
HPE Performance Software — Message
Passing Interface User Guide

Part Number: 007-3773-033
Published: November 2017
Edition: 1

Abstract
This publication describes how to use HPE Performance Software - Message Passing Interface
1.1 and MPT 2.17, which facilitate parallel programming and support the MPI standard.

© Copyright 2004, 2017 Hewlett Packard Enterprise Development LP

Notices
The information contained herein is subject to change without notice. The only warranties for Hewlett Packard
Enterprise products and services are set forth in the express warranty statements accompanying such
products and services. Nothing herein should be construed as constituting an additional warranty. Hewlett
Packard Enterprise shall not be liable for technical or editorial errors or omissions contained herein.

Confidential computer software. Valid license from Hewlett Packard Enterprise required for possession, use,
or copying. Consistent with FAR 12.211 and 12.212, Commercial Computer Software, Computer Software
Documentation, and Technical Data for Commercial Items are licensed to the U.S. Government under
vendor's standard commercial license.

Links to third-party websites take you outside the Hewlett Packard Enterprise website. Hewlett Packard
Enterprise has no control over and is not responsible for information outside the Hewlett Packard Enterprise
website.

Acknowledgments
NVIDIA is a registered trademark of NVIDIA Corporation in the U.S. and other countries.

Intel® is a registered trademark of Intel Corporation in the U.S. and other countries.

Linux® is the registered trademark of Linus Torvalds in the U.S. and other countries.

Red Hat® is a registered trademark of Red Hat, Inc. in the United States and other countries.

Contents

About the HPE Performance Software -- Message Passing Interface
(HPE Performance MPI) product.. 6

Compatibility information... 6
MPI Information .. 9

Configuring the Message Passing Toolkit (MPT)....................................10
Installing the Array Services software on HPE Apollo cluster systems .. 10
Configuring MPT on an HPE Superdome Flex Grid system..13

Getting started with HPE Performance MPI.. 19
Loading the MPI software module and specifying the library path ... 19
Compiling and linking the MPI program...20
Launching the MPI application.. 21
Compiling and running OpenSHMEM applications... 26
Building MPI Fortran modules... 27
Using huge pages..29
Using HPE Performance MPI with NVIDIA GPUs...31

Programming with HPE Performance MPI.. 32
Job termination and error handling..32
Signals...33
Buffering.. 33
Multithreaded programming...34
Interoperability with the OpenSHMEM programming model... 34
Miscellaneous HPE Performance MPI features.. 34
Programming optimizations...35
Additional programming model considerations..37

Debugging MPI applications...38
MPI routine argument checking...38
Using the TotalView debugger with MPI programs..38
Using idb and gdb with MPI programs ... 38
Using the DDT debugger with MPI programs..38
Using Valgrind with MPI programs.. 39

Working with other MPI implementations... 40
Using perfboost ..40
MPI supported functions..41

Using Berkeley Lab Checkpoint/Restart (BLCR).................................... 42
Installing BLCR..42
Using BLCR with MPT...42

Contents 3

Run-time tuning... 44
Reducing run-time variability... 44
Tuning MPI buffer resources... 45
Avoiding message buffering - enabling single copy.. 45
Memory placement and policies..46
Tuning MPI/OpenMP hybrid codes..48
Tuning running applications across multiple hosts.. 49
Tuning for running applications over the InfiniBand interconnect..50
Tuning for running applications over the Intel Omni-Path interconnect...52
MPI on HPE Superdome Flex Grid systems... 53
Measuring parallelization and parallelizing your code...55
Suspending MPI jobs...57

HPE Performance MPI performance profiling...58
Using perfcatch ..58
Writing your own profiling interface... 62
Using third-party profilers.. 62
MPI internal statistics...62

Troubleshooting and frequently asked questions..................................64
Why is the mpiexec_mpt command failing? ...64
Why does my code run correctly until it reaches MPI_Finalize() and then hang?65
Why does my hybrid code (using OpenMP) stall on the mpirun command?65
Why do I keep receiving warning messages about the MPI_REQUEST_MAX value being too
small? ... 65
Why is it that I do I not see any stdout and/or stderr output from my MPI application?66
Where can I find more information about the OpenSHMEM programming model? 66
Why does the ps command say that my memory use (SIZE) is higher than expected? 66
What does the MPI: could not run executable message mean?.. 66
How do I combine MPI with other tools?... 66
Why do I see stack traceback information when my MPI job aborts?... 67

Array Services..68
Installing and configuring array services... 69
Array Services commands and arguments..69
Array Services environment variables...71
Obtaining information about the array... 71

Using the Message Passing Toolkit (MPT) plugin for Nagios............... 74
Preparing to install the MPT Nagios plugin... 74
Installing the MPT Nagios plugin...74
Viewing MPT messages from within Nagios and clearing the messages .. 77
(Optional) Modifying the notification email...78

High-performance computing tools (HPC) tools.................................... 80
Data placement tools...80
Flexible File I/O (FFIO)..85

4 Contents

Websites... 92

Support and other resources... 93
Accessing Hewlett Packard Enterprise Support..93
Accessing updates.. 93
Customer self repair.. 94
Remote support...94
Warranty information... 94
Regulatory information.. 95
Documentation feedback...95

Using the Message Passing Toolkit (MPT) on a virtual machine.......... 96
Installing software within the vitual machine (VM)...96
Adjusting virtual machine system settings...97
Running HPE Performance MPI programs from within a virtual machine...98

Array Services system administration information99
Manually configuring Array Services on multiple hosts... 99
Changing the security access level in the AUTHENTICATION parameter102
Configuring nodes into arrays..102
About the Array Services configuration files..103
Designing Array Services commands..105

Contents 5

About the HPE Performance Software --
Message Passing Interface (HPE Performance
MPI) product

The Message Passing Interface (MPI) standard supports C and Fortran programs with a library and
supporting commands. MPI operates through a technique known as message passing, which is the use of
library calls to request data delivery from one process to another or between groups of processes. MPI also
supports parallel file I/O and remote memory access (RMA).

The HPE Performance Software -- Message Passing Interface (HPE Performance MPI) software supports the
MPI standard. HPE Performance MPI facilitates parallel programming. This publication describes HPE
Performance MPI 1.1, which supports the MPI 3.1 standard.

HPE Performance MPI supports the OpenSHMEM standard. The OpenSHMEM standard describes a low-
latency library that supports RMA on symmetric memory in parallel environments. The OpenSHMEM
programming model is a partitioned global address space (PGAS) programming model that presents
distributed processes with symmetric arrays that are accessible via PUT and GET operations from other
processes. This publication describes software that supports OpenSHMEM version 1.3. The HPE SHMEM
programming model is the basis for the OpenSHMEM™ programming model specification that is being
developed by the Open Source Software Solutions multivendor working group.

The following significant features make HPE Performance MPI the preferred implementation:

• Data transfer optimizations for the HPE Superdome Flex Grid technology, where available, including
single-copy data transfer.

• Multirail InfiniBand support, which takes full advantage of the multiple InfiniBand fabrics available on HPE
SGI 8600 and SGI ICE systems.

• Optimized MPI remote memory access (RMA) one-sided commands.

• Support for multiple application binary interfaces (ABIs), including MPICH and OpenMPI.

HPE's support for MPI and OpenSHMEM is built on top of the Message Passing Toolkit (MPT). MPT is a high-
performance communications middleware software product. On some platforms, MPT uses Array Services to
launch applications. MPT is optimized for large-scale, high-performance cluster computing.

NOTE:

The SGI UV NUMAlink technology is now known as the HPE Superdome Flex Grid technology.

The HPE Performance MPI documentation uses the term HPE Superdome Flex Grid systems when it
refers to HPE Superdome Flex systems, the HPE Integrity MC990 X systems, and SGI UV systems.

Compatibility information
The following table describes compatibility between HPE Performance MPI 1.1 and other products.

6 About the HPE Performance Software -- Message Passing Interface (HPE Performance MPI) product

Technology Notes

Red Hat Enterprise Linux (RHEL) operating
system

RHEL 7.X and RHEL 6.X.

SLES operating system SLES 12 SPX and SLES 11 SPX.

CentOS operating system CentOS 7.X CentOS 6.X.

Fortran 2008 Supports Fortran 2008.

Computing platforms Cluster platforms and HPE Superdome Flex Grid platforms.

The cluster platforms are as follows:

• HPE SGI 8600 cluster systems

• HPE Apollo 2000, 6000, and 6500 cluster systems

• HPE Apollo 20 and 40 cluster systems

• HPE Proliant systems

• SGI ICE cluster systems

• SGI Rackable cluster systems

The HPE Superdome Flex Grid platforms are as follows:

• HPE Superdome Flex systems

• HPE Integrity MC990 X systems

• SGI UV systems

Multi-rail InfiniBand (IB)

Multi-rail Intel Omni-Path Architecture (OPA) Supported on systems running IFS 10.2 or later.

TCP/IP communication

Mellanox Fabric Collective Accelerator (FCA)
3.x / HCOLL

NVIDIA GPUDirect remote direct memory
access (RDMA) over IB

NVIDIA GPUDirect RDMA

Requires Mellanox Open Fabrics Enterprise Distribution
(OFED).

No support for MPI RMA passive windows.

Table Continued

About the HPE Performance Software -- Message Passing Interface (HPE Performance MPI) product 7

Technology Notes

Checkpoint-restart (CPR), supported through
Berkeley Lab checkpoint restart (BLCR).

Supports jobs running over shared memory, InfiniBand, and
TCP/IP.

No support for CPR when using the following:

• OpenSHMEM

• MPI remote memory access (RMA) passive windows

• MPI Spawn

• Process managment interface (PMI), which is commonly
used by the simple Linux utility for resource
management (SLURM)

Third-party debugging and profiling tools:

• Allinea DDT

• Intel VTune

• RogueWave TotalView

• Tuning and Analysis Utilities (TAU)

• Vampir

Contact HPE for information about additional debugging
and profiling tools.

Process management interfaces (PMIs),
specifically PMIx and PMI2.

Supported when running under SLURM.

Third-party workload managers:

• Altair PBS Professional

• SLURM

• UNIVA Grid Engine

• IBM LSF

• Moab / TORQUE

NOTE:

This documentation uses the term cluster systems to refer to cluster computers, cluster systems, or
cluster nodes in HPE Apollo systems, HPE SGI 8600 systems, SGI ICE systems, and SGI Rackable
systems. The term cluster does not pertain to HPE Integrity MC 990 X systems or to SGI UV computer
systems because they are large-memory, single system image (SSI) systems.

HPE Superdome Flex systems, HPE Integrity MC 990 X systems, and SGI UV systems use HPE
Superdome Flex Grid technology, formerly known as NUMAlink technology. This documentation uses
the term HPE Superdome Flex Grid systems to refer to these platforms. The HPE Superdome Flex
Grid systems support a single Linux image of thousands of processors distributed over many sockets
and many hub application-specific integrated circuits (ASICs).

8 About the HPE Performance Software -- Message Passing Interface (HPE Performance MPI) product

MPI Information
For information about the MPI standard, see the following:

• The Message Passing Interface Forum's website, which is as follows:

http://www.mpi-forum.org/

• Using MPI -- 2nd Edition: Portable Parallel Programming with the Message Passing Interface (Scientific
and Engineering Computation), by Gropp, Lusk, and Skjellum. ISBN-13: 978-0262571326.

• The University of Tennessee technical report. See reference [24] from Using MPI: Portable Parallel
Programming with the Message-Passing Interface, by Gropp, Lusk, and Skjellum. ISBN-13:
978-0262571043.

• Journal articles in the following publications:

◦ International Journal of Supercomputer Applications , volume 8, number 3/4, 1994

◦ International Journal of Supercomputer Applications, volume 12, number 1/4, pages 1 to 299, 1998

MPI Information 9

http://www.mpi-forum.org/

Configuring the Message Passing Toolkit (MPT)
When you installed the HPE Performance Suite -- Message Passing Interface (HPE Performance MPI)
software, you also installed MPT. Before you can run any HPE Performance MPI programs, however, you
need to configure the MPT software. The procedures in this chapter explain how to configure MPT.

High-performance computers often host several released versions of MPT. This environment provides users
with the flexibility they need to develop and run HPE Performance MPI programs. The configuration
instructions in this chapter explain how to accommodate these multiple versions if your site needs to have
multiple versions installed.

The configuration procedure differs, depending on your platform, as follows:

• On a cluster computing system, the MPT installation and configuration procedure includes image-
management steps.

For information about how to configure MPT on an HPE SGI 8600 system, an SGI ICE system, an HPE
Apollo 20 series system, an HPE Apollo 40 series system, or an SGI Rackable cluster system, see the
following:

HPE SGI Management Suite Installation and Configuration Guide

For information about how to install and configure MPT and Array Services on an HPE Apollo 6500 series,
an HPE Apollo 6000 series, an HPE Apollo 2000 series, see the following:

Installing the Array Services software on HPE Apollo cluster systems on page 10

• On an HPE Superdome Flex Grid system, see the following:

Configuring MPT on an HPE Superdome Flex Grid system on page 13

Installing the Array Services software on HPE Apollo cluster
systems

You need to install and configure Array Services software on the cluster before any HPE Performance MPI
programs can run. The HPE factory installs Array Services on many HPE cluster systems. If you administer
one of the following cluster systems, however, you need to install the Array Services software manually:

• HPE Apollo 6500

• HPE Apollo 6000

• HPE Apollo 2000

The arrayconfig command creates the following files on the compute service node to which you are
logged in:

• /etc/array/arrayd.conf
• /etc/array/arrayd.auth

NOTE:

If SLURM is installed on the cluster, you do not need to install Array Services. Clusters with SLURM do
not use the Array Services software.

The following topics explain how to install and configure Array Services:

10 Configuring the Message Passing Toolkit (MPT)

http://www.hpe.com/support/sgi-mgmt-suite-inst-009

• Installing and configuring Array Services on HPE Apollo cluster systems on page 11

• Array Services security options on page 12

• Array Services configuration examples on page 13

Installing and configuring Array Services on HPE Apollo cluster systems
The following procedure explains how to install Array Services on HPE Apollo systems.

Procedure

1. Log into the head node.

2. Write the list of cluster nodes to a temporary file:

$ cmu_show_nodes > nodes.txt

3. (Conditional) Edit the node list to include only the compute nodes that you want to include in the array.

Complete this step if you do not want to include all the cluster nodes in the array.

4. Copy the list of cluster nodes to a directory of your choosing on one of the compute nodes.

For example:

$ scp nodes.txt first_compute_node:/somewhere

The preceding command copies the nodes.txt file to the somewhere directory on
first_compute_node.

5. Use the ssh command to log into the compute node to which you wrote the node list.

For example:

$ ssh first_compute_node

6. Change to the directory in which the node list resides.

For example:

$ cd somewhere

7. Use the arrayconfig command to configure the nodes into an array.

The command format is as follows:

/usr/sbin/arrayconfig -a arrayname -f -m -A method node node ...

The command parameters are as follows:

• For arrayname, specify a name for the array. The default is default.

• For method, specify munge, none, or simple. For information about the security levels, see the
following:

Installing and configuring Array Services on HPE Apollo cluster systems 11

Array Services security options on page 12

• For node, specify the nodes to include. For example /tmp/nodelist or a list of individual node
names.

For example, the following command configures the nodes into an array and uses the -D parameter to
distribute the arrayd.conf file:

$ arrayconfig -fmD -a default -A simple 'cat nodes.txt'

Array Services security options
The following table explains the Array Services security options.

Security option name Effect

simple (default) Generates hostname/key pairs by using either the OpenSSL, rand
command, 64-bit values (if available) or by using $RANDOM Bash facilities.

munge Configures additional security provided by MUNGE. The installation process
installs munge by default but does not configure munge.

none You can configure none in one of the following ways:

• none on all nodes, including the login node. The login node can be a
compute node that is designated for user logins and/or other services.

When you specify none, Array Services disables all authentication.

OR

• none on the the compute nodes and noremote on the login node. A
security setting of noremote prevents remote logins to the array.

When you specify noremote on the compute services nodes and specify
none on the compute nodes, users must run their jobs directly from the
compute services nodes. In this case, users cannot submit HPE
Performance MPI jobs remotely.

Manually configuring Array Services on multiple hosts on page 99
explains how to configure noremote on the login node.

On cluster systems, Array Services uses the pluggable authentication mechanism (PAM) to control machine
access. Typically, the PAM file requires no editing or other user intervention. The Array Services PAM
configuration file is as follows:

/etc/pam.d/arrayd
On RHEL platforms, HPE Performance MPI supports SELinux.

More information

(Conditional) Configuring SELinux (HPE Superdome Flex Grid RHEL platforms only) on page 17

12 Array Services security options

Array Services configuration examples
Example 1. To specify that array myarray use MUNGE security and include all HPE Apollo compute nodes,
enter the following command:

/usr/sbin/arrayconfig -a myarray -f -m -A munge /tmp/nodelist

Example 2. To specify that array yourarray use no security, include one compute service node, and include
all HPE Apollo compute nodes, enter the following command:

/usr/sbin/arrayconfig -a yourarray -f -m -A none n1 /tmp/nodelist

Configuring MPT on an HPE Superdome Flex Grid system
The information in the following procedures explains how to configure MPT on an HPE Superdome Flex Grid
system:

• Verifying prerequisites on page 13

• (Optional) Installing the MPT software Into a nondefault working directory on page 14

• Adjusting file resource limits on page 16

• Completing the configuration on page 17

• (Conditional) Configuring SELinux (HPE Superdome Flex Grid RHEL platforms only) on page 17

Verifying prerequisites
The following procedure explains how to verify the MPT software's installation prerequisites.

Procedure

1. As the administrator user, log into the HPE Superdome Flex Grid system.

2. Verify that you have one of the following operating system software packages installed and configured:

• Red Hat Enterprise Linux (RHEL) 7 or 6

• SLES 12 or 11

You can enter the following command to verify your operating system version:

cat /etc/*release

3. Enter the following command to verify that the HPE Performance MPI 1.0 release is installed:

cat /etc/hpe-mpi-release
HPE MPI 1.1, Build xxxxxx.rhel74-xxxxxxxxxx

4. Proceed to one of the following:

Array Services configuration examples 13

• (Optional) Installing the MPT software Into a nondefault working directory on page 14, which
explains how to configure MPT in a way that lets you maintain more than one released version of the
software on your HPE Superdome Flex Grid system.

• Adjusting file resource limits on page 16, which assumes you want the MPT software to remain in
the default installation directory.

(Optional) Installing the MPT software Into a nondefault working directory
Perform the procedure in this topic if you want to install MPT into a custom, nondefault working directory. You
might want to perform the procedure in this topic if, for example, you have a nondefault filesystem or if you
want to use HPE Performance MPI on one of the following platforms:

• HPE Apollo 6500 system

• HPE Apollo 6000 system

• HPE Apollo 2000 system

The RPM utility enables you to create, install, and manage relocatable packages. You can install a matched
set of MPT RPMs in either the default location or an alternate location. The default location for installing the
MPT RPM is /opt/hpe/hpc/mpt/mpt-2.rel_level. To install the MPT RPM in an alternate location,
use the --relocate parameter to the rpm command. The --relocate parameter specifies an alternate
base directory for the MPT software installation.

Either /opt/hpe/hpc/mpt/mpt-2.rel_level or both /opt/hpe/hpc/mpt/mpt-2.rel_level
and /usr/share/modules/modulefiles/mpt can be relocated. The post installation script reconfigures
the module file for the new location as long as the oldpath argument in the rpm(8) command precisely
matches the description in the RPM info. The general format for the rpm command is as follows:

rpm --relocate oldpath=newpath

• For oldpath, specify the MPT software's current location.

If you install the MPT software in an alternate location, the rpm command's oldpath argument must
precisely match the relocation listed in the RPM for the environment module automatic modification feature
to be correct.

• For newpath, specify the location to which you want to install the MPT software.

Procedure

1. Plan how to avoid problems related to uninstalled RPM dependencies.

The following are two approaches:

14 (Optional) Installing the MPT software Into a nondefault working directory

• Option 1: If you install from a system that does not run MPT jobs, it might be appropriate to use the --
nodeps parameter on the rpm(8) command line. This parameter directs the rpm(8) command to
ignore dependencies.

• Option 2: If you install from a system or cluster nodes upon which MPT jobs need to run, type the
following package manager commands on each cluster node or cluster node image to locally install the
needed prerequisites on all the cluster nodes:

◦ On SLES platforms, type the following command:

zypper install cpuset-utils arraysvcs xpmem libbitmask

◦ On RHEL platforms, type the following command:

yum install cpuset-utils arraysvcs xpmem libbitmask

2. Use the rpm command to specify an alternate location for the MPT software bundle.

Example 1. The following example shows how to install MPT in /usr/local/hpe/mpt/mpt-2.17
rather than in /opt, which is the default:

rpm -i --relocate /opt/hpe/hpc/mpt/mpt-2.17=/usr/local/hpe/mpt/mpt-2.17 \
sgi-mpt-*.x86.rpm

Example 2: The following RHEL example shows how to install the modules, in addition to the total MPT
software bundle, to /usr/local/hpe/mpt/mpt-2.17 and /usr/local/mod/mpt-2.17:

rpm -i --relocate /opt/hpe/hpc/mpt/mpt-2.17=/usr/local/hpe/mpt/mpt-2.17 \
--relocate /usr/share/Modules/modulefiles/mpt=/usr/local/mod/mpt-2.17 \
sgi-mpt-*.x86_64.rpm

In the preceding RHEL example, note that the Modules directory in the argument to the second --
relocate parameter begins with an uppercase letter.

Example 3. The following SLES example shows how to install the modules, in addition to the total MPT
software bundle, to /usr/local/hpe/mpt/mpt-2.17 and /usr/local/mod/mpt-2.17:

rpm -i --relocate /opt/hpe/hpc/mpt/mpt-2.17=/usr/local/hpe/mpt/mpt-2.17 \
--relocate /usr/share/modules/modulefiles/mpt=/usr/local/mod/mpt-2.17 \
sgi-mpt-*.x86_64.rpm

In the preceding SLES example, note that the modules directory in the argument to the second --
relocate parameter begins with a lowercase letter.

Example 4:

The following example rpm command output shows the available relocations:

rpm -qpi sgi-mpt-2.17-sgi*.x86_64.rpm
... Relocations: /opt/hpe/hpc/mpt/mpt-2.17 /usr/share/modules/modulefiles/mpt

NOTE: In the preceding output, the example shows only the significant message at the end of the
output string.

3. Proceed to the following:

Configuring the Message Passing Toolkit (MPT) 15

Adjusting file resource limits on page 16

For more information about using the rpm command, see the rpm man page.

Adjusting file resource limits
The following procedure explains how to increase resource limits on the number of open files and enforce
new security policies.

Procedure

1. Enter the following command to retrieve the number of cores on this computer:

cat /proc/cpuinfo | grep processor | wc -l

In the preceding line, the last character is a lowercase L, not the number 1.

This cat(1) command returns the number of cores.

2. Use a text editor to open file /etc/security/limits.conf.

3. Add the following line to file /etc/security/limits.conf:

* hard nofile limit

For limit, specify an open file limit, for the number of MPI processes per host, based on the guidelines in
the following table.

Processes/host limit

Fewer than 512 3000

Up to 1024 6000

Up to 2048 8192 (default)

4096 or more 21000

MPI jobs require a large number of file descriptors, and on larger systems, you might need to increase
the system-wide limit on the number of open files. The default value for the file-limit resource is 8192. For
example, the following line is suitable for 512 MPI processes per host:

* hard nofile 3000

4. Add the following line to file /etc/security/limits.conf:

* hard memlock unlimited
The preceding line increases the resource limit for locked memory.

5. Save and close file /etc/security/limits.conf.

6. Use a text editor to open file /etc/pam.d/login, which is the Linux pluggable authentication module
(PAM) configuration file.

7. Add the following line to file /etc/pam.d/login:

session required /lib/security/pam_limits.so

16 Adjusting file resource limits

8. Save and close the file.

9. (Conditional) Update other authentication configuration files as needed.

Perform this step if your site allows other login methods, such as ssh, rlogin, and so on.

10. Proceed to the following:

Completing the configuration on page 17

Completing the configuration
The following procedure explains how to complete the MPT configuration.

Procedure

1. Run a test MPI program to make sure that the new software is working as expected.

2. (Conditional) Inform your user community of the location of the new MPT release on this computer.

Perform this step if you moved the MPT software to a nondefault location.

In this procedure's examples, the module files are located in the following directories:

• On RHEL platforms:

/opt/mpt/mpt-2.17/usr/share/Modules/modulefiles/mpt/mpt-2.17
• On SLES platforms:

/opt/mpt/mpt-2.17/usr/share/modules/modulefiles/mpt/mpt-2.17

3. (Conditional) Configure SELinux.

Proceed to the following:

(Conditional) Configuring SELinux (HPE Superdome Flex Grid RHEL platforms only) on page 17

(Conditional) Configuring SELinux (HPE Superdome Flex Grid RHEL platforms
only)

The procedure in this topic explains how to load the Array Services policy module into SELinux. Before you
use SELinux enforcing mode for multihost applications, make sure to complete the procedure in this topic.

After you complete this procedure, if you encounter problems when launching multihost applications, check
for SELinux reports in the system log.

For information about how to configure SELinux, see the following:

HPE Superdome Flex Server System Software Installation and Configuration Guide

For information about how to fun HPE Performance MPI with security software, contact your HPE support
representative.

Procedure

1. Log into the system as the administrator user.

2. Use the semodule command to load the policy module.

Completing the configuration 17

http://www.hpe.com/support/flex-inst-001

For example, the following command loads the policy module from its default location:

$ semodule -i /usr/share/selinux/packages/sgi_arraysvcs.pp.bz2
3. Use the fixfiles command to update the Array Services files to reflect the appropriate security labels.

For example:

$ fixfiles -R sgi-arraysvcs restore

The preceding steps show how to use the semodule command and the fixfiles command to configure
SELinux. As an alternative to these commands, use the arrayconfig -S command as described on the
arrayconfig(1M) manpage. For example:

$ arrayconfig -fmD -S hostA hostB hostC...

18 Configuring the Message Passing Toolkit (MPT)

Getting started with HPE Performance MPI
This chapter provides procedures for building MPI applications. It provides examples of the use of the
mpirun command to launch MPI jobs. It also provides procedures for building and running SHMEM
applications.

The process of running MPI applications consists of the following procedures:

• Loading the MPI software module and specifying the library path on page 19

• Compiling and linking the MPI program on page 20

• Launching the MPI application on page 21

Loading the MPI software module and specifying the library
path

You need to ensure that programs can find the MPT library routines when the programs run.

The default locations for the include files, the .so files, the .a files, and the mpirun command are pulled in
automatically. To ensure that the mpt software module is loaded, you can load site-specific library modules, or
you can specify the library path on the command line before you run the program.

The following procedure explains how to specify the path to the MPI libmpi.so library.

Procedure

1. (Optional) Set the library path in the mpt module file.

Complete this step if your site uses module files.

Sample module files reside in the following locations:

• /opt/hpe/hpc/mpt/mpt-mpt_rel/doc
• /usr/share/modules/modulefiles/mpt/mpt_rel

To load the MPT module, type the following command:

% module load mpt

2. Determine the directory into which the MPT software is installed.

% ldd a.out
libmpi.so => /tmp/usr/lib/libmpi.so (0x40014000)
libc.so.6 => /lib/libc.so.6 (0x402ac000)
libdl.so.2 => /lib/libdl.so.2 (0x4039a000)
/lib/ld-linux.so.2 => /lib/ld-linux.so.2 (0x40000000)

Getting started with HPE Performance MPI 19

Line 1 in the preceding output shows the library path correctly as /tmp/usr/lib/libmpi.so. If you do
not specify the correct library path, the MPT software searches incorrectly for the libraries in the default
location of /usr/lib/libmpi.so.

3. Enter the following command to set the library path:

% setenv LD_LIBRARY_PATH /library_path/usr/lib
For library_path, type the path to the directory in which the MPT software is installed.

Example 1. The following command uses information from the previous step to set the library path
to /tmp/usr/lib:

% setenv LD_LIBRARY_PATH /tmp/usr/lib

Example 2. The following command assumes that the libraries reside in /data/nfs/lib, which might be
the case if you installed MPT in an NFS-mounted file system:

% setenv LD_LIBRARY_PATH /data/nfs/lib

Compiling and linking the MPI program
You can use one of the MPI wrapper compiler commands to run your program, or you can call the compiler
directly. The following topics explain these two alternatives:

• Compiling with the wrapper compilers on page 20

• Compiling with the GNU or Intel compilers on page 21

Compiling with the wrapper compilers
The MPI wrapper compilers automatically incorporate the compiling and linking functions into the compiler
command. If possible, use one of the following wrapper compiler commands to run your program:

• mpif08 -I /install_path/usr/include file.f -L lib_path/usr/lib
• mpif90 -I /install_path/usr/include file.f -L lib_path/usr/lib
• mpicxx -I /install_path/usr/include file.c -L lib_path/usr/lib
• mpicc -I /install_path/usr/include file.c -L lib_path/usr/lib

The variables in the preceding commands are as follows:

• For install_path, type the path to the directory in which the MPT software is installed.

• For file, type the name of your C or Fortran program file name.

• For lib_path, type the path to the library files.

For example:

% mpicc -I /tmp/usr/include simple1_mpi.c -L /tmp/usr/lib

20 Compiling and linking the MPI program

Compiling with the GNU or Intel compilers
This topic explains how to run an MPI program if you need to call the GNU or Intel compilers directly. When
the MPT RPM is installed as default, the commands to build an MPI-based application using the .so files are
as follows:

• To compile using GNU compilers, choose one of the following commands:

% g++ -o myprog myprog.C -lmpi++ -lmpi
% gcc -o myprog myprog.c -lmpi

• To compile programs with the Intel compilers, choose one of the following commands:

% icc -o myprog myprog.c -lmpi # C - version 8
% mpif08 simple1_mpi.f # Fortran 2008 wrapper compiler
% mpif90 simple1_mpi.f # Fortran 90 wrapper compiler
% ifort -o myprog myprog.f -lmpi # Fortran - version 8
% mpicc -o myprog myprog.c # MPI C wrapper compiler
% mpicxx -o myprog myprog.C # MPI C++ wrapper compiler

NOTE:

Use the Intel compiler to compile Fortran 90 programs.

• To compile Fortran programs with the Intel compiler and enable compile-time checking of MPI subroutine
calls, insert a USE MPI statement near the beginning of each subprogram to be checked. Also, use the
following command:

% ifort -I/usr/include -o myprog myprog.f -lmpi # version 8

NOTE:

The preceding command assumes a default installation. If your site has more than one version of
MPT installed, or if your site installed MPT into a nondefault location, contact your system
administrator to verify the location of the module files. For a nondefault installation location,
replace /usr/include with the name of the relocated directory.

• The special case of using the Open64 compiler in combination with hybrid MPI/OpenMP applications
requires separate compilation and link command lines. The Open64 version of the OpenMP library
requires the use of the -openmp option on the command line for compiling, but it interferes with proper
linking of MPI libraries. Use the following sequence:

% opencc -o myprog.o -openmp -c myprog.c
% opencc -o myprog myprog.o -lopenmp -lmpi

Launching the MPI application
You can use either a workload manager or the mpirun command to launch an MPI application.

The following topics explain these alternatives:

Compiling with the GNU or Intel compilers 21

• Using a Workload Manager to Launch an MPI Application on page 22

• Using the mpirun Command to Launch an MPI Application on page 23

• Using MPI Spawn Functions to Launch an MPI Application on page 24

Using a Workload Manager to Launch an MPI Application
When an MPI job is run from a workload manager like PBS Professional, Torque, or Load Sharing Facility
(LSF), it needs to start on the cluster nodes and CPUs that have been allocated to the job. For multi-node
MPI jobs, the command that you use to start this type of job requires you to communicate the node and CPU
selection information to the workload manager. MPT includes one of these commands, mpiexec_mpt, and
the PBS Professional workload manager includes another such command, mpiexec. The following topics
describe how to start MPI jobs with specific workload managers:

• PBS Professional on page 22

• Torque on page 22

• Simple Linux Utility for Resource Management (SLURM) on page 23

PBS Professional
You can run MPI applications from job scripts that you submit through workload managers such as the PBS
Professional workload manager.

Process and thread pinning onto CPUs is especially important on HPE Superdome Flex Grid systems.
Process pinning is performed automatically if PBS Professional is set up to run each application in a set of
dedicated cpusets. In these cases, PBS Professional sets the PBS_CPUSET_DEDICATED environment
variable to the value YES. This has the same effect as setting MPI_DSM_DISTRIBUTE=ON. Process and
thread pinning occur when you use omplace.

Example 1. To run an MPI application with 512 processes, include the following in the directive file:

#PBS -l select=512:ncpus=1
 mpiexec_mpt ./a.out
Example 2. To run an MPI application with 512 Processes and four OpenMP threads per process, include the
following in the directive file:

#PBS -l select=512:ncpus=4
 mpiexec_mpt omplace -nt 4 ./a.out
Some third-party debuggers support the mpiexec_mpt command. The mpiexec_mpt command includes a
-tv option for use with TotalView and includes a -ddt option for use with DDT. For more information, see
Debugging MPI applications on page 38.

PBS Professional includes an mpiexec command that enables you to run HPE Performance Software --
Message Passing Interface (HPE Performance MPI) applications. PBS Professional's command does not
support the same set of extended options that the mpiexec_mpt command supports.

For more information about the PBS Professional workload manager, see the following website:

http://www.pbsworks.com/SupportGT.aspx?d=PBS-Professional,-Documentation

Torque
When running Torque, HPE recommends that you use the following mpiexec_mpt(1) command to launch
MPT jobs:

mpiexec_mpt [-n P] ./a.out

22 Using a Workload Manager to Launch an MPI Application

http://www.pbsworks.com/SupportGT.aspx?d=PBS-Professional,-Documentation

The P argument is optional. By default, the program runs with the original number of processes specified on
the job initialization in Torque. To use P, specify is the total number of MPI processes in the application. This
syntax applies whether running on a single host or a clustered system.

For more information, see the mpiexec_mpt(1) manpage. The mpiexec_mpt command has a -tv option
for use by MPT when running the TotalView Debugger with a workoad manager like Torque. For more
information about using the mpiexec_mpt command -tv option, see Using the TotalView debugger with
MPI programs on page 38.

Simple Linux Utility for Resource Management (SLURM)
HPE Performance MPI is adapted for use with the SLURM workload manager. If you want to use HPE
Performance MPI with SLURM, use the SLURM pmi2 MPI plug-in or the SLURM pmix MPI plug-in.

For general information about SLURM, see the following website:

http://slurm.schedmd.com

For more information about how to use MPI with SLURM, see the following website:

http://slurm.schedmd.com/mpi_guide.html

Using the mpirun Command to Launch an MPI Application
The mpirun command starts an MPI application. Use the mpirun command when you are not using a
resource manager, such as PBS Professional.

For a complete specification of the command line syntax, see the mpirun(1) man page.

The following topics explain how to use the mpirun command to launch a variety of applications:

• Launching a single program on the local host on page 23

• Launching a Multiple Program, Multiple Data (MPMD) Application on the Local Host on page 23

• Launching a Distributed Application on page 24

Launching a single program on the local host
To run an application on the local host, enter the mpirun command with the -np argument. Your entry must
include the number of processes to run and the name of the MPI executable file.

Example 1. The following command starts three instances of the mtest application, which is passed an
argument list (arguments are optional):

% mpirun -np 3 mtest 1000 "arg2"

Launching a Multiple Program, Multiple Data (MPMD) Application on the Local Host
You are not required to use a different host in each entry that you specify on the mpirun command. You can
start a job that has multiple executable files on the same host.

Example 1. The following command runs one copy of prog1 and five copies of prog2 on the local host, and
both executable files use shared memory:

% mpirun -np 1 prog1 : -np 5 prog2

Simple Linux Utility for Resource Management (SLURM) 23

http://slurm.schedmd.com
http://slurm.schedmd.com/mpi_guide.html

Launching a Distributed Application
You can use the mpirun command to start a program that consists of any number of executable files and
processes, and you can distribute the program to any number of hosts. A host is usually a single machine, but
it can be any accessible computer running the Array Services software. For a list of the available nodes on
systems running Array Services software, type the following command:

% ainfo machines

You can list multiple entries on the mpirun command line. Each entry contains an MPI executable file and a
combination of hosts and process counts for running it. This gives you the ability to start different executable
files on the same or different hosts as part of the same MPI application.

The examples show various ways to start an application that consists of multiple MPI executable files on
multiple hosts.

Example 1. The following command runs ten instances of the a.out file on host_a:

% mpirun host_a -np 10 a.out

Example 2. The following command launches ten instances of fred on each of three hosts. fred has two
input arguments.

% mpirun host_a, host_b, host_c -np 10 fred arg1 arg2

Example 3. The following command launches ten instances of fred, with different numbers of instances on
each processor:

% mpirun host_a -np 2, host_b -np 3, host_c -np 5 fred arg1 arg2

Example 4. The following command launches an MPI application on different hosts with different numbers of
processes and executable files:

% mpirun host_a 6 a.out : host_b -np 26 b.out

Using MPI Spawn Functions to Launch an MPI Application
The following two functions enable the MPI spawn feature:

• MPI_Comm_spawn
• MPI_Comm_spawn_multiple

For information about how to use the spawn functions, see the following:

• Specifying the Universe Size Automatically on page 25

• Specifying the Universe Size Directly on page 25

• Specifying the Universe Size on the mpirun Command on page 25

• Specifying Host Information on page 25

For more information, see the mpiexec_mpt(1) man page.

24 Launching a Distributed Application

Specifying the Universe Size Automatically
You can specify the universe size automatically when you specify the -spawn parameter on the
mpiexec_mpt command and use the following MPI process creation functions:

• MPI_Comm_spawn
• MPI_Comm_spawn_multiple

For example, assume that when you submitted a job, you specified 10 processes. The following command
starts three instances of the mtest MPI application, so the application can spawn seven more:

% mpiexec_mpt -spawn -np 3 mtest

Specifying the Universe Size Directly
You can specify the universe size directly by setting one of the following shell variables:

• MPI_UNIVERSE_SIZE
Set MPI_UNIVERSE_SIZE to the maximum number of processes possible in the universe.

• MPI_UNIVERSE
Set MPI_UNIVERSE to control both the universe size and the possible set of hosts that processes can run
on.

This variable specifies hosts upon which processes can be launched. The syntax for this variable is a list
of hp_specs without a specified application or argument list. For example:

◦ "host_a, host_b"
◦ "host_a 8, host_b 16"
◦ "host_a, host_b 12"
◦ "host_a, host_b -np 16"

If MPI_UNIVERSE is not specified, MPI spawn requests place new processes on the local host.

Specifying the Universe Size on the mpirun Command
If you use the mpirun command, you can use the -up parameter to specify the universe size.

Specifying Host Information
You can pass host information to MPI_Comm_spawn or MPI_Comm_spawn_multiple in MPI_info objects.
When you use this method, you can specify hosts that are outside of the list of hosts specified to
MPI_UNIVERSE. The following table shows are the supported MPI_info keys and the values associated
with the keys.

Specifying the Universe Size Automatically 25

Info key Value string

hostfile The name of the file that contains the lists of hosts
upon which to spawn MPI processes. Use a space
character or a tab character to separate multiple host
names.

MPI_SGI_NODELIST The list of hosts upon which to spawn MPI
processes. Use a space character or a tab character
to separate multiple host names.

The following examples call MPI_Comm_spawn using the MPI_SGI_NODELIST and hostlist MPI_info
objects to specify the hosts on which to launch MPI processes.

Example 1:

MPI_Info info;
MPI_Info_create(&info);
MPI_Info_set(info, "MPI_SGI_NODELIST", "host_b host_b");
MPI_Comm_spawn("b.out", MPI_ARGV_NULL, 2, info,...);
Example 2:

char * list = "host_b host_b";
int fd = open("list.txt", O_WRONLY);
write(fd, list, strlen(list) + 1);
MPI_Info_set(info, "hostfile", "list.txt");
MPI_Comm_spawn("b.out", MPI_ARGV_NULL, 2, info,...);

% export MPI_UNIVERSE="host_a 4"
% export MPI_UNIVERSE_SIZE=20
% mpiexec_mpt -np 3 coupler
The preceding lines run two b.out processes on host_b. If the coupler program launches any spawn
processes that do not specify the desired hosts in their info argument then they are placed within the
defined MPI_UNIVERSE. At any single point in time, the sum of the number of starting processes, processes
launched into the hosts in MPI_UNIVERSE, and hosts launched onto specified hosts cannot be greater than
MPI_UNIVERSE_SIZE.

Compiling and running OpenSHMEM applications
The following procedure explains how to compile and run OpenSHMEM programs in general terms.

Procedure

1. Use one of the OpenSHMEM wrapper compiler commands to run your program or call the compiler
directly.

To use the wrapper compiler, use one of the following commands:

• oshcc
• oshCC
• oshfort

26 Compiling and running OpenSHMEM applications

To compile the OpenSHMEM program directly, use GNU compiler or Intel compiler commands.

• To compile OpenSHMEM programs with a GNU compiler, choose one of the following commands:

◦ g++ compute.C -lsma -lmpi
◦ gcc compute.c -lsma -lmpi

• To compile OpenSHMEM programs with an Intel compiler, choose one of the following commands:

◦ icc compute.C -lsma -lmpi
◦ icc compute.c -lsma -lmpi
◦ ifort compute.f -lsma -lmpi

2. Use the mpirun command or the mpiexec_mpt command to launch the OpenSHMEM application.

When you are not using a resource manager, such as PBS Professional or SLURM, set the -np option on
the command to request the desired number of processes to launch. The NPES variable has no effect on
OpenSHMEM programs.

The OpenSHMEM programming model supports single-host OpenSHMEM applications.

For more information, see the intro_shmem(3) manpage.

Building MPI Fortran modules
The /opt/hpe/hpc/mpt/mpt-2.17/fortran_module_generator directory contains all the source
code needed to build your own Fortran modules. This topic explains how to use environment variables and
the make command to generate the modules.

Procedure

1. Set the environment variables you need for the compiler and (optionally) for any additional flags you need.

The following table explains the environment variables.

Building MPI Fortran modules 27

Variable Content

FC This environment variable is required.

Set this variable to the compiler command used to
generate the modules.

FCFLAGS This environment variable is optional.

If you do not set this environment variable, Intel
compiler support is assumed, and the system tags
buffers with !DEC$ ATTRIBUTES
NO_ARG_CHECK.

If you set this environment variable, set it to one of
the following values:

• USE_GCC_FORTRAN, which tags buffers with the
following:

!GCC$ NO_ARG_CHECK
• USE_PGI_FORTRAN, which tags buffers with the

following:

!DIR$ IGNORE_TKR
• USE_TS29113_FORTRAN, which tags buffers

with the following:

TYPE(*), DIMENSION(..)
Set FCFLAGS to this value if your compiler
supports TS 29113.

Example 1. If you have an Intel compiler that supports TS 29113, specify the following environment
variables:

FC=ifort FCFLAGS="-DUSE_TS29113_FORTRAN" make
Example 2. If you have a GNU Fortran compiler, specify the following environment variables:

FC=gfortran FCFLAGS="-DUSE_GCC_FORTRAN" make
Example 3. If you have a GNU Fortran compiler that supports TS 29113, specify the following environment
variables:

FC=gfortran FCFLAGS="-DUSE_TS29113_FORTRAN" make
2. Choose an installation path, and run the following command:

DESTDIR=install_path make install

For install_path, specify the path to the generated *.mod files.

For example:

% make install DESTDIR=/opt/hpe/hpc/mpt/mpt-2.17/include/custom_dir

3. Set the MPI_CUSTOM_FORTRAN_MODULES_PATH environment variable to the directory path you set with
the make command.

28 Getting started with HPE Performance MPI

4. Set the MPIF90_F90 environment variable and the MPIF08_F08 environment variable to the compiler
that you used to generate the Fortran modules.

5. Set the LD_LIBRARY_PATH environment variable to include MPI_CUSTOM_FORTRAN_MODULES_PATH.

Make sure that MPI_CUSTOM_FORTRAN_MODULES_PATH is ordered before MPT's LD_LIBRARY_PATH.
This ordering avoids loading the default libmpi_f08.

That is, if you use the following common idiom, make sure that the following idiom is processed after the
MPT module is loaded:

LD_LIBRARY_PATH=$MPI_CUSTOM_FORTRAN_MODULES_PATH:$LD_LIBRARY_PATH
The HPE Performance MPI compiler helpers automatically detect the path to the HPE Performance MPI
Fortran modules you built. Note that the compiler helpers need to know which compiler you are using. If
you do not use mpif90 or mpif08, use the following compiler options:

• For Fortran 2008, use the following:

◦ -I$MPI_CUSTOM_FORTRAN_MODULES_PATH
◦ -LMPI_CUSTOM_FORTRAN_MODULES_PATH
◦ -lmpi_f08

• For Fortran 2003, use -I$MPI_CUSTOM_FORTRAN_MODULES_PATH

6. (Optional) Update the following environment variables in the module files for your compilers and for your
users:

• MPI_CUSTOM_FORTRAN_MODULES_PATH
• MPIF90_F90
• MPIF08_F08
• LD_LIBRARY_PATH

Using huge pages
Huge pages optimize MPI application performance. The MPI_HUGEPAGE_HEAP_SPACE environment variable
defines the minimum amount of heap space each MPI process can allocate using huge pages. If set to a
positive number, libmpi verifies that enough hugetlbfs overcommit resources are available at program
start-up to satisfy that amount on all MPI processes. The heap uses all available hugetlbfs space, even
beyond the specified minimum amount. A value of 0 disables this check and disables the allocation of heap
variables on huge pages. Values can be followed by K, M, G, or T to denote scaling by 1024, 10242, 10243, or
10244, respectively.

For information about the MPI_HUGEPAGE_HEAP_SPACE environment variable, see the mpi(1) man page.

The following procedure explains how to configure system settings for huge pages.

Using huge pages 29

Procedure

1. Enter the following command to make sure that the current MPT software release module is installed:

sys:~ # module load mpt

2. Log in as the administrator user, and type the following command to configure the system settings for huge
pages:

sys:~ # mpt_hugepage_config -u
Updating system configuration

System config file: /proc/sys/vm/nr_overcommit_hugepages
Huge Pages Allowed: 28974 pages (56 GB) 90% of memory
Huge Page Size: 2048 KB
Huge TLB FS Directory: /etc/mpt/hugepage_mpt

3. Enter the following command to retrieve the current system configuration:

sys:~ # mpt_hugepage_config -v
Reading current system configuration

System config file: /proc/sys/vm/nr_overcommit_hugepages
Huge Pages Allowed: 28974 pages (56 GB) 90% of memory
Huge Page Size: 2048 KB
Huge TLB FS Directory: /etc/mpt/hugepage_mpt (exists)

4. When running your MPT program, make sure the MPI_HUGEPAGE_HEAP_SPACE environment variable is
set to 1.

This activates the new libmpi huge page heap. Memory allocated by calls to the malloc function are
allocated on huge pages.

5. Log in as the administrator user, and enter the following command to clear the system configuration
settings:

sys:~ # mpt_hugepage_config -e
Removing MPT huge page configuration

6. To verify that the MPT huge page configuration has been cleared, enter the following command to retrieve
the system configuration again:

uv44-sys:~ # mpt_hugepage_config -v
Reading current system configuration

System config file: /proc/sys/vm/nr_overcommit_hugepages
Huge Pages Allowed: 0 pages (0 KB) 0% of memory
Huge Page Size: 2048 KB
Huge TLB FS Directory: /etc/mpt/hugepage_mpt (does not exist)

For more information about how to configure huge pages for MPI applications, see the
mpt_hugepage_config(1) manpage.

30 Getting started with HPE Performance MPI

Using HPE Performance MPI with NVIDIA GPUs
HPE Performance MPI supports the use of data buffers in graphics processing unit (GPU) memory as the
source or target of data movement by MPI or OpenSHMEM functions. To enable this feature, set
MPI_USE_CUDA=true.

If your program sends GPU data to other hosts over Mellanox InfiniBand connections, HPE Performance MPI
supports the GPUDirect RDMA feature.

For more information, see the documentation from NVIDIA and Mellanox about GPUDirect RDMA.

Using HPE Performance MPI with NVIDIA GPUs 31

Programming with HPE Performance MPI
Portability is one of the main advantages MPI has over vendor-specific message passing software.
Nonetheless, the MPI Standard offers sufficient flexibility for general variations in vendor implementations. In
addition, there are often vendor-specific programming recommendations for optimal use of the MPI library.
This chapter's topics explain how to develop or port MPI applications to HPE systems.

Job termination and error handling
The following topics describe HPE Performance MPI behavior upon typical job termination, error handling,
and the characteristics of atypical job termination:

• MPI_Abort on page 32

• Error handling on page 32

• MPI_Finalize and connect processes on page 32

MPI_Abort
In the HPE Performance MPI implementation, a call to MPI_Abort has the following effect:

• The MPI job terminates, regardless of the communicator argument used.

• The error code value is returned as the exit status of the mpirun command.

• A stack traceback is displayed that shows where the program called MPI_Abort.

Error handling
The MPI Standard describes MPI error handling. Although almost all MPI functions return an error status, an
error handler is invoked before returning from the function. If the function has an associated communicator,
the error handler associated with that communicator is invoked. Otherwise, the error handler associated with
MPI_COMM_WORLD is invoked.

The HPE Performance MPI implementation provides the following predefined error handlers:

• MPI_ERRORS_ARE_FATAL. When called, causes the program to abort on all executing processes. This
has the same effect as if MPI_Abort were called by the process that invoked the handler.

• MPI_ERRORS_RETURN. This handler has no effect.

By default, the MPI_ERRORS_ARE_FATAL error handler is associated with MPI_COMM_WORLD and any
communicators derived from it. Hence, to handle the error statuses returned from MPI calls, it is necessary to
associate either the MPI_ERRORS_RETURN handler or another user-defined handler with MPI_COMM_WORLD
near the beginning of the application.

MPI_Finalize and connect processes
In the HPE implementation of MPI, all pending communications involving an MPI process must be complete
before the process calls MPI_Finalize. If there are any pending send or recv requests that are
unmatched or not completed, the application hangs in MPI_Finalize. For more information, see the MPI
Standard.

32 Programming with HPE Performance MPI

If the application uses the MPI remote memory access (RMA) spawn functionality described in the MPI RMA
standard, there are additional considerations. In the HPE implementation, all MPI processes are connected.
The MPI RMA standard defines what is meant by connected processes. When the MPI RMA spawn
functionality is used, MPI_Finalize is collective over all connected processes. Thus all MPI processes, both
launched on the command line, or subsequently spawned, synchronize in MPI_Finalize.

Signals
In the MPI implementation, MPI processes are Linux processes. As such, the general rule regarding signal
handling applies as it would to ordinary Linux processes.

In addition, certain signals can be propagated from the mpirun process to the other processes in the MPI
job, whether they belong to the same process group on a single host or are running across multiple hosts in a
cluster. These signals are as follows:

• SIGURG
• SIGUSR1
• SIGINT
• SIGTERM

To use this feature, the MPI program must have a signal handler that catches the signal. When the signal is
sent to the mpirun process ID, the mpirun process catches the signal and propagates it to all MPI
processes.

Buffering
Most MPI implementations use buffering for overall performance reasons, and some programs depend on it.
However, you should not assume that there is any message buffering between processes because the MPI
Standard does not mandate a buffering strategy. Table 1: Outline of Improper Dependence on Buffering
on page 33 illustrates a simple sequence of MPI operations that cannot work unless messages are
buffered. If sent messages are not buffered, each process hangs in the initial call, waiting for an MPI_Recv
call to take the message.

Because most MPI implementations buffer messages to some degree, a program like this does not usually
hang. The MPI_Send calls return after putting the messages into buffer space, and the MPI_Recv calls get
the messages. Nevertheless, program logic like this is not valid according to the MPI Standard. Programs that
require this sequence of MPI calls should employ one of the buffer MPI send calls, MPI_Bsend or
MPI_Ibsend.

Table 1: Outline of Improper Dependence on Buffering

Process 1 Process 2

MPI_Send(2,....) MPI_Send(1,....)

MPI_Recv(2,....) MPI_Recv(1,....)

By default, the HPE implementation of MPI uses buffering under most circumstances. Short messages (64 or
fewer bytes) are always buffered. Longer messages are also buffered, although under certain circumstances,
buffering can be avoided. For performance reasons, it is sometimes desirable to avoid buffering. For further
information on unbuffered message delivery, see Programming optimizations on page 35.

Signals 33

Multithreaded programming
HPE Performance MPI supports a hybrid programming model, in which MPI handles one level of parallelism
in an application and POSIX threads or OpenMP processes are used to handle another level. When mixing
OpenMP with MPI, for performance reasons, it is better to consider invoking MPI functions only outside
parallel regions or only from within master regions. When used in this manner, it is not necessary to initialize
MPI for thread safety. You can use MPI_Init to initialize MPI. However, to safely invoke MPI functions from
any OpenMP process or when using POSIX threads, MPI must be initialized with MPI_Init_thread.

When using MPI_Thread_init() with the threading level MPI_THREAD_MULTIPLE, link your program as
follows:

• If you use the compiler wrappers for MPI or SHMEM, use the -mt option on the command line.

• If you want to call the compilers directly, use the -lmpi_mt parameter instead of the -lmpi parameter on
the compiler command line.

For more information about compiling and linking MPI programs, see the mpi(1) manpage.

Interoperability with the OpenSHMEM programming model
You can mix OpenSHMEM and MPI message passing in the same program. The application must be linked
with both the OpenSHMEM and MPI libraries.

Start with an MPI program that calls MPI_Init (or MPI_Init_thread()) and MPI_Finalize. Next, add
OpenSHMEM calls, and be aware that the PE numbers are equal to the MPI rank numbers in
MPI_COMM_WORLD.

If your program uses both OpenSHMEM and MPI, make sure your program includes calls to the
shmem_init() and shmem_finalize() library routines. This practice is similar to how you include calls to
MPI_Init() (or MPI_Init_thread()) and MPI_Finalize.

When running the application across a cluster using OpenSHMEM and OpenSHMEM functions, some
processes might not be able to communicate with other processes. You can use the
shmem_pe_accessible and shmem_addr_accessible functions to determine whether an OpenSHMEM
call can be used to access data residing in another process. Because the OpenSHMEM model functions only
with respect to MPI_COMM_WORLD, these functions cannot be used to exchange data between MPI processes
that are connected via MPI intercommunicators returned from MPI spawn-related functions.

For more information about the OpenSHMEM programming model, see the intro_shmem(3) man page.

Miscellaneous HPE Performance MPI features
The following other characteristics of the HPE Performance MPI implementation might interest you:

• stdin/stdout/stderr.

In this implementation, stdin is enabled for only the process that is rank 0 in the first MPI_COMM_WORLD.
Such processes do not need to be located on the same host as mpirun. The stdout and stderr results
are enabled for all MPI processes in the job, whether started by mpirun or started by one of the MPI
spawn functions.

• MPI_Get_processor_name
The MPI_Get_processor_name function returns the Internet host name of the computer upon which the
MPI process that started this subroutine is running.

34 Multithreaded programming

Programming optimizations
You might need to modify your MPI application to use the HPE Performance MPI optimization features.

The following topics describe how to use the optimized features of HPE's MPI implementation:

• Using MPI point-to-point communication routines on page 35

• Using MPI collective communication routines on page 35

• Using MPI_Pack and MPI_Unpack on page 36

• Avoiding derived data types on page 36

• About wild cards on page 36

• Avoiding message buffering -- single copy methods on page 36

• Managing memory placement on page 36

Using MPI point-to-point communication routines
MPI provides a number of different routines for point-to-point communication. The most efficient ones in terms
of latency and bandwidth are the blocking and nonblocking send/receive functions, which are as follows:

• MPI_Send
• MPI_Isend
• MPI_Recv
• MPI_Irecv

Unless required for application semantics, avoid the synchronous send calls, which are as follows:

• MPI_Ssend
• MPI_Issend

Also avoid the buffered send calls, which double the amount of memory copying on the sender side. These
calls are as follows:

• MPI_Bsend
• MPI_Ibsend

This implementation treats the ready-send routines, MPI_Rsend and MPI_Irsend, as standard MPI_Send
and MPI_Isend routines. Persistent requests do not offer any performance advantage over standard
requests in this implementation.

Using MPI collective communication routines
The MPI collective calls are frequently layered on top of the point-to-point primitive calls. For small process
counts, this can be reasonably effective. However, for higher process counts of 32 processes or more, or for
clusters, this approach can be less efficient. For this reason, a number of the MPI library collective operations
have been optimized to use more complex algorithms.

HPE's MPI collectives have been optimized for use with clusters. In these cases, steps are taken to reduce
the number of messages using the relatively slower interconnect between hosts.

Programming optimizations 35

Some of the collective operations have been optimized for use with shared memory. The MPI_Alltoall
routines also use special techniques to avoid message buffering when using shared memory. For more
information, see Avoiding message buffering -- single copy methods on page 36.

Using MPI_Pack and MPI_Unpack
While MPI_Pack and MPI_Unpack are useful for porting parallel virtual machine (PVM) codes to MPI, they
essentially double the amount of data to be copied by both the sender and receiver. Generally, either
restructure your data or use derived data types to avoid using these functions. Note, however, that use of
derived data types can lead to decreased performance in certain cases.

Avoiding derived data types
Avoid derived data types when possible. In the HPE implementation, using derived data types does not
generally lead to performance gains. Using derived data types might disable certain types of optimizations, for
example, unbuffered or single copy data transfer.

About wild cards
The use of wild cards (MPI_ANY_SOURCE, MPI_ANY_TAG) involves searching multiple queues for messages.
While this is not significant for small process counts, for large process counts, the cost increases quickly.

MPT can make certain optimizations if the application does not make calls to variations of MPI_Recv() with
MPI_ANY_SOURCE. When MPI_WILDCARDS=false is in effect, MPT assumes that the application does not
contain receive calls with rank wild cards. This assumption enables MPT to make some bandwidth
optimizations in its Intel Omni-Path Architecture code. MPT supports the MPI_WILDCARDS environment
variable only on systems that include the Intel Omni-Path Architecture. For information about more
environment variables that MPT supports on the Intel Onmi-Path Architecture, see the following:

Tuning for running applications over the Intel Omni-Path interconnect on page 52

Avoiding message buffering -- single copy methods
One of the most significant optimizations for bandwidth-sensitive applications in the MPI library is single-copy
optimization, which avoids using shared memory buffers. However, as discussed in Buffering on page 33,
some incorrectly coded applications might hang because of buffering assumptions. For this reason, this
optimization is not enabled by default for MPI_Send, but you can use the MPI_BUFFER_MAX environment
variable to enable this optimization at run time. The following guidelines show how to increase the opportunity
for use of the unbuffered pathway:

• The MPI data type on the send side must be a contiguous type.

• The sender and receiver MPI processes must reside on the same host.

• The sender data must be globally accessible by the receiver. The HPE Performance MPI implementation
allows data allocated from the static region (common blocks), the private heap, and the stack region to be
globally accessible. In addition, memory allocated via the MPI_Alloc_mem function or the SHMEM
symmetric heap accessed via the shpalloc or shmalloc functions is globally accessible.

Certain run-time environment variables must be set to enable the unbuffered, single-copy method. For
information about how to set the run-time environment, see Avoiding message buffering - enabling single
copy on page 45.

Managing memory placement
For single-process and small multiprocess applications, the HPE Superdome Flex Grid architecture behaves
similarly to flat memory architectures. For more highly parallel applications, memory placement becomes
important. MPI takes placement into consideration when it lays out shared memory data structures and the

36 Using MPI_Pack and MPI_Unpack

individual MPI processes' address spaces. Generally, you should not try to manage memory placement
explicitly. To control the placement of the application at run time, however, see Run-time tuning on page
44.

Additional programming model considerations
A number of additional programming options might be worth consideration when developing MPI applications.
For example, using the SHMEM programming model can improve performance in the latency-sensitive
sections of an application. Usually, this requires replacing MPI send/recv calls with shmem_put/shmem_get
and shmem_barrier calls. The SHMEM programming model can deliver significantly lower latencies for
short messages than traditional MPI calls. As an alternative to shmem_get/shmem_put calls, you might
consider the MPI remote memory accesss (RMA) MPI_Put/ MPI_Get functions. These provide almost the
same performance as the SHMEM calls, while providing a greater degree of portability.

Alternately, you might consider exploiting the shared memory architecture by handling one or more levels of
parallelism with OpenMP, with the coarser grained levels of parallelism being handled by MPI. Also, there are
special placement considerations to be aware of when running hybrid MPI/OpenMP applications. For further
information, see Run-time tuning on page 44.

Additional programming model considerations 37

Debugging MPI applications
MPI routine argument checking

Debugging MPI applications can be more challenging than debugging sequential applications. By default, the
HPE Performance Software -- Message Passing Interface (HPE Performance MPI) implementation does not
check the arguments to some performance-critical MPI routines, such as most of the point-to-point and
collective communication routines. You can force HPE Performance MPI to always check the input arguments
to MPI functions by setting the MPI_CHECK_ARGS environment variable. However, setting this variable might
result in some degradation in application performance, so HPE recommends that you do not set
MPI_CHECK_ARGS unless you are debugging.

Using the TotalView debugger with MPI programs
The Message Passing Toolkit (MPT) mpiexec_mpt command has a -tv option for use by MPT with the
TotalView Debugger. Note that the PBS Professional mpiexec command does not support the -tv option.
TotalView does not operate with MPI processes started via the MPI_Comm_spawn or
MPI_Comm_spawn_multiple functions.

Example 1. To run an MPT MPI job with TotalView without a workload manager, type the following:

% totalview mpirun -a -np 4 a.out

Example 2. To run an MPT MPI job with the TotalView Debugger with a workoad manager, such as PBS
Professional or Torque, type the following:

% mpiexec_mpt -tv -np 4 a.out

Using idb and gdb with MPI programs
Because the idb and gdb debuggers are designed for sequential, non-parallel applications, they are
generally not well suited for use in MPI program debugging and development. However, the use of the
MPI_SLAVE_DEBUG_ATTACH environment variable makes these debuggers more usable.

If you set the MPI_SLAVE_DEBUG_ATTACH environment variable to a global rank number, the MPI process
sleeps briefly in startup while you use idb or gdb to attach to the process. A message is printed to the
screen, telling you how to use idb or gdb to attach to the process.

Similarly, if you want to debug the MPI daemon, setting MPI_DAEMON_DEBUG_ATTACH sleeps the daemon
briefly while you attach to it.

Using the DDT debugger with MPI programs
Allinea Software's DDT product is a parallel debugger that supports MPT. You can run DDT in either
interactive (online) or batch (offline) mode. In batch mode, DDT can create a text or HTML report that tracks
variable values and shows the location of any errors. DDT records the data for a program's variables across
all processes, and DDT logs values in the HTML output files as sparkline charts.

For information about how to configure Allinea for use with MPI on HPE systems, use the instructions in the
Allinea user guide that is posted to the following website:

http://content.allinea.com/downloads/userguide.pdf

38 Debugging MPI applications

http://content.allinea.com/downloads/userguide.pdf

Example 1. The following command starts DDT in interactive (online) mode:

ddt -np 4 a.out

Example 2. The following command generates a debugging report in HTML format:

ddt -offline my-log.html -np 4 a.out

Example 3. Assume that you want to trace variables x, y, and my_arr(x,y) in parallel across all processes.
The following command directs DDT to record the values of x, y, and my_arr(x,y) each time it encounters
line 147:

ddt -offline my-log.html -trace-at "my-file.f:147,x,y,my_arr(x,y)" -np 4 a.out

Example 4. You can specify batch (offline) DDT commands from within a queue submission script. Instead of
specifying mpiexec_mpt -np 4 a.out, specify the following:

ddt -noqueue -offline my-log.html -trace-at "my-file.f:147,x,y,my_arr(x,y)" \
-np 4 a.out

Using Valgrind with MPI programs
Valgrind is a tool that can profile your program and can automatically detect memory management and
threading bugs.

Valgrind is not compatible with the memory mapping functionality in MPT. When MPT detects that Valgrind is
in use, MPT automatically enables the MPI_MEMMAP_OFF environment variable, which disables MPT's own
memory mapping.

Using Valgrind with MPI programs 39

Working with other MPI implementations
The performance boosting tool, perfboost, uses a wrapper library to run applications compiled against
other Message Passing Interface (MPI) implementations under the Message Passing Toolkit (MPT) product
on HPE hardware platforms.

NOTE:

perfboost does not support the MPI C++ API.

Using perfboost
The following procedure explains how to use perfboost with an HPE Performance Software -- Message
Passing Interface (HPE Performance MPI) program.

Procedure

1. Load the perfboost environment module.

The module include the PERFBOOST_VERBOSE environment variable.

If you set the PERFBOOST_VERBOSE environment variable, it enables a message when PerfBoost
activates and also when the MPI application is completed through the MPI_Finalize() function. This
message indicates that the perfboost library is active and also indicates when the MPI application
completes through the libperfboost wrapper library.

The MPI environment variables that are documented in the MPI(1) man page are available to
perfboost. MPI environment variables that are not used by MPT are currently not supported.

NOTE: Some applications redirect stderr. In this case, the verbose messages might not appear in
the application output.

2. Enter a command that inserts the perfboost command in front of the executable name along with the
choice of MPI implementation to emulate.

In other words, run the executable file with the MPT mpiexec_mpt command or the mpirun command.

The following table shows the MPI implementations and corresponding command line options.

Implementation Command line option

Platform MPI 7.1+ -pmpi

Intel MPI -impi

OpenMPI -ompi

MPICH1 -mpich

MPICH2, version 2 and later -impi

MVAPICH2, version 2 and later -impi

40 Working with other MPI implementations

The following are some examples that use perfboost:

% module load mpt
% module load perfboost

% mpirun -np 32 perfboost -impi a.out arg1
% mpiexec_mpt perfboost -pmpi b.out arg1
% mpirun host1 32, host2 64 perfboost -impi c.out arg1 arg2

MPI supported functions
perfboost supports the commonly used elements of the C and Fortran MPI APIs. If a function is not
supported, the job aborts and issues an error message. The message shows the name of the missing
function. You can contact HPE customer support to schedule a missing function to be added to perfboost.

MPI supported functions 41

Using Berkeley Lab Checkpoint/Restart (BLCR)
The Message Passing Toolkit (MPT) supports BLCR checkpoint/restart. This checkpoint/restart
implementation allows applications to periodically save a copy of their state. Applications can resume from
that point if the application crashes or if the job is aborted to free resources for higher-priority jobs.

The following are the implementation's limitations:

• BLCR does not checkpoint the state of any data files that the application might be using.

• When using checkpoint/restart, the Message Passing Interface (MPI) does not support certain features,
including spawning and one-sided MPI.

• InfiniBand XRC queue pairs are not supported.

• Checkpoint files are often very large and require significant disk bandwidth to create in a timely manner.

For more information on BLCR, see the following:

http://crd.lbl.gov/departments/computer-science/CLaSS/research/BLCR/

Installing BLCR
To use checkpoint/restart with MPT, first install BLCR.

Procedure

1. Log in as the administrator user.

2. Install the blcr-, blcr-libs-, and blcr-kmp- RPMs.

BLCR uses a kernel module that must be built against the specific kernel that the operating system is
running. If the kernel module fails to load, you need to rebuild and reinstall. Install the blcr- source RPM.
In the blcr.spec file, set the kernel variable to the name of the current kernel, then rebuild and install the
new set of RPMs.

3. Enter the following command to enable BLCR:

chkconfig blcr on

Using BLCR with MPT
To enable checkpoint/restart within MPT, you need to pass the -cpr option to mpirun or mpiexec_mpt. For
example:

% mpirun -cpr hostA, hostB -np 8 ./a.out

To checkpoint a job, run the mpt_checkpoint command on the same host upon which mpirun is running.
Make sure to pass the mpt_checkpoint command the PID of mpirun and the name with which you want to
prefix all the checkpoint files. For example:

% mpt_checkpoint -p 12345 -f my_checkpoint

The preceding example command creates a my_checkpoint.cps metadata file and a number of
my_checkpoint.*.cpd files.

42 Using Berkeley Lab Checkpoint/Restart (BLCR)

http://crd.lbl.gov/departments/computer-science/CLaSS/research/BLCR/

To restart the job, pass the name of the .cps file to mpirun. For example:

% mpirun -cpr hostC, hostD -np 8 mpt_restart my_checkpoint.cps

You can restart the job on a different set of hosts, but the number of hosts must be the same. In addition,
each host must have the same number of ranks as the corresponding host in the original run of the job.

Using Berkeley Lab Checkpoint/Restart (BLCR) 43

Run-time tuning
Run-time tuning is the process by which you tune the run-time environment to improve the performance of a
Message Passing Interface (MPI) message passing application. The methods do not involve application code
changes.

The run-time tuning topics are as follows:

• Reducing run-time variability on page 44

• Tuning MPI buffer resources on page 45

• Avoiding message buffering - enabling single copy on page 45

• Memory placement and policies on page 46

• Tuning MPI/OpenMP hybrid codes on page 48

• Tuning running applications across multiple hosts on page 49

• Tuning for running applications over the InfiniBand interconnect on page 50

• Tuning for running applications over the Intel Omni-Path interconnect on page 52

• MPI on HPE Superdome Flex Grid systems on page 53

• Suspending MPI jobs on page 57

Reducing run-time variability
One of the most common problems with optimizing message passing codes on large, shared-memory
computers is achieving reproducible timings from run to run. To reduce run-time variability, you can take the
following precautions:

• Do not oversubscribe the system. In other words, do not request more CPUs than are available, and do
not request more memory than is available. Oversubscribing causes the system to wait unnecessarily for
resources to become available, leads to variations in the results, and leads to less than optimal
performance.

• Avoid interference from other system activity. The Linux kernel uses more memory on node 0 than on
other nodes. Node 0 is also known as the kernel node. If your application uses almost all of the available
memory per processor, the memory for processes assigned to the kernel node can unintentionally spill
over to nonlocal memory. By keeping user applications off of the kernel node, you can avoid this effect.

By restricting system daemons to run on the kernel node, you can also deliver an additional percentage of
each application CPU to the user program.

• Avoid interference with other applications. If necessary, use cpusets to address this problem. The cpuset
software enables you to partition a large, distributed memory host in a fashion that minimizes interactions
between jobs running concurrently on the system. For more information about cpusets, see the following:

HPE Performance Software - Message Passing Interface Cpuset Software Guide

44 Run-time tuning

https://support.hpe.com/hpsc/doc/public/display?docId=emr_na-a00026250en_us

• On a quiet, dedicated system, you can use the dplace command or the MPI_DSM_CPULIST environment
variable to improve run-time performance repeatability. These approaches are not suited to shared,
nondedicated systems.

• Use a workload manager such as Platform LSF from IBM or PBS Professional from Altair Engineering, Inc.
These workload managers use cpusets to avoid oversubscribing the system and to avoid possible
interference between applications.

Tuning MPI buffer resources
By default, HPE Performance MPI buffers messages that are longer than 64 bytes. The system buffers these
longer messages in a series of 16 KB buffers. Messages that exceed 64 bytes are handled as follows:

• If the message is 128 K in length or shorter, the sender MPI process buffers the entire message.

In this case, the sender MPI process delivers a message header, also called a control message, to a
mailbox. When an MPI call is made, the MPI receiver polls the mail box. If the receiver finds a matching
receive request for the sender's control message, the receiver copies the data out of the buffers into the
application buffer indicated in the receive request. The receiver then sends a message header back to the
sender process, indicating that the buffers are available for reuse.

• If the message is longer than 128 K, the software breaks the message into chunks that are 128 K in
length.

The smaller chunks allow the sender and receiver to overlap the copying of data in a pipelined fashion.
Because there are a finite number of buffers, this can constrain overall application performance for certain
communication patterns. You can use the MPI_BUFS_PER_PROC shell variable to adjust the number of
buffers available for each process, and you can use the MPI statistics counters to determine if the demand
for buffering is high.

Generally, you can avoid excessive numbers of retries for buffers if you increase the number of buffers.
However, when you increase the number of buffers, you consume more memory, and you might increase
the probability for cache pollution. Cache pollution is the excessive filling of the cache with message
buffers. Cache pollution can degrade performance during the compute phase of a message passing
application.

For information about statistics counters, see MPI internal statistics on page 62.

For information about buffering considerations when running an MPI job across multiple hosts, see Tuning
running applications across multiple hosts on page 49.

For information about the programming implications of message buffering, see Buffering on page 33.

Avoiding message buffering - enabling single copy
It is possible to avoid the need to buffer messages for message transfers between MPI processes within the
same host or message transfers that use devices that support remote direct memory access (RDMA), such
as InfiniBand.

The following topics provide more information about buffering:

• Buffering and MPI_Send on page 46

• Using the XPMEM driver for single-copy optimization on page 46

Tuning MPI buffer resources 45

Buffering and MPI_Send
Many MPI applications are written to assume infinite buffering, so message buffering is not enabled by default
for MPI_Send. For MPI_Isend, MPI_Sendrecv, and most collectives, this optimization is enabled by default
for large message sizes. To disable this default, single-copy feature used for the collectives, use the
MPI_DEFAULT_SINGLE_COPY_OFF environment variable.

Using the XPMEM driver for single-copy optimization
MPI uses the XPMEM driver to support single-copy message transfers between two processes within the
same host.

Enabling single-copy transfers can increase performance because this technique improves MPI's bandwidth.
On the other hand, single-copy transfers can introduce additional synchronization points, which can reduce
application performance.

The MPI_BUFFER_MAX environment variable specifies the threshold for message lengths. Its value should be
set to the message length, in bytes, beyond which you want MPI to use the single-copy method. In general, a
value of 2000 or higher is beneficial for many applications.

During job startup, MPI uses the XPMEM driver, via the xpmem kernel module, to map memory from one MPI
process to another. The mapped areas include the static (BSS) region, the private heap, the stack region, and
(optionally) the symmetric heap region of each process.

Memory mapping allows each process to directly access memory from the address space of another process.
This technique allows MPI to support single-copy transfers for contiguous data types from any of these
mapped regions. For these transfers between processes residing on the same host, MPI uses the bcopy
process to copy the data. The bcopy process also transfers data between two different executable files on
the same host. For data residing outside of a mapped region (a /dev/zero region, for example), MPI uses a
buffering technique to transfer the data.

Memory mapping is enabled by default. To disable it, set the MPI_MEMMAP_OFF environment variable.
Memory mapping must be enabled to allow single-copy transfers, MPI remote memory access (RMA) one-
sided communication, support for the SHMEM model, and certain collective optimizations.

Memory placement and policies
The MPI library takes advantage of the placement functions that are available. Usually, the default placement
is adequate. However, you can set one or more environment variables to modify the default behavior.

For a complete list of the environment variables that control memory placement, see the MPI(1) manpage.

The following topics contain information on environment variables and tools that enable you to tune memory
placement:

• MPI_DSM_CPULIST on page 46

• MPI_DSM_DISTRIBUTE on page 47

• MPI_DSM_VERBOSE on page 48

• Using dplace on page 48

MPI_DSM_CPULIST
The MPI_DSM_CPULIST environment variable allows you to select the processors to use for an MPI
application. At times, specifying a list of processors on which to run a job can be the best means to insure
highly reproducible timings, particularly when running on a dedicated system.

46 Buffering and MPI_Send

The setting is an ordered list that uses commas (,) and hyphens (-) to specify a mapping of MPI processes
to CPUs. If running across multiple hosts, separate the per-host components of the CPU list with a colon (:).
When you use a hyphen-delineated list, you can specify CPU striding by specifying /stride_distance
after the list.

The following table shows example settings.

Value CPU assignment

8,16,32 Place three MPI processes on CPUs 8, 16, and 32.

32,16,8 Place the MPI process rank zero on CPU 32, one on
16, and two on CPU 8.

8-15/2 Place the MPI processes 0 through 3 strided on
CPUs 8, 10, 12, and 14.

8-15,32-39 Place the MPI processes 0 through 7 on CPUs 8 to
15. Place the MPI processes 8 through 15 on CPUs
32 to 39.

39-32,8-15 Place the MPI processes 0 through 7 on CPUs 39 to
32. Place the MPI processes 8 through 15 on CPUs
8 to 15.

8-15:16-23 Place the MPI processes 0 through 7 on the first host
on CPUs 8 through 15. Place MPI processes 8
through 15 on CPUs 16 to 23 on the second host.

Note that the process rank is the MPI_COMM_WORLD rank. The interpretation of the CPU values specified in
the MPI_DSM_CPULIST depends on whether the MPI job is being run within a cpuset, as follows:

• If the job is run outside of a cpuset, the CPUs specify cpunum values beginning with 0 and up to the
number of CPUs in the system, minus one.

• If the job is run within a cpuset, the default behavior is to interpret the CPU values as relative processor
numbers within the cpuset.

The number of processors specified should equal the number of MPI processes that are used to run the
application. The number of colon-delineated parts of the list must equal the number of hosts used for the MPI
job. If an error occurs in processing the CPU list, the default placement policy is used.

MPI_DSM_DISTRIBUTE
The MPI_DSM_DISTRIBUTE environment variable ensures that each MPI process gets a physical CPU and
memory on the node to which it was assigned. MPI_DSM_DISTRIBUTE assigns MPI ranks, as follows:

• On systems that do not include InfiniBand interconnect, MPI_DSM_DISTRIBUTE assigns MPI ranks
starting at logical CPU 0 and incrementing until all ranks have been placed.

• On systems that include InfiniBand interconnect, if the job spans hosts, MPI_DSM_DISTRIBUTE assigns
MPI ranks starting with the CPU that is closest to the first InfiniBand host channel adapter (HCA).

If you set both MPI_DSM_DISTRIBUTE and MPI_DSM_CPULIST, MPI_DSM_CPULIST overrides
MPI_DSM_DISTRIBUTE.

MPI_DSM_DISTRIBUTE 47

MPI_DSM_VERBOSE
Setting the MPI_DSM_VERBOSE environment variable directs MPI to display a synopsis of the host placement
options used at run time.

Using dplace
The dplace tool offers another way to specify the placement of MPI processes within a distributed memory
host. Used together, the dplace tool and MPI improve the placement of certain shared memory data
structures.

For information about dplace with MPI, see the following:

• dplace command on page 80

• The dplace(1) man page.

• The Linux Application Tuning Guide.

Tuning MPI/OpenMP hybrid codes
A hybrid MPI/OpenMP application is one in which each MPI process itself is a parallel threaded program.
These programs often exploit the OpenMP paralllelism at the loop level while also implementing a higher-level
parallel algorithm that uses MPI.

Many parallel applications perform better if the MPI processes and the threads within them are pinned to
particular processors for the duration of their execution. For HPE Superdome Flex Grid systems, this pinning
ensures that all local, non-shared memory is allocated on the same memory node as the processor
referencing the memory. For all systems, pinning can ensure that some or all of the OpenMP threads stay on
processors that share a bus or perhaps a processor cache, which can speed up thread synchronization.

The Message Passing Toolkit (MPT) provides the omplace command to help with the placement of OpenMP
threads within an MPI program. The omplace command causes the threads in a hybrid MPI/OpenMP job to
be placed on unique CPUs within the containing cpuset. For example, the threads in a 2-process MPI
program with 2 threads per process would be placed as follows:

• Rank 0, thread 0 on CPU 0

• Rank 0, thread 1 on CPU 1

• Rank 1, thread 0 on CPU 2

• Rank 1, thread 1 on CPU 3

The CPU placement is performed by dynamically generating a dplace placement file and invoking dplace.

For more information, see the following:

• Data placement tools on page 80

• The omplace(1) manpage

• The dplace(1) manpage

• Linux Application Tuning Guide for SGI X86-64 Based Systems

• HPE Performance Software - Message Passing Interface Cpuset Software Guide

48 MPI_DSM_VERBOSE

https://support.hpe.com/hpsc/doc/public/display?docId=emr_na-sg7699en_us
https://support.hpe.com/hpsc/doc/public/display?docId=emr_na-a00026250en_us

Example: Running a hybrid MPI/OpenMP application

The following command line runs a hybrid MPI/OpenMP application with eight MPI processes that are two-
way threaded on two hosts:

mpirun host1,host2 -np 4 omplace -nt 2 ./a.out

• When using the PBS workload manager to schedule the hybrid MPI/OpenMP job, use the following
resource allocation specification:

#PBS -l select=8:ncpus=2
• In addition, use the following mpiexec_mpt command:

mpiexec_mpt -n 8 omplace -nt 2 ./a.out

For more information about running MPT programs with PBS, see the following:

Using a Workload Manager to Launch an MPI Application on page 22

Tuning running applications across multiple hosts
When you run an MPI application across a cluster of hosts, you can use the environment variables in this
topic to improve application performance across these hosts.

The following table shows the interconnect types and the run-time environment settings and configurations
that you can use to improve performance.

Interconnect type Default order
of selection

Environment variable required

XPMEM 1 MPI_USE_XPMEM

Intel Omni-Path Architecture 2 MPI_USE_OPA

InfiniBand 3 MPI_USE_IB

InfiniBand Unreliable Datagram 4 MPI_USE_UD

TCP/IP 5 MPI_USE_TCP

The preceding table shows the different types of interconnects that systems can employ as the multihost
interconnect. When launched as a distributed application, MPI probes for these interconnects at job startup.
For information about how to launch a distributed application, see Using the mpirun Command to Launch
an MPI Application on page 23.

When MPI detects a high-performance interconnect, MPI attempts to use this interconnect, if it is available, on
every host being used by the MPI job. If the interconnect is not available for use on every host, the library
attempts to use the next slower interconnect until this connectivity requirement is met. The table's second
column specifies the order in which MPI probes for available interconnects.

The table's third column indicates the environment variable you can set to pick a particular interconnect other
than the default. In general, to insure the best application performance, allow MPI to pick the fastest available
interconnect.

When using the TCP/IP interconnect, unless specified otherwise, MPI uses the default IP adapter for each
host. To use a nondefault adapter, enter the adapter-specific host name on the mpirun command line.

Tuning running applications across multiple hosts 49

The following table shows the environment variables you can use to tune your application for multiple hosts.

Environment variable Effect

MPI_IB_RAILS When set to 1 and the MPI library uses the
InfiniBand driver as the inter-host interconnect, MPT
sends InfiniBand traffic over the first fabric that it
detects. Default on all HPE Superdome Flex Grid
systems.

When set to 1+, MPT sends all traffic across the first
fabric, but if it encounters communication problems, it
starts to use both fabrics.

When set to 2, the library tries to use multiple,
available, separate, InfiniBand fabrics and splits the
traffic across them.

MPI_IB_SINGLE_COPY_BUFFER_MAX If MPI transfers data over InfiniBand and if the size of
the cumulative data is greater than this value, then
MPI attempts to send the data directly between the
processes's buffers and not through intermediate
buffers inside the MPI library.

The default is 32767.

MPI_USE_IB When set, the MPI library uses the InfiniBand driver
as the interconnect when running across multiple
hosts or running with multiple binaries. MPT requires
the OFED software stack when the InfiniBand
interconnect is used. If InfiniBand is used, the
MPI_COREDUMP environment variable is forced to
INHIBIT, to comply with the InfiniBand driver
restriction that no fork() actions occur after
InfiniBand resources have been allocated.

The default is false.

For more information on these environment variables, see the ENVIRONMENT VARIABLES section of the
mpi(1) manpage.

Tuning for running applications over the InfiniBand
interconnect

When you run an MPI application across a cluster of hosts using the InfiniBand interconnect, set the run-time
environment variables in the following table to improve application performance.

50 Tuning for running applications over the InfiniBand interconnect

Environment variable Effect

MPI_HCOLL_IB_OFFLOAD Enables or disables the Mellanox fabric collectives
accelerator (FCA) offload. If FCA offload is
configured on your cluster, set
MPI_HCOLL_IB_OFFLOAD=true.

Make sure that the Mellanox HCOLL libraries are
specified in your library path. You can do this by
either loading the hpcx software module, if available,
or by making sure that the location of libhcoll.so
is in your LD_LIBRARY_PATH environment variable.

The default is MPI_COLL_HCOLL=false.

MPI_CONNECTIONS_THRESHOLD For very large MPI jobs, the time and resource cost
to create a connection between every pair of ranks at
job start time can be prodigious. When the number of
ranks is set to at least this value, the MPI library
creates InfiniBand connections on a demand basis.
The default is 1025 ranks.

MPI_IB_FAILOVER When the MPI library uses InfiniBand fabric and this
variable is set, if an InfiniBand transmission error
occurs, MPT tries to restart the connection to the
other rank a certain number of times. The
MPI_IB_FAILOVER variable specifies the number of
times MPT tries to restart the connection. MPT can
handle a number of errors of this type between any
pair of ranks equal to the value of this variable. The
default is 32 times.

MPI_IB_PAYLOAD When the MPI library uses InfiniBand fabric, it
allocates memory for each message header that it
uses for InfiniBand. If the size of data to be sent is
not greater than this amount minus 64 bytes for the
actual header, the data is inlined with the header. If
the size is greater than this value, then the message
is sent through remote direct memory access
(RDMA) operations. The default is 16512 bytes.

MPI_IB_RNR_TIMER When a packet arrives at an InfiniBand host channel
adaptor (HCA) and there are no remaining receive
buffers for it, the receiving HCA sends a negative
acknowledgement (NAK) to the requestor. The
requesting HCA tries again after some period of time,
and this variable controls the delay time.

If you set a value higher than the default,
performance can degrade in some circumstances.
The higher value, however, is likely to improve fabric
health significantly during high congestion. For
precise translations of this value to delay times, see
Table 45 of the official InfiniBand specification. The
default is 14.

Table Continued

Run-time tuning 51

Environment variable Effect

MPI_IB_TIMEOUT When an InfiniBand card sends a packet, it waits
some amount of time for an ACK packet to be
returned by the receiving InfiniBand card. If it does
not receive one, it sends the packet again. This
variable controls the wait period. The time spent is
equal to 4.096 × 2n, where n is specified by the
MPI_IB_TIMEOUT variable. By default, the variable
is set to 18, and the time spent is expressed in
microseconds.

MPI_IB_TM When set, this feature enables the use of tag
matching on Mellanox InfiniBand HCAs. In some
cases, this reduces the number of internal buffer
copies that MPT needs to perform. Currently, HPE
supports this feature on systems that include the
following:

• Mellanox OFED 4.1 and later

• Mellanox ConnectX-5 host channel adaptors
(HCAs)

MPI_NUM_MEMORY_REGIONS For zero-copy sends over the InfiniBand
interconnect, MPT keeps a cache of application data
buffers registered for these transfers. This
environment variable controls the size of the cache. If
the application rarely reuses data buffers, it may
make sense to set this value to 0 to avoid cache
trashing. By default, this variable is set to 1024 (1K).
The possible range is from 0 to 8192 (8K).

MPI_NUM_QUICKS Controls the number of other ranks that a rank can
receive from over InfiniBand using a short message
fast path. This is 8 by default and can be any value
between 0 and 32.

Tuning for running applications over the Intel Omni-Path
interconnect

When you run an MPI application across a cluster of hosts using the Intel Omni-Path interconnect, set the
run-time environment variable in the following table to improve application performance.

52 Tuning for running applications over the Intel Omni-Path interconnect

Environment variable Effect

MPI_OPA_PAYLOAD When the MPI library uses Intel Omni-Path fabric, it
allocates memory for each message header that it
uses for transfer. If the size of the data to be sent is
not greater than this amount minus 64 bytes for the
actual header, the data is inlined with the header. If
the size is greater than this value, the message is
sent through remote direct memory access (RDMA)
operations. The default is 16512 bytes.

MPI_OPA_SINGLE_COPY_BUFFER_MAX If MPI transfers data over Intel Omni-Path fabric and
if the size of the cumulative data is greater than this
value, then MPI attempts to send the data directly
between the processes's buffers and not through
intermediate buffers inside the MPI library. The
default is 32767.

MPI_WILDCARDS MPT's Intel Omni-Path Architecture optimizes
applications when it knows that the application does
not make certain MPI calls. If an MPI program uses
variations of MPI_Probe() with long messages, the
program can abort and generate an error that refers
to MPI_Probe(). In this situation, for the cost of a
small performance decrease, you can set
MPI_WILDCARDS=false to enable the application to
run.

When this variable is set to false, MPT assumes that
the application does not make these calls with rank
wild cards. This assumption enables MPT to make
some bandwidth optimizations in its Intel Omni-Path
architecture code. If MPI_WILDCARDS is set to false
and one of these situations occurs, the job might
abort.

For more information, see the following:

About wild cards on page 36

MPI on HPE Superdome Flex Grid systems
The following topics contain more information about using MPI on HPE Superdome Flex Grid systems:

• General considerations for MPI jobs on HPE Superdome Flex Grid systems on page 53

• Performance problems and corrective actions for MPI programs on HPE Superdome Flex Grid
systems on page 54

• Other performance considerations for MPI programs on HPE Superdome Flex Grid systems on
page 54

General considerations for MPI jobs on HPE Superdome Flex Grid systems
To run an MPI job optimally, it is best to pin MPI processes to CPUs and isolate multiple MPI jobs onto
different sets of sockets and hubs. To accomplish this, you can configure a workload manager to create a

MPI on HPE Superdome Flex Grid systems 53

cpuset for every MPI job. MPI pins its processes to the sequential list of logical processors within the
containing cpuset by default, but you can control and alter the pinning pattern using the following:

• MPI_DSM_CPULIST. For more information, see MPI_DSM_CPULIST on page 46.

• The omplace command.

• The dplace command.

Performance problems and corrective actions for MPI programs on HPE
Superdome Flex Grid systems

The MPI library chooses buffer sizes and communication algorithms in an attempt to deliver the best
performance to a wide variety of MPI applications automatically. The following list of performance problems
can be remedied:

• Odd HyperThreads are idle.

Most high performance computing MPI programs run best using only one HyperThread per core. When an
HPE Superdome Flex Grid system has multiple HyperThreads per core, logical CPUs are numbered such
that odd HyperThreads are the high half of the logical CPU numbers. Therefore, the task of scheduling
only on the even HyperThreads can be accomplished by scheduling MPI jobs as if only half the full
number exist, leaving the high logical CPUs idle. You can use the cpumap command to determine if cores
have multiple HyperThreads on your HPE Superdome Flex Grid system. The output shows the following:

◦ The number of physical and logical processors.

◦ Whether HyperThreading is on or off.

The way in which shared processors are paired. This information appears towards the bottom of the
command's output.

• MPI large message bandwidth is inappropriate.

Some programs transfer large messages via the MPI_Send function. To use unbuffered, single-copy
transport in these cases, set MPI_BUFFER_MAX=0. For more information, see MPI.

• MPI small or near messages are very frequent.

For small fabric hop counts, use shared memory message delivery. To deliver all messages within an HPE
Superdome Flex Grid host via shared memory, set MPI_SHARED_NEIGHBORHOOD=HOST. For more
information, see the MPI(1) manpage.

Other performance considerations for MPI programs on HPE Superdome Flex
Grid systems

MPI application processes typically perform better if their local memory is allocated on the socket assigned to
execute the process. This cannot happen if memory on that socket is exhausted, either by the application
itself or by other system consumption (for example, by file buffer cache).

You can use the nodeinfo command to view memory consumption on the nodes assigned to your job, and
you can use the bcfree command to clear out excessive file buffer cache. PBS Professional workload
manager installations can be configured to issue bcfree commands in the job prologue.

54 Performance problems and corrective actions for MPI programs on HPE Superdome Flex Grid systems

For more information, see the PBS Professional documentation and the bcfree(1) manpage.

Measuring parallelization and parallelizing your code
When tuning for performance, first assess the amount of code that is parallelized in your program. Use the
following formula to calculate the amount of code that is parallelized:

p=N(T(1)-T(N)) / T(1)(N-1)
In this equation, T(1) is the time the code runs on a single CPU and T(N) is the time it runs on N CPUs.
Speedup is defined as T(1)/T(N).

If speedup/N is less than 50% (that is, N>(2-p)/(1-p)), stop using more CPUs and tune for better scalability.

You can use one of the following to display CPU activity:

• The top command.

• The vmstat command.

• The open source Performance Co-Pilot tools. For example, pmval (pmval kernel.percpu.cpu.user)
or the visualization command pmchart.

Next, focus on using one of the following parallelization methodologies:

• Using MPI on page 55

• Using OpenMP on page 55

• Identifying OpenMP nested parallelism on page 56

• Using compiler options on page 56

• Identifying opportunities for loop parallelism in existing code on page 57

Using MPI
The -lmpi compiler option compiles and links C and Fortran programs with the MPI library. For a list of
environment variables that are supported, see the mpi(1) manpage.

The MPIO_DIRECT_READ and MPIO_DIRECT_WRITE environment variables are supported under Linux for
local XFS filesystems.

MPI provides the MPI-2 standard MPI I/O functions that provide file read and write capabilities. A number of
environment variables are available to tune MPI I/O performance. The mpi_io(3) manpage describes these
environment variables.

For information about performance tuning for MPI applications, see the following:

HPE Performance Software - Message Passing Interface MPInside Reference Guide

Using OpenMP
OpenMP is a shared memory multiprocessing API, which standardizes existing practice. It is scalable for fine
or coarse grain parallelism with an emphasis on performance. It exploits the strengths of shared memory and
is directive-based. The OpenMP implementation also contains library calls and environment variables.
OpenMP is included with the C, C++, and Fortran compilers.

To use OpenMP directives, specify the ifort -openmp or icc -openmp compiler options. These options
use the OpenMP front-end that is built into the Intel compilers. The latest Intel compiler OpenMP run-time

Measuring parallelization and parallelizing your code 55

http://www.hpe.com/support/mpi-mpinside-006

library name is libiomp5.so. The latest Intel compiler also supports the GNU OpenMP library as an
either/or option, in other words, do not mix-and-match the GNU library with the Intel version.

For more information, see the OpenMP standard at the following website:

http://www.openmp.org

Identifying OpenMP nested parallelism
The following Open MP nested parallelism output shows two primary threads and four secondary threads,
called master/nested:

% cat place_nested
firsttask cpu=0
thread name=a.out oncpu=0 cpu=4 noplace=1 exact onetime thread name=a.out
 oncpu=0
cpu=1-3 exact thread name=a.out oncpu=4 cpu=5-7 exact

% dplace -p place_nested a.out
Master thread 0 running on cpu 0
Master thread 1 running on cpu 4
Nested thread 0 of master 0 gets task 0 on cpu 0 Nested thread 1 of master 0
 gets task 1 on cpu 1
Nested thread 2 of master 0 gets task 2 on cpu 2 Nested thread 3 of master 0
 gets task 3 on cpu 3
Nested thread 0 of master 1 gets task 0 on cpu 4 Nested thread 1 of master 1
 gets task 1 on cpu 5
Nested thread 2 of master 1 gets task 2 on cpu 6 Nested thread 3 of master 1
 gets task 3 on cpu 7

NOTE:

Lines in the preceding output examples are wrapped and indented for inclusion in this documentation.

For more information, see the dplace(1) manpage.

Using compiler options
You can use compiler options to invoke automatic parallelization. Use the -parallel or -par_report
options to the ifort or icc compiler commands. These options show which loops were parallelized and the
reasons why some loops were not parallelized. If a source file contains many loops, it might be necessary to
add the -override_limits flag to enable automatic parallelization. The code generated by the -
parallel option is based on the OpenMP API. The standard OpenMP environment variables and Intel
extensions apply.

There are some limitations to automatic parallelization:

• For Fortran codes, only DO loops are analyzed

• For C/C++ codes, only for loops using explicit array notation or those using pointer increment notation
are analyzed. In addition, for loops using pointer arithmetic notation are not analyzed, nor does it analyze
while or do while loops. The compiler also does not check for blocks of code that can be run in
parallel.

56 Identifying OpenMP nested parallelism

http://www.openmp.org

Identifying opportunities for loop parallelism in existing code
Another parallelization optimization technique is to identify loops that have a potential for parallelism, such as
the following:

• Loops without data dependencies; a data dependency conflict occurs when a loop has results from one
loop pass that are needed in future passes of the same loop.

• Loops with data dependencies because of temporary variables, reductions, nested loops, or function calls
or subroutines.

Loops that do not have a potential for parallelism are those with premature exits, too few iterations, or those
where the programming effort to avoid data dependencies is too great.

Suspending MPI jobs
Internally, the HPE Performance MPI software uses the XPMEM kernel module tprovide single-copy
operations to local data. The XPMEM kernel module prevents any pages used by these operations from
paging. If an administrator needs to temporarily suspend an MPI application to allow other applications to run,
they can unpin these pages so they can be swapped out and made available for other applications.

Each process of an MPI application that is using the XPMEM kernel module has a /proc/xpmem/pid file
associated with it. File /proc/xpmem/pid includes the number of pages owned by this process that are
prevented from paging by XPMEM. You can display the content of this file. For example:

cat /proc/xpmem/5562
pages pinned by XPMEM: 17

The following procedure explains how to unpin the pages for use by other processes.

Procedure

1. Log in as the system administrator.

2. Suspend all the processes in the application.

3. Use the echo(1) command to unpin the pages.

You can echo any value into the /proc/xpmem/pid file.

For pid, specify the process ID.

The echo command does not return until that process's pages are unpinned.

For example:

echo 1 > /proc/xpmem/5562

When the MPI application is resumed, the XPMEM kernel module prevents the pages from paging as they are
referenced by the application.

Identifying opportunities for loop parallelism in existing code 57

HPE Performance MPI performance profiling
Performance profiling occurs when you run your MPI program or SHMEM program with a tool that can
aggregate run time statistics. Profiling tools gather statistics that show the amount of time that your program
spends in MPI, the number of messages sent, or the number of bytes sent. MPT includes profiling support in
the libmpi.so library. When you use a profiling tool, the tool automatically replaces all MPI_XXX prototypes
and function names with PMPI_XXX entry points.

This chapter describes the use of profiling tools to obtain performance information. Compared to the
performance analysis of sequential applications, characterizing the performance of parallel applications can
be challenging. Often it is most effective to first focus on improving the performance of MPI applications at the
single process level.

It may also be important to understand the message traffic generated by an application. A number of tools
can be used to analyze this aspect of a message passing application's performance, including HPE MPInside
and various third-party products.

The following topics contain more information about profiling:

• HPE Performance Software - Message Passing Interface MPInside Reference Guide. This manual
explains how to use the MPInside profiling tool.

• Using perfcatch on page 58

• Writing your own profiling interface on page 62

• Using third-party profilers on page 62

• MPI internal statistics on page 62

Using perfcatch
You can use the perfcatch utility to profile the performance of an MPI program or SHMEM program. The
perfcatch utility runs the MPI program with the wrapper library, libmpi.so, and writes MPI call profiling
information to MPI_PROFILING_STATS.

The following topics contain more information about perfcatch:

• The perfcatch command on page 58

• MPI_PROFILING_STATS results file example on page 59

• Environment variables used with perfcatch on page 61

The perfcatch command
The following format shows how to use the perfcatch command:

mpiexec_mpt [mpi_params] perfcatch [-i] cmd [args]

By default, perfcatch assumes an MPT program. The perfcatch utility accepts the arguments in the
following table.

58 HPE Performance MPI performance profiling

http://www.hpe.com/support/mpi-mpinside-006

Argument Effect

mpi_params Optional. Specifies the MPI parameters needed to
launch the program.

-i Specifies to use Intel MPI.

cmd Specifies the name of the executable program. For
example, a.out.

args Optional. Specifies additional command line
arguments.

To use perfcatch with an HPE Performance MPI program, insert the perfcatch command in front of the
executable file name, as the following examples show:

• mpiexec_mpt -np 64 perfcatch a.out arg1
• mpiexec_mpt host1 32, host2 64 perfcatch a.out arg1

To use perfcatch with Intel MPI, add the -i option, as follows:

mpiexec -np 64 perfcatch -i a.out arg1
For more information, see the perfcatch(1) manpage.

MPI_PROFILING_STATS results file example
The perfcatch utility's output file is called MPI_PROFILING_STATS. Upon program completion, the
MPI_PROFILING_STATS file resides in the current working directory of the MPI process with rank 0.

This output file includes a summary statistics section followed by a rank-by-rank profiling information section.
The summary statistics section reports some overall statistics. These statistics include the percent time each
rank spent in MPI functions and the MPI process that spent the least and the most time in MPI functions.
Similar reports are made about system time usage.

In the rank-by-rank profiling information, there is a list of every profiled MPI function called by a particular MPI
process. The report includes the number of calls and the total time consumed by these calls. Some functions
report additional information, such as average data counts and communication peer lists.

The following is an example MPI_PROFILING_STATS results file:

==
PERFCATCHER version 22
(C) Copyright Hewlett Packard Enterprise Development LP.
This library may only be used on HPE hardware platforms.
See LICENSE file for details.
==
MPI program profiling information
Job profile recorded Wed Jan 17 13:05:24 2007
Program command line: /home/estes01/michel/sastest/mpi_hello_linux
Total MPI processes 2

Total MPI job time, avg per rank 0.0054768 sec
Profiled job time, avg per rank 0.0054768 sec
Percent job time profiled, avg per rank 100%

Total user time, avg per rank 0.001 sec

MPI_PROFILING_STATS results file example 59

Percent user time, avg per rank 18.2588%
Total system time, avg per rank 0.0045 sec
Percent system time, avg per rank 82.1648%

Time in all profiled MPI routines, avg per rank 5.75004e-07 sec
Percent time in profiled MPI routines, avg per rank 0.0104989%

Rank-by-Rank Summary Statistics

Rank-by-Rank: Percent in Profiled MPI routines
 Rank:Percent
 0:0.0112245% 1:0.00968502%
 Least: Rank 1 0.00968502%
 Most: Rank 0 0.0112245%
 Load Imbalance: 0.000771%

Rank-by-Rank: User Time
 Rank:Percent
 0:17.2683% 1:19.3699%
 Least: Rank 0 17.2683%
 Most: Rank 1 19.3699%

Rank-by-Rank: System Time
 Rank:Percent
 0:86.3416% 1:77.4796%
 Least: Rank 1 77.4796%
 Most: Rank 0 86.3416%

Notes

Wtime resolution is 5e-08 sec

Rank-by-Rank MPI Profiling Results

Activity on process rank 0

 Single-copy checking was not enabled.
comm_rank calls: 1 time: 6.50005e-07 s 6.50005e-07 s/call

Activity on process rank 1

 Single-copy checking was not enabled.
comm_rank calls: 1 time: 5.00004e-07 s 5.00004e-07 s/call

--

recv profile

 cnt/sec for all remote ranks
local ANY_SOURCE 0 1
 rank

--

60 HPE Performance MPI performance profiling

recv wait for data profile

 cnt/sec for all remote ranks
local 0 1
 rank
--

recv wait for data profile

 cnt/sec for all remote ranks
local 0 1
 rank

--

send profile

 cnt/sec for all destination ranks
 src 0 1
 rank

--

ssend profile

 cnt/sec for all destination ranks
 src 0 1
 rank

--

ibsend profile

 cnt/sec for all destination ranks
 src 0 1
 rank

Environment variables used with perfcatch
The following table shows the MPI performance-profiling environment variables.

Variable Effect

MPI_PROFILE_AT_INIT Activates MPI profiling immediately, that is, at the
start of MPI program execution. To use this
environment variable, set it to any value. For
example, set MPI_PROFILE_AT_INIT to 1.

MPI_PROFILING_STATS_FILE Specifies the perfcatch output file. This is the file
to which MPI profiling results are written. By default,
the profiler writes to MPI_PROFILING_STATS.

Environment variables used with perfcatch 61

Writing your own profiling interface
You can write your own profiler by using the MPI standard PMPI_* calls. In addition, either within your own
profiling library or within the application itself, you can use the MPI_Wtime function call to time specific calls
or sections of your code.

The following example output is for a single rank of a program that was run on 128 processors using a user-
created profiling library that performs call counts and timings of common MPI calls. Notice that for this rank,
most of the MPI time is spent in MPI_Waitall and MPI_Allreduce.

Total job time 2.203333e+02 sec
Total MPI processes 128
Wtime resolution is 8.000000e-07 sec

activity on process rank 0
comm_rank calls 1 time 8.800002e-06
get_count calls 0 time 0.000000e+00
ibsend calls 0 time 0.000000e+00
probe calls 0 time 0.000000e+00
recv calls 0 time 0.00000e+00 avg datacnt 0 waits 0 wait time 0.00000e+00
irecv calls 22039 time 9.76185e-01 datacnt 23474032 avg datacnt 1065
send calls 0 time 0.000000e+00
ssend calls 0 time 0.000000e+00
isend calls 22039 time 2.950286e+00
wait calls 0 time 0.00000e+00 avg datacnt 0
waitall calls 11045 time 7.73805e+01 # of Reqs 44078 avg data cnt 137944
barrier calls 680 time 5.133110e+00
alltoall calls 0 time 0.0e+00 avg datacnt 0
alltoallv calls 0 time 0.000000e+00
reduce calls 0 time 0.000000e+00
allreduce calls 4658 time 2.072872e+01
bcast calls 680 time 6.915840e-02
gather calls 0 time 0.000000e+00
gatherv calls 0 time 0.000000e+00
scatter calls 0 time 0.000000e+00
scatterv calls 0 time 0.000000e+00

activity on process rank 1
...

Using third-party profilers
You can use third-party profiling tools with HPE Performance MPI. The following are examples of tools to
consider:

• The TAU Performance System profiler from the University of Oregon. This software is a portable profiling
and tracing toolkit for performance analysis of parallel programs written in Fortran, C, C++, UPC, Java,
and Python.

• The Allinea MAP profiler. The Allinea MAP profiler is part of the Allinea Forge toolkit

MPI internal statistics
MPI keeps track of certain resource utilization statistics. You can use these statistics to determine potential
performance problems caused by a lack of MPI message buffers or other MPI internal resources.

62 Writing your own profiling interface

To display MPI internal statistics, use the MPI_STATS environment variable or the -stats option on the
mpirun command. MPI internal statistics are always being gathered, so displaying them does not cause
significant additional overhead. In addition, one can sample the MPI statistics counters from within an
application, allowing for finely grained measurements.

If the MPI_STATS_FILE environment variable is set, when the program completes, the system writes internal
statistics to the file specified by this variable.

These statistics can be very useful in optimizing codes in the following ways:

• To determine if there are enough internal buffers and if processes are waiting (retries) to acquire them

• To determine if single copy optimization is being used for point-to-point or collective calls

For additional information on how to use the MPI statistics counters to help tune the run-time environment for
an MPI application, see Run-time tuning on page 44.

HPE Performance MPI performance profiling 63

Troubleshooting and frequently asked questions
Why is the mpiexec_mpt command failing?

If the mpiexec_mpt command fails, investigate the following:

• Look in /var/log/messages for any suspicious errors or warnings. For example, if your application tries
to load a library that it cannot find, a message should appear here. Only the administrator user can view
this file.

• Be sure that you did not misspell the name of your application.

• To find dynamic link errors, try the following:

◦ Run your program without mpiexec_mpt. When you do not use mpiexec_mpt, the output includes
dynamic link errors that might not otherwise be displayed. In addition, the output includes the following
message:

mpiexec_mpt must be used to launch all MPI applications
◦ Run your program with mpiexec_mpt. Set the LD_DEBUG environment variable to all, which

generates output that includes a set of messages for each symbol that rld resolves. This variable
produces a lot of output, but it can help you find the cause of the link error.

• Verify that you set your remote directory properly. By default, mpiexec_mpt attempts to place your
processes on all machines into the directory that has the same name as $PWD. This should be the
common case, but sometimes different functionality is required. For more information, see the
mpiexec_mpt(1) manpage's sections on $MPI_DIR and/or the -dir option.

• If you use a relative pathname for your application, verify that it appears in the $PATH environment
variable. In particular, the mpiexec_mpt command does not look in the working directory (".") for your
application unless "." appears in $PATH.

• Run the following command to verify that your array is configured correctly:

/usr/sbin/ascheck
• Run the mpiexec_mpt -verbose command to verify that you are running the version of MPI that you

think you are running.

• Be very careful when you set MPI environment variables from within your .cshrc or .login files
because these files override any settings that you might later set from within your shell. The reason for this
is that MPI creates the equivalent of a fresh login session for every job. The safe way to set things up is to
test for the existence of $MPI_ENVIRONMENT in your scripts and set the other MPI environment variables
only if it is undefined.

• If you are running in a Kerberos environment, you can experience unpredictable results because
mpiexec_mpt cannot pass tokens. For example, in some cases, if you use telnet to connect to a host
and then try to run mpiexec_mpt on that host, it fails. However, if you instead use rsh to connect to the
host, mpiexec_mpt succeeds. This might be because telnet is kerberized, but rsh is not. If you are
running under such conditions, talk to your local administrator about the proper way to launch MPI jobs.

• Look in the following directory on all the machines you are using:

/tmp/.arraysvcs
In some cases, you might find a helpful errlog file.

64 Troubleshooting and frequently asked questions

• You can increase the verbosity of the Array Services daemon, arrayd, when you use the -v option to
generate more debugging information. For more information, see the arrayd(8) manpage.

• Check for error messages in the /var/run/arraysvcs directory.

Why does my code run correctly until it reaches
MPI_Finalize() and then hang?

A code hang is almost always caused by a send request or a recv request that is either unmatched or not
completed. These request types are as follows:

• An unmatched request is any blocking send request for which a corresponding recv request is never
posted.

• An incomplete request is any nonblocking send or recv request that was never freed by a call to
MPI_Test(), MPI_Wait(), or MPI_Request_free().

Common examples are applications that call MPI_Isend() and then use internal means to determine when
it is safe to reuse the send buffer. These applications never call MPI_Wait(). To fix such codes, update your
code in one of the following ways:

• Insert a call to MPI_Request_free() immediately after all such isend operations.

• Add a call to MPI_Wait() at a later place in the code, prior to the point at which the send buffer must be
reused.

• Set MPI_REQUEST_DEBUG=true, which causes MPT to check for this condition at MPI_Finalize()
time.

Why does my hybrid code (using OpenMP) stall on the
mpirun command?

If your application was compiled with the Open64 compiler, make sure you follow the instructions about using
the Open64 compiler in combination with MPI/OpenMP applications described in the following topic:

Compiling and linking the MPI program on page 20

Why do I keep receiving warning messages about the
MPI_REQUEST_MAX value being too small?

The MPI library generates the following warning message when the MPI_REQUEST_MAX value is not set
appropriately:

MPT Warning: MPT has run out of preallocated request entries.
This may slow performance or fragment memory.
Please increase MPI_REQUEST_MAX.
The following are the conditions under which the MPI library generates the preceding message:

Why does my code run correctly until it reaches MPI_Finalize() and then hang? 65

• The program uses a very large number of simultaneous transfer requests, much larger than the number of
requests for which MPT preallocates. To fix this, use the MPI_REQUEST_MAX shell variable to increase the
number of preallocated requests.

• The application calls MPI_Isend() or MPI_Irecv() and does not complete or free the requested
objects. To fix this, use MPI_Request_free(), as described in the following:

Why does my code run correctly until it reaches MPI_Finalize() and then hang? on page 65

Why is it that I do I not see any stdout and/or stderr
output from my MPI application?

All stdout output and stderr output is line-buffered, which means that the mpirun command does not
print any partial lines of output. This sometimes causes problems for codes that prompt the user for input
parameters but do not end their prompts with a newline character. The only solution for this is to append a
newline character to each prompt.

You can set the MPI_UNBUFFERED_STDIO environment variable to disable line-buffering. For more
information, see the MPI(1) and mpirun(1) manpages.

Where can I find more information about the OpenSHMEM
programming model?

See the intro_shmem(3) manpage.

Why does the ps command say that my memory use (SIZE)
is higher than expected?

At job start-up, the MPI and OpenSHMEM libraries cross-map all user static and heap memory of the
processes on the local host to provide optimization opportunities. The result is large virtual memory usage.
The ps command's SIZE statistic is telling you the amount of virtual address space used, not the amount of
memory consumed. Even if all of the pages that you could reference were faulted in, most of the virtual
address regions point to multiply-mapped (shared) data regions, and even in that case, actual per-process
memory usage would be far lower than that indicated by SIZE.

What does the MPI: could not run executable
message mean?

This message means that something happened while mpiexec_mpt was trying to launch your application,
which caused it to fail before all of the MPI processes were able to handshake with it.

The mpiexec_mpt command directs arrayd to launch a shepherd process on each host and listens on a
socket for those shepherds to connect back to it. Because the shepherds are children of arrayd, arrayd
traps SIGCHLD and passes that signal back to mpiexec_mpt whenever one of the shepherds terminates. If
mpiexec_mpt receives a signal before it establishes connections with every host in the job, it knows that
something has gone wrong.

How do I combine MPI with other tools?
Different MPI implementations use different methods to launch their worker processes. Some tools expect a
method that is different from MPT's default. If you set the shell variable MPI_SHEPHERD=true, then MPT

66 Why is it that I do I not see any stdout and/or stderr output from my MPI application?

attempts to use a launch method that is similar to some other MPI implementations. Use of this option can
disable some less-common features, such as spawning and checkpoint-restart support.

In general, the rule to follow is to run the mpiexec_mpt command on your tool and then run the tool on your
application. Do not try to run the tool on mpiexec_mpt.

Also, because of the way that mpiexec_mpt sets up stdio, viewing the output from your tool might require
a bit of effort. The most ideal case is when the tool directly supports an option to redirect its output to a file. In
general, this is the recommended way to mix tools with mpiexec_mpt. Many tools, for example, dplace, do
not support such an option. However, you might be able to wrap a shell script around the tool and have the
script do the redirection, as in the following example:

> cat myscript
#!/bin/sh
###
NOTE: The example shown is for illustrative purposes only and
has not been evaluated for use in a production environment.
###
setenv MPI_DSM_OFF
dplace -verbose a.out 2> outfile
> mpirun -np 4 myscript
hello world from process 0
hello world from process 1
hello world from process 2
hello world from process 3
> cat outfile
there are now 1 threads
Setting up policies and initial thread.
Migration is off.
Data placement policy is PlacementDefault.
Creating data PM.
Data pagesize is 16k.
Setting data PM.
Creating stack PM.
Stack pagesize is 16k.
Stack placement policy is PlacementDefault.
Setting stack PM.
there are now 2 threads
there are now 3 threads
there are now 4 threads
there are now 5 threads

CAUTION:

The preceding script example is for illustrative purposes only and has not been evaluated for use in a
production environment.

Why do I see stack traceback information when my MPI job
aborts?

For information, see the MPI_COREDUMP environment variable description and the
MPI_COREDUMP_DEBUGGER environment variable description on the MPI(1) manpage.

Why do I see stack traceback information when my MPI job aborts? 67

Array Services
The HPE Array Services software enables parallel applications to run on multiple hosts in a cluster, or array.
Array Services provides cluster job launch capabilities for Message Passing Toolkit (MPT) jobs.

The array can consist of the following:

• Multiple server nodes on a cluster computing system

• Multiple physical machines

An array system is bound together with a high-speed network and the Array Services software. Array users
can access the system with familiar commands for job control, authentication, and remote execution. Array
Services facilitates global session management, array configuration management, batch processing,
message passing, system administration, and performance visualization.

The Array Services software package includes the following:

• An array daemon that runs on each node. The daemon groups logically related processes together across
multiple nodes. The process groups create a global process namespace across the array, facilitate
accounting, and facilitate administration.

The daemon maintains information about node configuration, process IDs, and process groups. Array
daemons on the nodes cooperate with each other.

• Array configuration files. The files describes the array configuration and provides reference information for
array daemons and user programs. Each node hosts a copy of each array configuration file.

• Commands, libraries, and utilities such as ainfo, arshell, and others.

The Message Passing Interface (MPI) of the HPE Performance Software -- Message Passing Interface (HPE
Performance MPI) software uses Array Services to launch parallel applications.

The HPE Performance MPI software distribution includes the MUNGE software. This optional, open-source
product provides secure Array Services functionality. MUNGE allows a process to authenticate the UID and
GID of another local or remote process within a group of hosts that have common users and groups. MUNGE
authentication, which also includes the Array Services data exchanged in the array, is encrypted. For more
information about MUNGE, see the MUNGE website at the following location:

http://dun.github.io/munge/

The Array Services package requires that the process sets service be installed and running. This package is
provided in the sgi-procset RPM. Use one of the following command sets to verify that the process sets
service is installed and running:

• On RHEL 7.X or SLES 12 SPX systems, type the following commands:

rpm -q sgi-procset
systemctl status procset

• On RHEL 6.X or SLES 11 SPX systems, type the following commands:

rpm -q sgi-procset
/etc/init.d/procset status

The following topics contain end-user information about Array Services:

68 Array Services

http://dun.github.io/munge/

• Installing and configuring array services on page 69

• Array Services commands and arguments on page 69

• Array Services environment variables on page 71

• Obtaining information about the array on page 71

NOTE:

For Array Services information that pertains to system administration, see the following:

Array Services system administration information on page 99

Installing and configuring array services
The system administrator needs to install and configure the Array Services software before end users can use
Array Services or run HPE Performance MPI programs.

See one of the following for automated installation information:

• On an HPE SGI 8600 system, an HPE Apollo 40 system, an HPE Apollo 20 system, an SGI ICE system,
or an SGI Rackable cluster system, see the following manual:

HPE SGI Management Suite Installation and Configuration Guide

• On an HPE Apollo 6500 system, HPE Apollo 6000 system, or an HPE Apollo 2000 system, see the
following:

Installing the Array Services software on HPE Apollo cluster systems on page 10

For information about the manual installation procedure, see the following:

Array Services system administration information on page 99

Array Services commands and arguments
When an application starts multiple processes on multiple nodes, a Linux process identifier (PID) and a
process group identifier (PGID) are no longer adequate to manage the application. The Array Services
commands enable you to view the entire array and to control processes on multiple nodes. You can type
Array Services commands from any workstation connected to an array system. You do not have to be logged
in to an array node.

To retrieve overview information about Array Services online, see the following manpage:

array_services(5)
The following topics contain more information about Array Services commands:

• Array Services commands on page 69

• Additional information for the ainfo command and the array command on page 70

Array Services commands
The following are the Array Services commands:

• ainfo

Installing and configuring array services 69

http://www.hpe.com/support/sgi-mgmt-suite-inst-009

Retrieves information about the different arrays at your site and about the nodes included in each array. At
most sites, there is only one array, but you can have multiple arrays at your site. The command output
includes the hostnames for each node in each array at your site.

• array
Runs a system command on one or more nodes and returns output to stdout. As arguments, array
accepts several options and the one system command that you want to run on the array. There is a default
set of system commands, but your system administrator determines the list of commands available to you
at your site.

• arshell
Runs a system command remotely on a different node. As arguments, arshell accepts several options
and the one system command that you want to run on the remote node.

The arshell command is like rsh in that it runs a command on another machine under the userid of the
invoking user. Use of authentication codes makes Array Services somewhat more secure than rsh.

The ainfo(1), array(1), and arshell(1) online manpages explain the arguments that each command
accepts.

Additional information for the ainfo command and the array command
The ainfo command and array command support several common command line arguments. For
comprehensive information about these commands, see the ainfo(1) and array(1) online manpages.

The following information supplements the information on the manpages:

• Your array administrator might have established an authentication code, which is a 64-bit number, for all or
some of the nodes in an array.

The ainfo and array commands accept the -Kl number and -Kr number options. For number,
specify the 64-bit authentication key number for the local node or the remote node that you want to target
with the command. The code applies to any command entered at that node or addressed to that node.

Your system administrator can tell you if it is necessary to specify an authentication code.

Note that in the case of -Kl number, the option letter is a lowercase letter “L”, for “local”.

• The -l and -s options work together. The -l option restricts the scope of a command to the node upon
which the command is run. This option is a lowercase letter “L”, for “local”. By default, that is the node
where the command is entered. When -l is not used, the command queries all nodes of the array. The -s
option runs the command on a specified node of the array. These options work together as follows:

◦ To query all nodes as seen by the local node, use neither option.

◦ To query only the local node, use only -l.

◦ To query all nodes as seen by a specified node, use only -s.

◦ To query only a particular node, use both -s and -l.

70 Additional information for the ainfo command and the array command

Array Services environment variables
The Array Services commands depend on environment variables to define default values for the less-
common command options. Table 2: Array Services environment variables on page 71 summarizes
these variables.

Table 2: Array Services environment variables

Variable name Use Default when undefined

ARRAYD_FORWARD When defined with a string starting with
the letter y, all commands default to
forwarding through the array daemon
(option -F).

Commands default to direct
communication (option -D).

ARRAYD_PORT The port (socket) number monitored by
the array daemon on the destination
node.

The standard number of 5434, or
the number given with option -p.

ARRAYD_LOCALKEY Authentication key for the local node
(option -Kl).

No authentication unless the -Kl
option is used.

ARRAYD_REMOTEKEY Authentication key for the destination
node (option -Kr).

No authentication unless -Kr
option is used.

ARRAYD The destination node, when not specified
by the -s option.

The local node, or the node given
with -s.

Obtaining information about the array
You can use Array Services commands and system commands to retrieve information about the array. For
example, you can use the ainfo command and the array command to check the hardware components
and the software workload on the array. In addition, you can use system commands, such as who, top, and
uptime, to retrieve information about users and workload on a node. To obtain array-wide information, use
these commands with the array command.

The following topics include examples that show how to retrieve information about the array:

• Retrieving array names on page 71

• Retrieving node names on page 72

• Retrieving user names on page 72

• Retrieving workload information on page 72

Retrieving array names
The following command shows how to retrieve the names of all arrays configured at your site:

homegrown% ainfo arrays
Arrays known to array services daemon
ARRAY DevArray
 IDENT 0x3381
ARRAY BigDevArray
 IDENT 0x7456

Array Services environment variables 71

ARRAY test
 IDENT 0x655e

Your system adminstrator configures the arrays at your site. Different arrays might know different sets of other
array names.

Retrieving node names
The following command uses the -b option of ainfo command to retrieve a brief version of the information
about all the nodes in the current array:

homegrown 175% ainfo -b machines
machine homegrown homegrown 5434 192.48.165.36 0
machine disarray disarray 5434 192.48.165.62 0
machine datarray datarray 5434 192.48.165.64 0
machine tokyo tokyo 5434 150.166.39.39 0

Retrieving user names
Example 1. The following array who command retrieves the names of all users logged in to the array:

mynode% array who
frederik corfu rummage.eng.sgi -tcsh
stefaan sf yoga.eng.sgi -tcsh
timo tokyo frost.ued.sgi /bin/tcsh
wim boston sig.eng.sgi vi +153 fs/procfs/prd
ruben paris mountain.eng.sgi -tcsh
...

Example 2. The following command retrieves the names of users logged in to the node named tokyo. This
command uses the -l and -s options.

homegrown 180% array -s tokyo -l who
joecd tokyo frummage.eng.sgi -tcsh
joecd tokyo frummage.eng.sgi -tcsh
benf tokyo einstein.ued.sgi. /bin/tcsh
yohn tokyo rayleigh.eng.sg vi +153 fs/procfs/prd
...

The preceding examples have been edited for brevity and security.

Retrieving workload information
Example 1. The following command shows how to use the uptime command to retrieve information for the
entire array:

homegrown 181% array uptime
 homegrown: up 1 day, 7:40, 26 users, load average: 7.21, 6.35, 4.72
 disarray: up 2:53, 0 user, load average: 0.00, 0.00, 0.00
 datarray: up 5:34, 1 user, load average: 0.00, 0.00, 0.00
 tokyo: up 7 days, 9:11, 17 users, load average: 0.15, 0.31, 0.29

72 Retrieving node names

Example 2. The following command shows how to use the uptime command to retrieve information about a
single node:

homegrown 182% array -l -s tokyo uptime
 tokyo: up 7 days, 9:11, 17 users, load average: 0.12, 0.30, 0.28

Example 3. The following command shows how to use the top command to lists the processes that are
currently using the most CPU time:

homegrown 183% array top
 ASH Host PID User %CPU Command
--
0x1111ffff00000000 homegrown 5 root 1.20 vfs_sync
0x1111ffff000001e9 homegrown 1327 arraysvcs 1.19 atop
0x1111ffff000001e9 tokyo 19816 arraysvcs 0.73 atop
0x1111ffff000001e9 disarray 1106 arraysvcs 0.47 atop
0x1111ffff000001e9 datarray 1423 arraysvcs 0.42 atop
0x1111ffff00000000 homegrown 20 root 0.41 ShareII
0x1111ffff000000c0 homegrown 29683 kchang 0.37 ld
0x1111ffff0000001e homegrown 1324 root 0.17 arrayd
0x1111ffff00000000 homegrown 229 root 0.14 routed
0x1111ffff00000000 homegrown 19 root 0.09 pdflush
0x1111ffff000001e9 disarray 1105 arraysvcs 0.02 atopm

The output identifies each process by its internal array session handle (ASH) value. As an alternative, you
could use the -l and -s options to select data about a single node.

Array Services 73

Using the Message Passing Toolkit (MPT) plugin
for Nagios

Nagios is a web-based system monitoring tool that HPE automatically installs on cluster computing systems.
Nagios enables you to monitor the cluster infrastructure. When you install the optional MPT plugin for Nagios,
the MPT system log messages that typically appear in /var/log/messages also appear in the Nagios
graphical user interface (GUI). The plugin scans the system log for messages that MPT has logged, and in
the Nagios GUI, the plugin displays the number of error messages and warning messages that the plugin
encountered in the scan.

Preparing to install the MPT Nagios plugin
Procedure

1. Locate the HPE Performance Software installation DVD, and insert the DVD into the DVD reader on the
admin node.

2. Log into the admin node as the administrator user.

3. Change to the RPM repository directory.

4. Proceed to Installing the MPT Nagios plugin on page 74.

Installing the MPT Nagios plugin
Prerequisites

Make sure you completed Preparing to install the MPT Nagios plugin on page 74.

Procedure

1. Enter one of the following commands to install the plugin:

• On RHEL 7 systems or RHEL 6 systems, type the following command:

yum install checkmpt-plugin
• On SLES 12 systems or SLES 11 systems, type the following command:

zypper in checkmpt-plugin

The preceding commands install the following files:

/opt/hpe/hpc/mpt/checkmpt-plugin/README
/opt/sgi/nagios/libexec/check_mpt

2. Use a text editor to open file /opt/hpe/hpc/mpt/checkmpt-plugin/README, and leave the file
open in a window on your desktop.

This file contains a shorthand version of these installation instructions. Some steps in this installation
procedure require you to insert specific lines into specific files, and it is easiest to copy the lines out of
the README file and modify them as this procedure explains.

74 Using the Message Passing Toolkit (MPT) plugin for Nagios

3. Enter the following command to edit file sudoers:

visudo
4. Copy the following lines from the README file to the end of the sudoers file, and replace

<nagiosuser> and <PLUGINSDIR> with values that are valid at your site:

check_mpt plugin for Nagios (needs access to syslogs)
<nagiosuser> ALL=NOPASSWD: <PLUGINSDIR>/check_mpt
end check_mpt
Replace the variables in the preceding lines as follows:

• Replace <nagiosuser> with the Nagios username assigned when Nagios was installed. By default,
this username is nagios.

• Replace <PLUGINSDIR> with the directory in which the Nagios plugin resides. By default, this
is /opt/sgi/nagios/libexec.

5. Save and close the sudoers file.

6. Use a text editor to open file commands.cfg.

By default, this file resides in the following directory:

/opt/sgi/nagios/etc/objects
7. Copy the following lines from the README file to the end of the commands.cfg file:

check_mpt command definition
 define command {
 command_name check_mpt
 command_line sudo $USER1$/check_mpt -W $ARG1$ -E $ARG2$
 }
 # end check_mpt
You do not need to assign values to $ARG1$ or $ARG2$. A later step in this procedure populates these
arguments with values.

8. Save and close the commands.cfg file.

9. Use a text editor to open file localhost.cfg.

By default, this file resides in the following directory:

/opt/sgi/nagios/etc/objects
10. Copy the following lines from the README file to the end of the localhost.cfg file:

check_mpt service definition
define service {
 use local-service
 host_name localhost
 service_description check_mpt
 check_command check_mpt!10!5
 max_check_attempts 2
 normal_check_interval 2
 retry_check_interval 1
}
end of check_mpt
The key lines in the preceding module have the following effects:

Using the Message Passing Toolkit (MPT) plugin for Nagios 75

Line Comment

use local-service Use the generic Nagios template.

host_name localhost Run on localhost or similar.

service_description check_mpt Declare the service name.

check_command check_mpt!10!5 Is CRITICAL if >10 warnings / >5 errors.

max_check_attempts 2 If OK, try check again.

normal_check_interval 2 Run check every 2 minutes.

retry_check_interval 1 Retry every 1 minute.

11. Save and close file localhost.cfg.

12. Enter the following command to verify the changes you made and to make sure that there are no
conflicts:

nagios_dir/bin/nagios -v nagios_dir/etc/nagios.cfg

For nagios_dir, specify the Nagios home directory. By default, this directory is /opt/sgi/nagios.

13. Restart Nagios on the node.
On RHEL 7 platforms and SLES 12 platforms, enter the following command:

systemctl restart Nagios

On RHEL 6 platforms and SLES 11 platforms, enter the following command:

service nagios restart
If you change any of the Nagios .cfg files, restart Nagios.

14. On the admin node, use a shell command to set the following environment variable:

MPI_SYSLOG_COPY=1
For example:

set MPI_SYSLOG_COPY=1

Make sure to set this value in your shell before you run any HPE Performance Software -- Message
Passing Interface (HPE Performance MPI) or SHMEM applications.

15. (Optional) Leave the DVD in the admin node's DVD reader, and install the Nagios plugin on one or more
rack leader controllers (RLCs).

After you install the plugin on an RLC, you can start Nagios on that RLC and monitor the following:

• The messages on that RLC

• The messages related to that RLC's compute nodes

Complete the following steps to install the Nagios plugin on an RLC:

76 Using the Message Passing Toolkit (MPT) plugin for Nagios

a. From the admin node, use the ssh command to log into one of the RLCs as the administrator user.

b. Complete this procedure again starting with installing the plugin software.

Viewing MPT messages from within Nagios and clearing the
messages

The following procedure explains how to retrieve MPT messages and clear MPT messages.

Procedure

1. Log into one of the cluster nodes.

If you log into the admin node and start Nagios from the admin node, Nagios displays information for the
whole cluster.

If you log into one of the RLCs and start Nagios from one of the RLCs, Nagios displays information for that
RLC and its subordinate nodes.

2. Start Nagios.

Enter one of the following URLs into your browser:

• To start Nagios on the admin node, enter the following:

http://admin_name/nagios/rlc_name

For admin_name, enter the hostname or IP address of the admin node.

• To start Nagios on one of the RLCs, enter the following:

http://admin_name/nagios/rlc_name

For admin_name, type the hostname or IP address of the admin node.

For rlc_name, type the hostname or IP address of the RLC. For example, r1lead.

3. Enter in the Nagios user's username and password.

By default, the username is nagiosadmin. By default, the password is sgisgi.

4. Look for MPT information in the Nagios interface.

By default, the plugin scans the messages in the /var/log/messages and reports messages to Nagios,
as follows:

• If you installed the plugin on the admin node, the plugin sends messages to Nagios for the admin node.

• If you installed the plugin on one or more RLCs, the plugin sends messages to Nagios for the RLC and
the RLC compute nodes. You need to start Nagios on the RLC to observe the messages related to that
RLC.

If you click an MPT message from within the Nagios interface, you retrieve more information about the
message.

Viewing MPT messages from within Nagios and clearing the messages 77

5. Use administrator commands to remedy the error conditions, if needed.

6. On the admin node, run the check_mpt command to clear the messages that Nagios reported.

If you installed the plugin on the RLCs, run the check_mpt on RLCs, too.

The MPT plugin works by scanning /var/log/messages, from beginning to end. To stop the plugin from
repeatedly scanning the log file, a file offset is preserved. After you run the check_mpt command, the
changes appear in Nagios after the next scan.

The following examples show how to use options to the check_mpt command to direct the plugin to scan
the system log according to your site preferences.

Example 1. To direct the plugin to scan for only newly logged messages, use the -C option. The -C option
clears all current message counts and requests that Nagios continue its scan for new messages. Also, the
-C parameter changes the Nagios CRITICAL and WARNING status back to OK after you correct the
reported error condition. To use this option, type the following command:

check_mpt -C

Example 2. The -X parameter directs the plugin to start a new scan of /var/log/messages, clears the
MPT message counts, and resets the offsets to 0. You can run check_mpt with the -X parameter after
each log rotation. This command is as follows:

check_mpt -X

The check_mpt command accepts additional parameters. For more information on these parameters,
type the following command to retrieve a usage statement:

check_mpt -h

(Optional) Modifying the notification email
In addition to the notifications that Nagios reports in the Nagios GUI, Nagios also sends email notifications of
alert conditions. If you modify the Nagios email configuration file, the Nagios email can include hostname
information, which can let you identify the node upon which the error condition occurred more easily.

The commands.cfg file contains the following:

'notify-service-by-email-long' command definition
define command {
 command_name notify-service-by-email-long
 command_line /usr/bin/printf "%b" "***** Nagios *****\n\nNotification
Type: $NOTIFICATIONTYPE$\n\nService: $SERVICEDESC$\nHost: $HOSTALIAS$ \nAddress:
$HOSTADDRESS$\nState: $SERVICESTATE$\n\nDate/Time: $LONGDATETIME$\n\nAdditional
Info:\n\n$SERVICEOUTPUT$\n\n$LONGSERVICEOUTPUT$" | /usr/bin/mail -s "**
$NOTIFICATIONTYPE$ Service Alert: $HOSTALIAS$/$SERVICEDESC$ is $SERVICESTATE$ **"
$CONTACTEMAIL$
}

If you change $HOSTALIAS$ to hostname, the Nagios emails include the hostname of the node upon which
the error condition occurred. For example, the following file shows this enhancement:

'notify-service-by-email-long' command definition
define command {
 command_name notify-service-by-email-long
 command_line /usr/bin/printf "%b" "***** Nagios *****\n\nNotification

78 (Optional) Modifying the notification email

Type: $NOTIFICATIONTYPE$\n\nService: $SERVICEDESC$\nHost: `hostname` \nAddress:
$HOSTADDRESS$\nState: $SERVICESTATE$\n\nDate/Time: $LONGDATETIME$\n\nAdditional
Info:\n\n$SERVICEOUTPUT$\n\n$LONGSERVICEOUTPUT$" | /usr/bin/mail -s "**
$NOTIFICATIONTYPE$ Service Alert: $HOSTALIAS$/$SERVICEDESC$ is $SERVICESTATE$ **"
$CONTACTEMAIL$
}

For more information about Nagios and the Nagios email reporting feature, see your Nagios documentation.

Using the Message Passing Toolkit (MPT) plugin for Nagios 79

High-performance computing tools (HPC) tools
The HPC tools include the data placement tools and the flexible file I/O (FFIO) tools.

Data placement tools
The data placement tools place data in specific memory locations, which minimizes communication overhead
within an application.

The dplace tool and the cpuset tools are built upon the cpusets API. You can use these tools avoid poor
data locality in your application caused by process or thread drift from CPU to CPU. The omplace tool works
like the dplace tool and is designed for use with OpenMP applications. The differences among these tools
are as follows:

• The taskset command restricts execution to the listed set of CPUs when you specify the -c or --cpu-
list option. The process is free to move among the CPUs that you specify.

• The dplace tool differs from taskset in that dplace binds processes to specified CPUs in round-robin
fashion. After a process is pinned, it does not migrate, so you can use this for increasing the performance
and reproducibility of parallel codes.

• Cpusets are named subsets of system cpus/memories and are used extensively in batch environments.

For information about the data placement tools, see the following:

• dplace command on page 80

• omplace command on page 85

• The cpuset information in the following:

HPE Performance Software - Message Passing Interface Cpuset Software Guide

• taskset command information in the following:

Linux Application Tuning Guide for SGI X86-64 Based Systems

dplace command
By default, memory is allocated to a process on the node on which the process is running. If a process moves
from node to node while it is running, a higher percentage of memory references are made to remote nodes.
Because remote accesses typically have higher access times, performance can degrade. CPU instruction
pipelines also have to be reloaded.

The dplace command specifies scheduling and memory placement policies for the process. You can use the
dplace command to bind a related set of processes to specific CPUs or nodes to prevent process
migrations. In some cases, this improves performance because a higher percentage of memory accesses are
made to local nodes.

Processes always execute within a cpuset. The cpuset specifies the CPUs on which a process can run. By
default, processes usually execute in a cpuset that contains all the CPUs in the system. For information about
cpusets, see the following:

HPE Performance Software - Message Passing Interface Cpuset Software Guide

80 High-performance computing tools (HPC) tools

https://support.hpe.com/hpsc/doc/public/display?docId=emr_na-a00026250en_us
https://support.hpe.com/hpsc/doc/public/display?docId=emr_na-a00026250en_us
https://support.hpe.com/hpsc/doc/public/display?docId=emr_na-a00026250en_us

The dplace command creates a placement container that includes all the CPUs, or a subset of CPUs, of a
cpuset. The dplace process is placed in this container and, by default, is bound to the first CPU of the
cpuset associated with the container. Then dplace invokes exec to run the command.

The command runs within this placement container and remains bound to the first CPU of the container. As
the command forks child processes, the child processes inherit the container and are bound to the next
available CPU of the container.

If you do not specify a placement file, dplace binds processes sequentially in a round-robin fashion to CPUs
of the placement container. For example, if the current cpuset consists of physical CPUs 2, 3, 8, and 9, the
first process launched by dplace is bound to CPU 2. The first child process forked by this process is bound
to CPU 3. The next process, regardless of whether it is forked by a parent or a child, is bound to CPU 8, and
so on. If more processes are forked than there are CPUs in the cpuset, binding starts over with the first CPU
in the cpuset.

For more information about dplace, see the dplace(1) manpage, which also includes examples of how to
use the command.

Example: Using the dplace command with MPI programs

The following command improves the placement of MPI programs and verifies placement of certain data
structures of a long-running MPI program:

% mpirun -np 64 /usr/bin/dplace -s1 -c 0-63 ./a.out

The -s1 parameter causes dplace to start placing processes with the second process, p1. The first process,
p0, is not placed because it is associated with the job launch, not with the job itself. The -c 0-63 parameter
causes dplace to use processors 0-63.

You can then use the dlook command to verify placement of the data structures in another window on one of
the slave thread PIDs. For more information about the dlook command, see the dlook(1) manpage.

Example: Using the dplace command with OpenMP programs

The following command runs an OpenMP program on logical CPUs 4 through 7 within the current cpuset:

% efc -o prog -openmp -O3 program.f
% setenv OMP_NUM_THREADS 4
% dplace -c4-7 ./prog

Example: Using the dplace command with OpenMP programs

The dplace command has a static load balancing feature, so you do not have to supply a CPU list. To place
prog1 on logical CPUs 0 through 3 and prog2 on logical CPUs 4 through 7, type the following:

% setenv OMP_NUM_THREADS 4
% dplace ./prog1 &
% dplace ./prog2 &

You can use the dplace -q command to display the static load information.

Example: Using the dplace command with Linux commands

The examples in the following table assume that you run the dplace commands from a shell that runs in a
cpuset consisting of physical CPUs 8 through 15.

High-performance computing tools (HPC) tools 81

Command Run location

dplace -c2 date Runs the date command on physical CPU 10.

dplace make linux Runs gcc and related processes on physical CPUs 8
through 15.

dplace -c0-4,6 make linux Runs gcc and related processes on physical CPUs 8
through 12 or 14.

taskset 4,5,6,7 dplace app The taskset command restricts execution to
physical CPUs 12 through 15. The dplace
command sequentially binds processes to CPUs 12
through 15.

Example: Using the dplace command and a debugger for verification

To use the dplace command accurately, you should know how your placed tasks are being created in terms
of the fork, exec, and pthread_create calls. Determine whether each of these worker calls are an MPI
rank task or are groups of pthreads created by rank tasks. Here is an example of two MPI ranks, each
creating three threads:

cat <<EOF > placefile
firsttask cpu=0
exec name=mpiapp cpu=1
fork name=mpiapp cpu=4-8:4 exact
thread name=mpiapp oncpu=4 cpu=5-7 exact thread name=mpiapp oncpu=8
cpu=9-11 exact EOF

mpirun is placed on cpu 0 in this example
the root mpiapp is placed on cpu 1 in this example

or, if your version of dplace supports the "cpurel=" option:
firsttask cpu=0
fork name=mpiapp cpu=4-8:4 exact
thread name=mpiapp oncpu=4 cpurel=1-3 exact

create 2 rank tasks, each will pthread_create 3 more
ranks will be on 4 and 8
thread children on 5,6,7 9,10,11
dplace -p placefile mpirun -np 2 ~cpw/bin/mpiapp -P 3 -l

exit

You can use the debugger to determine if it is working. It should show two MPI rank applications, each with
three pthreads, as follows:

>> pthreads | grep mpiapp
px *(task_struct *)e00002343c528000 17769 17769 17763 0 mpiapp
 member task: e000013817540000 17795 17769 17763 0 5 mpiapp
 member task: e000013473aa8000 17796 17769 17763 0 6 mpiapp
 member task: e000013817c68000 17798 17769 17763 0 mpiapp
px *(task_struct *)e0000234704f0000 17770 17770 17763 0 mpiapp
 member task: e000023466ed8000 17794 17770 17763 0 9 mpiapp

82 High-performance computing tools (HPC) tools

 member task: e00002384cce0000 17797 17770 17763 0 mpiapp
 member task: e00002342c448000 17799 17770 17763 0 mpiapp

You can also use the debugger to see an administrator application, the parent of the two MPI rank
applications, as follows:

>> ps | grep mpiapp
0xe00000340b300000 1139 17763 17729 1 0xc800000 - mpiapp
0xe00002343c528000 1139 17769 17763 0 0xc800040 - mpiapp
0xe0000234704f0000 1139 17770 17763 0 0xc800040 8 mpiapp
These are placed as specified:

>> oncpus e00002343c528000 e000013817540000 e000013473aa8000
>> e000013817c68000 e0
000234704f0000 e000023466ed8000 e00002384cce0000 e00002342c448000
task: 0xe00002343c528000 mpiapp cpus_allowed: 4
task: 0xe000013817540000 mpiapp cpus_allowed: 5
task: 0xe000013473aa8000 mpiapp cpus_allowed: 6
task: 0xe000013817c68000 mpiapp cpus_allowed: 7
task: 0xe0000234704f0000 mpiapp cpus_allowed: 8
task: 0xe000023466ed8000 mpiapp cpus_allowed: 9
task: 0xe00002384cce0000 mpiapp cpus_allowed: 10
task: 0xe00002342c448000 mpiapp cpus_allowed: 11

Example: Using the dplace command for compute thread placement troubleshooting

Sometimes compute threads do not end up on unique processors when using commands such a dplace or
profile.pl.

In this example, assume that the dplace -s1 -c0-15 command bound 16 processes to run on 0-15 CPUs.
However, output from the top command shows only 13 CPUs running with CPUs 13, 14, and 15 still idle, and
CPUs 0, 1 and 2 are shared with 6 processes.

263 processes: 225 sleeping, 18 running, 3 zombie, 17 stopped
CPU states: cpu user nice system irq softirq iowait idle
 total 1265.6% 0.0% 28.8% 0.0% 11.2% 0.0% 291.2%

 cpu00 100.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0%

 cpu01 90.1% 0.0% 0.0% 0.0% 9.7% 0.0% 0.0%

 cpu02 99.9% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0%

 cpu03 99.9% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0%

 cpu04 100.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0%

 cpu05 100.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0%

 cpu06 100.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0%

 cpu07 88.4% 0.0% 10.6% 0.0% 0.8% 0.0% 0.0%

 cpu08 100.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0%

 cpu09 99.9% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0%

 cpu10 99.9% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0%

High-performance computing tools (HPC) tools 83

 cpu11 88.1% 0.0% 11.2% 0.0% 0.6% 0.0% 0.0%

 cpu12 99.7% 0.0% 0.2% 0.0% 0.0% 0.0% 0.0%

 cpu13 0.0% 0.0% 2.5% 0.0% 0.0% 0.0% 97.4%

 cpu14 0.8% 0.0% 1.6% 0.0% 0.0% 0.0% 97.5%

 cpu15 0.0% 0.0% 2.4% 0.0% 0.0% 0.0% 97.5%
 Mem: 60134432k av, 15746912k used, 44387520k free, 0k shrd,
672k buff
 351024k active, 13594288k inactive

 Swap: 2559968k av, 0k used, 2559968k free
 2652128k cached

 PID USER PRI NI SIZE RSS SHARE STAT %CPU %MEM TIME CPU COMMAND

 7653 ccao 25 0 115G 586M 114G R 99.9 0.9 0:08 3 mocassin

 7656 ccao 25 0 115G 586M 114G R 99.9 0.9 0:08 6 mocassin

 7654 ccao 25 0 115G 586M 114G R 99.8 0.9 0:08 4 mocassin

 7655 ccao 25 0 115G 586M 114G R 99.8 0.9 0:08 5 mocassin

 7658 ccao 25 0 115G 586M 114G R 99.8 0.9 0:08 8 mocassin

 7659 ccao 25 0 115G 586M 114G R 99.8 0.9 0:08 9 mocassin

 7660 ccao 25 0 115G 586M 114G R 99.8 0.9 0:08 10 mocassin

 7662 ccao 25 0 115G 586M 114G R 99.7 0.9 0:08 12 mocassin

 7657 ccao 25 0 115G 586M 114G R 88.5 0.9 0:07 7 mocassin

 7661 ccao 25 0 115G 586M 114G R 88.3 0.9 0:07 11 mocassin

 7649 ccao 25 0 115G 586M 114G R 55.2 0.9 0:04 2 mocassin

 7651 ccao 25 0 115G 586M 114G R 54.1 0.9 0:03 1 mocassin

 7650 ccao 25 0 115G 586M 114G R 50.0 0.9 0:04 0 mocassin

 7647 ccao 25 0 115G 586M 114G R 49.8 0.9 0:03 0 mocassin

 7652 ccao 25 0 115G 586M 114G R 44.7 0.9 0:04 2 mocassin

 7648 ccao 25 0 115G 586M 114G R 35.9 0.9 0:03 1 mocassin
Even if an application starts some threads executing for a very short time, the threads still have taken a token
in the CPU list. Then, when the compute threads are finally started, the list is exhausted and restarts from the
beginning. Consequently, some threads end up sharing the same CPU. To bypass this, try to eliminate the
ghost thread creation, as follows:

84 High-performance computing tools (HPC) tools

• Check for a call to the system function. This is often responsible for the placement failure due to
unexpected thread creation. If all the compute processes have the same name, you can do this by issuing
a command such as the following:

% dplace -c0-15 -n compute-process-name ...

• You can also run dplace -e -c0-32 on 16 CPUs to understand the pattern of the thread creation. If this
pattern is the same from one run to the other (unfortunately race between thread creation often occurs),
you can find the right flag to dplace. For example, if you want to run on CPUs 0-3, with dplace -e -
C0-16 and you see that threads are always placed on CPU 0, 1, 5, and 6, then one of the following
commands should place your threads correctly:

dplace -e -c0,1,x,x,x,2,3
or

dplace -x24 -c0-3 # x24 =11000, place the 2 first and skip 3 before placing

omplace command
The omplace command controls the placement of MPI processes and OpenMP threads. This command is a
wrapper script for dplace. Use omplace, rather than dplace, if your application uses MPI, OpenMP,
pthreads, or hybrid MPI/OpenMP and MPI/pthreads codes. The omplace command generates the proper
dplace placement file syntax automatically. It also supports some unique options, such as block-strided CPU
lists.

The omplace command causes the successive threads in a hybrid MPI/OpenMP job to be placed on unique
CPUs. The CPUs are assigned in order from the effective CPU list within the containing cpuset. The CPU
placement is performed by dynamically generating a placement file and invoking dplace with the MPI job
launch.

For example, to run two MPI processes with four threads per process, and to display the generated
placement file, type a command similar to the following:

mpirun -np 2 omplace -nt 4 -vv ./a.out

The preceding command places the threads as follows:

rank 0 thread 0 on CPU 0
rank 0 thread 1 on CPU 1
rank 0 thread 2 on CPU 2
rank 0 thread 3 on CPU 3
rank 1 thread 0 on CPU 4
rank 1 thread 1 on CPU 5
rank 1 thread 2 on CPU 6
rank 1 thread 3 on CPU 7
For more information, see the omplace(1) man page.

Flexible File I/O (FFIO)
Flexible File I/O (FFIO) can improve the file I/O performance of existing applications without having to resort
to source code changes. The current executable remains unchanged. Knowledge of source code is not
required, but some knowledge of how the source and the application software work can help you better
interpret and optimize FFIO results. To take advantage of FFIO, all you need to do is to set some environment
variables before running your application.

omplace command 85

The FFIO subsystem allows you to define one or more additional I/O buffer caches for specific files to
augment the Linux kernel I/O buffer cache. The FFIO subsystem then manages this buffer cache for you. In
order to accomplish this, FFIO intercepts standard I/O calls such as open, read, and write, and replaces them
with FFIO equivalent routines. These routines route I/O requests through the FFIO subsystem, which uses the
user-defined FFIO buffer cache.

FFIO can bypass the Linux kernel I/O buffer cache by communicating with the disk subsystem via direct I/O.
This bypass gives you precise control over cache I/O characteristics and allows for more efficient I/O
requests. For example, doing direct I/O in large chunks (for example, 16 megabytes) allows the FFIO cache
to amortize disk access. All file buffering occurs in user space when FFIO is used with direct I/O enabled. This
differs from the Linux buffer cache mechanism, which requires a context switch in order to buffer data in
kernel memory. Avoiding this kind of overhead helps FFIO to scale efficiently.

Another important distinction is that FFIO allows you to create an I/O buffer cache dedicated to a specific
application. The Linux kernel, on the other hand, has to manage all the jobs on the entire system with a single
I/O buffer cache. As a result, FFIO typically outperforms the Linux kernel buffer cache when it comes to I/O
intensive throughput.

The following topics explain how to use FFIO:

• Environment variables on page 86

• FFIO examples on page 87

• Multithreading considerations on page 89

• Application examples on page 90

• Event tracing on page 90

• System information on page 91

Environment variables
To use FFIO, set one of the following environment variables: LD_PRELOAD or FF_IO_OPTS.

To enable FFIO to trap standard I/O calls, set the LD_PRELOAD environment variable, as follows:

export LD_PRELOAD="/usr/lib64/libFFIO.so"

The LD_PRELOAD software is a Linux feature that instructs the linker to preload the indicated shared libraries.
In this case, libFFIO.so is preloaded and provides the routines that replace the standard I/O calls. An
application that is not dynamically linked with the glibc library cannot work with FFIO because the standard
I/O calls cannot be intercepted. To disable FFIO, enter the following:

unset LD_PRELOAD

The FFIO buffer cache is managed by the FF_IO_OPTS environment variable. The syntax for setting this
variable can be quite complex. A simple format for defining this variable is as follows:

export FF_IO_OPTS 'string(eie.direct.mbytes:size:num:lead:share:stride:0)'

The following table shows the arguments you can use with the FF_IO_OPTS environment variable.

86 Environment variables

Argument Effect

string Matches the names of files that can use the buffer
cache.

size Number of 4k blocks in each page of the I/O buffer
cache.

num Number of pages in the I/O buffer cache.

lead The maximum number of read-ahead pages.

share A value of 1 means a shared cache, 0 means private.

stride The stride parameter is always 0.

Example 1. Assume that you want a shared buffer cache of 128 pages. Each page is to be 16 megabytes
(that is, 4096*4k). The cache has a lead of six pages and uses a stride of one. The command is as follows:

% setenv FF_IO_OPTS 'test*(eie.direct.mbytes:4096:128:6:1:1:0)'

Each time the application opens a file, the FFIO code checks the file name to see if it matches the string
supplied by FF_IO_OPTS. The file's path name is not considered when checking for a match against the
string. For example, file names of /tmp/test16 and /var/tmp/testit both match.

Example 2. This more complicated usage of FF_IO_OPTS builds upon the previous example. Multiple file
name types can share the same cache, as the following example shows:

% setenv FF_IO_OPTS 'output* test*(eie.direct.mbytes:4096:128:6:1:1:0)'

Example 3. You can specify multiple caches with FF_IO_OPTS. In the example that follows, files of the form
output* and test* share a 128 page cache of 16 megabyte pages. The file special42 has a 256-page
private cache of 32 megabyte pages. The command, which uses the backslash (\) continuation character, is
as follows:

% setenv FF_IO_OPTS 'output* test*(eie.direct.mbytes:4096:128:6:1:1:0) \
special42(eie.direct.mbytes:8192:256:6:0:1:0)'

Additional parameters can be added to FF_IO_OPTS to create feedback that is sent to standard output. For
examples of this diagnostic output, see the following:

FFIO examples on page 87

FFIO examples
This topic includes some simple FFIO examples. Assume that LD_PRELOAD is set for the correct library, and
FF_IO_OPTS is defined as follows:

% setenv FF_IO_OPTS 'test*(eie.direct.mbytes:4096:128:6:1:1:0)'

It can be difficult to tell what FFIO might or might not be doing even with a simple program. The examples in
this topic use a small C program called fio that reads 4-megabyte chunks from a file for 100 iterations. When
the program runs, it produces the following output:

% ./fio -n 100 /build/testit
Reading 4194304 bytes 100 times to /build/testit

FFIO examples 87

Total time = 7.383761
Throughput = 56.804439 MB/sec

Example 1. You can direct a simple FFIO operations summary to standard output by making the following
simple addition to FF_IO_OPTS:

% setenv FF_IO_OPTS 'test*(eie.direct.mbytes:4096:128:6:1:1:0, \
event.summary.mbytes.notrace)'

This new setting for FF_IO_OPTS generates the following summary on standard output when the program
runs:

% ./fio -n 100 /build/testit
Reading 4194304 bytes 100 times to /build/testit
Total time = 7.383761
Throughput = 56.804439 MB/sec

event_close(testit) eie <-->syscall (496 mbytes)/(8.72 s)= 56.85 mbytes/
s
oflags=0x0000000000004042=RDWR+CREAT+DIRECT
sector size =4096(bytes)
cblks =0 cbits =0x0000000000000000
current file size =512 mbytes high water file size =512 mbytes

function times wall all mbytes mbytes min max avg
 called time hidden requested delivered request request request
 open 1 0.00
 read 2 0.61 32 32 16 16 16
 reada 29 0.01 0 464 464 16 16 16
 fcntl
 recall
 reada 29 8.11
 other 5 0.00
 flush 1 0.00
 close 1 0.00

Two synchronous reads of 16 megabytes each were issued, for a total of 32 megabytes. In addition, there
were 29 asynchronous reads (reada) issued, for a total of 464 megabytes.

Example 2. You can generate additional diagnostic information by specifying the .diag modifier. The
following is an example of the diagnostic output generated when the .diag modifier is used:

% setenv FF_IO_OPTS 'test*(eie.direct.diag.mbytes:4096:128:6:1:1:0)'
% ./fio -n 100 /build/testit
Reading 4194304 bytes 100 times to /build/testit
Total time = 7.383761
Throughput = 56.804439 MB/sec

eie_close EIE final stats for file /build/testit
eie_close Used shared eie cache 1
eie_close 128 mem pages of 4096 blocks (4096 sectors), max_lead = 6 pages
eie_close advance reads used/started : 23/29 79.31% (1.78 seconds wasted)
eie_close write hits/total : 0/0 0.00%
eie_close read hits/total : 98/100 98.00%
eie_close mbytes transferred parent --> eie --> child sync async
eie_close 0 0 0 0
eie_close 400 496 2 29 (0,0)

88 High-performance computing tools (HPC) tools

eie_close parent <-- eie <-- child

eie_close EIE stats for Shared cache 1
eie_close 128 mem pages of 4096 blocks
eie_close advance reads used/started : 23/29 79.31% (0.00 seconds wasted)
eie_close write hits/total : 0/0 0.00%
eie_close read hits/total : 98/100 98.00%
eie_close mbytes transferred parent --> eie --> child sync async
eie_close 0 0 0
eie_close 400 496 2 29 (0,0)

The preceding output lists information for both the file and the cache. In the mbytes transferred
information, the lines in bold are for write and read operations, respectively. Only for very simple I/O patterns
can the difference between (parent --> eie) and (eie --> child) read statistics be explained by the
number of read aheads. For random reads of a large file over a long period of time, this is not the case. All
write operations count as async.

You can generate additional diagnostic information by specifying the .diag modifier and
the .event.summary modifier. The two modifiers operate independently from one another. The following
specification uses both modifiers:

% setenv FF_IO_OPTS 'test*(eie.diag.direct.mbytes:4096:128:6:1:1:0, \
event.summary.mbytes.notrace)'

Multithreading considerations
FFIO works with applications that use MPI for parallel processing. An MPI job assigns each thread a number
or rank. The master thread has rank 0, while the remaining slave threads have ranks from 1 to N-l where N is
the total number of threads in the MPI job. It is important to consider that the threads comprising an MPI job
do not necessarily have access to each others' address space. As a result, there is no way for the different
MPI threads to share the same FFIO cache. By default, each thread defines a separate FFIO cache based on
the parameters defined by FF_IO_OPTS.

Having each MPI thread define a separate FFIO cache, based on a single environment variable
(FF_IO_OPTS), can waste a lot of memory. Fortunately, FFIO provides a mechanism that allows you to
specify a different FFIO cache for each MPI thread via the following environment variables:

setenv FF_IO_OPTS_RANK0 'result*(eie.direct.mbytes:4096:512:6:1:1:0)'
setenv FF_IO_OPTS_RANK1 'output*(eie.direct.mbytes:1024:128:6:1:1:0)'
setenv FF_IO_OPTS_RANK2 'input*(eie.direct.mbytes:2048:64:6:1:1:0)'
 .
 .
 .
setenv FF_IO_OPTS_RANKN-1 ... (N = number of threads).
Each rank environment variable is set using the exact same syntax as FF_IO_OPTS and each defines a
distinct cache for the corresponding MPI rank. If the cache is designated as shared, all files within the same
ranking thread can use the same cache. FFIO works with HPE Performance MPI. In order to work with MPI
applications, FFIO needs to determine the rank of callers by invoking the mpi_comm_rank_() MPI library
routine. Therefore, FFIO needs to determine the location of the MPI library used by the application. To
accomplished this, set the following environment variable:

setenv SGI_MPI /opt/hpe/hpc/mpt/mpt 2.17/lib
To use the rank functionality, both the MPI and FF_IO_OPTS_RANK0 environment variables must be set. If
either variable is not set, then the MPI threads all use FF_IO_OPTS. If both the MPI and the
FF_IO_OPTS_RANK0 variables are defined but, for example, FF_IO_OPTS_RANK2 is undefined, all rank 2

Multithreading considerations 89

files generate a no match with FFIO. This means that none of the rank 2 files are cached by FFIO. In this
case, the software does not default to FF_IO_OPTS.

Fortran and C/C++ applications that use the pthreads interface create threads that share the same address
space. These threads can all make use of the single FFIO cache defined by FF_IO_OPTS.

Application examples
FFIO has been deployed successfully with several high-performance computing applications, such as Nastran
and Abaqus. In a recent customer benchmark, an eight-way Abaqus throughput job ran approximately twice
as fast when FFIO was used. The FFIO cache used 16-megabyte pages (that is, page_size = 4096) and the
cache size was 8.0 gigabytes. As a rule of thumb, it was determined that setting the FFIO cache size to
roughly 10-15% of the disk space required by Abaqus yielded reasonable I/O performance. For this
benchmark, the FF_IO_OPTS environment variable was defined as follows:

% setenv FF_IO_OPTS '*.fct *.opr* *.ord *.fil *.mdl* *.stt* *.res *.sst \
*.hdx *.odb* *.023 *.nck* *.sct *.lop *.ngr *.elm *.ptn* *.stp* *.eig \
.lnz *.mass *.inp* *.scn* *.ddm *.dat* \
fort*(eie.direct.nodiag.mbytes:4096:512:6:1:1:0,event.summary.mbytes.notrace)'

For the MPI version of Abaqus, different caches were specified for each MPI rank, as follows:

% setenv FF_IO_OPTS_RANK0 '*.fct *.opr* *.ord *.fil *.mdl* *.stt* *.res \
*.sst *.hdx *.odb* *.023 *.nck* *.sct *.lop *.ngr *.ptn* *.stp* *.elm \
*.eig *.lnz* *.mass *.inp *.scn* *.ddm *.dat* \
fort*(eie.direct.nodiag.mbytes:4096:512:6:1:1:0,event.summary.mbytes.notrace)'

% setenv FF_IO_OPTS_RANK1 '*.fct *.opr* *.ord *.fil *.mdl* *.stt* *.res \
*.sst *.hdx *.odb* *.023 *.nck* *.sct *.lop *.ngr *.ptn* *.stp* *.elm \
*.eig *.lnz* *.mass *.inp *.scn* *.ddm *.dat* \
fort*(eie.direct.nodiag.mbytes:4096:16:6:1:1:0,event.summary.mbytes.notrace)'

% setenv FF_IO_OPTS_RANK2 '*.fct *.opr* *.ord *.fil *.mdl* *.stt* *.res \
*.sst *.hdx *.odb* *.023 *.nck* *.sct *.lop *.ngr *.ptn* *.stp* *.elm \
*.eig *.lnz* *.mass *.inp *.scn* *.ddm *.dat* \
fort*(eie.direct.nodiag.mbytes:4096:16:6:1:1:0,event.summary.mbytes.notrace)'

% setenv FF_IO_OPTS_RANK3 '*.fct *.opr* *.ord *.fil *.mdl* *.stt* *.res \
*.sst *.hdx *.odb* *.023 *.nck* *.sct *.lop *.ngr *.ptn* *.stp* *.elm \
*.eig *.lnz* *.mass *.inp *.scn* *.ddm *.dat* \
fort*(eie.direct.nodiag.mbytes:4096:16:6:1:1:0,event.summary.mbytes.notrace)'

Event tracing
If you specify the .trace option as part of the event parameter, you can enable the event tracing feature in
FFIO.

For example:

% setenv FF_IO_OPTS 'test*(eie.direct.mbytes:4096:128:6:1:1:0, \
event.summary.mbytes.trace)'

This option generates files of the form ffio.events.pid for each process that is part of the application. By
default, event files are placed in /tmp. To change this destination, set the FFIO_TMPDIR environment
variable. These files contain time-stamped events for files that use the FFIO cache and can be used to trace
I/O activity such as I/O sizes and offsets.

90 Application examples

System information
The FFIO subsystem supports applications written in C, C++, and Fortran. C and C++ applications can be
built with either the Intel or gcc compiler. Only Fortran codes built with the Intel compiler work with FFIO.

The following restrictions on FFIO must also be observed:

• The FFIO implementation of pread/pwrite is not correct. The file offset advances.

• Do not use FFIO for I/O on a socket.

• Do not link your application with the librt asynchronous I/O library.

• FFIO does not intercept calls that operate on files in /proc, /etc, and /dev.

• FFIO does not intercept calls that operate on stdin, stdout, and stderr.

• FFIO is not intended for generic I/O applications such as vi, cp, or mv, and so on.

System information 91

Websites
General websites
Hewlett Packard Enterprise Information Library

www.hpe.com/info/EIL
Single Point of Connectivity Knowledge (SPOCK) Storage compatibility matrix

www.hpe.com/storage/spock
Storage white papers and analyst reports

www.hpe.com/storage/whitepapers

For additional websites, see Support and other resources.

MPI websites
Message Passing Interface Forum

http://www.mpi-forum.org

92 Websites

http://www.hpe.com/info/EIL
http://www.hpe.com/storage/spock
http://www.hpe.com/storage/whitepapers
http://www.mpi-forum.org

Support and other resources

Accessing Hewlett Packard Enterprise Support
• For live assistance, go to the Contact Hewlett Packard Enterprise Worldwide website:

http://www.hpe.com/assistance

• To access documentation and support services, go to the Hewlett Packard Enterprise Support Center
website:

http://www.hpe.com/support/hpesc

Information to collect

• Technical support registration number (if applicable)

• Product name, model or version, and serial number

• Operating system name and version

• Firmware version

• Error messages

• Product-specific reports and logs

• Add-on products or components

• Third-party products or components

Accessing updates
• Some software products provide a mechanism for accessing software updates through the product

interface. Review your product documentation to identify the recommended software update method.

• To download product updates:

Hewlett Packard Enterprise Support Center
www.hpe.com/support/hpesc

Hewlett Packard Enterprise Support Center: Software downloads
www.hpe.com/support/downloads

Software Depot
www.hpe.com/support/softwaredepot

• To subscribe to eNewsletters and alerts:

www.hpe.com/support/e-updates

• To view and update your entitlements, and to link your contracts and warranties with your profile, go to the
Hewlett Packard Enterprise Support Center More Information on Access to Support Materials page:

www.hpe.com/support/AccessToSupportMaterials

Support and other resources 93

http://www.hpe.com/assistance
http://www.hpe.com/support/hpesc
http://www.hpe.com/support/hpesc
http://www.hpe.com/support/downloads
http://www.hpe.com/support/softwaredepot
http://www.hpe.com/support/e-updates
http://www.hpe.com/support/AccessToSupportMaterials

IMPORTANT:

Access to some updates might require product entitlement when accessed through the Hewlett Packard
Enterprise Support Center. You must have an HPE Passport set up with relevant entitlements.

Customer self repair
Hewlett Packard Enterprise customer self repair (CSR) programs allow you to repair your product. If a CSR
part needs to be replaced, it will be shipped directly to you so that you can install it at your convenience.
Some parts do not qualify for CSR. Your Hewlett Packard Enterprise authorized service provider will
determine whether a repair can be accomplished by CSR.

For more information about CSR, contact your local service provider or go to the CSR website:

http://www.hpe.com/support/selfrepair

Remote support
Remote support is available with supported devices as part of your warranty or contractual support
agreement. It provides intelligent event diagnosis, and automatic, secure submission of hardware event
notifications to Hewlett Packard Enterprise, which will initiate a fast and accurate resolution based on your
product's service level. Hewlett Packard Enterprise strongly recommends that you register your device for
remote support.

If your product includes additional remote support details, use search to locate that information.

Remote support and Proactive Care information
HPE Get Connected

www.hpe.com/services/getconnected
HPE Proactive Care services

www.hpe.com/services/proactivecare
HPE Proactive Care service: Supported products list

www.hpe.com/services/proactivecaresupportedproducts
HPE Proactive Care advanced service: Supported products list

www.hpe.com/services/proactivecareadvancedsupportedproducts

Proactive Care customer information
Proactive Care central

www.hpe.com/services/proactivecarecentral
Proactive Care service activation

www.hpe.com/services/proactivecarecentralgetstarted

Warranty information
To view the warranty for your product or to view the Safety and Compliance Information for Server, Storage,
Power, Networking, and Rack Products reference document, go to the Enterprise Safety and Compliance
website:

www.hpe.com/support/Safety-Compliance-EnterpriseProducts

Additional warranty information
HPE ProLiant and x86 Servers and Options

www.hpe.com/support/ProLiantServers-Warranties

94 Customer self repair

http://www.hpe.com/support/selfrepair
http://www.hpe.com/services/getconnected
http://www.hpe.com/services/proactivecare
http://www.hpe.com/services/proactivecaresupportedproducts
http://www.hpe.com/services/proactivecareadvancedsupportedproducts
http://www.hpe.com/services/proactivecarecentral
http://www.hpe.com/services/proactivecarecentralgetstarted
http://www.hpe.com/support/Safety-Compliance-EnterpriseProducts
http://www.hpe.com/support/ProLiantServers-Warranties

HPE Enterprise Servers
www.hpe.com/support/EnterpriseServers-Warranties

HPE Storage Products
www.hpe.com/support/Storage-Warranties

HPE Networking Products
www.hpe.com/support/Networking-Warranties

Regulatory information
To view the regulatory information for your product, view the Safety and Compliance Information for Server,
Storage, Power, Networking, and Rack Products, available at the Hewlett Packard Enterprise Support Center:

www.hpe.com/support/Safety-Compliance-EnterpriseProducts

Additional regulatory information

Hewlett Packard Enterprise is committed to providing our customers with information about the chemical
substances in our products as needed to comply with legal requirements such as REACH (Regulation EC No
1907/2006 of the European Parliament and the Council). A chemical information report for this product can be
found at:

www.hpe.com/info/reach

For Hewlett Packard Enterprise product environmental and safety information and compliance data, including
RoHS and REACH, see:

www.hpe.com/info/ecodata

For Hewlett Packard Enterprise environmental information, including company programs, product recycling,
and energy efficiency, see:

www.hpe.com/info/environment

Documentation feedback
Hewlett Packard Enterprise is committed to providing documentation that meets your needs. To help us
improve the documentation, send any errors, suggestions, or comments to Documentation Feedback
(docsfeedback@hpe.com). When submitting your feedback, include the document title, part number, edition,
and publication date located on the front cover of the document. For online help content, include the product
name, product version, help edition, and publication date located on the legal notices page.

Regulatory information 95

http://www.hpe.com/support/EnterpriseServers-Warranties
http://www.hpe.com/support/Storage-Warranties
http://www.hpe.com/support/Networking-Warranties
http://www.hpe.com/support/Safety-Compliance-EnterpriseProducts
http://www.hpe.com/info/reach
http://www.hpe.com/info/ecodata
http://www.hpe.com/info/environment
mailto:docsfeedback@hpe.com

Using the Message Passing Toolkit (MPT) on a
virtual machine

You can configure a virtual machine (VM) on the following systems:

• On an SGI UV system

• On an HPE MC990X system

The VM creates a general-purpose computer, and MPT can run on that computer. When you use MPT from
within a VM, however, you can expect differences in the computing environment and differences with regard
to your application's behavior.

NOTE:

Support for MPT on VMs on HPE Superdome Flex Server platforms is deferred.

If you are an administrator, use the information in the following topics to configure the VM environment
appropriately for your hardware:

• Installing software within the vitual machine (VM) on page 96

• Adjusting virtual machine system settings on page 97

If you are an application developer, use the information in the following topic to understand how your program
might behave differently when running from within a VM:

Running HPE Performance MPI programs from within a virtual machine on page 98

This appendix section includes the following topics:

• Installing software within the vitual machine (VM) on page 96

• Adjusting virtual machine system settings on page 97

• Running HPE Performance MPI programs from within a virtual machine on page 98

Installing software within the vitual machine (VM)
The following procedure explains the software that you need to install in the VM in order for MPI programs to
run on the VM.

Procedure

1. Install and configure the operating system (RHEL or SLES) and the HPE System Foundation Software on
the SGI UV system or on the HPE Integrity MC990X Server.

For installation information, see the software installation guide that pertains to your platform.

2. Install and configure the VM according to your operating system vendor's instructions.

Note that RHEL and SLES do not support InfiniBand technology from within a VM. Other OFED providers
support InfiniBand technology from within a VM through single-root I/O virtualization (SR-IOV), but HPE
does not support SR-IOV or other alternatives to the distribution-supplied OFED.

96 Using the Message Passing Toolkit (MPT) on a virtual machine

3. (Optional) Install the HPE System Foundation Software into the VM.

For installation information, see the installation guide for your platform.

4. Install the HPE Performance Software into the VM.

For installation information, see the HPE Performance Software release notes.

5. Install MPT into the VM.

For installation information, see Getting started with HPE Performance MPI on page 19.

Adjusting virtual machine system settings
For best performance, HPE recommends to change certain operating system settings after the software
installation is complete.

The following procedure explains how to adjust the number of files that can be open at a given time.

Procedure

1. Log into the system as the administrator user.

2. Enter the cpumap command to retrieve the number of cores.

For example:

cpumap
This is an SGI UV
model name : Genuine Intel(R) CPU @ 2.60GHz
Architecture : x86_64
cpu MHz : 2600.072
cache size : 20480 KB (Last Level)

Total Number of Sockets : 16
Total Number of Cores : 128 (8 per socket)
Hyperthreading : ON
Total Number of Physical Processors : 128
Total Number of Logical Processors : 256 (2 per Phys Processor)

UV Information
 HUB Version: UVHub 3.0
 Number of Hubs: 16
 Number of connected Hubs: 16
 Number of connected NUMAlink ports: 128
===
. . .

The Total Number of Cores line reveals that there are 128 cores, 8 per socket.

3. Display the contents of the /etc/sysctl-conf file.

For example, type the following command:

less /etc/sysctl.conf
...
fs.file-max = 8204481

Adjusting virtual machine system settings 97

...

4. (Conditional) Use a text editor to open file sysctl.conf and increase the value of the fs.file-max
parameter in the /etc/sysctl.conf file.

Complete this step if the number of cores on your computer is greater than 512 and the fs.file-max
parameter is set to less than 10,000,000.

For optimum performance within a VM, set the fs.file-max parameter to be at least 10000000 on
systems with 512 cores or more.

Running HPE Performance MPI programs from within a
virtual machine

The following list explains some of the differences between running an MPI or SHMEM program on native
hardware versus running an MPI or SHMEM program from within a virtual machine (VM):

• Hardware-dependent features might not exist on a VM.

When you run an MPI program on a VM, the environment detects the virtual nature of the platform and
ignores any hardware-specific features. The following hardware features are not available to an application
that runs in a VM: NUMAlink, Superpages, the SGI UV timer, the HUB ASIC, and hardware performance
counters. In addition, processor-specific performance diagnostics are limited.

If your application uses hardware technologies that are not specific to these hardware platforms, you can
expect that the VM can honor those non-specific technologies.

• Topology characteristics might be different.

An application that relies on a specific hardware platform topology needs to be run on a VM that was
configured for and mimics that topology. MPI programs do not automatically use special topology
characteristics effectively. If the application requires special heuristics for locality and placement, you need
to configure that into the VM.

• XPMEM libraries are beneficial in very large VMs.

HPE has tested XPMEM on VMs. XPMEM loads, and your application can call XPMEM routines
successfully. However, XPMEM is useful only on systems with very large memory.

• No InfiniBand support.

The RHEL and SLES operating systems do not support InfiniBand technology in VMs. Consult your
system administrator to find out if single-root I/O virtualization (SR-IOV) is configured on the VM.

98 Running HPE Performance MPI programs from within a virtual machine

Array Services system administration information
The topics in this appendix section contain information for system administrators who support the Array
Services software on a cluster computing system. These topics explain how to install Array Services manually
and how to configure Array Services to suit your site's needs.

The topics in this appendix section are as follows:

• Manually configuring Array Services on multiple hosts on page 99

• Changing the security access level in the AUTHENTICATION parameter on page 102

• Configuring nodes into arrays on page 102

• About the Array Services configuration files on page 103

• Designing Array Services commands on page 105

• Testing configuration changes after creating new Array Services commands on page 111

Manually configuring Array Services on multiple hosts
You can configure Array Services in an automated way or manually. The following list shows where you can
find the standard, automated procedures:

• For cluster systems, use the information in the following:

◦ HPE SGI Management Suite Installation and Configuration Guide

◦ Installing the Array Services software on HPE Apollo cluster systems on page 10

• For HPE Superdome Flex Grid systems, use the information in the following:

Configuring the Message Passing Toolkit (MPT) on page 10

The information in this appendix section explains how to configure Array Services in a manual way, which
allows you to make customizations at installation time, if necessary.

The following procedure explains how to configure Array Services to run on multiple hosts.

Procedure

1. Log in as the administrator user on one of the hosts you want to include in the array.

You must be logged in as an administrator to perform this procedure.

For example, on an SGI ICE X system, log into one of the service nodes. You can include service nodes
and compute nodes in the array.

2. (Optional) Install the MUNGE package from the HPE Performance Software -- Message Passing
Interface (HPE Performance MPI) software distribution.

The optional MUNGE software package enables additional security for Array Services operations.

During MUNGE installation, make sure of the following:

Array Services system administration information 99

http://www.hpe.com/support/sgi-mgmt-suite-inst-009

• The MUNGE key that is used is the same across all the nodes in the array.

The MUNGE key resides in /etc/munge/munge.key.

• You configure a good time clock source, such as an NTP server. MUNGE depends on time
synchronization across all nodes in the array.

To install MUNGE, use one of the following commands:

• On Red Hat Enterprise Linux platforms: yum install munge
• On SUSE Linux Enterprise Server platforms: zypper install munge

For more information about how to install MUNGE, see the HPE Performance MPI release notes.

3. Open file /etc/array/arrayd.conf with a text editor.

4. Edit the /etc/array/arrayd.conf file to list the machines in the array.

This file enables you to configure many characteristics of an Array Services environment. The required
specifications are as follows:

• The array name.

• The hostnames of the array participants.

• A default destination array.

For more information about the additional characteristics that you can specify in the arrayd.conf file,
see the arrayd.conf(4) manpage.

For an example arrayd.conf file, see file /usr/lib/array/arrayd.conf.template.

Example 1. The following lines specify an array name (sgicluster) and two hostnames. Specify each
hostname on its own line. array and machine are keywords in the file.

array sgicluster
 machine host1
 machine host2
Example 2. The following line sets a default array name.

destination array sgicluster
5. Save and close file /etc/array/arrayd.conf.

6. Use a text editor to open file /etc/array/arrayd.auth.

7. (Optional) Change the authentication method from the default of NOREMOTE to a method of your
choosing.

By default, the Array Services software does not allow remote access to the array. You can change this
authentication method. For information about the various authentication methods, see the following:

Changing the security access level in the AUTHENTICATION parameter on page 102

To change the access method, complete the following steps:

100 Array Services system administration information

• Search for the string AUTHENTICATION NOREMOTE, and insert a # character in column 1 to
comment out the line.

• Enable the security level under which you want Array Services to operate.

This step specifies the authentication mechanism to use when Array Services messages pass
between the Array Services daemons. Possible security levels are NONE, SIMPLE, or MUNGE, as
follows:

◦ If no authentication is required, remove the # character from column 1 of the AUTHENTICATION
NONE line.

◦ To enable simple authentication, ensure that there is no # in column 1 of the AUTHENTICATION
SIMPLE line. This is the default.

◦ To enable authentication through MUNGE, remove the # character from column 1 of the
AUTHENTICATION MUNGE line.

Make sure that MUNGE has been installed, as prescribed earlier in this procedure.

• Save and close file /etc/array/arrayd.auth.

8. (Optional) Reset the default user account or the default array port.

By default, the Array Services installation and configuration process sets the following defaults in
the /etc/array/arrayd.conf configuration file:

• A default user account of arraysvcs.

Array Services requires that a user account exist on all hosts in the array for the purpose of running
certain Array Services commands. If you create a different account, make sure to update the
arrayd.conf file and set the user account permissions correctly on all hosts.

• A default port number of 5434.

The /etc/services file contains a line that defines the arrayd service and port number as follows:

sgi-arrayd 5434/tcp # Array Services daemon
You can set any value for the port number, but all systems mentioned in the arrayd.conf file must
use the same value.

9. Enter one of the following commands to restart Array Services:

• On RHEL 7.X or SLES 12 SPX systems, enter the following command:

systemctl restart array
• On RHEL 6.X or SLES 11 SPX systems, enter the following command:

/etc/init.d/array restart

10. Repeat the preceding steps on the other hosts or copy the /etc/array/arrayd.conf and /etc/
array/arrayd.auth files to the other hosts.

Array Services system administration information 101

The Array Services feature requires that the configuration files on each participant host include the list of
host participants and the authentication method. The files can contain additional, host-specific
information.

Changing the security access level in the AUTHENTICATION
parameter

The AUTHENTICATION parameter in the /etc/array/arrayd.auth file specifies access to the array. The
AUTHENTICATION parameter can have one of the following settings:

• NOREMOTE (default).

When set to NOREMOTE, the arrayd daemon allows only local access to the array. That is, the arrayd
daemon does not allow remote requests to access the array.

Use NOREMOTE if the array is attached to a public network or if individual machines cannot be trusted.

• NONE.

When set to NONE, the arrayd daemon assumes that remote users identify themselves accurately and
honestly when making requests. In other words, if a request claims to be coming from user abc, the
arrayd daemon assumes that it is in fact from user abc and not somebody spoofing abc.

All requests from remote systems are authenticated using a mechanism that involves private keys that are
known only to the superusers on the local and remote systems. Requests originating on systems that do
not have these private keys are rejected. For more information, see the section on authentication
information in the arrayd.conf(4) manpage.

This setting should be adequate for systems that are behind a network firewall or otherwise protected from
hostile attack. In this situation, all the users inside the firewall are presumed to be non-hostile.

Do not set AUTHENTICATION to NONE if the array is attached to a public network or if individual machines
cannot be trusted.

• SIMPLE. Generates hostname/key pairs by using the OpenSSL rand command, 64-bit values (if
available), or by using $RANDOM Bash facilities. For more information, see the arrayd.auth(5) man
page.

• MUNGE.

When set to MUNGE, uses the MUNGE credential encoder. For more information, see the munge(1)
manpage.

The Array Services daemon, arrayd, runs as the administrator user and does not support mapping of user,
group, or project names between two different namespaces. All members of an array are assumed to share
the same namespace for users, groups, and projects. Thus, if systems A and B are members of the same
array, username abc on system A is assumed to be the same user as username abc on system B. This is
most significant in the case of the administrator username. Authentication should be used to prevent access
to an array by machines using a different namespace.

Configuring nodes into arrays
The following topics contain examples that show how to specify the nodes in an array in the arrayd.conf
file:

102 Changing the security access level in the AUTHENTICATION parameter

• Specifying an array name and machine names on page 103

• Specifying IP addresses and ports on page 103

• Specifying additional attributes on page 103

Specifying an array name and machine names
Often, the hostname of each node is the same as the node's name to the site domain name services (DNS).
The following example defines an array where this is the case:

array simple
 machine congo
 machine niger
 machine nile
To access this array, the user needs to specify the the array name, simple, as the argument to the -a option
on the array command and the ainfo command.

One array name should be specified in a DESTINATION ARRAY local option as the default array and reported
by ainfo dflt. Local options are listed under Configuring local options on page 109.

Specifying IP addresses and ports
At your site, if a machine's IP address cannot be obtained from the given hostname, provide a hostname
subentry to specify either a fully qualified domain name (FQDN) or an IP address, as follows:

array simple
 machine congo
 hostname congo.engr.hitech.com
 port 8820
 machine niger
 hostname niger.engr.hitech.com
 machine nile
 hostname "198.206.32.85"
The preceding example uses the port subentry to specify that arrayd in a particular machine use a different
socket number than the default of 5434.

Specifying additional attributes
If you want the ainfo command to display certain strings, you can insert these values as subentries to the
array entry. The following are some examples:

array simple
 array_attribute config_date="04/03/96"
 machine a_node
 machine_attribute aka="congo"
 hostname congo.engr.hitech.com

TIP:

You can write code that fetches any array name, machine name, or attribute string from any node in the
array.

About the Array Services configuration files
The Array Services configuration files are as follows:

Specifying an array name and machine names 103

• /etc/array/arrayd.conf
• /etc/array/arrayd.auth
• /etc/sysconfig/array

The configuration files contain array information, node information, authentication key information, and valid
commands. The Array Services daemon reads each configuration file when it starts. Typically, the daemon
starts on each node at boot time and then runs as a background process. The Array Services commands call
the daemon process on each node to obtain information. You can also run the daemon from a command line.
For example, you might want to run the daemon from a command line to check the syntax of a configuration
file.

The following topics contain more configuration file information:

• About configuration file formats and contents on page 104

• About loading configuration data on page 104

About configuration file formats and contents
A configuration file is a readable text file that contains the following types of entries:

• Array definition information, which describes this array and other known arrays, including array names and
the node names and types.

• Command definitions, which specifies the usage and operation of a command that can be invoked through
the array command.

• Authentication information, which specifies the authentication key numbers used to access the array. Not
all arrays use authentication keys.

• Local options, which are options that modify the operation of the other entries or arrayd.

Within the configuration files, you can use blank lines, white space, and comment lines that begin with a
pound character (#) for readability. Entries can be in any order in any of the Array Services configuration files.

Besides punctuation, entries have a keyword-based syntax. Keyword recognition is not case sensitive, but
keywords appear in uppercase in this documentation and in the manpage. As the arrayd.conf(4) manpage
describes, the entries are formed from keywords, numbers, and quoted strings.

About loading configuration data
When run as a command, the Array Services daemon, arrayd, accepts one or more file names as
arguments. It reads them all and treats them like logical continuations. In effect, it concatenates them. If you
do not specify any file names, it reads the following configuration files:

• /etc/array/arrayd.conf
• /etc/array/arrayd.auth
• /etc/sysconfig/array

This file can contain a list of files and arrayd command-line options. The start-up script that launches
arrayd at boot time reads this file.

Because configuration data can reside in two or more files, you can combine different strategies. For
example:

104 About configuration file formats and contents

• One file can have different access permissions than another. Typically, /etc/array/arrayd.conf is
world-readable and contains the available array commands, while /etc/array/arrayd.auth is
readable only by the administrator user and contains authentication codes.

• One node can have different configuration data than another. For example, certain commands might be
defined only on certain nodes, or only the nodes used for interactive logins might know the names of all
other nodes.

• You can use NFS-mounted configuration files. You could put a small configuration file on each machine to
define the array and authentication keys, but you could have a larger file defining array commands that is
NFS-mounted from one node.

After you modify the configuration files, you can make arrayd reload them by killing and restarting the
daemon on each machine, as follows:

• To kill the daemon, use one of the following commands:

◦ On RHEL 7 or SLES 12 systems, enter the following:

systemctl stop array
◦ On RHEL 6 or SLES 11 systems, enter the following:

/etc/init.d/array stop

• To kill and restart the daemon in one operation, use one of the following commands:

◦ On RHEL 7 or SLES 12 systems, enter the following:

systemctl restart array
◦ On RHEL 6 or SLES 11 systems, enter the following:

/etc/init.d/array restart

The Array Services daemon on any node can access only the information in the configuration files on that
node. One advantage to this design is that you can limit the use of particular nodes. At the same time, though,
you need insure that common information is synchronized. Designing new array commands on page 109
summarizes a way to do this.

Designing Array Services commands
By default, most Array Services commands run using the user, group, and project ID of either the user that
issued the original command or arraysvcs. When you add new array commands to arrayd.conf, or when
you modify existing array commands, always use the most restrictive IDs possible. This practice minimizes
trouble if a hostile or careless user were to run that command. Avoid adding commands that run with more
powerful IDs, such as the administrator user or group sys, than the user. If such commands are necessary,
analyze them carefully to ensure that an arbitrary user would not be granted any more privileges than
expected, much the same as one would analyze a setuid program.

The user can invoke arbitrary system commands on single nodes using the arshell command. The user
can also launch MPI programs that automatically distribute over multiple nodes. However, the only way to
launch coordinated system programs on all nodes at once is to use the array command. This command
does not accept any system command; it only permits execution of commands that the administrator has
configured into the Array Services configuration file.

As the administrator, you can define any set of commands that your users need. You have complete control
over how any single array node runs a command. For example, the definition can be different on different

Designing Array Services commands 105

nodes. A command can simply invoke a standard system command, or, if you define a command as invoking
a script, you can make a command arbitrarily complex.

About substitution syntax
The arrayd.conf(4) manpage explains the syntax rules for entries in the configuration files. An important
feature of this syntax is the use of several kinds of text substitution by which variable text is substituted into
entries when run.

Most of the supported substitutions are used in command entries. These substitutions are performed
dynamically each time the array command invokes a subcommand. At that time, substitutions insert values
that are unique to the invocation of that subcommand. For example, the value %USER inserts the user ID of
the user who is invoking the array command. Such a substitution has meaning only when the command
runs.

Substitutions in other configuration entries are performed only once, at the time arrayd reads the
configuration file. Only environment variable substitution makes sense in these entries. The environment
variable values that are substituted are the values inherited by arrayd from the script that invokes it, which is
as follows:

• On RHEL 7 or SLES 12 systems, the script is as follows:

/usr/lib/systemd/system/array.service
• On RHEL 6 or SLES 11 systems, the script is as follows:

/etc/init.d/array

About array command operations
When a user runs an array command, it has the following format:

array [options] subcommand

The specified subcommand operates on nodes as follows:

• If the user does not specify any options, the subcommand runs on the whole array.

• If the user specifies the -l option, the subcommand runs on the local node.

• If the user specifies the -s node option, the command runs on all nodes that node knows about.

Remember that the destination node can be configured with only a subset of nodes. At each node,
arrayd searches the configuration file for a COMMAND entry with the same name as the subcommand.

• If the user specifies both -l and -s node, the subcommand runs on the specified node.

For example, in the following command, arrayd processes the uptime subcommand on node tokyo:

array -s tokyo uptime
When arrayd finds the subcommand to be valid, it distributes the subcommand to every node that is
configured in the default array at node tokyo.

In the /etc/array/arrayd.conf on tokyo, the COMMAND entry for uptime is as follows:

command uptime
 invoke /usr/lib/array/auptime %LOCAL

106 About substitution syntax

The INVOKE subentry tells arrayd how to run this command. In this case, it run a shell script, /usr/lib/
array/auptime, and passes one argument, the name of the local node. This command runs on every node,
with %LOCAL replaced by that node's name.

Command definition syntax summary
The basic set of commands distributed with Array Services resides in /etc/array/arrayd.conf. Each
COMMAND entry is defined using the subentries shown in Table 3: Subentries of a COMMAND definition on
page 107, which the arrayd.conf(4) manpage also describes.

Table 3: Subentries of a COMMAND definition

Keyword Meaning of following values

COMMAND The name of the command as the user gives it to array.

INVOKE A system command to be run on every node. Specify the full path to the system
command. The argument values can be literals, user-supplied arguments, or other
substitution values.

MERGE A system command to be run only on the distributing node. Specify the full path to the
system command. Its purpose is to gather the streams of output from all nodes and
combine them into a single stream.

USER The user ID under which the INVOKE and MERGE commands run. Typically specified as
USER %USER, so as to run as the user who invoked array.

GROUP The group name under which the INVOKE and MERGE commands run. Typically specified
as GROUP %GROUP, so as to run in the group of the user who invoked array. For more
information, see the groups(1) manpage.

PROJECT The project under which the INVOKE and MERGE commands run. Typically specified as
PROJECT %PROJECT, so as to run in the project of the user who invoked array. For
more information, see the projects(5) manpage.

OPTIONS A variety of options to modify this command. For more information, see Table 5: Options
of the COMMAND definition on page 108.

As with a shell script, system commands are often composed from a few literal values and many substitution
strings. Table 4: Substitutions used in a COMMAND definition on page 108 shows the substitutions that
are supported, all of which are documented in detail in the arrayd.conf(4) manpage:

Command definition syntax summary 107

Table 4: Substitutions used in a COMMAND definition

Substitution Replacement value

%1..%9; %ARG(n);
%ALLARGS;
%OPTARG(n)

Argument tokens from the user's subcommand. %OPTARG does not produce an error
message if the specified argument is omitted.

%USER, %GROUP,
%PROJECT

The effective user ID, effective group ID, and project of the user who invoked array.

%REALUSER,
%REALGROUP

The real user ID and real group ID of the user who invoked array.

%ASH The internal array session handle (ASH) number under which the INVOKE or MERGE
command is to run.

The term array session includes all the processes for one application, regardless of
where the processes run. Typically, an array session includes the user's login shell
and the programs the user started from the login shell. A batch job is an array
session.

%PID(ash) List of process identifier (PID) values for a specified ASH. %PID(%ASH) is a
common use.

%ARRAY The array name, either default or as given in the -a option.

%LOCAL The hostname of the executing node.

%ORIGIN The full domain name of the node where the array command ran and where the
output is to be viewed.

%OUTFILE List of names of temporary files, each containing the output from one node's INVOKE
command. Valid only in the MERGE subentry.

The OPTIONS subentry permits a number of important modifications of the command execution. Table 5:
Options of the COMMAND definition on page 108 summarizes these.

Table 5: Options of the COMMAND definition

Keyword Effect on command

LOCAL Does not distribute to other nodes. Effectively forces the -l option.

NEWSESSION Runs the INVOKE command under a newly created ASH. The %ASH in the INVOKE
line is the new ASH. The MERGE command runs under the original ASH, and %ASH
substitutes as the old ASH in that line.

SETRUID Sets both the real and the effective user ID from the USER subentry. Typically, USER
sets only the effective UID.

Table Continued

108 Array Services system administration information

Keyword Effect on command

SETRGID Sets both the real and effective group ID from the GROUP subentry. Typically, GROUP
sets only the effective GID.

QUIET Discards the output of INVOKE, unless a MERGE subentry is present. If a MERGE
subentry is present, passes INVOKE output to MERGE as usual, and discards the
MERGE output.

NOWAIT Discards the output and returns as soon as the processes are invoked. Does not
wait for completion. A MERGE subentry is ineffective.

Configuring local options
The LOCAL entry specifies options to arrayd itself. Table 6: Subentries of the LOCAL entry on page 109
summarizes the most important options.

Table 6: Subentries of the LOCAL entry

Subentry Purpose

DIR Pathname for the arrayd working directory, which is the initial, current
working directory of INVOKE and MERGE commands. The default
is /usr/lib/array.

DESTINATION ARRAY Name of the default array, used when the user omits the -a option. When
only one ARRAY entry is specified, it is the default destination.

USER, GROUP, PROJECT Default values for COMMAND execution when USER, GROUP, or PROJECT
are omitted from the COMMAND definition.

HOSTNAME Value returned in this node by %LOCAL. Default is the hostname.

PORT Socket to be used by arrayd.

If you do not supply LOCAL USER, GROUP, and PROJECT values, the default values for USER and GROUP are
arraysvcs.

The HOSTNAME entry is needed whenever the hostname command does not return a node name as
specified in the ARRAY MACHINE entry. In order to supply a LOCAL HOSTNAME entry unique to each node,
each node needs an individualized copy of at least one configuration file.

Designing new array commands
The /usr/lib/array/arrayd.conf.template file contains a basic set of commands. Examine this file
carefully before defining commands of your own. Any new commands that you design become available to
the users of the array system. You can develop new administrative commands, too.

Typically, a new command is defined with an INVOKE subentry that names a script written in sh, csh, or Perl
syntax. You can use the substitution values to set up arguments to the script. You use the USER, GROUP,
PROJECT, and OPTIONS subentries to establish the execution conditions of the script.

Configuring local options 109

Within the invoked script, you can write any amount of logic to verify and validate the arguments and to run
any command sequence. For an example of a script in Perl, see /usr/lib/array/aps, which is invoked by
the array ps command.

NOTE:

Perl is a particularly interesting choice for array commands because Perl has native support for socket
I/O. In principle at least, you could build a distributed application in Perl in which multiple instances are
launched by array and coordinate and exchange data using sockets. Performance would not rival the
highly tuned MPI libraries, but development would be simpler.

The following example shows an administrator command called reinit, which reinitializes the Array
Services configuration file on all nodes at once:

• The shell script in file /usr/lib/array/arrayd-reinit reinitializes each Array Services configuration
file, on each node, simultaneously. The script is designed for RHEL 7 systems and SLES 12 systems and
is as follows:

#!/bin/sh
###
NOTE: The example shown is for illustrative purposes only and
has not been evaluated for use in a production environment.
###
Script to reinitialize arrayd with a new configuration file
Usage: arrayd-reinit <hostname:new-config-file>
sleep 10 # Let old arrayd finish distributing
scp $1 /etc/array/
systemctl restart array
exit 0
The script uses rcp to copy a specified file, presumably a configuration file such as arrayd.conf,
into /etc/array. The script fails if %USER is not privileged. Then the script restarts arrayd to reread
configuration files.

• The following is the command definition:

command reinit
###
NOTE: The example shown is for illustrative purposes only and
has not been evaluated for use in a production environment.
###
 invoke /usr/lib/array/arrayd-reinit %ORIGIN:%1
 user %USER
 group %GROUP
 options nowait # Exit before restart occurs!
The INVOKE subentry calls the script shown previously. The NOWAIT option prevents the daemon from
waiting for the script to finish. The script stops the daemon.

CAUTION:

The preceding example is for illustrative purposes only and has not been evaluated for use in a
production environment.

110 Array Services system administration information

Testing configuration changes after creating new Array Services commands
The configuration files contain many sections and options. You can use the ascheck command to perform a
basic sanity check of all configuration files in the array.

After making a change, you can run the arrayd command with the -c and -f options to test an individual
configuration file for correct syntax. For example, assume that you added a new command definition to /etc/
array/arrayd.local. You can type the following command to check its syntax:

arrayd -c -f /usr/lib/array/arrayd.local
When testing new commands for correct operation, you need to see the warning and error messages
produced by the arrayd command and by the processes that the arrayd command can spawn. Typically,
the stderr messages from a daemon are not visible.

Procedure

1. Notify the array's users that you are able to start an array configuration update.

Users might experience a lack of response to ainfo and array commands.

2. Log into one of the nodes as the administrator user, and enter one of the following commands:
On RHEL 7.X systems and SLES 12 SPX systems, enter the following command:

systemctl stop array

On RHEL 6.X systems and SLES 11 SPX systems, enter the following command:

/etc/init.d/array stop
3. In one shell window on that node, enter the following arrayd command:

/usr/sbin/arrayd -n -v

The preceding command prevents the arrayd command from moving into the background. The command
remains attached to the shell terminal.

Although arrayd becomes functional in this mode, it does not refer to the /etc/sysconfig/array file,
so you need to specify explicitly all command line options, such as the names of nonstandard configuration
files.

4. From another shell window on the same node (or on another node), enter ainfo and array commands
to test the new configuration data.

Observe that diagnostic output appears in the arrayd shell window.

5. From the shell window in which you entered the /usr/sbin/arrayd -n -v command, type CTRL-c to
terminate the arrayd daemon.

6. Enter one of the following commands to start the arrayd daemon:
On RHEL 7.X systems and SLES 12 SPX systems, enter the following command:

systemctl start array

On RHEL 6.X systems and SLES 11 SPX systems, enter the following command:

/etc/init.d/array start

Testing configuration changes after creating new Array Services commands 111

	HPE Performance Software — Message Passing Interface User Guide
	Contents
	About the HPE Performance Software -- Message Passing Interface (HPE Performance MPI) product
	Compatibility information
	MPI Information

	Configuring the Message Passing Toolkit (MPT)
	Installing the Array Services software on HPE Apollo cluster systems
	Configuring MPT on an HPE Superdome Flex Grid system

	Getting started with HPE Performance MPI
	Loading the MPI software module and specifying the library path
	Compiling and linking the MPI program
	Launching the MPI application
	Compiling and running OpenSHMEM applications
	Building MPI Fortran modules
	Using huge pages
	Using HPE Performance MPI with NVIDIA GPUs

	Programming with HPE Performance MPI
	Job termination and error handling
	Signals
	Buffering
	Multithreaded programming
	Interoperability with the OpenSHMEM programming model
	Miscellaneous HPE Performance MPI features
	Programming optimizations
	Additional programming model considerations

	Debugging MPI applications
	MPI routine argument checking
	Using the TotalView debugger with MPI programs
	Using idb and gdb with MPI programs
	Using the DDT debugger with MPI programs
	Using Valgrind with MPI programs

	Working with other MPI implementations
	Using perfboost
	MPI supported functions

	Using Berkeley Lab Checkpoint/Restart (BLCR)
	Installing BLCR
	Using BLCR with MPT

	Run-time tuning
	Reducing run-time variability
	Tuning MPI buffer resources
	Avoiding message buffering - enabling single copy
	Memory placement and policies
	Tuning MPI/OpenMP hybrid codes
	Tuning running applications across multiple hosts
	Tuning for running applications over the InfiniBand interconnect
	Tuning for running applications over the Intel Omni-Path interconnect
	MPI on HPE Superdome Flex Grid systems
	Measuring parallelization and parallelizing your code
	Suspending MPI jobs

	HPE Performance MPI performance profiling
	Using perfcatch
	Writing your own profiling interface
	Using third-party profilers
	MPI internal statistics

	Troubleshooting and frequently asked questions
	Why is the mpiexec_mpt command failing?
	Why does my code run correctly until it reaches MPI_Finalize() and then hang?
	Why does my hybrid code (using OpenMP) stall on the mpirun command?
	Why do I keep receiving warning messages about the MPI_REQUEST_MAX value being too small?
	Why is it that I do I not see any stdout and/or stderr output from my MPI application?
	Where can I find more information about the OpenSHMEM programming model?
	Why does the ps command say that my memory use (SIZE) is higher than expected?
	What does the MPI: could not run executable message mean?
	How do I combine MPI with other tools?
	Why do I see stack traceback information when my MPI job aborts?

	Array Services
	Installing and configuring array services
	Array Services commands and arguments
	Array Services environment variables
	Obtaining information about the array

	Using the Message Passing Toolkit (MPT) plugin for Nagios
	Preparing to install the MPT Nagios plugin
	Installing the MPT Nagios plugin
	Viewing MPT messages from within Nagios and clearing the messages
	(Optional) Modifying the notification email

	High-performance computing tools (HPC) tools
	Data placement tools
	Flexible File I/O (FFIO)

	Websites
	Support and other resources
	Accessing Hewlett Packard Enterprise Support
	Accessing updates
	Customer self repair
	Remote support
	Warranty information
	Regulatory information
	Documentation feedback

	Using the Message Passing Toolkit (MPT) on a virtual machine
	Installing software within the vitual machine (VM)
	Adjusting virtual machine system settings
	Running HPE Performance MPI programs from within a virtual machine

	Array Services system administration information
	Manually configuring Array Services on multiple hosts
	Changing the security access level in the AUTHENTICATION parameter
	Configuring nodes into arrays
	About the Array Services configuration files
	Designing Array Services commands

