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Part IV

Hypothesis testing
Do not put your faith in what statistics say until you have carefully considered
what they do not say.

William W. Watt

A caricature of one recipe might read: Apply a significance test to each
result, believe the result implicitly if the conventional level of significance is
reached, believe the null hypothesis otherwise. Such a complete flight from
reality and its uncertainties is fortunately rare, but periodically considering
its extremism may help us keep our balance.

F. Mosteller & J. W. Tukey, 1977, p 25.

...no one believes an hypothesis except its originator but everyone believes
an experiment except the experimenter.

W. I. B. Beveridge, 1950, p 65.
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Simple hypotheses29

The simplest version of the hypothesis testing problem is as follows: we have
two possible models, p0(D) and p1(D), and based on the observed data have
to make a choice between them. (This is called, appropriately enough, a
“simple” hypothesis test; later we’ll consider testing between more than just
two hypotheses at a time.) The example to keep in mind: we draw samples
xi i.i.d. from a Gaussian distribution. We know the Gaussian’s variance is 1
and we know that the mean is either −1 or 1. I.e., we may take

p0(D) =
N
∏

i=1

1√
2π

e−(xi+1)2/2

and

p1(D) =
N
∏

i=1

1√
2π

e−(xi−1)2/2.

How do we distinguish between these two hypotheses (models of the world)?
Well, given that we’ve just spent a month or so talking about likelihood-

based methods, one obvious approach would be to use maximum likelihood.
That is, choose the hypothesis under which the likelihood of the observed
data is largest. In other words, we look at the likelihood ratio

p0(D)

p1(D)
= exp

(

1

2

N
∑

i=1

(xi − 1)2 − (xi + 1)2

)

= exp

(

−2
N

∑

i=1

xi

)

;

if this ratio is larger than 1, then p0(D) > p1(D) and we decide that the true
mean was −1, or otherwise choose 1. This is a straightforward and intuitive
thing to do, and we’ll see in just a moment that in many cases this approach
is in fact optimal.

But first let’s look a little more closely at our decision rule here. If we
simplify the above likelihood ratio, we see that our decision really comes
down to: if

∑

i xi > 0, choose 1, and otherwise choose −1. (Of course in
theory

∑

i xi could equal zero, in which case we could just flip a coin; but
this exact-tie case happens with probability zero here, so we’ll ignore it for
now.) If we recall,

∑

xi was a minimal sufficient statistic for the Gaussian

29HMC 8.1.
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family with known variance (write the Gaussian as an exponential family to
remind yourself of this fact if you’ve forgotten).

And of course this can be generalized: tests between two hypotheses based
on likelihood ratios only depend on the data through sufficient statistics.
Exercise 104: Prove this, using the product decomposition for sufficiency.

Exercise 105: Let’s say we observe N i.i.d. observations xi from an
exponential distribution whose mean is known to be either 1 or 2. Write
down the ML test between these two alternatives, in as simple a form as
possible. What role does the minimal sufficient statistic of this exponential
family play?

Exercise 106: Let’s say we observe N i.i.d. observations xi from a Gaus-
sian distribution whose mean is known and whose variance is known to be
either 1 or 2. Write down the ML test between these two alternatives, in as
simple a form as possible. What role does the minimal sufficient statistic of
this exponential family play?

Decision-theoretic approach

What if we take a more general decision-theoretic point of view? I.e., we
have some prior information and a cost function. Now what is the optimal
decision rule? Let’s write down our expected loss function:

E[C(truth, guess(D))] =
∑

truth=i∈{−1,1}

p(i)
∑

D

pi(D)C(i, guess(D)).

Here C(., .) is some cost function (just a two-by-two table of numbers, in this
case) and p(i) is the prior probability of model i. Now as usual we want to
choose guess(D) in such a way as to minimize the expected cost. It’s clear
that all we need to do, for each possible data observation D, is to choose
guess(D) such that

∑

truth=i∈{−1,1}

p(i)pi(D)C(i, guess(D))

is as small as possible.
Now let’s simplify things a little: assume C(i, i) = 0, that is, there’s no

cost associated with choosing the model correctly. Now the optimal decision
rule is as follows:

guess(D) =

{

1 if p(−1)p−1(D)C(−1, 1) < p(1)p1(D)C(1,−1)

−1 otherwise.
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Thus we see that if the cost of errors is symmetric C(−1, 1) = C(1,−1), and
each hypothesis as equally probable a priori, p(−1) = p(1), then our decision
rule is exactly the ML rule described above. So our intuitive ML approach is
actually a special case of the decision-theoretic optimal rule. More generally,
the optimum rule says that if our prior belief is that −1 is more likely than
1, then it makes sense to “lean” towards −1 in the sense that we will choose
−1 even if the likelihood ratio is slightly weighted towards 1.

Exercise 107: Repeat the last two homework problems (the exponential
and Gaussian ML hypothesis tests) in this more general decision-theoretic
context. What is the decision-theoretically optimal test if the costs of a mis-
take are C(1, 2) = a and C(2, 1) = b, as a function of the prior distribution?
(Assume again that C(i, i) = 0.)
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Null and alternate hypotheses

Figure 13: Neyman and Pearson.

In the above discussion we treated both hypotheses equally. In some
situations, though, it makes more sense to distinguish between the two hy-
potheses. For example, if we are testing the fairness of a coin, it might be
reasonable to think of the hypothesis that the coin is fair as the “null” hy-
pothesis p0(D), and the hypothesis that the coin is biased (towards heads,
say) as the “alternate” hypothesis, p1(D). Some specialized terminology has
developed in this case:

• the “critical region” A of a test is the region of data space such that
if the data D falls in A, we “reject” the null hypothesis; that is, we
choose the alternate hypothesis instead.

• the probability α =
∫

D∈A p0(D) of incorrectly rejecting the null is called
the “size,” or “significance level”; this kind of error is called a “type I”
error.

• a “type II” error is when we incorrectly accept the null hypothesis.

• the probability
∫

D∈A p1(D) of correctly rejecting the null is called the
“power.”
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Now, clearly, we want to make the power of our test as large as possible,
while making the size as small as possible. These are contrary goals, of
course: making A smaller decreases the size but also decreases the power.
So one approach is to hold the size fixed at a given level, say α = 0.05, and
then try to maximize the power over all possible tests with size less than or
equal to 0.05.

It turns out this is not hard to do. Conveniently, this optimal test is of
exactly the likelihood ratio form we dealt with above.

Theorem 6 (Neyman-Pearson lemma). The likelihood ratio test

A = {D :
p1(D)

p0(D)
≥ Tα},

with the threshold Tα chosen so that the size of the test is equal to α, is the
most powerful test of size α.

Proof. Let A1 be the critical region of any other test of size α. We need to
prove that A is at least as powerful as A1. We have

∫

D∈A

p1(D) −
∫

D∈A1

p1(D) =

∫

D∈A∩Ac
1

p1(D) −
∫

D∈A1∩Ac

p1(D)

≥ T

∫

D∈A∩Ac
1

p0(D) − T

∫

D∈A1∩Ac

p0(D)

= T

∫

D∈A

p0(D) − T

∫

D∈A1

p0(D)

= Tα− Tα = 0.

To return to our Gaussian example above, we have that the most powerful
test of size α is to choose 1 whenever

∑N
i=1 xi > Tα, where Tα is chosen such

that

α =

∫ ∞

Tα

1√
2Nπ

e−(u+1)2/2Ndu.

So, to sum up, all three of the approaches we’ve looked at — ML, decision-
theoretic, and Neyman-Pearson — all say basically the same thing: for simple
hypothesis testing, the optimal thing to do is to use a test based on the
likelihood ratio.
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Exercise 108: What is the most powerful test between two exponential
distributions with mean 1 and 2, at some fixed size α? What is the power of
this test as a function of the number of samples N?

Exercise 109: What is the most powerful test between two uniform
distributions, U([0, 1]) and U([0, 2]), at some fixed size α? What is the power
of this test as a function of the number of samples N?

A side note: it is possible to use many of the same tricks we developed
earlier to describe the asymptotic power as N becomes large. We won’t go
into the details, but if we look at the log-likelihood ratio

N
∑

i=1

log
p0(xi)

p1(xi)
,

it’s clear that we may apply the LLN, CLT, etc. to elucidate the asymptotic
behavior here; again we find that the Kullback-Leibler divergence plays a key
role in determining the asymptotic behavior of the error (the main difference
here is that the hypothesis testing error goes to zero exponentially in N , while
we saw in the last section that the estimation error, at least in the mean-
square setting, goes to zero like 1/N). We leave the details to the interested
reader.
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Compound alternate hypotheses30

More generally, we’re interested in compound hypothesis tests: were the data
generated by a model θ ∈ H0 or θ ∈ HA, where H0 and HA are two disjoint
sets of models, the null and alternate sets respectively.

We’ll start with the simplest case: the null hypothesis is simple (that is,
H0 consists of just one model, p0(D)), but the alternate is compound. In this
case it’s reasonable to ask if there is a test with a given size which maximizes
the power over every single alternate hypothesis p1(D) ∈ HA. (Remember,
the size of a test only depends on p0, so the size will be the same for all p1

here.) Such a test is called a “uniformly most powerful test,” or UMP test
for short.

From the Neyman-Pearson theory, we already know that a UMP test has
to be based on likelihood ratio tests. This makes it clear that UMP tests
often simply don’t exist: Exercise 110: Prove that no UMP test exists when
we are drawing data from a Gaussian of variance 1, if the null hypothesis
is µ = 0 and the alternate hypothesis is µ %= 0. (Hint: break the alternate
hypothesis into two sets, µ > 0 and µ < 0, and look at the likelihood ratio
tests for each of these individual alternate hypotheses. If these tests are not
the same, then argue that no UMP test can exist.)

Is there a simple way to guarantee that a UMP test exists? Well, by
the same logic we used above, it’s enough to establish that the LR test is
independent of θ ∈ HA. Here’s an example: look at our old friend the
exponential family in canonical form. Let’s write down the loglikelihood
ratio given i.i.d. observations:

log
p0(D)

pθ∈HA
(D)

= log
exp[θ0

∑

i k(xi) +
∑

i s(xi) + Ng(θ0)]

exp[θ
∑

i k(xi) +
∑

i s(xi) + Ng(θ)]

= [θ0 − θ]
∑

i

k(xi) + N [g(θ0) − g(θ)].

It’s not too hard to see that a test of the form T (D) =
∑

k(xi) > c, for
some constant c, leads to a UMP test of the hypothesis that θ0 > θ here.
Exercise 111: Complete this argument.

How do we choose the test when no UMP test exists? Well, this puts
us back in the situation we’ve encountered before, when e.g. no uniformly

30HMC 8.2.
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optimal decision rule or UMVUE was available: we have to look at other op-
timality criteria, e.g. minimax or Bayesian criteria. For example, a Bayesian
would choose a hypothesis according to its posterior probability ratio, namely

P (H0|D)

P (HA|D)
=

p(H0)p0(D)
∫

θ∈HA
p(θ)pθ(D)

.

More generally, we can always choose some test statistic, T (D), compute
its sampling distribution under the null hypothesis p0(T ), and then ask if the
observed T (D) is “significantly different” than what we would have expected
under the null hypothesis. For example, if we see that T (D) falls outside of
the interval defined by the 1st and 99th quantile of p0(T ), then it is reasonable
to suspect that D was not, in fact drawn from p0(D), but rather from some
other distribution, and we would reject the null hypothesis here. (This test
would not be guaranteed to be optimal in any sense — and importantly,
depending on your choice of your test statistic T , your test might have much
more power against some alternatives than others — but nonetheless this
idea often leads to useful tests in the real world.)

This leads naturally to the concept of a “power curve”: namely, for a
given test (at some given size), we plot the power

∫

A pθ(x)dx as a function
of θ ∈ HA. This function plays a similar role to the risk function played in
our decision theory section: basically, we want to make the power as large as
possible over the “relevant” part of the parameter space (where “relevant”
here depends in some sense on which θ are allowed, or most probable, etc.),
just as we wanted to make the risk function as small as possible over the
relevant part of the parameter space.

We can also make use of the large sample estimation theory we learned
not so long ago: recall that if we have a consistent estimator θ̂ for θ and
know that √

N
(

θ̂N − θ
)

→D N (0, V (θ)),

and a consistent estimator of
√

V (θ), σ̂, then as we discussed earlier we may

build tests for θ0 versus θ > θ0 based on
√

N(θ̂−θ)/σ̂ with an asymptotically
correct significance level.
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Compound null and alternate hypotheses

In this last section we talk about the general case: both null and alternate
hypotheses are compound. To find a test of size α here, we would look for
some critical region A such that

∫

A

pθ = α ∀ θ ∈ H0.

Sometimes this isn’t even possible, and we have to relax our standards and
look for tests such that

∫

A

pθ ≤ α ∀ θ ∈ H0.

Sometimes it is possible to find a test whose size is the same for all θ ∈ H0,
though: for example, if we can find a test statistic T whose distribution is
the same for all θ ∈ H0, then clearly a test constructed on this statistic will
have size independent of θ ∈ H0 as well.

Here’s an example: Gaussian data of unknown variance; we want to test
the null µ = 0 versus the alternate µ > 0. Thus H0 is the set of all Gaussians
with mean 0, and HA is the set of all Gaussians with mean greater than zero.
Before we used the sample mean as our test statistic, but this won’t work
here because its distribution clearly depends on the variance (and therefore
the size of any test based on the sample mean will depend on the underlying
unknown true variance). But we know that the sample mean and sample
variance are sufficient for this family; why don’t we look at the standardized
sample mean,

T (D) =
x̄

σ̄
,

with

x̄ =
1

N

N
∑

i=1

xi

and

σ̄2 =
1

N

N
∑

i=1

(xi − x̄)2.

It’s not hard to show that the distribution of x̄/σ̄ is independent of the
variance under the null µ = 0 (Exercise 112: prove this); this statistic (or
rather, the normalized statistic

√
N − 1x̄/σ̄) is called a “t-statistic,” and its
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distribution was originally derived by a statistician working for the Guinness
brewery who disguised his identity when publishing his work (to avoid getting
in trouble for revealing trade secrets) under the pseudonym “Student.” Thus
the t-statistic is also called “Student’s t,” and the commonsense process
of dividing by the sample standard deviation is known as “studentizing.”
Exercise 113: Derive the distribution of Student’s t.

Figure 14: Gosset (aka “Student”).

Another example: Gaussian again, but with unknown mean and we’d like
to test σ2 = 1 versus σ2 > 1. Clearly the sample variance is independent
of the mean, so we can use this as our test statistic; the null distribution
of Nσ̄2 is a chi-square with N − 1 degrees of freedom, and thus we can use
a test of the form σ̄2 > c, for some c chosen such that the size of the test
is α. Exercise 114: Prove that Nσ̄2 is a chi-square with N − 1 degrees of
freedom. (Hint: start by proving that the sample variance σ̄2 and the sample
mean x̄ are independent if xi are i.i.d. Gaussian.)

Outside of the Gaussian family it is a little harder (though not impossible)
to find test statistics which are independent of θ ∈ H0; nonetheless, again,
we may use our large-sample theory to take advantage of this nice property
of the Gaussian distribution.

More generally we can always turn back to our Bayesian methods: a
Bayesian would choose a hypothesis according to its posterior probability
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ratio, namely
P (H0|D)

P (HA|D)
=

∫

θ∈H0
p(θ)pθ(D)

∫

θ∈HA
p(θ)pθ(D)

in general. This is often simplified into the maximum likelihood ratio test,
based on

λ =
maxθ∈H0 pθ(D)

maxθ∈HA
pθ(D)

:

we reject if λ is sufficiently small. (Again, we often resort to large sample
theory to determine exactly how small is “sufficiently small.”) This maximal
likelihood ratio test is sometimes easier to compute numerically than the
integral-based Bayesian test, and the two tests turn out to behave similarly
asymptotically (this may be shown, again, using expansions of the loglikeli-
hood similar to those we used in establishing the asymptotic behavior of the
MLE).


