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Abstract. An emerging way to sell and buy display ads on the Inter-
net is via ad exchanges. RightMedia [1], AdECN [2] and DoubleClick
Ad Exchange [3] are examples of such real-time two-sided markets. We
describe an abstraction of ad exchanges. Based on that abstraction, we
present several research directions and discuss some insights.

1 Introduction

Activities on the Internet can be abstracted as interactions due to three parties.
There are

– the users who navigate to various web pages,
– the publishers who control the web pages and generate the content in them,

and
– are advertisers who wish to get the attention of the users using the publishers

as the channel for placing ads on the pages. We call such ads on webpages
as the display ads.

Precisely what display ads show when a user accesses a page is a detailed pro-
cess. A central issue is matching advertisers to publishers, where the number of
advertisers and publishers is very large. Direct negotiation between advertisers
and publishers might work for large companies, but currently there are interme-
diaries such as ad agencies, ad networks and publisher networks that aggregate
several parties. An advertisers might use an ad agency to develop the marketing
campaign and use an ad network that pools many advertisers to negotiate with
a publisher network that places ads with many publishers. There are several
intermediaries and their services overlap eg., networks comprise both advertisers
and publishers, or agencies that are also ad networks, etc. Thus there are several
ad paths between an advertiser and a user; some ad paths are shown in Figure 1.

An emerging way of selling and buying ads on the Internet is via an exchange
that brings sellers (publishers) and buyers (advertisers) together to a common
marketplace. There are exchanges in the world for trading financial securities,
currency, physical goods, virtual credits, and much more. Exchanges serve many
purposes from bringing efficiency, to eliciting prices, generating capital, aggre-
gating information etc. Market Microstructure is the area that studies all aspects
of such exchanges [4, 5].

Ad exchanges are recent. RightMedia [1], AdECN [2] and DoubleClick [3]
are examples. Ad exchanges let ad networks and publishers transact centrally
for ads.



– Publishers expect to get the best price from the exchange, better than from
any specific ad network; in addition, publishers get liquidity.

– Advertisers get access to a large inventory at the exchange, and in addition,
the ability to target more precisely across web pages.

– Finally, the exchange is a clearing house ensuring the flow of money.

In many ways, these ad exchanges are modeled after financial stock exchanges.
Since 2005 when RightMedia appeared, ad exchanges have become popular. In
Sept 2009, RightMedia averaged 9 billion transactions a day with 100’s of thou-
sands of buyers and sellers. Recently, DoubleClick announced their new ad ex-
change. It seems ad exchanges are likely to become a major platform for trading
ads.

We abstract a model for ad exchanges. Based on the model, we present
research problems in auction theory, optimization and game theory. The goal is
to present a blueprint for research in design, analyses and use of ad exchanges.

PublisherAd NetworkAd AgencyAdvertiser User

Fig. 1. Ad paths

2 Ad Exchange

We present an abstract AdX model to describe ad exchanges. It is defined as a
sequence of events.

1. User u visits the webpage w of publisher P (w).
For now, we assume page w has a single slot for ads.

2. Publisher P (w) contacts the exchange E with (w, P (u), ρ) where ρ is the
minimum price P (w) is willing to take for the slot in w and E(u) is the
information about u that P shares with E.
We assume that E knows all the contents of w as well as the various specifics
of the ad slot in it, including its dimensions and inappropriate ads for that
slot as agreed on with P (w). We also assume that the exchange manages
information about user u in a manner agreed upon with P (w) via P (u);
P (u) may only be partial information about u, possibly even empty. P (w)
has moral and contractual relationship with its viewers u while also having
the incentive to help advertisers target users suitably; therefore P (u) is de-
termined by P . Also, E can independently crawl contents of w if needed, in
many cases, so we might as well assume that in the model.

3. The exchange E contacts ad networks a1, . . . , am with (E(w), E(u), E(ρ)),
where E(w) is information about w provided by E, and likewise, E(u) is the



information about u provided by E and E(ρ) is the pricing information E
shares with ad networks.
E(u) is the information E provides to the ad networks as agreed upon with
P (w); this is possibly different from P (u). When P (w) entrusts E to reveal
w, we assume that ad networks know contents of w and also information
processed from w, such as keywords, topics of w etc. The ad networks may
have the resources to obtain this on their own or resourceful exchanges can
do it for them. This is modeled as E(w). There are instances when P (w) does
not wish ad networks to know w, in which case, E(w) will be only derived
information about w and w’s identity will remain unknown to ai’s. Finally,
E(ρ) may be different from ρ, for example, by adding a reserve price to ρ.

4. Each ad network ai returns (bi, di) on behalf of its customers which are the
advertisers; bi is its bid, that is, the maximum it is willing to pay for the slot
in page w and di is the ad it wishes to be shown. The ad networks may also
choose not to return a bid.
It is assumed that bi ≥ max{ρ, E(ρ)}, else no bid is returned. It is also
assumed that di is suitable for the ad slot. Further, it is assumed that ai

targets ads based on its contracts with its customers and negotiates prices
for the service with them.

5. Exchange E determines a winner i∗ for the ad slot among all (bi, di)’s and
its price ρ ≤ ci∗ ≤ bi∗ via an auction and returns (ci∗ , di∗) to P (w).
It is assumed that the winning network i∗ becomes aware of the outcome
including the price, and in some but not necessarily all instances, the losing
networks can determine that too. E is responsible that di is suitable for
w, u according to its contract with P (w). This may be accomplished in a
variety of ways from pre-verification to outsourcing the task to the networks.
E negotiates pricing for its service with various P (w)’s and ai’s. Also, E
generates bills and reports, collects payments from ai’s, and makes payments
to P (w)’s.

6. The publisher P (w) serves webpage w with ad di∗ to user u. This is known
as an impression of ad di∗ .
The ad di∗ is rendered by user’s browser and the user interacts with the ad
in a variety of ways.

We have left out system level details in the model above. Various internet
protocols are used for forwarding, referencing, accounting, etc. For example, ad
di may be directly returned by the ad network via E or passed by reference as
supported by common http protocol; then user’s browser can fetch the ad while
rendering w. For efficiency reasons, certain steps may be optimized out and or
made offline. For example, ads and bids may be loaded onto the Exchange a
priori so networks are accessed only infrequently. Also, due to time constraints,
crawling and processing w may be overlooked and E(w) will be minimal or there
may be timeouts. Finally, there are considerable details to avoiding inappropriate
ads and contextual targeting of ads. For our purposes, the details above suffice.
The flow of the model is shown in Figure 2.

The AdX model captures the essence of ad exchanges that the instrument
traded is ad impressions. So, AdX model has real time auction for each impres-
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Fig. 2. AdX Model

sion and the bids are CPM (cost per mille or thousand impressions). The entire
execution above begins when a user arrives at a webpage and must be completed
before the page is rendered on their screen. This sets an upper bound for the
execution in 10’s or 100’s of milliseconds. Thus AdX model provides a spot mar-
ket for ad impressions. The assumption is that higher order campaign goals such
as maximizing number of impressions subject to budget criteria, or reaching as
many target users as possible, and other goals will be executed by optimized bid-
ding by the networks, and indeed one can design more sophisticated instruments
on top of the spot market.

AdX vs Financial Exchanges. As in financial exchanges, the buyers and sell-
ers come to AdX only when they choose. Further, individual advertisers access
AdX through intermediaries like in financial exchanges. However, a significant
difference is in the nature of what is traded. Unlike financial securities, ad im-
pressions are heterogeneous, significantly differing from one instance to another
in their value depending on their impact on the user which varies widely across
millions of users and publishers. Further, impressions are supremely perishable:
if the trade does not happen within the browser performance anticipated by the
user, the opportunity to place an ad is lost. As a result, AdX has two impor-
tant tasks. First is informational. AdX embodies the effort by various parties to
help advertisers discover users to target, eg via E(w), E(u). Second is economics.
With vastly heterogeneous goods, many of the pricing methods face challenges
and AdX enables the market to discover prices by making trading automatic
and via auctions.

user u Search Engine
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Fig. 3. Sponsored Search



AdX vs Sponsored Search. The AdX model is distinct from sponsored search.
In sponsored search, a user poses a query at a search engine and gets search
results together with ads arranged top to bottom. The assignment of ads to
positions is by an auction among all advertisers who placed a cost-per-click
(CPC) bid on a keyword that matches the query. If the user clicks on an ad, that
advertiser pays the search engine the auction price. The ad path is simple and
shown in Figure 3. The dynamics are simpler since there is a single publisher
and a one-sided marketplace of buyers. On the other hand, sponsored search
aligns the incentives of advertisers and search engines with the quality of ads
for the users, and hence, the publisher faces the challenge of monitoring and
maintaining quality. The underlying auction for sponsored search is analyzed
in [8, 9]. There are many outstanding research issues in sponsored search [6], but
they are not the focus here. We will henceforth focus on the AdX model.

3 Research Issues

We describe several research issues using examples. The issues when formalized
more precisely will lead to different research problems.

3.1 Basic auction at the exchange

A central question concerns the auction at the exchange. Let us assume that
E(ρ) ≥ ρ. There is a single slot of ad being auctioned, and the bidders know
ρ and participate only if their bid is above ρ. Further it is a sealed bid auction
since each network bids directly with the exchange. The setting appears to be
a standard auction in one-sided market. Revenue equivalence theorem [7] would
then indicate that first price, second price and several other auctions will all
yield identical expected revenue in Bayesian equilibrium under certain natural
assumptions. Still, second price or Vickrey auctions are preferable since they
encourage more stable dynamics. So, we will assume second price auction as the
benchmark when needed. We now discuss a nuance.

Example. Say network a1 has 2 advertisers a11 and a12 with bids 10 and 8
resp., while network a2 has a single advertiser a21 with bid 5. a1 forwards 10
and a2 forwards 5 to the exchange. Second price auction at the exchange will
declare a1 the winner with price 5. a11 wins the ad slot. Now a1 may charge a11

either 5 (the exchange price) or 8 (the second price in a1). Instead, if a1 revealed
both bids 10 and 8 to the exchange, second price auction at the exchange would
charge 8 to the winner a11. Thus since the exchange does not know the entire
book of the ad networks, a network has an excess to disburse and the publisher
gets less than the best price from the book.

Book value is the second largest value of all the bidders.

Problem 1 Assuming ρ is exogenous and assuming the advertisers reveal their
bids truthfully to the networks, is there a possibly truthful auction at the exchange
that will extract a large fraction of the book value?



The tricky case is when the bid that sets the price of the winner is in the win-
ner’s network. A straightforward approach is to generalize the protocol and ask
each network i to forward two bids (bi

1, b
i
2) where bi

1 is the largest of the bids in i
and bi

2 the second largest. A naive strategy is to declare i∗ = argmaxib
i
1 the win-

ner with price max{bi∗

2 , maxj 6=i∗ bj
1}. In this case, ad networks have no incentive

to declare nonzero bi
2. A different allocation strategy would be to declare largest

bi
1 + bi

2 as the winner. This incentivizes networks to bid ((bi
1 + bi

2)/2, (bi
1 + bi

2)/2)
and is not truthful.

3.2 Auction and bidding by ad networks

Consider mechanisms for the ad networks. In general, the exchange can not as-
sume ad networks will follow any particular mechanism. Still, exchange’s choice
of auction will impact mechanisms ad networks will use, and choice of mecha-
nisms of ad networks will influence auction at the exchange.

Problem 2 Assuming ρ is exogenous, the exchange runs a second price auction
with reserve price r ≥ ρ, ie., E(ρ) = ρ + r, and advertisers are captive, that is,
remain with their choice of ad network throughout, what is a revenue optimal
mechanism for an ad network?

Seen from an ad network i’s point of view, there are several advertisers bid-
ding to be chosen for the impression. The questions are, which ad to choose
and what price to charge? This appears to be identical to the standard auction
framework where optimal mechanisms are known [11]. Under suitable assump-
tions, the solution is to run a second price auction with an appropriately chosen
reserve price ri. The key difference here is that the ad network i does not have
a guaranteed good to auction, rather it has a contingent good. More formally,
there is some probability α(b) that it will win the impression if it bid b at the
exchange. This probability function α is determined by the bidding strategy of
other networks and their advertisers’ valuations.

Under standard assumptions that advertisers have values drawn from a known
distribution, one can extend the theory of optimal auctions [11] to derive an op-
timal mechanism for the ad networks [12]. For example, one can show that the
revenue-optimal mechanism for a network is to randomize its bids in some range
[lr, ur], dependent on r. A more detailed understanding of the equilibrium will
be of great interest. Even without the complication of what auction to run in
the network, the problem of bidding for higher campaign goals is challenging in
presence of α(). Recently, this was studied in [13].

3.3 Auctioning with heterogenous valuations

While the exchange auctions impressions, there are instances when an impres-
sion is valued very differently by the bidders. For example, an impression to a



particular user may be far more valuable to one bidder than others. This target-
ing is enabled by the information E(u) shared by the publisher P (w) with the
ad networks.1

Example. We have two bidders A and B, A has value vA = 100 and B has
value vB = 1 for the ad slot. In equilibrium of the first price auction, A wins
by bidding 1 + ǫ for some ǫ > 0 and exchange’s revenue is 1 + ǫ. This outcome
holds for second price auction as well. On the other hand, maximum value to be
extracted is max vA, vB = 100. What is the maximum revenue a mechanism can
extract in equilibrium?

Say bidder i has value vi, bids bi, and there is a single item to be sold. Assume
b1 ≥ b2 ≥ · · ·. Then, the maximum revenue is R∗ = maxi vi. Classical results [11]
would provide most revenue assuming the distribution from which vi’s is drawn
is known. Here, instead, we focus on prior-free case where distributions are
not known a priori, not even the maximum of individual distributions.2 We
know from [14] that no truthful mechanism exists with (roughly) expected rev-
enue Ω( R∗

log R∗
); on the other hand, they show an auction with expected revenue

Ω( R∗

(log R∗)1+ǫ ) for fixed ǫ > 0. Their auction [14] is as follows. With probability

1 − δ, use the second price auction. With probability δ, choose r according to
the distribution below and if b1 ≥ r, highest bidder wins at price r:

f(x) =
ǫ

x(log(x/b2) + 1)1+ǫ
, x ∈ [b2,∞).

Problem 3 Design a non-truthful mechanism for prior-free auction of a single
slot with near-optimal revenue, but with good equilibrium properties.

An approach is to use quasi-proportional allocation in which the good is allo-
cated to one bidder using a distribution where ith bidder is picked with probabil-

ity f(bi)∑
i
f(bi)

, for some suitable function f . If f(x) = x, we have the well-known

proportional allocation. Revenue properties of quasi-proportional mechanisms
are not well-studied. In [17], authors show that with f(x) =

√
x, one can extract

(R∗)γ revenue for some γ > 0 under certain conditions. Further, using [18], the
equilibrium can be characterized for quasi-proportional auctions. A deeper study
of quasi-proportional auctions will be of great interest. In particular, are there
functions f for which quasi-proportional allocation generates more revenue in
its equilibrium than the lower bound in [14]?

For AdX, we need a generalization of the standard prior-free setting to ad
networks as well as the exchange (much as [12] extends [11]). For an economics
perspective on market clearing and role of intermediaries in prior-free auctions,
see [15].

1 http://www.adecn.com/faq_4.html.
2 In practice, one would argue that in repeated auctions as in the exchange, one can

learn the distributions. It is an interesting exercise what can be learned from the
data – not necessarily the entire distribution, just enough to extract revenue – and
how, as well as its impact in engineering the system, in particular, when learning is
likely to be only approximate.



Problem 4 Design (even non-truthful) mechanisms for prior-free bidding of ad
networks in AdX, with good equilibrium properties and (near-)optimal revenue.

3.4 Callout optimization

In Step 3, E seeks bids from ad network ai’s. This may be accomplished at a
system level by (a) having ai’s preload their ad campaigns into E so suitable
ad campaigns and their bids that apply to (E(w), E(u), E(ρ)) can be retrieved
locally, (b) hosting ai’s bidding software in E’s machines so the software can
manage the network’s campaigns and generate suitable (bi, di), or (c) making
http calls to ai’s servers, and awaiting (bi, di) to be determined by the network.
(a) and (b) are essentially not real-time because networks cannot update bids,
bidding logic, key parameters and relevant data from impression to impression.
We focus on (c) and discuss an optimization problem.

It is resource-intensive for E to call out to each network for each impression.
In practice, ad networks can describe (E(w), E(u), E(ρ))’s of cumulative interest
to their customers, and therefore for each impression, only a subset S(E(w),E(u),ρ)

of ad networks need to be called. Still, we may assume that it will be difficult if
not impossible for each network to take all the http calls from E. So, here is an
optimization problem E faces.

Problem 5 Each ad network i has bandwidth budget Bi. Say E has bandwidth
budget of B. Design an online algorithm for E that for each incoming call
(wj , uj, ρj), chooses a subset Sj ⊆ S(E(wj),E(uj),ρj) of networks to call such that
no ad network i gets more than Bi calls per second, E make fewer than B calls
per second, and optimizes the expected

– number of bids, ie, number of nonempty (bi(j), di(j))’s received at E, or
– efficiency

∑
j maxi bi(j), or

– sales revenue
∑

j maxi | bi(j) 6=maxi bi(j) bi(j), or
– profit for E.

In the problem above, we need stochastics. The algorithm has to know about
likelihood of ad network i making a bid for (E(wj), E(uj), E(ρj)). In particular,
Pr(bi(j) ≥ E(ρj)|E(wj), E(uj)) and Exp(bi(j)|bi(j) ≥ E(ρj)) are useful (assum-
ing E(ρ) ≥ ρ). Hence, E needs to estimate these terms for each j, which is a
challenging Machine Learning challenge by itself. Given these parameters, initial
approximation results for the problem are in [19].

3.5 Publisher optimization and strategies

Publisher P (w) has many decisions to make when user u visits w.

Accessing AdX. P (w) has several sources for ads including contracts with ad-
vertisers previously signed by their own sales teams, contracts with specific ad
networks that commit certain slots or traffic, and the ability to reach AdX on
any impression real time. Filling many impressions with highest price ads from



AdX will have long term impact on other sources, and possible failure to deliver
on contracts; filling contract commitments might lead to loss of revenue from
the AdX spot market. The task then is to design an online algorithm to commit
impressions to different ad sources in order to honor contracts as well as max-
imize revenue. Some initial results are in [21] where solutions are based on the
publisher virtually bidding on behalf of ad sources. More detailed understanding
of strategies will be of great use to individual publishers.

Form of inventory. If publisher P (w) wishes, E can limit information via E(w),
not reveal identity of w or P (w), and merely provide information about the na-
ture of the site w eg., sports/baseball, etc. We call this undisclosed inventory. 3;
in contrast, when identity of w is shared with the ad networks, we call it disclosed
inventory. Publishers may choose to keep some of their inventory in AdX undis-
closed, in order to avoid conflicts with their other ad sources described earlier.
It is assumed that undisclosed inventory fetches less than disclosed inventory.
Then, P (w) has an online optimization problem: for each impression, how to
choose disclosed or undisclosed option in E to trade off short term vs long term
revenue. A suitable model to address this problem will be of interest.

Price. Publisher P (w) has to choose ρ while accessing E: large ρ may not generate
a bid, and a small ρ may undervalue the inventory. One way to choose ρ is as
the maximum over other sales channels for an ad at the slot, but in general, one
needs an online ρ setting algorithm that endogenizes the demand and supply in
the system adaptively. Again, a clean model and implementable algorithm is of
interest.

Here is the combined problem of inventory management and accessing AdX.

Problem 6 Given models for impressions inventory (w, u), models for bids
(bi∗ , di∗) from E, models of ad sales and prices through other channels, design an
algorithm that on each impression (a) decides whether to go to AdX, (b) chooses
disclosed or undisclosed inventory at AdX, and (c) selects min price ρ, in order
to optimize the expected overall (long term) revenue.

3.6 Arbitrage bidding and risk analysis

AdX model trades impressions and uses CPM prices. Ad networks can sell other
pricing methods, such as pay-per-click with cost-per-click (CPC) prices to their
advertisers. This comes with an arbitrage opportunity and associated risk as
described below.

Example. Define click-through-rate (CTR) as average fractional number of
clicks per impression. Consider an ad with CTR 0.1 and CPC of $1. Ideally,
the network should bid $100 CPM; then spend is $100 for 1000 impressions,
revenue is $100, and they are even. However, in any empirical run of auctions,

3 See blind vs disclosed inventory in http://www.adecn.com/faq_5.html, or branded
vs anonymous in http://www.doubleclick.com/products/advertisingexchange/

benefits_for_sellers.aspx.



CTR estimates are not precise. (1) Say CTR was overestimated to be 0.2. Then
the network bids $200 CPM, spend is $200 for 1000 impressions, and revenue
is $100. This assumes the network will get at least 1000 impressions if they
overbid, which is reasonable given large inventory in ad slots. (2) Say CTR was
underestimated to be 0.05 and the network bids $50 CPM. Then spend is $50x
for x fraction of 1000 impressions, and revenue is $100x. The assumption is the
network will only get x fraction of 1000 impressions. To summarize, the outcome
is (200 − 100) loss if network overbid vs (100 − 50)x profit if network underbid
and loss of (1 − x) fraction of impressions.

Problem 7 Consider advertisers who contract with the network for CPC bids,
certain reach (number of distinct users reached) and frequency counts (the num-
ber of times a user sees an ad). Design an algorithm for ad networks to place
CPM bids into AdX that for a given risk level and volatility, maximizes expected
revenue and guarantees contract counts. Take into account bidding into the ex-
change for contingent good as in Section 3.2.

3.7 AdX integrity

Exchanges in general strive for transparency. The ability of participants to un-
derstand the inventory they buy or be convinced of the integrity of underlying
process will, in general, induce more to access the exchange. In reality, systems
need a balance of overall trust and with legal or technological checks of key parts,
if needed. While this balance will be worked out by the marketplace, here is a
theoretical problem.

Problem 8 Design a cryptographically sound real-time auction protocol so that
any participating party in AdX can verify that (a) all communication, accounting
and computations were performed correctly, and (b) auction was closed envelope,
that is, no bidder sees others’ bids prior to the auction. This has to work for re-
peated auction of impressions in AdX where some information is revealed between
impressions.

Secure and collusion free auction design has been explored by the cryptog-
raphy community, eg using homomorphic encryption scheme [20]. However, one
still needs realtime methods for AdX application, methods which will run with
round trip times of browsers accessing webpages. Also, one needs a clear model
to prove strong cryptographic properties of the various protocols. Some progress
is in [22].

3.8 Configuration auctions

Even when there is a single slot in w, different configurations of ads — eg 1
video ad or 2 image ads or 4 text ads — might fit there. While the exchange
will return the most efficient configuration in total CPM bids, an interesting
question is how to spread the price among the ads in the winning configuration



(Problem 6 in [6]). Further, inherently, the bids from the networks are for entire
configurations which makes it more like configuration auctions and associated
externalities [23].

We go beyond to look at cases where w has multiple ad slots. How should
they be sold? One approach is to sell the slots independently. This is easy on
the system but advertisers may wish to appear in only one slot on a page which
can not be guaranteed. Another approach is to sell all the slots in one block, but
such exclusive packages may not be popular except on premium sites. A realistic
approach is to make AdX more sophisticated and consider all slots together in
some auction. In reality, advertisers have complex preferences. For example, an
advertiser may value a slot on the right highly only if they did not win the top
slot. That is, advertisers have conditional values.

Problem 9 Devise a suitable bidding language for advertisers and ad networks
to express (conditional) preferences for slots, and design suitable auction mecha-
nisms for the exchange as well as for ad networks to allocate substitutable winners
if any.

We propose a simple approach. Publisher P (w) presents a list of slots in w
in the order in which will be auctioned. Then ad networks can return one bid for
each slot, and specify the maximum number of impressions they wish. The auc-
tion proceeds slot by slot; winners are removed from consideration for successive
slots if they are fulfilled. We call this linearized auction (LA). LA trades off effi-
ciency for expressiveness and lets bidders represent some conditional preferences
but not others. Studying suitable LA mechanisms including the impact of pub-
lisher’s choice of the list will be of interest. Also, comparison of LA mechanisms
with richer tree bidding [24] will be of interest.

4 Concluding Remarks

This writeup provides some insight into the research issues in AdX that mod-
els exchanges like RightMedia, AdGCN and DoubleClick. These exchanges are
emerging as major new platforms to sell display ads on the Internet, but are
still nascent. Progress on research issues listed here will likely impact the design
and growth of not only these ad exchanges but also the “ecosystem” of bidders,
optimizers and quantifiers around them. We list some more issues:

1. Game theory of adverisers. Advertisers may go to multiple networks, or
choose networks strategically. What are the resulting dynamics? How does
their strategic behavior affect competition within their campaigns along mul-
tiple ad paths, across advertisers, across ad networks and ultimately, across
exchanges?

2. Ad Quality. In sponsored search, quality of an ad is correlated with click-
through, and so is the pricing and incentives of the advertiser. We need a
similar quality metric for impressions and endogenize that in the auction to
align advertiser incentives. A proposal is to generate a suitable Markov model
for users that will capture even the long term impact of ad impressions.
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