
Advertisement Click Fraud Detection 

Problem Statement 

On-line advertisement has become one of the most important funding models to support 

Internet sites. Given that large sums of money are involved in on-line advertisement; 

malicious parties are unfortunately attempting to gain an unfair advantage. Click-fraud 

attacks are one instance of such malicious behavior, where software imitates a human 

clicking on an advertisement link. 

As an example strategy, we present Bluff ads; a class of ads that join forces in order to 

increase the effort level for click-fraud spammers. Bluff ads are either targeted ads, with 

irrelevant display text, or highly relevant display text, with irrelevant targeting information. 

They act as a litmus test for the legitimacy of the individual clicking on the ads. Together 

with standard threshold-based methods, fake ads help to decrease click-fraud levels. 

Traditionally, online advertisers used the Cost-Per-Impression (CPI) model to charge for 

advertisements. The CPI is often measured in terms of the cost of one thousand impressions 

of the ad. These ads can be videos, images and links. Recently, search engines such as 

Google have given rise to the Pay-Per-Click (PPC) model for online advertising. In this type 

of arrangement, advertisers pay a certain amount of money to the publisher for every click on 

their ad (which leads to the advertiser’s website). This model has however led to the rise of 

click fraud where the publisher, his employees or a leased botnet of computers fraudulently 

click on the ads in order to generate revenue for the publisher in an undetectable manner. 

Another forms of click fraud happens when competitors of an advertiser click on his ads in 

order to deplete his daily budget. In another scenario, some advertisers or publishers may 

cooperate against a single publisher by clicking on his ads, in order to force the broker to 

exclude the publisher from the ad campaigns. 

Background 

There are a number of solutions for avoiding click fraud and performing better advertisement. 

One suggestion is to charge based on user’s actions, i.e., the publisher gets a premium only 

after the successful conversion of the ad, meaning the user’s visit to the advertiser website 

and performing an action such as buying an item or signing up for a service. There are a 

number of basic attempts at such an approach by means of tracking cookies, however these 

efforts make up a negligible portion of the current advertising revenue on the Internet. 

Cryptographic approach for replacing the pay-per-click model with one in which pay-per 

action (e.g., shopping) can attract premium rates and unsuccessful clicks are discarded. in this 

system, the users which make a purchase are identified by the network of advertisers as 

premium advertisers. The client browsers use a coupon instantiated by third party cookies or 

issued by the attestor upon redirection. The disadvantage of this method is the ability of 

malicious attacker, possibly an advertiser, to use a botnet and replay the coupons numerous 

times, for a large number of cooperating publishers. This will then force the syndicator either 

discount all those replays, or removing those clients form the system with valid coupons. In 

both cases, the advertisement income is minimized. It also allows for the syndicator and the 

attestor (ad broker and middle box) to profile the users accurately including their spending 

budget. 



click fraud learning algorithms to compute the estimated click-through rate. They focus on a 

situation in which there is just one ad slot, and show that fraudulent clicks can not increase 

the expected payment per impression by more than o(1) in a click-based algorithm. However 

the complexity of the inferred algorithm and the need for click-through rate estimation would 

make it impractical as it also deviates form the pay per click model, to pay per view model, 

which is the least desired model in the modern advertisement world where bidding for space 

is of critical importance. 

Methodology 

There is an ongoing industry-wide effort to develop tools that will effectively detect and 
block many common click-fraud attacks. Most of the attacks discovered and reported so far 
have been malware-based attacks that rely on automated scripts,25 individuals hired by 
competitors,26 or proxy servers used to generate clicks for paid advertisements. Companies 
like AdWatcher27 and ClickProtector28 have initiated efforts to counter this. The essence of 
their approach is to track IP addresses of machines generating the clicks, as well as 
identifying the domain from which the clicks are registered. By collecting large logs and 
performing expert analysis, irregularities such as repeated number of clicks for a certain 
advertisement from a particular IP address, a particular domain, or abnormal spikes in traffic 
for a specific web site are identified. However, as described previously, the stealthy attack 
described in this article will go undetected by any of these tools. It is therefore of particular 
importance to determine other unique mechanisms of detecting and preventing attacks of this 
nature. These can be divided into two classes: active and passive. Our proposal for the former 
is intended to detect clickfraud attempts housed on web pages that users intentionally 
navigate to (whether they wanted to go there or were deceived to think so), whereas the 
proposal for the latter is suited for detection of email-instigated click-fraud. 

An active client-side approach interacts with search engines, performs popular searches, and 
visits the resulting sites. It also spiders through sites in the same manner as users might. To 
hide its identity, such an agent would not abide the robots.txt conventions and so would 
appear as an actual user to the servers it interacts with. The agent would act like a user as 
closely as possible, including occasionally requesting some advertisements; it would always 
verify that the number of ad calls that were made correspond to the number of requests that a 
human user would perceive were made. (The latter is to detect click-fraud attempts in which a 
large number of ad requests are made after a user initiates a smaller number of actual 
requests.)  

A passive client-side approach observes the actions performed on the machines of the person 
appearing to perform the click. This may be done by running all JavaScript components in a 
virtual machine (appearing to be a browser) and trapping the requests for advertisements that 
are made. Any web page that causes a call of a type that should only be made after a click 
occurred can be determined to be fraudulent. While this takes care of the type of automated 
click-fraud described herein, it would not defend against a version that first causes a long 
(and potentially random) delay, and then commits clickfraud unless the virtual machine 
allows randomly selected scripts to run for significant amounts of time, hoping to trap a 
delayed call. We note that excessive delays are not in the best interest of the fraudster, as his 
target may close the browser window and therefore interrupt the session before a click is 
made. Passive client-side solutions may be housed in security toolbars or by anti-virus 
softwares. • Another type of passive solution is an infrastructure component. This would sift 
traffic, identify candidate traffic, and emulate the client machine that would have received the 
packets in question, with the intent of identifying click-fraud. A suitable application might be 



an ISP-level spam filter or an MTA. Before emails are delivered to recipients, they could be 
delivered in virtual machine versions of the same, residing on the infrastructure component, 
but mimicking the client machine. 

For all of the above solutions, it should be clear that it is not necessary to trap all abuse. 
Namely, even if a rather small percentage of abuse is detected, this would betray the locations 
that house click-fraud with a high likelihood that increases with the number of users that are 
taken to one and the same fraud-inducing domain. 

 

Fig: 2 Auto-clicking in a hidden bad advertisement. Compared to Figure 3; the ad banner 

presented here is hidden. JavaScript code extracts links from the hidden ad banner and causes 

them to be displayed in an another hidden iframe, creating the impression that the user has 

clicked these links. 

Experimental Design 

Suppose that the variables here combine to yield p ∈ {1/1000,1/10,000,1/100,000}. The 

analysis for given hypothetical detection probabilities in shown in Figure 7. Note that even a 

modest detection probability such as p=1/10,000 limits potential profits considerably 

 

 



Fig: 1 Benefit for fraudster, in dollars earned, given several probabilities p of detection by ad 

providers. Note that when p=1/ 1000, the profit hardly goes above zero; when p=1/10,000, 

profit tops out at around $500 per domain; after that, the risks quickly outweights the 

rewards. Once p shrinks below 1/10,000, however, the fraudster fares much better — this is 

the current threat situation as far as we can tell. (a) Benefit when the reward per click is 

$0.25; (b) considers the reward per click to be $1.00. 

 


