriminant validity (Campbell, 1960). Finally, demonstrating convergent and discriminant validity has been called measure validation (see Heeler and Ray, 1972).

CONTENT OR FACE VALIDITY
Content or face validity was not consistently demonstrated in the articles reviewed. Conceptual definitions, the definitions of the constructs comprising the UV-SD model, are required to provide conceptual meaning for the constructs in the model, and they are the basis for gauging the construct or face validity for these constructs. In the articles reviewed, conceptual definitions were not consistently given, especially for previously measured concepts. In fact, many articles appeared to assume that because a measure had been judged content or face valid in a previous article, all subsequent readers would accept the measure as content or face valid. However, in some cases it could be argued that the content or face validity of a measure was still an open matter, even though it had been judged to be content or face valid in a previous article.

In addition, conceptual definitions were not always stated for new measures. Further, item judging was frequently not discussed, and in many cases the full measures items were not reported. It is difficult to imagine that these matters were not important during the review of these articles. Thus, while content validity may have been an important matter for reviewers, many articles left the impression that authors or editors consider these matters unimportant for journal readers.

Thus conceptual definitions should be clearly stated for each construct to enable readers to judge the content or face validity of measures of the constructs, even for previously used measures. In addition, care should be taken not to sacrifice evidence of content validity in the name of article space, for example.

CRITERION VALIDITY
Criterion validity concerns the correspondence of a measure with a criterion measure, a known and, preferably, standard measure of the same concept. It is typically established using correlations. However, there are no guidelines for adequate correlation between a measure and a criterion variable. In addition, for a new construct or a measure of an existing construct in a new context, a criterion measure may not be available. Perhaps for this latter reason criterion validity was rarely assessed in the articles reviewed.

Nevertheless, it was easy to wonder why a new measure of a previously measured construct was necessary in many cases, and how well a proposed measure of a previously measured construct would have fared in an assessment of criterion validity. Thus, for new measures of previously measured constructs criterion validity should be assessed and reported to improve the demonstration of a new measures validity.

CONSTRUCT VALIDITY
Construct validity is concerned in part with a measures correspondence with other (i.e., different, non criterion) constructs. To begin to suggest construct validity, measures of other constructs should be valid and reliable, and their correspondences with the target measure should be theoretically sound. When it was considered in the articles reviewed, construct validity was typically suggested using correlations. The correlations with a target measure and their plausibility (i.e., their significance, direction and magnitude) were argued to support or undermine its construct validity.

CONVERGENT AND DISCRIMINANT VALIDITY
Convergent and discriminant validity are Campbell and Fiskes (1959) notions involving the measurement of multiple traits or constructs with multiple methods, and they are usually considered to be facets of construct validity in the social sciences. Convergent measures are highly correspondent (e.g., correlated) across different methods such as a survey and an experiment (such as scenario analysis-- discussed earlier in Step III-- Developing Measures). Discriminant measures are less correspondent with measures of other concepts than they are internally convergent.

Procedures for demonstrating convergent and discriminant validity using multiple traits and multiple methods is well documented (e.g., Bollen, 1989; Heeler and Ray, 1972). However, convergent and discriminant validity were seldom assessed in the articles reviewed as Campbell and Fiske (1959) intended. Perhaps because traits or constructs were typically measured with one method, reliability was frequently substituted for convergent validity, and measure distinctness (i.e., low correlations with other measures) was substituted for discriminant validity. However, while Nunnally (1978) suggested that a .7 or higher reliability implies convergent validity, measures with reliabilities above .85 can contain more than 50% error variance (see Appendix E). Thus measures with .7 or higher reliability may not be judged convergent valid because they contain less variance due to their construct than variance due to error.

Average Variance Extracted
Perhaps for this reason, a statistic involving the percentage error variance in a measure, Average Variance Extracted (AVE) (Fornell and Larker, 1981), was occasionally used to gauge convergent validity in the typically mono method studies reviewed. To explain AVE, the variance of a measure can be expressed as,

Var(x1+...+xn)  =  Var(λ1X+e1+...+λnX+en)  =  (Σλi2)Var(X)+ΣVar(ei),
(5

if X and e are independent, where λi is the loading of the indicator xi on the latent variable X., Var(X) is the disattenuated (error free) variance of X, and ei is the measurement error of xi. AVE is given by,

               (Σλi2)Var(X)

AVEX  =  ----------------------------  ,
(6

                (Σλi2)Var(X)+ΣVar(ei)

where Σ indicates a sum.
 The result is the percentage of the total variance of a measure (see Equation 5) represented or extracted by the variance due to the construct, λ12Var(X) + ... + λn2Var(X) = (Σλi2)Var(X). AVE ranges from 0 to 1, and Fornell and Larker (1981) suggested adequately convergent valid measures should contain less than 50% error variance (i.e., AVE should be .5 or above) (also see Dillon and Goldstein, 1984, and see Appendix L for an example).

Because acceptably reliable measures can contain more than 50% error (e.g., X in Appendix E), in UV-SD model tests a measures reliability should probably be higher than Nunnallys (1978) suggestion of .7 to avoid a low AVE. While there is no firm rule, measure reliability should probably be .8 or more, to avoid these difficulties. However, a more precise alternative to reliability as a gauge of convergent validity would be an AVE of .5 or above. Thus, adequate convergent validity could be suggested by reliabilities of .8 or higher, and demonstrated by an AVE above .5.

Discriminant validity was typically established in the articles reviewed by using correlations when it was demonstrated. Although there is no firm rule, correlations with other measures below |.7| were usually accepted as evidence of measure distinctness and thus discriminant validity. Larger correlations were occasionally tested by examining the confidence intervals of correlations to see if they included 1 (see Anderson and Gerbing, 1988). They were also infrequently tested by using a single degree of freedom test that compares two structural equation measurement models, one with the target correlation fixed at 1, and a second with this correlation free (see Bagozzi and Phillips, 1982). If the difference in resulting chi-squares is significant, this suggests the correlation is not 1, and this implies the constructs are distinct, and it provides evidence of discriminant validity.

Occasionally AVE was used to gauge discriminant validity. If the squared correlation between constructs (r2) is less than either of their individual AVEs, this suggests the constructs each have more error free (extracted) variance than variance shared with other constructs (r2). In different words, they are more internally correlated than they are with other constructs. This in turn suggests discriminant validity.

COMMENTS ON STEP V-- MEASURE VALIDATION
New measures frequently seemed to be underdeveloped in the articles reviewed. For example, new measure development details were not always reported. Thus it appeared that recommended procedures such as item judging, focus groups, etc. (Churchill, 1979; see Calder, 1977) were not always used to develop new measures.  Several data sets should also be used to gauge the reliability and facets of the validity of measures (Campbell and Fiske, 1959; see Churchill, 1979). However, measure validation studies were seldom discussed. In some cases measure validation was abbreviated in a typically small pretest that was briefly summarized in the article, and the reliability and validity of the study measures was gauged using the final test data (i.e., the data used to test the proposed model).

SCENARIO ANALYSIS
While reliability and validity should always be confirmed using the final test data, care should be taken to conduct and adequately report measure validation studies, or the study results should be termed preliminary because the measures have received minimal testing. Although not reported in the articles reviewed, scenario analysis has been used elsewhere in the social sciences, and it was suggested as a comparatively easily implemented approach to producing data sets for preliminary measure validation (see Step III-- Developing Measures). As mentioned earlier, the results of scenario analysis have been reported to be similar enough to those from surveys to suggest that scenario analysis may be useful in new measure development and the verification of existing measures (see for example Appendix K).

PREVIOUSLY-USED MEASURES
As discussed earlier, many of the descriptions of previously-used measures in the articles reviewed were incomplete. For example, while the source of a previously-used measure was invariably given, the reliability and validity of these measures in previous studies were frequently left for the reader to find elsewhere. More important, articles frequently assumed that a demonstration of adequate reliability and validity of a measure in a previous study implied its reliability and validity in subsequent studies. Reliability and facets of validity such as construct, convergent, and discriminant validity are demonstrated using sample statistics (e.g., coefficient alpha for reliability, correlations for construct and discriminant validities, and AVE for convergent and discriminant validity) that vary from sample to sample (see Peter and Churchill, 1986). In addition, reliability and AVE have unknown sampling distributions, so they cannot be generalized beyond the study sample without additional samples (see Endnote 5 for generalizibility theory). Further, the content or face validity of previously-used measures occasionally seemed questionable, and some had actually performed marginally (i.e., exhibited low reliability or validity) in previous studies. Thus, care should be taken to show that previously-used measures are valid and reliable in the study being reported, and that they have been consistently so.

RELIABILITY AND AVERAGE VARIANCE EXTRACTED 
Reliability and Average Variance Extracted (AVE) are linked, but not always closely. While reliability is always larger than AVE (see Equations 4 and 6), a highly reliable measure can have an unacceptable AVE (e.g., in Appendix E, X has reliabilities of .81 to .86 and AVEs of .5 or below). As Appendix E also suggests, it is possible to decrease reliability but increase AVE (see Tables E2 and E3). Thus, omitting items to improve reliability or consistency can either improve or degrade AVE. Because omitting unreliable or inconsistent items may also undermine content validity, the final itemization of a measure can be a trade off among consistency/unidimensionality, reliability, AVE, and content or face validity.

INTERACTIONS AND QUADRATICS
Interactions and quadratics were seldom investigated in the UV-SD model tests reviewed, even when theory seemed to suggest their existence. Although not reported in the few articles that did investigate interactions or quadratics, the reliability of these variables can be low. The reliability of XZ, for example, is

            rXZ2 + ρXρZ
ρXZ =   --------------   ,
(7

              rXZ2 + 1

where ρ denotes reliability and rXZ2 is the correlation of X and Z. Similarly, the reliability of XX is 

            rXX2 + ρXρX
ρXX =  ---------------

              rXX2 + 1

            1 + ρX2
       =  ----------
(8

                2

(Busemeyer and Jones, 1983). Thus, the reliability of an interaction or quadratic is approximately the product of the reliabilities of their constituent variables X and Z (see Endnote 6 for more). As a result, the reliabilities of the constituent variables that comprise an interaction or quadratic should in general be high. Further, Equations 7 and 8 do not produce the same values as the formula for coefficient alpha. Thus the SAS, SPSS, etc. programs that determining reliability can not be used for determining the reliability of an interaction or a quadratic.

The validity of interactions and quadratics was not considered in the articles examined. Specifically, content (there is an interaction estimation procedure that suggests dropping items-- see Jaccard and Wan, 1995), convergent, and discriminant validity should be considered for these variables. Interactions and quadratics are unavoidably correlated with their constituent variables, and thus they should be shown to be distinct from them (i.e., they should be shown to be discriminant valid). In addition, since the convergent validity of an interaction or quadratic measured using AVE is always less than its reliability, the convergent validity of an interaction or quadratic could be quite low and it should be reported.

SECOND ORDER CONSTRUCTS
Occasionally a second-order construct was reported in the articles reviewed. However, the reliability and validity of these second-order constructs were not reported. The coefficient alpha of these variables is computed using a dissattenuated (error-free) covariance matrix of the first-order constructs, or using the error variances (ζs) and loadings (βs) of the first-order constructs on the second-order construct in a second-order measurement model in place of λ's and Var(e)'s Equation 4.

Similarly, the content or face validity and construct validities of second-order constructs should be reported. In this case, validity is demonstrated first by demonstrating valid first-order constructs, then by demonstrating the validity of the second-order construct with the first order constructs as indicators. The content validity of a second order construct is demonstrated as it is for first order constructs. However, the first order constructs should be viewed as the indicators of the second-order construct. Construct validity is suggested by plausible correlations of the second-order construct with the other study variables, while convergent validity could be suggested by an AVE for the second-order construct that is greater than .5. This AVE should be calculated using the loadings (βs) and measurement error variances (ζs) of the first-order constructs on the second-order construct in a measurement model, or using Endnote 4 (see Endnote 7 for more).

BOOTSTRAPPING
Although it was not reported in the articles reviewed, bootstrapping (Efron, 1981) could be used to produce confidence intervals for reliability and facets of validity, and thus provide them with a type of generalizability using the UV-SD model test data. Bootstrapping has been suggested to estimate standard errors (see Efron, 1981), and it has also been suggested to improve the asymptotic correctness of a sample covariance matrix (Jöreskog and Sörbom, 1996a:173, 185; see Bentler, 1989:76). It is accomplished by averaging the statistics of interest (in this case reliability, AVE, the disattenuated correlation matrix of the constructs, etc.) that result from taking subsamples of the available cases (e.g., a hundred subsamples each with 10% of the cases randomly deleted). The resulting bootstrapped (i.e., averaged) reliability, for example, and the square root of the variance of the reliability estimates could then be used to [image: image2.png]interval for the bootstrapped (average) reliability of a measure, p. for example, would be p +
24Var,, where Var, is the variance of the reliabilities generated by the bootsirap procedure (the
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gauge a measure's reliability across multiple studies of the same population. A 95% confidence 

MEASURE PRETESTS AND SAMPLE SIZE
If the number of responses in a measure pretest is small (e.g., 50 to 100), this limits the techniques that can be used for measure assessment.
 For example, it is well known that exploratory factor analysis should not be used in samples smaller than fifty. For pretest samples of more than 50 cases Lawley and Maxwell (1971) suggest that there should be 51 more cases than the number of indicators under consideration for maximum likelihood (ML) exploratory (common) factor analysis. Thus (ML) exploratory (common) factor analysis could be used to investigate single construct unidimensionality for pretest samples larger than 54 (ML exploratory (common) factor analysis is not appropriate for 3 or fewer indicators).

Using Bollens (1989:268) and others suggestion of several cases per estimated parameter also limits the use of confirmatory factor analysis using structural equation analysis (or other confirmatory techniques such as oblique centroid factor analysis-- see Anderson and Gerbing, 1982) to single-factor measurement models, and multiple factor measurement models with a small number of constructs (e.g. 2-3 with a data set of 50 cases, fewer as the number of indicators increases-- see Table 2a-c). 
 Similarly, although there are no guidelines for its use, it may be unwise to use ordered similarity coefficients with fewer than one case per correlation matrix element. This would limit its use to a small number of indicators (e.g., about 9 indicators with a data set of 50 cases-- see Tables 2a-c).

However, because there is little practical difference between coefficient alpha and latent variable reliability for sufficiently unidimensional constructs (Gerbing and Anderson, 1988), coefficient alpha could be used to preliminarily assess reliability. Similarly, validity could be preliminarily assessed using the procedures discussed earlier and attenuated correlations (i.e., product-moment correlations produced by SAS, SPSS, etc.).

For studies with a large number of measures, especially new measures, larger pretests, scenario analyses (see Step III-- Developing Measures), or measure validation studies may be the only approaches to ensuring adequate measures for the final test in which the model is validated.

FINAL TEST PSYCHOMETRIC ASSESSMENT
The procedures for analyzing multi-trait multi-method data and structural equation analysis are well documented (see for example Bollen 1989:190). However because such analyses are rare in marketing research, we will discuss demonstrating reliability and validity with multi-trait mono-method data. The process involves two steps, first show that measurement models fit the data, then use statistics from these measurement models to establish the reliability and validity of the measures.

SINGLE CONSTRUCT MEASUREMENT MODEL
Because improving reliability by dropping items in single construct measurement models can lead to a different itemization from that produced by improving consistency using the same approach (see Appendix F), we recommend using both ordered similarity coefficients (to suggest high reliability itemizations) and the first derivative procedure previous discussed (to suggest high consistency itemizations). However, because it is not uncommon for the deletion of an unreliable or inconsistent item to undermine content validity, the final itemization of a measure may be a compromise between the high reliability and high consistency itemizations.

Adequate model-to-data fit of a single construct measurement model demonstrates sufficient internal consistency (and therefore sufficient unidimensionality) of each measure. Guidelines for sufficient internal consistency of a measure include .8 or better similarity coefficients with the other items in the measure, and a .08 RMSEA in a single construct measurement model. Guidelines for adequate reliability are .7 Latent Variable Reliability (see Equation 2), or a .7 Coefficient Alpha, since the two are practically equivalent.

While ideally the measures should then be confirmed in pairs, triples, etc. to attain external consistency (see Jöreskog 1993), in many models this is impractical. As a compromise between practicality and estimating a large number of measurement models, the measures can be tested all at once, which is discussed next.

FULL MEASUREMENT MODEL
Sufficient external consistency can be attained using full measurement models and modification indices (in LISREL) or lagrange multipliers (in EQS) to identify multiple loading items. It can also be attained by dropping items that do not cluster with the other items in a measure in an ordered similarity coefficient matrix for all the study measures taken together, or the first derivative procedure applied to the full measurement model.

Sufficient external consistency is demonstrated by adequate model-to-data fit of a full (confirmatory) measurement model containing all the study constructs (e.g., a .08 or better RMSEA) (see Byrne 1989 for an accessible treatment of measurement models and LISREL), or each measures items clustering together in an ordered similarity coefficient matrix for all the study measures taken together. In addition an ad hoc demonstration of sufficient unidimensionality (and therefore adequate internal and external consistency) is trivial differences between full measurement model and structural model estimates of measurement parameters (see Burt 1976; Anderson and Gerbing 1988; Kumar and Dillon 1987b).

However, dropping items to improve external consistency should be accomplished with due concern for content validity, and it may change the reliability and internal consistency of the affected measure. Thus the final itemization for a measure may involve a further compromise between reliability, internal and external consistency. Nevertheless, we have observed in real-world data sets that attaining sufficient internal consistency will often produce sufficient external consistency.

After the consistency and reliability of the measures have been established, their validity should be addressed. Content validity is assessed without data. Criterion validity is seldom evaluated in marketing. Construct validity is appraised using the disattenuated construct correlations from the full measurement model (i.e., the standardized covariance matrix produced when a standardized solution is requested in most CSA packages, not product-moment correlations available in popular statistics packages such as SAS, SPSS, etc.).

Convergent validity is typically gauged by high reliability in marketing studies. However, while Nunnally (1978) suggests reliability should above .7, it is easy to show using Average Variance Extracted calculations and survey data that measures with reliabilities above .85 can be comprised of more than 50% error variance (see Appendix F). For this reason, we suggest the use of an Average Variance Extracted above .50 to suggest convergent validity.

Discriminant validity is supported by correlations less than .60 in absolute value with other valid and reliable constructs. As with construct validity, disattenuated construct correlations should be used for this assessment. For correlations in absolute value larger than .6, discrimination tests using Average Variance Extracted or single degree of freedom tests should be performed to demonstrate discriminant validity. Constructs that are indistinct may be candidates for combination into a second-order construct.

SMALL DATA SETS
When the final test data set is methodologically small (e.g., 100-300 cases, which is considered moderate to large in the social sciences) it should be safe to use all the above techniques within limits. For example, with 200-300 cases ordered similarity coefficients should be appropriate for up to 4-5 constructs, and the other techniques should be appropriate for up to 7-10 constructs respectively. For data sets in the 100-200 range that are typical of regression analyses, it should also be safe to use the above techniques up to about 3-4 constructs for ordered similarity coefficients, and 4-7 constructs for the others.

REGRESSION-BASED TECHNIQUES
When the final test data set is to be analyzed using regression (e.g., OLS regression, logistic regression, etc.), unidimensionality, consistency, reliability, and validity should be established the above procedures. Stated differently, demonstrating adequate measures ought to be important regardless of techniques used to disconfirm the proposed model (e.g., OLS regression, logistic regression, covariant structure analysis, etc.).

DICHOTOMOUS VARIABLES
To validate the measures when dichotomous variables are present, the procedures described above should be followed to demonstrate the reliability, validity and consistency of the measures. With survey data adding dichotomous constructs (i.e., with a single dichotomous indicator) to a full measurement model with unidimensional constructs should have little or no appreciable effect on measurement model parameters.

NONNORMALITY
Lack of normality in the data inflates chi-square statistics in structural equation analysis (see Bentler 1989; Bollen 1989). Thus, it can affect model fit by causing it to be understated. Although it is seldom reported, survey data is frequently nonnormal. In addition, rating scales (e.g., Likert scales) produce ordinal data that is formally nonnormal. The addition of an interaction or a quadratic also degrades normality (see Appendix A).

Alternatives for reducing the effects of nonnormality include using less distributionally dependent estimators, such as Asymptotic Distribution Free estimators (ADF) (see Browne, 1982) (available as WLS in LISREL and AGLS in EQS) or Robust estimators (available in EQS). However, the ADF estimator is difficult to use. For example, summarizing Monte Carlo studies comparing ADF with maximum Likelihood (ML) estimates, ADF performs poorly with methodologically small data sets (e.g., 50-300 cases), and authors warn that ADF results from methodologically small data sets require cautious interpretation (see Aiken and West, 1991).

Although it was not seen in the articles I reviewed, another approach to reducing indicator nonnormality is to transform the data (Bollen, 1989:425) (see Neter, Wasserman and Kunter, 1988 for alternative transformations). In addition, dropping the one or two cases that contribute most to nonnormality (available in EQS) can improve model fit (see Bentler, 1989:228). However, dropping cases should be done with care because of the effect it may have on structural coefficients: the cases dropped may be "influential" and one or more structural coefficient estimates may become significant or non significant once they are dropped.

In situations where omitting items in a measure to improve its consistency and thus the model-to-data fit undermines its content validity, items can be summed to form one indicator if the measure is unidimensional using exploratory factor analysis, as discussed earlier. This has the effect of removing the issue of the consistency of the measure from the structural model.

Finally, any interactions or quadratics could be respecified with single indicators to reduce nonnormality (see Appendix A).

SUGGESTIONS FOR STEP V-- VALIDATING MEASURES
Based on the articles reviewed it was difficult to escape the conclusion that reliability and validity in UV-SD model tests could be improved by simply following well-known procedures for this purpose (e.g., Churchill, 1979). For example, an examination of the equations for reliability and convergent and discriminant validity suggest that difficulties with reliability or these facets of validity could be viewed as a result of insufficient error-free variance. Thus procedures for improving the reliability and validity of a measure should include increasing the error-free variance of its items, and increasing its items loadings or correlations with its unobserved construct. In particular, increasing the number of item scale points, wording item stems in the language of the study population, and pretesting the study protocol (e.g., cover letter, questionnaire, etc.) deserve emphasis because they are easily implemented and particularly effective. Specifically, to increase construct variance and reduce measurement error variance, the number of scale points could be increased by replacing the ubiquitous five point Likert scale with a seven-point Likert scale, a ten-point rating scale, etc. (see Churchill and Peter, 1984).

Churchills (1979) suggestion of using focus groups in item development is extensively used in applied marketing research to improve itemization and thus measurement error. Researchers in this venue believe that one or more small and convenient focus groups from the study population will yield important "instances" of observable sentiments and behaviors pertaining to study constructs that can reduce the guesswork in identifying valid items for a new or revised measure. In addition, these focus groups can reveal the specific language the study population uses to communicate regarding these constructs. This information is then used to improve the phrasing of item stems, and thus reduce measurement error.

Similarly, even rudimentary pretests should be effective in reducing measurement error. For example, administering the survey protocol (e.g., cover letter, questionnaire, etc.) to as few as one subject from the study population, then discussing their responses with them can be effective in reducing measurement error (see Dillon, Maden and Firtle, 1987:375).

Based on the articles reviewed, it may not be widely understood that reliability and facets of validity are actually sample-based statistics. Thus the reliability and facets of the validity of each study measure, including previously used measures, will vary across samples. Specifically, reliability and facets of validity cannot be generalized without additional samples because their sampling distributions are unknown. Thus the reliability and validity of each study measure should be evaluated and reported in a UV-SD model test, regardless of whether or not it has been used previously.

Because content or face validity in UV-SD model tests is subjectively gauged, not only by writers and reviewers but also by readers after the study is published, conceptual definitions, items, and measure development details should be reported in published articles so that subsequent readers can judge the content or face validity of each measure. Similarly, reliabilities and average extracted variances (AVEs), and a full correlation matrix for the constructs should also be reported so that construct, convergent and discriminant validity can be confirmed by readers.

A single data set was frequently used to validate both the measures and the model in the UV-SD model tests reviewed. Scenario analysis was suggested to provide additional data sets that could be used to preliminarily evaluate new and previously used measures (see Step III-- Developing Measures). Bootstrapping the UV-SD model test data was suggested to gauge the generalizability of the reliability and facets of validity of the study measures. However, my preliminary experience with bootstrapped confidence intervals and sample sizes of 200 or more suggest that a measure with an observed reliability above .75 is unlikely to have a confidence interval that extends below .7, and that a measure with an observed average variance extracted (AVE) above .55 is unlikely to have a confidence interval that extends below .5.

However, it is possible for a measure to have a reliability above .8 yet have an AVE below .5 (see Appendix E). Thus new measures should have reliabilities and AVEs above .80 and .55, respectively, to improve the likelihood that their population values for AVE are above .5.

For structural equation analysis consistency is required to attain model-to-data fit and avoid interpretational confounding. Consistency can be attained using full measurement models and specification searches (e.g., modification indices in LISREL and LMTEST in EQS) to identify items that load significantly on multiple constructs. It can also be attained by omitting measure items that either do not cluster together in an ordered similarity coefficient matrix of all the measures, or have a large summed first derivative using a full measurement model.

However, omitting items to attain consistency can affect content validity, and item deletion should be done with care. The current practice of omitting items in older well-established measures to attain consistency/unidimensionality in structural equation analysis may be ill advised because it can reduce content or face validity. Alternatives to omitting items in a measure to attain consistency include summing them and using a single averaged indicator and regression (however see Endnote 2). They also include using structural equation analysis with a loading and a measurement error that are functions of the communalities or reliability of the items.

When structural equation analysis is used, model-to-data fit and parameter estimates (i.e., loadings, measurement errors, and construct variances and covariances) from a full measurement model (i.e., containing all the study constructs) should be reported so readers can verify the  consistency/unidimensionality, reliability and AVE of the study constructs.

(end of section)







� Intrepretational confounding in structural equation models was defined as the effect of model structure upon the measurement of model constructs, and thus its effect on the empirical meaning of the constructs in a model (see Burt, 1976 and Bagozzi, 1980b). It can also be viewed as an effect of measurement on the coefficient estimates in a structural model-- changes in itemization can produce changes in coefficient estimates (see Anderson and Gerbing, 1988).


� Latent variable reliability ρX of the latent variable X with n indicators xi is given by





           Λ2XVar(X)


          ρX =    -------------------


         Λ2XVar(X) + θX





where ΛX = λx1 + λx2 + ... + λxn, θX = Var(εx1) + Var(εx2) + ... + Var(εxn), and Var(X) is the dissattenuated or measurement model variance of X (Werts, Linn and Jöreskog, 1974) .


� Average Variance Extracted can be approximated using estimates of the Equation 4 parameters available from SPSS, SAS, etc. In Equation 4, Σλi2 is approximated by the sum of squares of the item-to-total correlations for X, the sum of the n measure items, Var(X) is approximated by the variance available in SAS, SPSS, etc. of X divided by n2, and Σvar(ei) is approximated by Var(X)*(1-α), where α is the coefficient alpha reliability of X (see Appendix L for an example).


� Pretests can also be used to preliminarily assess the model. Although structural equation analysis is practical using small pretest data sets only for the smallest models if "coverage" of the input covariance matrix is desired (see Step IV Sample Size and Tables 2a-c), regression could be used with cautions (because the results are biased by measurement error). Assuming at least 4 cases per independent variable in regression (the minimum recommended, see for example Hair, Anderson, Tatham and Black, 1995), the maximum number of constructs that can be preliminarily investigated with regression and summed indicators for each construct is determined by N/4 = mi +1, where N is the number of cases, and mi is the number of independent constructs. This would, for example, limit preliminary model structural coefficient assessment using regression to a maximum of 11 constructs for a pretest data set of 50 cases.


� Assuming two cases per estimated parameter (Bentler 1989:6 suggests at least 5), the formula for the number of constructs is given by N/2 = m2n  + m(m + 1)/2, where N is the number of cases, m is the number of constructs and n is the average number of indicators per construct. For 50 cases and an average of 5 indicators per construct, for example the number of constructs is (-19+(4N+361)))/2 = 2 (see also Table 2b).


� Assuming one case per correlation matrix entry, the formula is given by N = n(n + 1)/2, where N is the number of cases, and n is the number of indicators. For N = 50 cases, for example, the number of indicators is (-1 + (1+8*N))/2 = 9.
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