
where VarW
n
is the variance of W

n
and Z is a standard

normal random variable. We now have the basis for an
approximate test, for example,wewould rejectH

!
:θ%

θ
!

at level 0.05 if (W
n
®θ

!
)}oVarW

n
" 1.645. Note

that VarW
n
could depend on θ

!
and we can still use it

in the test statistic. This type of test, where we use the
actual variance of W

n
, is called a score test.

If VarW
n
also depends on unknown parameters we

could look for an estimate S #
n

of VarW
n

with the
property that (VarW

n
)}S #

n
converges in probability to

one. Then, using Slutsky’s Theorem (see Casella and
Berger 2001, Sect. 5.5), we can deduce that (W

n
®θ)}S

n

also converges in distribution to a standard normal
distribution. The large-sample test based on this
statistic is called a Wald test.

4. Conclusions

Hypothesis testing is one of the most widely used, and
some may say abused, methodologies in statistics.
Formally, the hypotheses are specified, an α-level is
chosen, a test statistic is calculated, and it is reported
whether H

!
or H

"
is accepted. In practice, it may

happen that hypotheses are suggested by the data, the
choice of α-level may be ignored, more than one test
statistic is calculated, and many modifications to the
formal procedure may be made. Most of these modi-
fications cause bias and can invalidate the method.
For example, a hypothesis suggested by the data is
likely to be one that has ‘stood out’ for some reason,
and hence H

"
is likely to be accepted unless the bias is

corrected for (using something like Scheffe’s
method—see Hsu 1996).

Perhaps the most serious criticism of hypothesis
testing is the fact that, formally, it can only be reported
that either H

!
or H

"
is accepted at the prechosen α-

level. Thus, the same conclusion is reached if the test
statistic only barely rejects H

!
and if it rejects H

!
resoundingly. Many feel that this is important in-
formation that should be reported, and thus it is
almost required to also report the p-value of the
hypothesis test.

For further details on hypothesis testing see the
classic book by Lehmann (1986). Introductions are
also provided by Casella and Berger (2001) or
Schervish (1995), and a good introduction to multiple
comparisons is Hsu (1996); see also Hypothesis Tests,
Multiplicity of.

See also: Explanation: Conceptions in the Social
Sciences; Hypothesis Testing: Methodology and Limi-
tations
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G. Casella and R. L. Berger

Hypothesis Testing: Methodology and

Limitations

Hypothesis tests are part of the basic methodological
toolkit of social and behavioral scientists. The philo-
sophical and practical debates underlying their ap-
plication are, however, often neglected. The fruitful
application of hypothesis testing can benefit from a
clear insight into, the underlying concepts and their
limitations.

1. The Idea of Hypothesis Testing

A test is a statistical procedure to obtain a statement
on the truth of falsity of a proposition, on the basis of
empirical evidence. This is done within the context of
a model, in which the fallibility or variability of this
empirical evidence is represented by probability. In
this model, the evidence is summarized in observed
data, which is assumed to be the outcome of a
stochastic, i.e., probabilistic, process; the tested prop-
osition is represented as a property of the probability
distribution of the observed data.

1.1 Some History

The first published statistical test was by John
Arbuthnot in 1710, who wondered about the fact
that in human births, the fraction of boys born year
after year appears to be slightly larger than the
fraction of girls (cf. Hacking 1965). He calculated
that this empirical fact would be exceedingly
unlikely (he obtained a probability of
1}483600000000000000000000) if the probability of
a male birth were exactly 0.5, and argued that this was
a proof of divine providence, since boys—some of
whom will be soldiers—have a higher risk of an early
death, so that a higher ratio of male births is needed to
obtain an equal ratio of males among young adults.
We see here the basic elements of a test: the proposition
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that the male birth ratio is 0.5, related to data by
regarding these as outcomes of stochastic variables,
the calculation that the data would be unlikely if the
proposition were true, and a further conclusion inter-
preting the falsity of the proposition.

One of the first statistical procedures that comes
close to a test in the modern sense was proposed by
Karl Pearson in 1900. This was the famous chi-squared
test for comparing an observed frequency distribution
to a theoretically assumed distribution. Pearson de-
rived the now well-known statistic to test the prop-
osition, or hypothesis, that the probabilities of the
various possible (finitely many) outcomes of some
random variable are given by certain preassigned
numbers. Pearson proved that this statistic has (in a
large-sample approximation) the chi-squared distri-
bution; this distribution can therefore be used to
calculate the probability that, if the hypothesis holds,
the test statistic will assume a value equal to or larger
than the value actually observed.

The idea of testing was further codified and elab-
orated in the first decades of the twentieth century,
mainly by R. A. Fisher (e.g., 1925). In his significance
tests the data are regarded as the outcome of a random
variable X (usually a vector or matrix), which has a
probability distribution which is a member of some
family of distributions; the tested hypothesis, also
called the null hypothesis, is an assertion which defines
a subset of this family; a test statistic T¯ t(X), which
is a function of X, is used to indicate the degree to
which the data deviate from the null hypothesis; and
the significance of the given outcome of the test
statistic is calculated as the probability, if the null
hypothesis is true, to obtain a value of T which is at
least as high as the given outcome. If the probability
distribution of T is not uniquely determined by the
null hypothesis, then the significance is the maximal
value of this probability, for all distributions of T
compatible with the null hypothesis. The significance
probability is now often called the p-value (the letter p
referring to probability). With Fisher originates the
convention to consider a statistical testing result as
‘significant’ if the significance probability is 0.05 or
less—but Fisher was the first to recognize the arbitrary
nature of this threshold.

A competing approach was proposed in 1928 by J.
Neyman and Egon Pearson (the son of Karl). They
criticized the arbitrariness in Fisher’s choice of the test
statistic and asserted that for a rational choice of test
statistic one needs not only a null hypothesis but also
an alternative hypothesis, which embodies a prop-
osition that competes with the proposition represented
by the null hypothesis. They formalized the testing
problem as a two decision problem. Denoting the null
hypothesis by H

!
and the alternative H

"
, the two

decisions were represented as ‘reject H
!
’ and ‘do not

reject H
!
.’ (The second decision was also called ‘accept

H
!
,’ but it will be discussed below that this is an

unfortunate term.) Two errors are possible: rejecting a

true H
!
, and failing to reject a false H

!
. Neyman and

Pearson conceived of the null hypothesis as a standard
situation, the burden of proof residing with the
researcher to demonstrate (if possible) the untenability
of this proposition.

Correspondingly, they called the error of rejecting a
true H

!
an error of the first kind and the error of failing

to reject a false H
!
an error of the second kind. Errors

of the first kind are considered more serious than
errors of the second kind. The probability of—
correctly—rejecting H

!
if H

"
is true, which is 1 minus

the probability of an error of the second kind, given
that the alternative hypothesis is true, they called the
power of the test. Neyman and Pearson proposed the
requirement that the probability of an error of the first
kind, given that the null hypothesis is indeed true, do
not exceed some threshold value called the significance
level usually denoted by α. Further they proposed to
determine the test so that, under this essential con-
dition, the power will be maximal.

In the Neyman–Pearson formulation, we obtain
richer results (namely, specific precepts for construct-
ing good tests) at the cost of a more demanding model.
In addition to Fisher’s null hypothesis, we also need to
specify an alternative hypothesis; and we must con-
ceive the testing problem as a two-decision situation.
This led to vehement debate between Fisher on the one
hand, and Neyman and E. Pearson on the other. This
debate and the different philosophical positions are
summarized by Hacking (1965) and Gigerenzer et al.
(1989), who also give a further historical account. The
latter study also discusses how this controversy was
resolved in the teaching and practice of statistics in the
social sciences by a hybrid theory which combines
elements of both approaches to testing, and which has
been treated often as an objective precept for the
scientific method, glossing over the philosophical
controversies.

Examples of this hybrid character are that, in
accordance with the Neyman–Pearson approach, the
theory is explained by making references to both the
null and the alternative hypotheses, and to errors of
the first and second kind (although power tends to be
treated in a limited and often merely theoretical way),
whereas—in the spirit of Fisher—statistical tests are
regarded as procedures to give evidence about the
particular hypothesis tested and not merely as rules of
behavior that will in the long run have certain (perhaps
optimal) error rates when applied to large numbers of
hypotheses and data sets. Lehmann (1993) argues that
indeed a unified formulation is possible, combining
the best features of both approaches.

Instead of implementing the hypothesis test as a
‘reject}don’t reject’ decision with a predetermined
significance level, another approach often is followed:
to report the p-value or significance probability,
defined as the smallest value of the significance level at
which the observed outcome would lead to rejection of
the null hypothesis. Equivalently, this can be defined

7122

Hypothesis Testing: Methodology and Limitations



as the probability, calculated under the null hypoth-
esis, of observing a result deviating from the null hy-
pothesis at least as much as the actually observed
result. This deviation is measured by the test statistic,
and the p-value is just the tail probability of the test
statistic. For a given significance level α, the null
hypothesis is rejected if and only if p%α.

2. Hypothesis Tests in Empirical Research

2.1 The Role of the Null Hypothesis

In the social and behavioral sciences, the standard use
of hypothesis testing is directed at single research
questions, practically always fragments of larger
investigations, about the existence of some or other
effect. This effect could be a difference between two
group means, the effect of some explanatory variable
on some dependent variable as expressed by a re-
gression coefficient in multiple linear regression analy-
sis, etc. Expressed schematically, the researcher would
like to demonstrate a research hypothesis which states
that the effect in question, indeed, exists. The negation
of this hypothesis, then, is understood as the prop-
osition that the effect is absent, and this proposition is
put up as the null hypothesis. The research hypothesis,
stating that the effect exists, is the alternative hy-
pothesis. Rejecting the null hypothesis is interpreted as
support for the existence of the hypothesized effect. In
this way, the burden of proof rests with the researcher
in the sense that an error of the first kind is to state that
there is evidence supporting the existence of the effect
if, in reality, the effect is absent. The usual welcoming
phrase for the rejection of the null hypothesis is the
statement that a significant result has been obtained.

2.2 Example: The t-test

Consider, as a major example, the proposition that
two groups, arbitrarily labeled A and B, are different
with respect to some numerical characteristic X.
Available data are measurements X

Ai
of this charac-

teristic for some individuals i in group A and measure-
ments X

Bi
of the characteristics for other individuals i

in group B. The first step in modeling this is to consider
the observed values X as outcomes of random vari-
ables, usually with the assumption that they are
stochastically independent and have a probability
distribution not depending on the individual i. The
next step is, usually, to focus on the expected values,
i.e., population means in the two groups, denoted here
by µ

A
and µ

B
. The tested proposition is formalized as

the statement that µ
A

and µ
B

are different (two-sided
alternative hypothesis) or as the statement that one
(e.g., µ

A
) is bigger than the other (e.g., µ

B
) (one-sided

alternative hypothesis). The null hypothesis H
!

is
defined as the statement that µ

A
and µ

B
are equal.

The most commonly used test for this testing
problem is Student’s t-test, called after the pseudonym
of W. Gosset, who laid the mathematical basis for this
test in 1908. The test statistic is

T¯
M

A
®M

B

p E

F

1

n
A

­
1

n
B

G

H

S#

where M
A

and M
B

are the two sample means, S# is the
pooled within-group variance, and n

A
and n

B
are the

two sample sizes. (Definitions of these quantities can
be found in any statistics textbook.) This formula
illustrates the property of many test statistics that an
observed effect (here the difference between the two
sample means) is compared to a measure of variability
(based here on the within-group variance). Student}
Gosset showed that, if the variable X has a normal
distribution with the same variance in the two groups,
then T has, if the null hypothesis is true, the so-called
t distribution on df¯ n

A
­n

B
®2 degrees of freedom.

For the two-sided alternative hypothesis, H
!
is rejected

for large values of the absolute value of T, for the one-
sided hypothesis H

!
is rejected for large values of T

itself. The threshold beyond which H
!

is rejected is
called critical value, and is determined from the t-
distribution in such a way that the significance level
has the pre-assigned value. The one-sided threshold at
significance levelα is denoted t

df; α, so that the ‘rejection
region’ for the one-sided t-test is given by ²T" t

df; α´.
Thepower of the one-sided test is larger than that of the
two-sided test for µ

A
"µ

B
(corresponding to the one-

sided alternative hypothesis) and smaller for µ
A
!µ

B
.

This is, in the Neyman–Pearson formulation, the
reason for using the one-sided test if the alternative
hypothesis is one-sided (in which case parameter
values µ

A
!µ

B
are not taken into consideration).

The conventional value of the significance level in
the social and behavioral sciences is 0.05. For large
values of the combined sample size n

A
­n

B
, the critical

value of the t-test approximates the critical value that
can be computed from the standard normal distri-
bution. This is because the fact that the variance is
estimated and not known beforehand becomes less
and less important as the combined sample size gets
larger; if the population variance was known be-
forehand and substituted for S#, the test statistic
would have the standard normal distribution, and the
test would be the so-called z-test. For this test, the
critical value is 1.645 for the one-sided test and 1.960
for the two-sided test. The power depends on many
quantities: the sample sizes, the population means and
variances, and the significance level. As examples, the
power of the one-sided z-test for α¯ 0.05 is equal to
0.50 for

µ
A
®µ

B

σ
¯ 1.645p E

F

1

n
A

­
1

n
B

G

H
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where σ is the within-group standard deviation. The
power is equal to 0.95 if (µ

A
®µ

B
)}σ is equal to twice

this value.

2.3 The Role of Assumptions

The probability statements that are required for
statistical tests do not come for free, but are based on
certain assumptions about the observations used for
the test. In the two-sample t-test, the assumptions are
that the observations of different individuals are
outcomes of statistically independent, normally distri-
buted, random variables, with the same expected value
for all individuals within the same group, and the same
variance for all individuals in both groups. Such
assumptions are not automatically satisfied, and for
some assumptions it may be doubted whether they are
ever satisfied exactly. The null hypothesis H

!
and

alternative hypothesisH
"
are statementswhich, strictly

speaking, imply these assumptions, and which there-
fore are not each other’s complement. There is a third
possibility: the assumptions are invalid, and neither H

!
nor H

"
is true. The sensitivity of the probabilistic

properties of a test to these assumptions is referred to
as the lack of robustness of the test. The focus of
robustness studies has been on the assumptions of the
null hypothesis and the sensitivity of the probability of
an error of the first kind to these assumptions, but
studies on robustness for deviations from assumptions
of the alternative hypothesis have also been done, cf.
Wilcox (1998).

One general conclusion from robustness studies is
that tests are extremely sensitive to the independence
assumptions made. Fortunately, those assumptions
are often under control of the researcher through the
choice of the experimental or observational design.
Traditional departures from independent observa-
tions are multivariate observations and within-subject
repeatedmeasures designs, and the statistical literature
abounds with methods for such kinds of dependent
observations. More recently, methods have been
developed for clustered observations (e.g., individual
respondents clustered within groups) under the names
of multilevel analysis and hierarchical linear modeling.

Another general conclusion is that properties of
tests derived under the assumption of normal distribu-
tions, such as the t-test, can be quite sensitive to
outliers, i.e., single, or a few, observations that deviate
strongly from the bulk of the observations. Since the
occurrence of outliers has a very low probability under
normal distributions, they are ‘assumed away’ by the
normality assumption. The lack of robustness and
sensitivity to outliers have led to three main develop-
ments.

First, there are non-parametric tests, which do not
assume parametric families of distributions (such as
the normal). Most of these are based on the ranks of

the observations rather than their numerical values.
They are standard fare in statistical textbooks. Second,
robust tests have been developed, based on numerical
values of the observations, which are less sensitive to
outliers or heavy-tailed distributions, e.g., by some
kind of automatic downweighting of outlying observa-
tions (e.g., Wilcox, 1998). The purpose of such tests is
to retain a high power as much as possible while
decreasing the sensitivity to deviations from the
normal distribution or to departures from other
assumptions.

Third, diagnostic means have been developed to
spot single observations, or groups of observations,
with an undue influence on the result of the statistical
procedure (e.g., Cook and Weisberg 1999, Fox 1991).
The idea behind most of these diagnostics is that most
of the observations come from a distribution which
corresponds well enough to the assumptions of the
statistical model, but that the observations could be
contaminated by a small number of poorly fitting
observations. Ideally, these observations should also
be recognizable by close inspection of the data or data
collection process. After deleting such poorly fitting
observations one can proceed with the more tra-
ditional statistical procedures, assuming that the re-
maining data do conform to the model assumptions.

3. Confidence Inter�als

Confidence intervals are closely related to hypothesis
tests. They focus on a parameter in the statistical
model. Examples of such parameters are, in the two-
sample situation described above, the difference of the
two population means, µ

A
®µ

B
, or the within-group

standard deviation, σ. To frame this in general terms,
consider a one-dimensional statistical parameter de-
noted by θ. A null hypothesis test is about the question
whether the data is compatible with the hypothesis
that the parameter θ (in this case µ

A
®µ

B
) has the

particular value 0. Instead, one could put forward the
question: what are the values of θ with which the data
is compatible? This question can be related to hy-
pothesis testing by considering the auxiliary problem
of testing the null hypothesis H

"
:θ¯ θ

!
against the

alternative hypothesis H
"
:θ1 θ

!
, for an arbitrary but

fixed value θ
!
. The data may be said to be compatible

with any value of θ
!

for which this null hypothesis
would not be rejected at the given level of significance.
Thus, the confidence interval is the interval of non-
rejected null hypotheses.

Another way of viewing the confidence interval is as
follows. A confidence coefficient 1®α is determined by
the researcher (a conventional value is 0.95). The
confidence interval is an interval with lower boundary
L and upper boundary U, calculated from the data
and therefore being random variables, with the prop-
erty that the probability that L% θ%U, i.e., the
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interval contains the true parameter value, is at least
1®α. It can be proved mathematically that the interval
of non-rejected null hypotheses has precisely this
property.

The confidence interval can be inverted to yield a
hypothesis test for any null hypothesis of the form H

!
:

θ¯ θ
!

in the following way. For the most usual null
hypothesis that θ¯ 0, the hypothesis is rejected if the
value 0 is not included in the confidence interval. More
generally, the null hypothesis H

!
:θ¯ θ

!
is rejected

whenever θ
!

is outside the confidence interval. This
shows that a confidence interval is strictly more
informative than a single hypothesis test.

4. Problems in the Interpretation and Use of
Hypothesis Tests

While hypothesis tests have been applied routinely by
hosts of social and behavioral scientists, there have
been continuing debates, sometimes vehement and
polemic, about their use, among those inclined to
philosophical or foundational discussion. Many con-
tentious issues can be found in Harlow et al. (1997),
Nickerson (2000), and Wilkinson and TFSI (1999).
Within the context of the present contribution I can
only give a personally colored discussion of some main
points which might contribute to a better under-
standing and a more judicious application of hy-
pothesis tests.

The reason that there has been so much criticism of
the nature and use of hypothesis tests, is in my view the
difficulty of reasoning with uncertain evidence and the
natural human tendency to take recourse to behavioral
rules instead of cogitate afresh, again and again, about
how to proceed. The empirical researcher would like
to conclude unequivocally whether a theory is true or
false, whether an effect is present or absent. However,
experimental and observational data on human behav-
ior are bound to be so variable that the evidence
produced by these data is uncertain. Our human
tendency is to reason—if only provisionally—as if our
conclusions are certain rather than tentative; to be
concise rather than accurate in reporting our argu-
ments and findings; and to use simple rules for steering
how we make inference from data to theories. We are
tempted to reason as if ‘p"α’ implies that the
investigated effect is nil, and the presumed theory is
false, while ‘p%α’ proves that the effect indeed exists
and the theory is true.

However, such cognitive shortcuts amount to seri-
ous misuse of hypothesis testing. Much of the criticism
of the use of hypothesis testing therefore is well-
founded. In my view this implies that better inter-
pretations of hypothesis testing should be promoted,
and that tests should be used less mechanically and
combined with other argumentations and other statis-
tical procedures. In any case, the user of tests (or

other statistical procedures) should realize that these
procedures are based on the assumption that there is
random variability in the data which cannot be
completely filtered out of the results. Whether a test
result is significant or not depends partly on chance,
and each researcher obtaining a significant result
should be aware that this could be an error of the first
kind, just as a non-significant result could be an error
of the second kind.

4.1 Some Misinterpretations

The following list tries to correct misinterpretations
that have haunted applications of statistical tests. A
more extensive discussion can be found, e.g., in
Nickerson (2000).

(a) A common misinterpretation is that non-
rejection implies support for the null hypothesis.
Nonrejection should be interpreted, however, as an
undecided outcome: there is not enough evidence
against the null hypothesis, but this does not imply
that there is evidence for the null hypothesis. Maybe
the sample size is small, or error variability is large, so
that the data does not contain much information
anyway. Usually the alternative hypothesis contains
probability distributions that approximate the null
distribution; e.g. when testing µ

A
®µ

B
¯ 0 against

µ
A
®µ

B
1 0, the difference between the two population

means can be tiny, while the alternative hypothesis is
still true. In other words, the power of practically all
tests is quite low in a sizeable part of the alternative
hypothesis, so if one of the distributions in this part
would prevail, chances would be low of rejecting the
null hypothesis. Therefore, nonrejection provides
support for those parts of the alternative practically as
strongly as for the null hypothesis itself, and non-
rejection may not be interpreted as support for the null
hypothesis and against the alternative hypothesis.

(b) If one wishes to get more information about
whether a nonsignificant result provides support for
the null hypothesis, a power study is not the answer.
Statistical power is the probability to reject the null
hypothesis, if a given effect size obtains. Its interpret-
ation cannot be inverted as being the degree of support
of the null hypothesis in the case of nonsignificance.
Power studies are important in the stage of planning a
study. Once the study has been conducted, and one
wishes to see in more detail to what extent the null and
alternative hypotheses are supported, a confidence
interval is the appropriate procedure (also see
Wilkinson and TFSI, 1999, p. 596).

(c) Test results tell us nothing about the probabilities
of null or alternative hypotheses. The probabilities
known as the significance level or the power of the test
are probabilities of certain sets of outcomes given the
condition that the null or, respectively, the alternative
hypothesis is true.
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(d) A significant result is not necessarily important.
Very low p-values do not in themselves imply large
effect sizes. A small estimated effect size still can yield
a low p-value, e.g., if the corresponding standard error
is very small, which can be caused by a large sample or
by good experimental control. Investigation of effect
sizes is important, and is a different thing than
hypothesis testing. The importance of reporting effect
sizes is stressed in Schmidt (1996) and Wilkinson and
TFSI (1999).

(e) The alternative hypothesis is not the same as a
scientific theory. If a researcher is investigating some
theory empirically, this can be based on tests of which
the alternative hypotheses are deduced from the
theory, but always under the assumption that the
study was well designed and usually under additional
technical assumptions such as, e.g., normality of the
distributions. Since the alternative hypothesis is only a
consequence and not a sufficient condition for the
theory, it is possible that the alternative hypothesis is
true but the theory is not. To find support for theories,
one has to find corroborations of many consequences
of the theory under various circumstances, not just of
one of its implications. On the other hand, it is possible
that the theory is true but the alternative hypothesis
deduced from it is not, e.g., because the experiment or
observation was ill-designed or because the auxiliary
technical assumptions are not satisfied.

(f ) The null hypothesis is just what it says: a
hypothesis. The test is not invalidated by the mere fact
that there are other reasons for thinking, or knowing,
that the null hypothesis is wrong. Even if there may be
other reasons for which the null hypothesis is wrong,
still it can be sensible to check whether the data at
hand are, or are not, compatible with it.

4.2 Limitations of the Neyman–Pearson Approach
to Hypothesis Testing

The Neyman–Pearson (1928) formulation changed
the concept of hypothesis testing because it provided a
rational basis for the choice of a test statistic. This was
obtained at the cost of a quite narrow frame for the
notion of a hypothesis test: a two-decision problem in
which one error (‘type I’) is considered much more
serious than the other error (‘type II’). This model for
decision-making is often inappropriate and, when it is
useful, it is more commonly a useful approximation
than a faithful representation of the actual decision
situation. Some of its limitations are discussed briefly
in this section.

(a) Even when a dichotomous decision must be
taken as a result of a scientific investigation, it is
possible that both types of error should be considered
equally serious. This is the case, e.g., when two
therapies are compared and the most promising one
must be chosen for further study or for practical
application. If the costs of both kinds of error (choose

therapy B, while A is better; or choose therapy A, while
B is better) are about the same, then there is no
asymmetry between the two competing hypotheses,
and a significance test is not in order.

(b) Often there are more than two outcomes of the
decision situation. For example, in the two-sample
situation discussed above,where the populationmeans
are µ

A
and µ

B
, and where the researcher entertains a

theory implying that µ
A
"µ

B
, it is natural to define

three decision outcomes defined as ‘µ
A
"µ

B
(support

for the theory),’ ‘undecided,’ and ‘µ
A
!µ

B
(evidence

against the theory).’Usually, however, such a situation
is represented by a Neyman–Pearson testing problem
with null hypothesis H

!
: ‘µ

A
¯ µ

B
’ and alternative H

"
:

‘µ
A
"µ

B
.’ If the t-statistic forµ

A
®µ

B
yields a strongly

negative outcome (‘significance in the wrong direc-
tion’) then the researcher only concludes that the null
hypothesis is not rejected, whereas the data conveys
the message that the alternative hypothesis should be
rejected. The data then have to be considered as
evidence against the theory embodied in H

"
. Such a

three-decision formulation is closer to the actual
purpose of hypothesis tests in many situations where a
one-dimensional parameter is being tested, cf.
Leventhal (1999).

(c) The Neyman–Pearson approach is formulated
as if the data at hand is the only evidence available
about the null and alternative hypotheses: it is an in
�acuo formulation. This is almost never realistic. Often
the propositions under study are theoretically plaus-
ible or implausible, there is earlier empirical evidence,
there may be converging evidence (as in the case of
triangulation studies) in the same investigation, and
other evidence may become available in the future. In
the light of this surrounding evidence, it is unreal-
istic—perhaps arrogant—to presume that the re-
searcher has to take either of two decisions: ‘reject H

!
’

or ‘do not reject H
!
.’ It is more realistic to see the data

at hand as part of the evidence that was and will be
accumulated about these hypotheses. This is a major
reason why presenting the result of the test as a p-value
is more helpful to other researchers than presenting
only the ‘significant–nonsignificant’ dichotomy (also
see Wilkinson and TFSI 1999).

There are several ways in which the results obtained
from the data at hand, perhaps summarized in the p-
value, can be combined with other evidence. In the
first place, an informal combination can be and often
will be made by a sensible, nonformalized weighing of
the various available pieces of evidence. One formal
way of combining evidence is provided by the Bayesian
paradigm (e.g., Gelman et al. 1995). This paradigm
presupposes, however, that the prior and current ideas
of the researcher about the plausibility of all possible
values of the statistical parameter under study be
represented in a probability distribution for this
parameter, a very strong requirement indeed. Other
formal ways of combining evidence have been de-
veloped and are known collectively by the name of
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meta-analysis (e.g., Cook et al. 1992, Schmidt 1996).
These methods require that the several to-be-com-
bined hypothesis tests address the same substantive
hypothesis, or that they can be regarded as tests of the
same substantive parameter.

5. Conclusion

The statistical hypothesis test is one of the basic
elements of the toolbox of the empirical researcher in
the social and behavioral sciences. The difficulty of
reasoning on the basis of uncertain data has led,
however, to many misunderstandings and unfortunate
applications of this tool. The Neyman–Pearson ap-
proach is a mathematically elegant formulation of
what a hypothesis test could be. Its precise formulation
rarely applies literally to the daily work of social and
behavioral scientists, very often it is a useful ap-
proximation to a part of the research question,
sometimes it is inappropriate—but sacrosanct it is not.
A hypothesis test evaluates the data using a test
statistic set up to contrast the null hypothesis with the
alternative hypothesis, and the p-value is the prob-
ability to obtain, if the null hypothesis is true,
outcomes of the test statistic that are at least as high as
the outcome actually observed. Low values therefore
are evidence against the null hypothesis, contrasted
with the alternative hypothesis. It is more conducive to
the advance of science to report p-values than merely
whether the hypothesis was rejected at the conven-
tional 0.05 level of significance.

In the interpretation of test outcomes one should be
aware that these are subject to random variability; and
that the probability calculations are based on assump-
tions which may be in error. Incorrect assumptions
can invalidate the conclusions seriously. Nonpara-
metric and robust statistical procedures have been
developed which depend less on these kinds of as-
sumption, and diagnostics have been developed for
checking some of the assumptions. When reporting
empirical results, it is usually helpful to report not only
tests but also estimated effect sizes and}or confidence
intervals for important parameters. To sum up: ‘It
seems there is no escaping the use of judgment in the
use and interpretation of statistical significance tests’
(Nickerson 2000, p. 256).

See also: Hypothesis Testing in Statistics; Hypothesis
Tests, Multiplicity of; Model Testing and Selection,
Theory of; Significance, Tests of
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T. A. B. Snijders

Hypothesis Tests, Multiplicity of

Standard procedures for controlling the probability of
erroneous statistical inferences apply only for a single
comparison or determination from a given set of data.
Multiplicity is encountered whenever a data analyst
draws more than one inference from a data set. With
multiplicity, standard procedures must be adjusted for
the number of comparisons or determinations that
actually or potentially are performed. If some ad-
justment is not made, the probability of erroneous
inferences can be expected to increase with the degree
of multiplicity. In other words, the data analyst loses
control of a critical feature of the analysis.

Questions arising from problems of multiplicity
raise a diversity of issues, issues that are important,
difficult, and not fully resolved. This account empha-
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