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Abstract 

A procedure for evaluation of convergent and discriminant validity coefficients is 

outlined.  The method yields interval estimates of these coefficients in a construct 

validation study conducted via the multitrait-multimethod approach, as well as permits 

examination of their population relationships.  The procedure is readily employed in 

behavioral research using the increasingly popular latent variable modeling methodology.  

The described method is illustrated with a numerical example. 

 

Keywords: construct validity, convergent validity, discriminant validity, interval 

estimation.   
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Evaluation of Convergent and Discriminant Validity with Multitrait-Multimethod 

Correlations  

Validity of measurement is of paramount importance in psychology and the behavioral 

sciences.  A crucial indicator of psychometric quality, validity is the bottom line of 

measurement in these disciplines.  A widely accepted informal definition of validity 

characterizes it as the degree to which an instrument indeed measures what it purports to 

evaluate (e.g., Crocker & Algina, 1986).  For these reasons, validity is an index of critical 

relevance for a measurement procedure, and has received an impressive amount of 

attention over the past century (e.g., Borsboom, Mellenbergh, & Van Heerden, 2004).  

A major impetus to the study of validity was provided a half century ago by 

Campbell & Fiske (1959), who introduced the multitrait-multimethod (MTMM) matrix 

as a means for construct validation.  The MTMM method can be used when multiple 

traits are examined simultaneously and each of them is assessed by a given set of 

measures or measurement methods (e.g., Eid, 2000; Marsh & Hocevar, 1983).  As shown 

initially by Campbell and Fiske, and further elaborated by subsequent authors, two types 

of validity coefficients are of special interest when the MTMM matrix is utilized in the 

validation process—convergent validity and discriminant validity coefficients.   

Multitrait-multimethod correlation matrices comprise the (linear) relationship 

indices among several traits evaluated by different measurement methods.  These 

matrices have been often used over the past few decades by psychologists and behavioral 

researchers in various substantive areas.  Many of those studies, however, have focused 

on empirical correlations and their relative magnitude in samples from studied 

populations.  Thereby, typically only point estimates of the convergent and discriminant 

validity coefficients have been of interest.  In addition little attention if any has been paid 

to the population relationships among these coefficients, which are of real concern, and in 

particular only sample values of these correlations have been usually compared with one 

another.  This has frequently been done in an effort to find out whether discriminant 

validity coefficients are lower than convergent validity coefficients, a condition posited 

by Campbell & Fiske (1959) as evidence supporting construct validity.  No account has 

been made then of sampling error affecting the correlation estimates, yet as widely 

appreciated what is of actual interest for the purpose of construct validation are the 
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relationships between convergent and discriminant validity coefficients at large.  For 

these reasons, incorrect conclusions with respect to validity of behavioral instruments 

may have been reached in past research.  The likelihood of this happening may have been 

additionally enhanced by the fact that no widely applicable procedure has been made 

available, which would accomplish examination of these relationships at the population 

level that is of real relevance for convergent and discriminant validity.   

To contribute to closing this gap, the purpose of this article is to outline a readily 

employed method for (i) interval estimation of convergent and discriminant validity 

coefficients, as well as (ii) examining their population relationships.  The following 

procedure is straight-forwardly conducted within the framework of latent variable 

modeling (LVM), and is readily implemented in psychological research with the 

increasingly popular LVM software Mplus (Muthén & Muthén, 2008).  The goal of the 

paper is to complement earlier approaches to examining convergent and discriminant 

validity (e.g., Marsh, 1989; Bagozzi & Yi, 1993).  Those approaches are based on 

confirmatory factor analysis and latent variables that represent studied traits as well as 

somewhat more difficult to interpret ‘method factors’.  In difference to them, the 

following method is developed in terms of observed variables.  More specifically, it is 

focused on the relationships between collected measures in an empirical study, and in this 

way circumvents possible substantive interpretation difficulties associated with ‘method 

factors’.  To accomplish these aims, in the remainder of this article we use the analytic 

technique of latent variable modeling as a means for achieving interval estimation of 

manifest measure correlations, rather than for fitting models based on latent variables 

evaluated with multiple indicators. 

 

Point and Interval Estimation of Convergent and Discriminant Validity  

Convergent and discriminant validity coefficients 

In the context of an application of the MTMM method for construct validation, as 

discussed by Campbell & Fiske (1959) the convergent validity coefficients are the 

correlations between measures of the same trait that are obtained with different 

measurement methods.  For this reason, those correlations are at times referred to as 

monotrait-heteromethod (MTHM) coefficients.  Since they reflect the (linear) 
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relationships between indicators of the same trait, a finding of them being consistently 

high lends support for construct validity with regard to that trait.  The evaluation of these 

coefficients thus represents part of the validation process with the MTMM method.   

Conversely, discriminant validity coefficients are correlations of two types.  The 

first comprises the correlations between measures of different traits that are furnished by 

the same method of measurement, and are called heterotrait-monomethod coefficients 

(HTMM coefficients).  The second type consists of correlations between measures of 

different traits that are obtained using different measurement methods, and are called 

heterotrait-heteromethod coefficients (HTHM coefficients).  A finding that the HTMM 

and HTHM coefficients are consistently lower than the MTHM coefficients lends also 

support for validity with regard to each of the traits involved, since one would usually 

expect indicators of a given construct to be more closely related than measures of 

different constructs.  Hence, examination of the HTMM and HTHM correlations 

represents another part of the validation process with the MTMM approach.   

 

Estimation of validity coefficients 

Underlying model 

In order to point and interval estimate these three types of validity coefficients, a 

special confirmatory factor analysis (CFA) model can be used in a first step (Kühnel, 

1988).  This model differs from popular CFA approaches to examining convergent and 

discriminant validity, which have been available for more than two decades (e.g., 

Bagozzi & Yi, 1993; Marsh & Hocevar, 1983; Marsh, 1989; Eid, 2000), in one main 

feature.  This is the fact that in the cited procedures use is made of ‘proper’ latent 

variables that are evaluated by multiple indicators.  The latter are the collected multiple 

measures of several traits using several methods of evaluation, whereas the latent 

variables represent the traits themselves and somewhat more difficult to interpret latent 

constructs.  These constructs have been included in part to explain residual variation 

among measures of the same trait with different modes of assessment, and have been 

frequently referred to as ‘method factors’ (e.g., Marsh & Hocevar, 1983).   

Unlike those earlier approaches, the present article does not use proper latent 

variables and remains at the observed variable level in its analytic endeavor.  For our 
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purposes, let us denote first by X the p x 1 vector of available measures on all c traits 

involved in an MTMM study (p, c ≥ 2); that is, p = mc is the product of the number c of 

traits with that of measurement methods (underlining is used to denote vector in the 

remaining discussion and priming for transposition).  Let X1 = (X1, …, Xc)′, X2 = (Xc+1, 

…, X2c)′, …, Xm = (X(m-1)c+1, …, Xp)′, and hence X = (X1′| X2′ | …| Xm′)′, where ‘|’ denotes 

concatenation.  Then the model of interest in the rest of this article is 

 

(1) X = A f + u  , 

 

where A = Ipxp is a diagonal matrix of size p with main diagonal elements being model 

parameters, f is a set of p dummy ‘latent’ variables with variance 1 whose covariances are 

also model parameters, and u is a zero-mean vector with zero covariance matrix, i.e., 

consisting of zeroes only.  We stress that each of the ‘latent’ variables in f is formally 

identical to a corresponding observed variable in X , since each of the former is measured 

by a single observed variable and associated with no measurement error.  The ‘latent’ 

dummy variables in f will be used shortly for accomplishing the specific goals of this 

article. 

 

Convergent and discriminant validity coefficient estimation 

With this particular parameterization of the model in Equation (1), obviously each 

observed measure, Xi, is identical to its corresponding latent variable, fi, up to a 

multiplication constant that equals that measure’s standard deviation, i.e., 

 

(2) Xi = σi . fi , 

 

where σi denotes the standard deviation of Xi (i = 1, …, p).  Hence, the covariance matrix 

of the random vector X is the same as its correlation matrix, i.e., 

 

(3) Cov(f) = Corr(f) , 
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where Cov(.) and Corr(.) denote covariance and correlation matrix of random vector 

within parentheses, respectively. 

Equations (1) through (3) imply that point and interval estimation of the 

correlations among elements of the vector f is accomplished by point and interval 

estimation of the corresponding covariances among them.  Indeed, due to Equation (2) 

and the well-known invariance property of the correlation coefficient to linear 

transformation of involved variables, it is easily realized that the matrix Corr(f) consists 

of the above convergent and discriminant validity correlations positioned at appropriate 

places.  To give a few examples of relevance later in the illustration section of this article,  

Corr(f1, fc+1) is the MTHM (convergent validity) correlation between the measures of the 

first listed trait that are obtained with the first and second listed measurement methods.  

Similarly, Corr(f2, fc+1) is the HTHM (discriminant validity) correlation between the 

measures of the first two traits that are obtained with the first two measurement methods.  

Also, Corr(f1, f2) is the HTMM (discriminant validity) correlation of the measures of the 

first and second traits that have been obtained with the first measurement method. 

 

Differences from prior approaches to studying convergent and discriminant validity 

 The modeling approach underlying this article complements earlier procedures for 

examining convergent and discriminant validity (e.g., Bagozzi & Yi, 1993; Marsh & 

Hocevar, 1983; Marsh, 1989; Eid, 2000).  This is due to an essential feature that is seen 

from the defining Equation (1).  Specifically, this approach does not contain error terms, 

unlike those earlier methods where each observed variable is associated with such a 

residual.  The reason is that here we are interested in the study of the relationships of 

convergent and discriminant validity coefficients that are defined in terms of observed 

measure correlations (e.g., Campbell & Fiske, 1959; cf., Crocker & Algina, 1986; 

McDonald, 1999).  In the CFA-based approaches, these correlations were primarily used 

as a starting point for the estimation of trait correlations, which was in part achieved by 

the inclusion of measurement error parameters (error variances).  There are no such 

parameters in the present method, owing to its goal being interval estimation of 

convergent and discriminant validity coefficients in observed variable correlations.  For 

this reason, the present approach does not contain any parameters for the trait 
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interrelationships, and does not provide any information about them.  Hence, it cannot be 

used when the trait interrelationships are of interest; in that case, appropriate from those 

CFA-based approaches can be utilized (e.g., Bagozzi & Yi, 1993; Marsh & Hocevar, 

1983; Marsh, 1989; Eid, 2000).   

 

Latent variable modeling as a technique for interval estimation of convergent and 

discriminant validity coefficients 

Equation (1) can be looked at as formally defining a latent variable model since it 

contains latent variables and measures of them (e.g., Muthén, 2002).  Since there are no 

restrictions imposed within it, which would have implications for its covariance structure, 

this model is saturated.  For this reason, it fits a given pxp covariance matrix perfectly 

(regardless whether it stems from a studied population or a sample).  In an empirical 

setting, this model can be fitted to data with widely circulated software, such as LISREL, 

EQS, R, or Mplus (see below).  Resulting from this model fitting process are parameter 

estimates and standard errors for each of the convergent and discriminant validity 

coefficients of relevance in the context of the MTMM approach.  When maximum 

likelihood estimation is used, these estimates are the same as the corresponding elements 

of the sample correlation matrix.   

While estimation of these correlations is desirable in its own right, this is not the 

main benefit from an application of the present method.  Specifically, we stress that when 

fitting the underlying CFA model defined in Equation (1) we obtain also standard errors 

for the observed measure correlations, which standard errors will play instrumental role 

next.  This feature of the method is not shared with the above mentioned prior procedures 

to discriminant and convergent validity examination, and it is in this and related 

properties that the method in this article complements those procedures.   

While the so-obtained MTMM correlation estimates represent optimal numerical 

‘guesses’ for the population correlations between the trait measures under consideration, 

the estimates do not contain any information as to how far they may be from their 

counterpart ‘true’ correlations in the population that are of actual interest in a validation 

study.  As a major goal of the present method, such information can be obtained in the 

form of a confidence interval (CI) via the following procedure. 
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Confidence interval construction for validity coefficients 

In order to accomplish interval estimation of convergent or discriminant validity 

coefficients, we make first an important observation.  Each of these coefficients, being a 

correlation, is bounded by -1 and 1; therefore, a CI for it cannot contain values that are 

larger than 1 or smaller than -1.  In fact, for typical convergent or discriminant validity 

coefficients in empirical behavioral research, one can argue that the values of 1 and -1 are 

not plausible either, like values very close to them.  Hence, it would be also justified to 

expect that a meaningful CI for such a validity coefficient would typically not include 1 

or -1, and not necessarily values in their closest proximity.  This expectation is further 

corroborated by the well-known fact (e.g., Agresti & Finlay, 2008) that the sampling 

distribution of a correlation coefficient is in general non-symmetric, and specifically 

skewed to the right/left in case of positive/negative population correlation. 

With this in mind, a large sample confidence interval for a convergent or 

discriminant validity coefficient can be obtained by initially furnishing such a confidence 

interval for an appropriate monotonically increasing transformation of the coefficient, 

such as Fisher’s z-transformation (e.g., Browne, 1982).  That is, denoting a convergent or 

discriminant correlation generically by ρ, its transformed value is 

 

(4) z( ρ ) = .5ln[(1+ ρ )/(1- ρ )] , 

 

where ln[.] denotes natural logarithm.  Then a 95%-CI for the transformed population 

coefficient, z(ρ), can be obtained as well known by subtracting and adding 1.96 times the 

associated standard error to its estimate )ˆ(ρz  furnished via Equation (4) using the 

correlation estimate ρ̂  resulting when fitting model (1) to data.  This standard error, 

denoted ))ˆ(( ρzSE , can be shown to equal  

 

(5) )ˆ1/()ˆ())ˆ(( 2ρρρ −= SEzSE  
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(Browne, 1982), where )ˆ(ρSE  is the standard error of the estimate ρ̂  of the convergent/ 

discriminant validity coefficient of concern.  (As mentioned above, )ˆ(ρSE  is also 

obtained, along with ρ̂ , when fitting model (1).)  That is, the 95%-CI for the transformed 

convergent/discriminant validity coefficient, z(ρ), is 

  

(6) (z( ρ̂ )-1.96 x SE( ρ̂ )/(1- ρ̂ 2); z( ρ̂ )-1.96 x SE( ρ̂ )/(1- ρ̂ 2)) , 

 

where ‘x’ symbolizes multiplication.  Finally, the sought approximate 95%-CI of the 

population convergent/discriminant validity coefficient ρ of actual concern is obtained by 

using the inverse of Fisher’s z-transformation, viz. 

 

(7) h(z) = 
1)2exp(
1)2exp(

+
−

z
z  , 

 

where exp(.) denotes exponent of the quantity in parentheses.  That is, the lower and 

upper limits of the required CI result by applying the inverse Fisher transformation on the 

corresponding endpoints of the CI in (6): 

 

(8) ((exp(2zlo) – 1)/( exp(2zlo) + 1); (exp(2zup) – 1)/( exp(2zρ,up) + 1)) , 

 

where zlo and zup denote the left and right limits of (6), respectively. 1  (In general, for a 

confidence level of 1-α, one uses in (6) the corresponding cutoff zα/2 of the standard 

normal distribution in lieu of 1.96; 0 < α < 1.)  Computation of the endpoints of (8) is 

readily accomplished in empirical research with popular LVM software as described in a 

later section. 
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Studying Population Relationships Between Convergent and Discriminant Validity 

Coefficients 

Comparing convergent and discriminant validity coefficients 

As indicated earlier, findings in a psychological study that convergent validity 

coefficients are larger than discriminant validity coefficients lend support to construct validity 

when using the MTMM approach.  The latter would be the case, however, when this type of 

relationship holds in the population of concern (as opposed to holding in a sample only).  A 

comparison of confidence intervals of the corresponding coefficients, obtained as in the 

preceding section, permits drawing some informal conclusions about these population 

relationships.  However, due to these CIs resulting from the same set of analyzed data, they are 

related to one another.  Hence, even in cases when the CIs for a convergent and discriminant 

validity coefficient do not overlap, one cannot strictly use them to ascertain the relationship 

between their population values of actual relevance. 

This population relationship can be examined using a confidence interval for the 

difference of two validity coefficients, e.g., a convergent and a discriminant coefficient, denoted 

next by ρ1 and ρ2.  (The same procedure can be used when of interest is to compare the 

population values of the two types of discriminant validity coefficients, such as HTMM and 

HTHM correlations; a finding of the former being larger provides support for construct 

validation, e.g., Campbell & Fiske, 1959.)  At a given confidence level, this difference CI can be 

obtained using the generally applicable delta method (e.g., Roussas, 1997), which will also be 

used later for more complex functions of MTMM correlations.  To this end, symbolize by D(ρ) 

their difference, i.e., D(ρ) = ρ1 - ρ2, where ρ = (ρ1, ρ2)′.  (We note in passing that these two 

correlations are parameters of the model defined by Equation (1).)  The first-order Taylor 

expansion of D(ρ), as a function of the two correlations involved, around the corresponding 

population parameter ρ0 is (e.g., Stewart, 1991): 

 

(9) )(
)(

)()(
00

ρρ
ρ
ρ

ρρ ρρ −
⎥
⎥
⎦

⎤

⎢
⎢
⎣

⎡

′∂
∂

+≈ =0

D
DD  ,      
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where the symbol ‘≈’ denotes ‘approximately equal’ and bracketed is the vector of 

partial derivatives of D(ρ) with respect to the two correlations it depends on (which 

derivatives are 1 and -1 in this case, but need not be so in a more general case as 

further below).  From Equation (9), a squared large-sample standard error of the 

difference between a convergent and discriminant validity coefficients follows as 

 

(10) 
⎥
⎥
⎦

⎤

⎢
⎢
⎣

⎡

∂
∂

⎥
⎥
⎦

⎤

⎢
⎢
⎣

⎡
′∂

∂
≈

== ρρρ
ρ

ρ
ρ
ρ

ρ ρρ ˆ

)ˆ(
)ˆ(

)ˆ(
))ˆ(( ˆ

D
Cov

D
DVar  ,    

  

where )ˆ(ρCov  is the relevant 2 x 2 part of the observed inverted information matrix 

associated with the fitted model, which pertains to the two correlation parameters in 

question.  Using Equation (10), a large-sample 100(1 - α)%-confidence interval (0 < 

α < 1) for the convergent-discriminant validity coefficient difference is readily 

furnished as 

 

(11) )ˆ()ˆ( 2/ ρρ α VarDzD ±  ,        

 

where zα/2 is the (1-α/2)th quantile of the standard normal distribution. The limits of 

this confidence interval are also easily obtained using popular LVM software as 

described in a following section. 

 

Evaluation of overall difference between convergent and discriminant validity 

coefficients 

 The outlined interval estimation approach allows one to compare the population values of 

any pair of convergent and discriminant validity coefficients (or any pair consisting only of 

convergent coefficients, or only of discriminant validity coefficients).  The method is best used 

on a limited number of pairs of validity coefficients, however, due to well-known problems with 

multiple inferences carried out on the same data set (e.g., Agresti & Finlay, 2008).  However, in 

extensive MTMM studies there may be a fairly large number of pairs of interest to examine.  In 

addition, and at least as importantly, it may be also desirable to obtain an overall statement as to 
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whether convergent validity coefficients are uniformly, or tend to be, larger than discriminant 

validity coefficients (and similarly with respect to HTMM and HTHM discriminant validity 

correlations; Campbell & Fiske, 1959).  In such cases, the outlined delta-method based procedure 

can also be applied, so long as one pre-specifies an appropriate function of the two types of 

validity coefficients that are to be compared at the population level. 

 As such a function, it may be argued that the mean validity coefficient could be 

frequently of interest in psychological research.  Accordingly, a question to be addressed is 

whether the average convergent validity coefficient is larger than the average discriminant 

coefficient in the studied population.  This query can be responded to by applying the last 

discussed CI-construction procedure, where D(ρ) is now chosen as the difference between these 

two means, i.e., 

 

(12) D(ρ) = 
ba

ba 1121111211 ...... ρρρρρρ +++
−

+++  , 

 

with ρ11 through ρ1a symbolizing the convergent validity coefficients (or any subset of a of them 

that is of interest) while ρ11 through ρ1b  denote the discriminant validity coefficients (or a subset 

of b of them that are of concern in such a comparison).   

The desired CI is then provided by Equations (10) and (11) above, where D(ρ) from 

Equation (12) is formally substituted.  (Its derivatives with regard to the correlations are readily 

obtained using standard differentiation rules, but are actually not needed here to use explicitly, 

due to the delta method being implemented in the LVM software utilized later; see next section.)  

If the resulting CI for D(ρ) is entirely located above 0 one can interpret the finding as suggestive, 

with high confidence, that on average convergent validity coefficients are higher than 

discriminant validity coefficients.  Such a result would provide support for construct validation.  

If this CI contains the 0 point, then it would be suggested that on average the former validity 

coefficients do not differ from the latter validity coefficients.  In such cases, an important 

condition may not be fulfilled in the studied population, which according to Campbell & Fiske 

(1959) would be expected to hold in case of high construct validity.  This may cast potentially 

serious doubts with respect to lacking construct validity regarding some of the traits involved in 

the study.   
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This confidence interval procedure can also be used, in the same way, if one wishes to 

compare the mean HTMM correlations with the mean HTHM correlations in the population, 

where a finding of the former being larger may be of interest in the context in a validation study 

(e.g., Crocker & Algina, 1986).  This is accomplished by substituting these correlation 

coefficients correspondingly into the right-hand side of Equation (12) and proceeding as outlined 

above.   

We discuss next the empirical computation of the endpoints of the confidence intervals 

described in this article, and illustrate in on data in the following section. 

 

Application of Outlined Interval Estimation Procedures in Empirical Research 

 The confidence interval construction method outlined above is readily employed in a 

behavioral study using the increasingly popular LVM software Mplus (Muthén & Muthén, 

2008).  To this end, in the first step one fits the CFA model in Equation (1), introducing p 

dummy latent variables, i.e., as many such variables as there are observed measures (viz. p = 

cm).  This is achieved by defining each observed variable as loading on only one latent variable, 

whose variance is constrained at 1; its loading on the measure is at the same time a model 

parameter.  In this way, estimates with standard errors of the convergent and discriminant 

validity coefficients are obtained.  In the second step, one introduces parametric symbols for 

each correlation involved in a population comparison of interest to conduct, and adds a MODEL 

CONSTRAINT section.  In the latter, initially defined as new parameters are all necessary 

quantities for obtaining the limits of the confidence intervals of concern (e.g., (8) or (11) for an 

appropriately chosen correlation function D(ρ); see Appendix for source code details).  To obtain 

a CI for any convergent or discriminant validity coefficient, the CI endpoints are calculated by 

implementing their formulas in Equation (11) using the corresponding parameter symbols.  For 

interval estimation of the difference in two correlations of interest, or of the mean difference (12) 

of convergent and discriminant validity coefficients (or any other function of such that could be 

of interest), one defines formally this difference or function involving the corresponding 

parameters.  All these activities are incorporated in the software source codes provided in the 

Appendix, which are used there on data from the example considered next (see also notes to 

codes).  
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Illustration on Data 

To demonstrate the utility and applicability of the described interval estimation 

procedure, consider the following example.  Suppose we were interested in measuring 

guilt by self-report inventories (cf. Crocker & Algina, 1986, and references therein).  We 

focus on the constructs of hostility guilt and morality conscience, and assume they are 

measured by three methods: true-false, forced-choice, and incomplete sentences tests 

(scales).  The correlation matrix, standard deviations, and means of these 6 observed 

measures from n = 435 cases, for which the assumption of multinormality can be viewed 

as plausible, are presented in Table 1. 

____________________ 

Insert Table 1 about here 

____________________ 

As a first step in the application of the estimation procedure in this article, the 

CFA model defined in Equation (1) is fitted to these data using the popular LVM 

program Mplus (see source code for Step 1 in Appendix, as well as note to it).  As 

mentioned earlier, this model is saturated and hence associated with perfect fit: chi-

square = 0, df = 0, root mean square error of approximation = 0 with a 90%-confidence 

interval (0, 0).  A particular benefit of fitting the model lies as indicated in obtaining with 

it standard errors for the convergent and discriminant validity coefficients, which are of 

relevance next. 

Suppose one were interested in evaluating the population discriminant validity 

coefficient of the true/false tests for the hostility guilt and morality conscience traits, i.e., 

the correlation Corr(f1,f2).  From Table 1, its estimate is .45, while from the results of 

Step 1 its standard error is obtained as .038.  To interval estimate this validity coefficient, 

we substitute these quantities into Equations (4) through (8), yielding (.371, .521) as the 

95%-CI for its population value.  These computational activities are straight-forwardly 

accomplished using the source code for Step 2 presented in the Appendix (see also note 

to it).  This result suggests, with high confidence, that the discriminant validity 

coefficient in question may lie in the population between the high .30s and high .50s.  

Since this is an HTMM correlation, such a finding is not unexpected as these correlations 

are usually not very high or very low. 
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Alternatively, suppose one were interested in obtaining a CI of the convergent validity 

coefficient for the true-false and incomplete sentences measures of the construct hostility guilt, 

i.e., the correlation Corr(f1,f3).  From Table 1, this correlation is estimated at .85, and from the 

results of Step 1 we find its standard error as .013.  Entering these two quantities correspondingly 

in the source code for Step 2, yields the 95%-CI for this convergent validity coefficient as (.822, 

.874).  This finding suggests, with high degree of confidence, that the population convergent 

validity coefficient for these measures of the hostility guilt trait is in the mid .80s.  Like the 

previous result, such a finding could also be expected from different indicators (measures) of the 

same construct, as we deal with here. 

Assume next that we wanted to see whether in the studied population a convergent 

validity coefficient is larger than a discriminant validity coefficient, as one would expect on 

theoretical grounds.  To this end, suppose one were interested in examining if say the population 

correlation ρ3 between the true/false and incomplete sentence measures of the hostility guilt 

construct (i.e., Corr(f1,f5)) is larger than the correlation ρ4 between the true/false measures of this 

construct with that of morality conscience (i.e., Corr(f1,f2)).  To address this question, 

constructing a CI of the correlation difference D(ρ) = ρ3 - ρ4 is appropriate, which is achieved 

using Equation (11).  The computation of its lower and upper endpoints is readily carried out 

with the delta method that is implemented in Mplus and automatically invoked by the software 

upon request (see source code for Step 3 in Appendix, and note to it.)  The resulting 95%-CI for 

the difference in these convergence and discriminant validity coefficients is (.108, .292).  This 

result suggests, with high confidence, that the convergence validity coefficient considered is 

markedly higher in the population than the discriminant validity coefficient in question.  Such a 

finding would also be consistent with theoretical expectations, given that the convergence 

validity coefficient, ρ3, is a correlation between two indicators of the same construct (an MTHM 

correlation); at the same time, the discriminant validity coefficient, ρ4, is a correlation between 

same method measures of different constructs (an HTMM correlation), and thus could be 

expected to be considerably lower in the population. 

The last illustration was concerned with a comparison of population values of only two 

validity coefficients while, as mentioned earlier, when using the MTMM approach in validation 

studies one is usually interested in whether the convergent validity coefficients exhibit an overall 

tendency of being higher than the discriminant validity coefficients.  With this in mind, in the 
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current example it would be of interest to know whether the mean of the 6 convergent validity 

coefficients (i.e., the MTHM correlations that are positioned along the second diagonal of the 

matrix in Table 1) is higher in the population than the mean of the 9 discriminant validity 

coefficients (viz. the HTMM and HTHM correlations, i.e., the remaining correlations).  Such a 

comparison can be made using the CI for the difference in the two mean validity coefficients, as 

elaborated in the preceding section (see Equations (11) and (12)).  The computation of the 

endpoints of this CI is accomplished with the last source code in the Appendix (see also note to 

it), and the resulting 95%-CI is (.343, .468).  This suggests, with high confidence, that in the 

population the convergence validity coefficients exceed on average the discriminant validity 

coefficients by an amount that could be as low as .343 and as high as .468.  This finding is 

consistent with theoretical expectations, given that convergent validity coefficients reflect 

relationships between different measures of the same traits whereas discriminant validity 

coefficients reflect considerably weaker relationships between different indicators of different 

traits.  

 

Conclusion 

This article outlined a readily applicable procedure for point and interval 

estimation of convergent and discriminant validity coefficients that play a major role in 

validation studies in psychological and behavioral research.  The procedure complements 

previous approaches to the study of convergent and discriminant validity (e.g., Bagozzi & 

Yi, 1993; Marsh & Hocevar, 1983; Marsh, 1989; Eid, 2000), which were developed in 

terms of ‘proper’ latent variables with fallible multiple indicators, the available observed 

measures.  Those CFA-based approaches were concerned with the relationships between 

underlying traits and possible method factors, as well as their relationships with the 

manifest measures.  In difference to them, the present note was concerned with the 

relationships between the manifest measure correlations, and specifically examined 

relationships among discriminant and convergent validity coefficients (Campbell & 

Fiske, 1959; Crocker & Algina, 1986).  In addition, we note that the procedure in this 

article is equally applicable with missing data, under the assumption of multinormality 

and missing at random, using the full information maximum likelihood method (e.g., 

Little & Rubin, 2002).  Last but not least, the underlying method in this paper for interval 
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estimation of correlation coefficients and functions thereof, is applicable also with the 

previous CFA-based approaches for the purpose of interval estimation of trait or other 

latent correlations and functions of them while allowing measurement error to be taken 

into account (cf. Browne, 1982). 

Several limitations of the outlined procedure need to be noted.  Due to being 

based on an application of the LVM methodology that rests upon an asymptotic statistical 

theory, the present method is best used with large samples.  (We note in passing that this 

limitation is shared with the earlier, CFA-based approaches mentioned in the preceding 

paragraph, as the latter also use instrumentally the same methodology.)  Further, since the 

invariance property of maximum likelihood is utilized in some applications of the present 

procedure (viz. differences between validity coefficients), they are optimally used with 

multivariate normality.  However, robust maximum likelihood estimation can be used for 

interval estimation of individual validity coefficients with violations of multivariate 

normality that do not result from piling of cases at extreme ends of underlying scales, 

marked clustering effects or highly discrete observed measures (Muthén & Muthén, 

2008).  Moreover, as indicated earlier in the paper, its method cannot be used if interest 

lies in evaluating underlying trait interrelationships, since there are no parameters in it 

that reflect them.   

In conclusion, this article provides psychologists and behavioral researchers with 

a readily utilized method for obtaining ranges of plausible population values for 

convergent and discriminant validity coefficients, as well as differences among them and 

important functions of them.  With this feature, the method complements earlier 

approaches to the study of convergent and discriminant validity that were developed 

within the framework of confirmatory factor analysis.  In this way the present procedure, 

along with those earlier approaches, can further aid significantly psychologists’ construct 

validation efforts with regard to measures developed for studying populations of interest.   
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Footnote 

 
1 Due to Fisher’s z-transformation being a nonlinear function, the confidence 

interval in (8) is in general not symmetric.  While one can obtain a symmetric 

confidence interval using the normal approximation for the maximum likelihood 

correlation estimates, since the population correlation is a bounded parameter 

such an interval will not be optimal in general (e.g., Browne, 1982).   
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Table 1.  Correlations among 6 measures of 2 constructs, resulting from 3 

measurement methods, with standard deviations (underneath) and means (bottom 

line; n = 435). 

 

Measure M1T1  M1T2  M2T1  M2T2  M3T1  M3T2 

______________________________________________________________________________ 

M1T1  1 

M1T2  .45   1 

M2T1  .85   .40   1 

M2T2  .35   .80   .30   1 

M3T1  .65   .15   .70   .25   1 

M3T2  .20   .55   .20   .65   .35   1 

 

StdDev: 202.35  331.26  298.35  255.67  322.78  301.34  

 

Means:  42.25   48.33   52.35   45.23   49.31   51.86 

_____________________________________________________________________________ 

Note.  MiTj = Measure with the ith method of the jth trait (i = 1, 2, j = 1, 2, 3); StdDev = standard 

deviation; n = sample size. 
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Appendix 1 

Mplus Source Codes for Interval Estimation of Convergent and Discriminant 

Validity Coefficients and their Relationships  

 
TITLE: MULTITRAIT-MULTIMETHOD MATRIX BASED CONSTRUCT VALIDATION USING 

LATENT VARIABLE MODELING.  STEP 1 (SE for a validity coefficient) 

 (SEE ANNOTATING COMMENTS AFTER EXCLAMATION MARK IN PERTINENT ROW) 

DATA:  FILE = TABLE1.DAT; ! See Table 1. 

            TYPE = CORRELATION MEANS STDEVIATIONS; 

            NOBSERVATIONS = 435; 

VARIABLE: NAMES = M1T1 M1T2 M2T1 M2T2 M3T1 M3T2; ! See note to Table 1. 

MODEL: F1 BY M1T1*1; M1T1@0; 

            F2 BY M1T2*1; M1T2@0; 

            F3 BY M2T1*1; M2T1@0; 

            F4 BY M2T2*1; M2T2@0; 

            F5 BY M3T1*1; M3T1@0; 

            F6 BY M3T2*1; M3T2@0; 

            F1-F6@1; 

 

Note.  The TITLE command provides a succinct description of the goal of the analysis, and the 

DATA command directs the software to the data to be analyzed.  The VARIABLE command 

assigns names to the variables.  The MODEL command section defines each of the 6 dummy 

latent variables, denoted F1 through F6, as identical to the corresponding observed measure up to 

a constant (with associated error term set at 0; e.g., Kühnel, 1988).  The variances of all latent 

variables are fixed at 1 (last line), in order (1) to achieve model identification, and (2) to ensure 

the instrumental identity of latent correlations to corresponding covariances (see main text).   

 
TITLE: MULTITRAIT-MULTIMETHOD MATRIX BASED CONSTRUCT VALIDATION USING 

LATENT VARIABLE MODELING.  STEP 2 (CI for a validity coefficient) 

 (SEE ANNOTATING COMMENTS AFTER EXCLAMATION MARK IN PERTINENT ROW) 

DATA:  FILE = TABLE1.DAT;  

            TYPE = CORRELATION MEANS STDEVIATIONS; 

            NOBSERVATIONS = 435; 

VARIABLE: NAMES = M1T1 M1T2 M2T1 M2T2 M3T1 M3T2;  

MODEL: F1 BY M1T1*1; M1T1@0; 
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            F2 BY M1T2*1; M1T2@0; 

            F3 BY M2T1*1; M2T1@0; 

            F4 BY M2T2*1; M2T2@0; 

            F5 BY M3T1*1; M3T1@0; 

            F6 BY M3T2*1; M3T2@0; 

            F1-F6@1; 

MODEL CONSTRAINT: 

            NEW(RHO, SE, Z, SEZ, CI_Z_LO, CI_Z_UP, CI_C_LO, CI_C_UP); 

            RHO = .45; ! ENTER THE CORRELATION ESTIMATE FROM STEP 1. 

            SE = .038; ! ENTER ITS ASSSOCIATED S.E., FROM STEP 1. 

            Z = .5*LOG((1+RHO)/(1-RHO)); ! FISHER'S Z-TRANSFORM OF RHO. 

            SEZ = SE/(1-RHO**2); ! THIS IS ITS PERTINENT S.E.  

            CI_Z_LO = Z-1.96*SEZ; ! CI FOR FISHER'S Z-TRANSFORM OF RHO. 

            CI_Z_UP = Z+1.96*SEZ; ! (SEE EQUATION (7)). 

            CI_C_LO = (EXP(2*CI_Z_LO)-1)/(EXP(2*CI_Z_LO)+1); ! SEE EQ. (8) 

            CI_C_UP = (EXP(2*CI_Z_UP)-1)/(EXP(2*CI_Z_UP)+1); 

 

Note.  This command file is identical the one for Step 1 in its 14 lines, used here as first 

14 lines as well, and extends it with the MODEL CONSTRAINT section.  The latter 

achieves the computational activities needed for the construction of the CI of the validity 

coefficient of interest.  After introducing first (with the NEW subcommand) all quantities 

needed, the following equations mirror Equations (4) through (8).  (One needs to enter 

the coefficient estimate, .45 here, and standard error, .038 here, which are obtained with 

the preceding command file).  This set of 8 equation srenders the lower and upper 

endpoint of the sought 95%-confidence interval in the quantities CI_C_LO and 

CI_C_UP.  (Use a correspondingly modified cutoff, in lieu of 1.96, to obtain a CI at 

another confidence level.) 

 
 

TITLE: MULTITRAIT-MULTIMETHOD MATRIX BASED CONSTRUCT VALIDATION USING 

LATENT VARIABLE MODELING. STEP 3 (CI for diff. in val. coeff.) 

 (SEE ANNOTATING COMMENTS AFTER EXCLAMATION MARK IN PERTINENT ROW) 

DATA:  FILE = TABLE1.DAT; 

            TYPE = CORRELATION MEANS STDEVIATIONS; 

            NOBSERVATIONS = 435; 
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VARIABLE: NAMES = M1T1 M1T2 M2T1 M2T2 M3T1 M3T2; 

MODEL: F1 BY M1T1*1; M1T1@0; 

            F2 BY M1T2*1; M1T2@0; 

            F3 BY M2T1*1; M2T1@0; 

            F4 BY M2T2*1; M2T2@0; 

            F5 BY M3T1*1; M3T1@0; 

            F6 BY M3T2*1; M3T2@0; 

            F1-F6@1; 

            F1 WITH F5(RHO3); ! CONVERGENT VALIDITY COEFFICIENT OF INTEREST 

            F1 WITH F2(RHO4); ! DISCRIMINANT VALIDITY COEFF. OF INTEREST 

MODEL CONSTRAINT: 

            NEW(DELTA); 

            DELTA = RHO3 – RHO4; ! DIFFERENCE OF VALIDITY COEFFICIENTS  

OUTPUT:     CINTERVAL; ! REQUESTS CI OF CONCERN. 

 

Note.  This command file differs from that for Step 1 only in its MODEL CONSTRAINT 

section.  In the latter, initially the quantity DELTA is introduced as a new parameter and 

defined as the difference of the 2 validity coefficients of interest, assigned the parametric 

symbols RHO3 and RHO4.  In difference to the command file in Step 1 (and Step 2), the 

present uses in its MODEL CONSTRAINT section only the 2 lines needed for defining 

the correlation difference of interest, and the OUTPUT statement requesting its 

confidence interval evaluation. 

 
 

TITLE: MULTITRAIT-MULTIMETHOD MATRIX BASED VALIDATION 

STEP 4 (CI for mean difference in convergent and discriminant 

validity coefficients) 

DATA:  FILE = TABLE8_6.DAT; ! see Table 8.6 

            TYPE = CORRELATION MEANS STDEVIATIONS; 

            NOBSERVATIONS = 435; 

VARIABLE: NAMES = M1T1 M1T2 M2T1 M2T2 M3T1 M3T2; 

MODEL: F1 BY M1T1*1; M1T1@0; 

            F2 BY M1T2*1; M1T2@0; 

            F3 BY M2T1*1; M2T1@0; 

            F4 BY M2T2*1; M2T2@0; 

            F5 BY M3T1*1; M3T1@0; 



 Convergent and Discriminant Validity Evaluation 26 

            F6 BY M3T2*1; M3T2@0; 

            F1-F6@1; 

            F1 WITH F2(P1); 

            F1 WITH F3(P2); 

            F1 WITH F4(P3); 

            F1 WITH F5(P4); 

            F1 WITH F6(P5); 

            F2 WITH F3(P6); 

            F2 WITH F4(P7); 

            F2 WITH F5(P8); 

            F2 WITH F6(P9); 

            F3 WITH F4(P10); 

            F3 WITH F5(P11); 

            F3 WITH F6(P12); 

            F4 WITH F5(P13); 

            F4 WITH F6(P14); 

            F5 WITH F6(P15); 

MODEL CONSTRAINT: 

            NEW(CV_DV); 

            CV_DV = (P2+P7+P11+P14+P4+P9)/6 

             - (P1+P3+P5+P6+P8+P10+P12+P13+P15)/9; ! MEAN DIFFERENCE 

OUTPUT:     CINTERVAL; 

 

Note.  This command file differs from the preceding one only in its MODEL CONSTRAINT 

section.  Specifically, after assigning a parametric symbol to each correlation coefficient, here 

the mean difference between convergent and discriminant validity coefficients of concern is 

defined in the quantity CV_DV (introduced first as a new parameter), and is subsequently 

interval estimated. 

 


