
Hypothesis Testing

CB: chapter 8; section 10.3

���

Hypothesis: statement about an unknown population parameter

Examples: The average age of males in Sweden is 27. (statement about population
mean)
The lowest time it takes to run 30 miles is 2 hours. (statement about population
max)
Stocks are more volatile than bonds. (statement about variances of stock and bond
returns)

In hypothesis testing, you are interested in testing between two mutually exclusive hy-
potheses, called the null hypothesis (denoted H0) and the alternative hypothesis
(denoted H1).

H0 and H1 are complementary hypotheses, in the following sense:

If the parameter being hypothesized about is θ, and the parameter space (i.e., possible
values for θ) is Θ, then the null and alternative hypotheses form a partition of Θ:

H0: θ ∈ Θ0 ⊂ Θ
H1: θ ∈ Θc

0 (the complement of Θ0 in Θ).

Examples:

1. H0 : θ = 0 vs. H1 : θ 6= 0

2. H0 : θ ≤ 0 vs. H1 : θ > 0

1 Definitions of test statistics

A test statistic, similarly to an estimator, is just some real-valued function Tn ≡
T (X1, . . . , Xn) of your data sample X1, . . . , Xn. Clearly, a test statistic is a random
variable.

A test is a function mapping values of the test statistic into {0, 1}, where

• “0” implies that you accept the null hypothesis H0 ⇔ reject the alternative
hypothesis H1.

• “1” implies that you reject the null hypothesis H0 ⇔ accept the alternative
hypothesis H1.
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The subset of the real line R for which the test is equal to 1 is called the rejection
(or “critical”) region. The complement of the critical region (in the support of the
test statistic) is the acceptance region.

Example: let µ denote the (unknown) mean male age in Sweden.

You want to test: H0 : µ = 27 vs. H1 : µ 6= 27

Let your test statistic be X̄100, the average age of 100 randomly-drawn Swedish males.

Just as with estimators, there are many different possible tests, for a given pair of
hypotheses H0, H1. Consider the following four tests:

1. Test 1: 1
(
X̄100 6∈ [25, 29]

)
2. Test 2: 1

(
X̄100 6≤ 29

)
3. Test 3: 1

(
X̄100 6> 35

)
4. Test 4: 1

(
X̄100 6= 27

)
Which ones make the most sense?

Also, there are many possible test statistics, such as: (i) med100 (sample median); (ii)
max(X1, . . . , X100) (sample maximum); (iii) mode100 (sample mode); (iv) sinX1 (the
sine of the first observation).

In what follows, we refer to a test as a combination of both (i) a test statistic; and
(ii) the mapping from realizations of the test statistic to {0, 1}.

Next we consider some common types of tests.

���

1.1 Likelihood Ratio Test

Let: ~X = X1, . . . , Xn ∼ i.i.d. f(X|θ), and likelihood function L(θ| ~X) =
∏n

i=1 f(xi|θ).

Define: the likelihood ratio test statistic for testing H0 : θ ∈ Θ0 vs. H1 : θ ∈ Θc
0

is

λ( ~X) ≡
supθ∈Θ0

L(θ| ~X)

supθ∈Θ L(θ| ~X)
.

The numerator of λ( ~X) is the “restricted” likelihood function, and the denominator
is the unrestricted likelihood function.
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The support of the LR test statistic is [0, 1].

Intuitively speaking, if H0 is true (i.e., θ ∈ Θ0), then λ( ~X) = 1 (since the restriction

of θ ∈ Θ0 will not bind). However, if H0 is false, then λ( ~X) can be small (close to
zero).

So an LR test should be one which rejects H0 when λ( ~X) is small; for example,

1(λ( ~X) < 0.75)

���

Example: X1, . . . , Xn ∼ i.i.d. N(θ, 1)

Test H0 : θ = 2 vs. H1 : θ 6= 2.

Then

λ( ~X) =
exp

(
−1

2

∑
i(Xi − 2)2

)
exp

(
−1

2

∑
i(Xi − X̄n)2

)
(the denominator arises because X̄n is the unrestricted MLE estimator for θ.

Example: X1, . . . , Xn ∼ U [0, θ].

(i) Test H0 : θ = 2 vs. H1 : θ 6= 2.

Restricted likelihood function

L( ~X|2) =

{ (
1
2

)n
if max(X1, . . . , Xn) ≤ 2

0 if max(X1, . . . , Xn) > 2.

Unrestricted likelihood function

L( ~X|θ) =

{ (
1
θ

)n
if max(X1, . . . , Xn) ≤ θ

0 if max(X1, . . . , Xn) > θ

which is maximized at θMLE
n = max(X1, . . . , Xn).

Hence the denominator of the LR statistic is
(

1
max(X1,...,Xn)

)n
, so that

λ( ~X) =

{
0 if max(X1, . . . , Xn) > 2(

max(X1,...,Xn)
2

)n
otherwise

LR test would say: 1(λ( ~X) ≤ c). Critical region consists of two disconnected parts
(graph).
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(ii) Test H0 : θ ∈ [0, 2] vs. H1 : θ > 2.

In this case: the restricted likelihood is

sup
θ∈[0,2]

L( ~X|θ) =

{ (
1

max(X1,...,Xn)

)n
if max(X1, . . . , Xn) ≤ 2

0 otherwise.

so

λ( ~X) =

{
1 if max(X1, . . . , Xn) ≤ 2
0 otherwise.

(1)

(graph)

So now LR test is 1(λ( ~X) ≤ c) = 1(max(X1, . . . , Xn) > 2).

���

1.2 Wald Tests

Another common way to generate test statistics is to focus on statistics which are
asymptotically normal distributed, under H0 (i.e., if H0 were true).

A common situation is when the estimator for θ, call it θ̂n, is asymptotically normal,
with some asymptotic variance V (eg. MLE). Let the null be H0 : θ = θ0. Then, if
the null were true:

(θ̂n − θ0)√
1
n
V

d→ N(0, 1). (2)

The quantity on the LHS is the T-test statistic.

Note: in most cases, the asymptotic variance V will not be known, and will also need
to be estimated. However, if we have an estimator V̂n such that V̂

p→ V , then the
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statement

Zn ≡
(θ̂n − θ0)√

1
n
V̂

d→ N(0, 1)

still holds (using the plim operator and Slutsky theorems). In what follows, therefore,
we assume for simplicity that we know V .

We consider two cases:

(i) Two-sided test: H0 : θ = θ0 vs. H1 : θ 6= θ0.

Under H0: the CLT holds, and the t-stat is N(0, 1)
Under H1: assume that the true value is some θ1 6= θ0. Then the t-stat can be written
as

(θ̂n − θ0)√
1
n
V

=
(θ̂n − θ1)√

1
n
V

+
(θ1 − θ0)√

1
n
V

.

The first term
d→ N(0, 1), but the second (non-stochastic) term diverges to∞ or −∞,

depending on whether the true θ1 exceeds or is less than θ0. Hence the t-stat diverges
to −∞ or ∞ with probability 1.

Hence, in this case, your test should be 1(|Zn| > c), where c should be some number
in the tails of the N(0, 1) distribution.

Multivariate version: θ is K-dimensional, and asymptotic normal, so that under H0,
we have √

n(θn − θ0)
d→ N(0,Σ).

Then we can test H0 : θ = θ0 vs. H1 : θ 6= θ0 using the quadratic form

Zn ≡ n · (θn − θ0)′Σ−1(θn − θ0)
d→ χ2

k.

Test takes the form: 1(Zn > c).

(ii) One-sided test: H0 : θ ≤ θ0 vs. H1 : θ > θ0.

Here the null hypothesis specifies a whole range of true θ (Θ0 = (−∞, θ0]), whereas
the t-test statistic is evaluated at just one value of θ.

Just as for the two-sided test, the one-sided t-stat is evaluated at θ0, so that Zn =
θ̂n−θ0√

1
n
V

.
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Under H0 and θ < θ0: Zn diverges to −∞ with probability 1. Under H0 and θ = θ0:
the CLT holds, and the t-stat is N(0, 1).
Under H1: Zn diverges to ∞ with probability 1.

Hence, in this case, you will reject the null only for very large values of Zn. Corre-
spondingly, your test should be 1(Zn > c), where c should be some number in the
right tail of the N(0, 1) distribution.

Later, we will discuss how to choose c.

���

1.3 Score test

Consider a model with log-likelihood function logL(θ| ~X) = 1
n

∑
i log f(xi|θ).

Let H0 : θ = θ0. The sample score function evaluated at θ0 is

S(θ0) ≡ ∂

∂θ
logL(θ| ~X)

∣∣
θ=θ0

=
1

n

∑
i

∂

∂θ
log f(xi|θ)

∣∣
θ=θ0

.

Define Wi = ∂
∂θ

log f(xi|θ)
∣∣
θ=θ0

. Under the null hypothesis, S(θ0) converges to

Eθ0Wi =

∫ d
dθ
f(x|θ)|θ=θ0
f(x|θ0)

f(x|θ0)dx

=
∂

∂θ

∫
f(x|θ)dx

=
∂

∂θ
· 1 = 0

(the information inequality). Hence,

Vθ0Wi = Eθ0W
2
i = Eθ0

(
∂

∂θ
log f(X|θ)

∣∣
θ=θ0

)2

≡ V0.

(Note that 1
V0

is the usual variance matrix for MLE, which is the CRLB.)

Therefore, you can apply the CLT to get that, under H0,

S(θ0)√
1
n
V0

d→ N(0, 1).

(If we don’t know V0, we can use some consistent estimator V̂0 of it.)
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So a test of H0 : θ = θ0 could be formulated as 1

(
|

1
n
S(θ0)√
1
n
V0
| > c

)
, where c is in the

right tail of the N(0, 1) distribution.

Multivariate version: if θ is K-dimensional:

Sn ≡ nS(θ0)′V −1
0 S(θ0)

d→ χ2
k.

���

Recall that, in the previous lecture notes, we derived the following asymptotic equality
for the MLE:

√
n
(
θ̂n − θ0

)
a
=
√
n
− 1
n

∑
i
∂ log f(xi|θ)

∂θ

∣∣
θ=θ0

1
n

∑
i
∂2 log f(xi|θ)

∂θ2

∣∣
θ=θ0

=
√
n
S(θ0)

V0

.

(3)

(The notation
a
= means that the LHS and RHS differ by some quantity which is

op(1).)

Hence, the above implies that (applying the information inequality, as we did before)

√
n
(
θ̂n − θ0

)
︸ ︷︷ ︸

(1)

a
=
√
n
S(θ0)

V0︸ ︷︷ ︸
(2)

d→ N(0,
1

V0

)

The Wald statistic is based on (1), while the Score statistic is based on (2). In this
sense, these two tests are asymptotically equivalent. Note: the asymptotic variance
of the Wald statistic (2) equal the reciprocal of V0.

(Later, you will also see that the Likelihood Ratio Test statistic is also asymptotically
equivalent to these two.)

���

The LR, Wald, and Score tests (the “trinity” of test statistics) require different models
to be estimated.

• LR test requires both the restricted and unrestricted models to be estimated

• Wald test requires only the unrestricted model to be estimated.
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• Score test requires only the restricted model to be estimated.

Applicability of each test then depends on the nature of the hypotheses. For H0 :
θ = θ0, the restricted model is trivial to estimate, and so LR or Score test might be
preferred. For H0 : θ ≤ θ0, restricted model is a constrained maximization problem,
so Wald test might be preferred.

���

2 Methods of evaluating tests

Consider X1, . . . , Xn ∼ i.i.d. (µ, σ2). Test statistic X̄n.

Test H0 : µ = 2 vs. H1 : µ 6= 2.

Why are the following good or bad tests?

1. 1(X̄n 6= 2)

2. 1(X̄n ≥ 1.2)

3. 1(X̄n 6∈ [1.8, 2.2])

4. 1(X̄n 6∈ [−10, 30])

Test 1 “rejects too often” (in fact, for every n, you reject with probability 1). Test 2
is even worse, since it rejects even when X̄n is close to 2. Test 3 is not so bad, Test 4
accepts too often.

Basically, we are worried when a test is wrong. Since the test itself is a random
variable, we cannot guarantee that a test is never wrong, but we can characterize
how often it would be wrong.

There are two types of mistakes that we are worried about:

• Type I error: rejecting H0 when it is true. (This is the problem with tests 1
and 2.)

• Type II error: Accepting H0 when it is false. (This is the problem with test
4.)
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Let Tn ≡ T (X1, . . . , Xn) denote the sample test statistic. Consider a test with rejec-
tion region R (i.e., test is 1(Tn ∈ R)). Then:

P (type I error) = P (Tn ∈ R |θ ∈ Θ0)

P (type II error) = P (Tn 6∈ R |θ ∈ Θc
0)

���

Example: X1, X2 ∼ i.i.d. Bernoulli, with probability p.

• Test H0 : p = 1
2

vs. H1 : p 6= 1
2
.

• Consider the test 1
(
X1+X2

2
6= 1
)
.

• Type I error: rejecting H0 when p = 1
2
.

P(Type I error) = P(X1+X2

2
6= 1|p = 1

2
) = P(X1+X2

2
= 0|p = 1

2
)+ P(X1+X2

2
=

1
2
|p = 1

2
) = 1

4
+ 1

2
= 3

4
.

• Type II error: Accepting H0 when p 6= 1
2
.

For p 6= 1
2
:

X1 +X2

2
=


0 with prob (1− p)2

1
2

with prob 2(1− p)p
1 with prob p2

So P(X1+X2

2
= 1|p)=p2. Graph.

���

Power function

More generally, type I and type II errors are summarized in the power function.
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Definition: the power function of a hypothesis test with a rejection region R is the
function of θ defined by β(θ) = P (Tn ∈ R|θ).

Example: For above example,

β(p) = P
(
X1+X2

2
6= 1|p

)
= 1− p2. Graph

• Power function gives the Type I error probabilities, for any singleton null hy-
pothesis H0 : θ = θ0.

From β(p), see that if you are worried about Type I error, then you should only
use this test when your null is that p is close to 1 (because only for p0 close to
1 is the power function low).

• 1 − β(p) gives you the Type II error probabilities, for any point alternative
hypothesis

So if you are worried about Type II error, then β(p) tells you that you should
use this test when your alternative hypothesis postulates that p is low (close to
zero). We say that this test has good power against alternative values of p close
to zero.

• Important: power function is specific to a given test 1(Tn ∈ R), regardless of
the specific hypotheses that the test may be used for.

���

Example: X1, . . . , Xn ∼ U [0, θ].

Test H0 : θ ≤ 2 vs. H1 : θ > 2. Derive β(θ) for the LR test 1(λ( ~X) < c).
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Recall our earlier derivation of LR test in Eq. (1). Hence,

β(θ) = P (λ( ~X) < c|θ)
= P (max(X1, . . . , Xn) > 2|θ)
= 1− P (max(X1, . . . , Xn) < 2|θ)

=

{
0 for θ ≤ 2

1−
(

2
θ

)n
for θ > 2.

Graph.

���

In practice, researchers often concerned about Type I error (i.e., don’t want to reject
H0 unless evidence overwhelming against it): “conservative bias”?

But if this is so, then you want a test with a power function β(θ) which is low for
θ ∈ Θ0, but high elsewhere:

This motivates the definition of size and level of a test.

• For 0 ≤ α ≤ 1, a test with power function β(θ) is a size α test if supθ∈Θ0
β(θ) =

α.

• For 0 ≤ α ≤ 1, a test with power function β(θ) is a level α test if supθ∈Θ0
β(θ) ≤

α.

• The θ ∈ Θ0 at which the “sup” is achieved is called the “least favorable value” of
θ under the null, for this test. It is the value of θ ∈ Θ0 for which the null holds,
but which is most difficult to distinguish (in the sense of having the highest
rejection probability) from any alternative parameter θ 6∈ Θ0.
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Reflecting perhaps the “conservative” bias, researcher often use tests of size α =0.05,
or 0.10.

Example: X1, . . . , Xn ∼ i.i.d. N(µ, 1). Then X̄n ∼ N(µ, 1/n), and Zn(µ) ≡√
n(X̄n − µ) ∼ N(0, 1).

• Consider the test 1 (Zn(2) > c), for the hypotheses
H0 : µ ≤ 2 vs. H1 : µ > 2.

• The power function

β(µ) = P (
√
n(X̄n − 2) > c|µ)

= P (
√
n(X̄n − µ) > c+

√
n(2− µ)|µ)

= 1− Φ(c+
√
n(2− µ))

where Φ(·) is the standard normal CDF. Note that β(µ) is increasing in µ.

• Size of test= supµ≤2 1 − Φ(c +
√
n(2 − µ)). Since β(µ) is increasing in µ, the

supremum occurs at µ = 2, so that size is β(2) = 1− Φ(c).

• Assume you want a test with size α. Then you want to set c such that

1− Φ(c) = α⇔ c = Φ−1(1− α).

Graph: c is the (1 − α)-th quantile of the standard normal distribution. You
can get these from the usual tables.

For α = 0.025, then c∗ = 1.96. For α = 0.05, then c∗ = 1.64.

���

Now consider the above test, with c∗ = 1.96, but change the hypotheses to H0 : µ = 2
vs. H1 : µ 6= 2.
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Test still has size α = 0.05.

But there is something intuitively wrong about this test. You are less likely to reject
when µ < 2. So the Type II error is very high for the alternatives µ < 2.

We wish to rule out such tests

Definition: a test with power function β(θ) is unbiased if β(θ′) ≥ β(θ′′) for every
pair (θ′, θ′′) where θ′ ∈ Θc

0 and θ′′ ∈ Θ0.

Clearly, the test above is biased for the stated hypotheses. What would be an unbiased
test, with the same size α = 0.05?

Definition: Let C be a class of tests for testing H0 : θ ∈ Θ0 vs. H1 : θ ∈ Θc
0. A

test in class C, with power function β(θ), is uniformly most powerful (UMP) in
class C if, for every other test in class C with power function β̃(θ)

β(θ) ≥ β̃(θ), for every θ ∈ Θc
0.

Often, the classes you consider are test of a given size α. Graphically, the power
function for a UMP test lies above the upper envelope of power functions for all other
tests in the class, for θ ∈ Θc

0:

(graph)

2.1 UMP tests in special case: two simple hypotheses

It can be difficult in general to see what form an UMP test for any given size α is.
But in the simple case where both the null and alternative hypotheses are simple
hypotheses, we can appeal to the following result.

Theorem 8.3.12 (Neyman-Pearson Lemma): Consider testing

H0 : θ = θ0 vs. H1 : θ = θ1
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(so both the null and alternative are singletons). The pdf or pmf corresponding to θi
is f( ~X|θi), for i = 0, 1. The test has a rejection region R which satisfies:

~X ∈ R if f( ~X|θ1) > k · f( ~X|θ0) (∗)
~X ∈ Rc if f( ~X|θ1) < k · f( ~X|θ0)

and
α = P ( ~X ∈ R|θ0). (4)

Then:

• Any test satisfying (*) is a UMP test with level α.

• If there exists a test satisfying (*) with k > 0, then every UMP level α test is
a size α test and every UMP level α test satisfies (*).

In other words, for simple hypotheses, a likelihood ratio test of the sort

1

(
f( ~X|θ1)

f( ~X|θ0)
> k

)

is UMP-size α (where k is chosen so that P (f( ~X|θ1)

f( ~X|θ0)
> k|θ0) = α).

Note that this LR statistic is different than λ( ~X), which for these hypotheses is
f( ~X|θ0)

max[f( ~X|θ0),f( ~X|θ1)]
.

Example: return to 2-coin toss again. Test H0 : p = 1
2

vs. H1 : p = 3
4
.

The likelihood ratios for the three possible outcomes
∑

iXi = 0, 1, 2 are:

f(0|p = 3
4
)

f(0|p = 1
2
)

=
1

4

f(1|p = 3
4
)

f(1|p = 1
2
)

=
3

4

f(2|p = 3
4
)

f(2|p = 1
2
)

=
9

4
.

Let l( ~X) =
f(

∑
iXi|p= 3

4
)

f(
∑

iXi|p= 1
2

)
. Hence, there are 4 possible rejection regions, for values of

l( ~X):
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(i) (9
4
,+∞) (size α = 0)

(ii) (3
4
,+∞) (size α = 1

4
)

(iii) (1
4
,+∞) (size α = 3

4
)

(iv) (−∞,+∞) (size α = 1).

At all other values for α, no value of k satisfies (*) exactly, and so the test above are
level-α tests. This is due to the discreteness of this example.

Example A: X1, . . . , Xn ∼ N(µ, 1). Test H0 : µ = µ0 vs. H1 : µ = µ1. (Assume
µ1 > µ0.)

By the NP-Lemma, the UMP test has rejection region characterized by

exp
(
−1

2

∑
i(Xi − µ1)2

)
exp

(
−1

2

∑
i(Xi − µ0)2

) > k.

Taking logs of both sides:

(µ1 − µ0)
∑
i

Xi > log k +
n

2
(µ1 − µ0)2

⇔ 1

n

∑
i

Xi >
1
n

log k + 1
2
(µ1 − µ0)2

(µ1 − µ0)
≡ d.

where d is determined such that P (X̄n > d) = α, where α is the desired size. This
makes intuitive sense: you reject the null when the sample mean is too large (because
µ1 > µ0).

Under the null,
√
n(X̄n − µ0) ∼ N(0, 1), so for α = 0.05, you want to set d =

µ0 + 1.64/
√
n.
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2.1.1 Discussion of NP Lemma

(From Amemiya pp. 190-192) Rather than present a proof of NP Lemma (you can
find one in CB), let’s consider some intuition for the NP test. In doing so, we will
derive an interesting duality between Bayesian and classical approaches to hypothesis
testing (the NP Lemma being a seminal result for the latter).

Start by considering a Bayesian approach to this testing problem. Assume that
decisionmaker incurs loss γ1 if he mistakenly chooses H1 when H0 is true, and γ2 if
he mistakenly chooses H0 when H1 is true. Then, given data observations ~x, he will

Reject H0 (=accept H1)⇔ γ1P (θ0|~x) < γ2P (θ1|~x) (∗)

where P (θ0|~x) denotes the posterior probability of the null hypothesis given data ~x.
In other words, this Bayesian’s rejection region R0 is given by

R0 =

{
~x :

P (θ1|~x)

P (θ0|~x)
>
γ1

γ2

}
.

If we multiply and divide the ratio of posterior probabilities by f(~x), the (marginal)
joint density of ~x, and use the laws of probability, we get:

R0 =

{
~x :

P (θ1|~x)f(~x)

P (θ0|~x)f(~x)
>
γ1

γ2

}
=

{
~x :

L(~x|θ1)P (θ1)

L(~x|θ0)P (θ0)
>
γ1

γ2

}
=

{
~x :

L(~x|θ1)

L(~x|θ0)
>
γ1P (θ0)

γ2P (θ1)
≡ c

}
.

In the above, P (θ0) and P (θ1) denote the prior probabilities for, respectively, the null
and alternative hypotheses. This provides some intuition for the “likelihood ratio”
form of the NP rejection region.

Next we show a duality between the Bayesian and classical approaches to finding
the “best” test. In the case of two simple hypotheses, a best test should be such
that for a given size α, it should have the smallest type 2 error β (these are called
“admissible” tests). For any testing scenario, the frontier (in (β, α) space) of tests is
convex. (Why?) Both the Bayesian and the classical statistician want to choose a
test that is on the frontier, but they might differ in the one they choose.

First consider the Bayesian. She wishes to employ a test, equivalently, choose a
rejection region R, to minimize expected loss

min
R
φ(R) ≡ γ1P (θ0| ~X ∈ R)P ( ~X ∈ R) + γ2P (θ1| ~X ∈ R̄)P ( ~X ∈ R̄).
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We will show that the region R0 defined above optimizes this problem. Consider any
other region R1. Recall that R0 = (R0 ∩R1) ∪ (R0 ∩ R̄1). Then we can rewrite

φ(R0) =γ1P (θ0|R0 ∩R1)P (R0 ∩R1) + γ1P (θ0|R0 ∩ R̄1)P (R0 ∩ R̄1)

+ γ2P (θ1|R̄0 ∩R1)P (R̄0 ∩R1) + γ2P (θ1|R̄0 ∩ R̄1)P (R̄0 ∩ R̄1).

φ(R1) =γ1P (θ0|R1 ∩R0)P (R1 ∩R0) + γ1P (θ0|R1 ∩ R̄0)P (R1 ∩ R̄0)

+ γ2P (θ1|R̄1 ∩R0)P (R̄1 ∩R0) + γ2P (θ1|R̄1 ∩ R̄0)P (R̄1 ∩ R̄0).

First and fourth terms of equations above are identical. From the definition of R0

above, we know that φ(R0)ii < φ(R1)iii. That is, for all ~x ∈ R0 ⊇ R0 ∩ R̄1, we know
from (*) that γ1P (θ0|~x) < γ2P (θ1|~x). Similarly, we know that φ(R0)iii < φ(R1)ii,
implying that φ(R0) < φ(R1).

Moreover, using the laws of probability, we can re-express

φ(R) = γ1P (θ0)P (R|θ0) + γ2P (θ1)P (R̄|θ1) ≡ η0αR + η1βR

with η0 = γ1P (θ0) and η1 = γ2P (θ1). In (β, α) space, the “iso-loss” curves are parallel
lines with slope −η0/η1, decreasing towards the origin. Hence, the optimal test (with
region R0) lies at tangency of (α, β) frontier with a line with slope −η0/η1. Hence,
the optimal Bayesian test (R0).

Now consider the classical statistician. He doesn’t want to specify priors P (θ0), P (θ1),
so η0, η1 are not fixed. But he is willing to specify a desired size α∗. Hence the optimal
test is the one with a rejection region characterized by the slope of the line tangent
at α∗ in the (β, α) space. This is in fact the NP test. From the above calculations,
we know that this slope is equivalent to −c. That is, the NP test corresponds to an
optimal Bayesian test with η0/η1 = c.

2.2 Extension of NP Lemma: models with monotone likelihood ratio

The case covered by NP Lemma– that both null and alternative hypotheses are simple
– is somewhat artificial. For instance, we may be interested in the one-sided hypothe-
ses H0 : θ ≤ θ0 vs. H1 : θ ≥ θ0, where θ is scalar. It turns out UMP for one-sided
hypotheses exists under an additional assumption on the family of density functions{
f( ~X|θ)

}
θ
:

Definition: the family of densities f( ~X|θ) has monotone likelihood ratio in T ( ~X)

is there exists a function T ( ~X) such that for any pair θ < θ′ the densities f( ~X|θ)
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and f( ~X|θ′) are distinct and the ratio f( ~X|θ′)/f( ~X|θ) is a nondecreasing function of

T ( ~X). That is, there exists a nondecreasing function g(·) and function T ( ~X) such

that f( ~X|θ′)/f( ~X|θ) = g(T ( ~X)).

For instance: let ~X = x and T (x) = x, then MLR in x means that f(x|θ′)/f(x|θ) is
nondecreasing in x. Roughly speaking: larger x’s are more “likely” under larger θ’s.

Theorem: Let θ be scalar, and let f( ~X|θ) have MLR in T ( ~X). Then:

(i) For testing H0 : θ ≤ θ0 vs. H1 : θ ≥ θ0, there exists a UMP test φ( ~X), which is
given by

φ( ~X) =


1 when T ( ~X) > C

γ when T ( ~X) = C

0 when T ( ~X) < C

where (γ, C) are chosen to satisfy Eθ0φ( ~X) = α.

(ii) The power function β(θ) = Eθφ( ~X) is strictly increasing for all points θ for which
0 < β(θ) < 1.

(iii) For all θ′, the test described in part i is UMP for testing H ′0 : θ ≤ θ′ vs.
H ′1 : θ ≥ θ′ at level α = β(θ′). �

Sketch of Proof:1 Consider testing θ0 vs. θ1 > θ0. By NP Lemma, this depends
on ratio f( ~X|θ1)/f( ~X|θ0). Given MLR condition, this ratio can be written g(T ( ~X))

where g(·) is nondecreasing. Then UMP test rejects when f( ~X|θ1)/f( ~X|θ0) is large,

which is when T (X) is large; this is test φ( ~X). Since this test does not depend on θ1,

φ( ~X) is also UMP-size α for testing H0 : θ0 vs. H1 : θ1 > θ0 (composite alternative).

Now since MLR holds for all (θ′, θ
′′
; θ

′′
> θ′), the test φ( ~X) is also UMP-size Eθ′φ( ~X)

for testing θ′ vs. θ
′′
. Hence β(θ

′′
) ≥ β(θ′), otherwise φ( ~X) cannot be UMP (why?2).

Furthermore, the distinctiveness of f( ~X|θ′′
) and f( ~X|θ′) rules out β(θ

′′
) = β(θ′).

Hence we get (ii).

Then since the power function is monotonic increasing in θ, the UMP-size α feature
of φ( ~X) for testing θ0 vs. H1 : θ > θ0 extends to the composite null hypothesis
H0 : θ ≤ θ0 vs. H1 : θ > θ0, which is (i). (iii) follows immediately.

���

Example A cont’d: From above, we see that for µ1 > µ0, the likelihood ratio
simplifies to exp

(
(µ1 − µ0)

∑
iXi − n

2
(µ2

1 − µ2
0)
)

which is increasing in X̄n. Hence,

1Lehmann and Romano, Testing Statistical Hypotheses, pg. 65.
2Consider the purely random test φ( ~X) = 1 with probability α.
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this satisfies MLR with T ( ~X) = X̄n.

Using the theorem above, the one-sided T-test which rejects when

X̄n > µ0 +
1.64√
n

is also UMP for size α = 0.05 for the one-sided hypotheses H0 : µ ≤ µ0 vs. H1 : µ >
µ0. Call this “test 1”.

Taking this example further, we have that for the one-sided hypotheses H0 : µ > µ0

vs. H1 : µ < µ0, the one-sided T-test which rejects when X̄n < µ0− 1.64√
n

will be UMP
for size α = 0.05. Call this “test 2”.

Now consider testing
H0 : µ = µ0 vs. H1 : µ 6= µ0. (∗)

The alternative hypothesis is equivalent to “µ < µ0 or µ > µ0”. Can we find an UMP
size-α test?

Note that both Test 1 and Test 2 are size-α tests for hypotheses (*). So we consider
each in turn.

For any alternative point µ1 > µ0, test 1 is UMP, implying that β1(µ1) is maximal
among all size-α tests. For µ2 < µ0, however, test 2 is UMP, implying that β2(µ2)
is maximal. Furthermore, β1(µ2) < α < β2(µ2) from part (ii) of theorem above, so
neither test can be uniformly most powerful for all µ 6= µ0. And indeed there is no
UMP size-α test for problem (*).

But note that both Test 1 and Test 2 are biased for the hypotheses (*). It turns out
that the two-sided T-test which rejects when X̄n > µ0+1.96/

√
n or X̄n < µ0−1.96/

√
n

is UMP among size-α unbiased tests. See discussion in CB, pp. 392-395.
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3 Large-sample properties of tests

In practice, we use large-sample theory — that is, LLN’s and CLT’s — in order to
determine the approximate critical regions for the most common test statistics.

Why? Because finite-sample properties can be difficult to determine:

Example: X1, . . . , Xn ∼ i.i.d. Bernoulli with prob. p.

Want to test H0 : p ≤ 1
2

vs. H1 : p > 1
2
, using the test stat X̄n = 1

n

∑
iXi.

n is finite. The exact finite-sample distribution for X̄n is the distribution of 1
n

times
a B(n, p) random variable, which is:

0 with prob
(
n
0

)
(1− p)n

1
n

with prob
(
n
1

)
p(1− p)n−1

2
n

with prob
(
n
2

)
p2(1− p)n−2

. . . . . .
1 with prob pn

Assume your test is of the following form: 1(X̄n > c), where the critical value c is
to be determined such that the size supp≤ 1

2
P (X̄n > c|p) = α, for some specified α.3

This equation is difficult to solve for!

On the other hand, by the CLT, we know that
√
n(Xn−p)√
p(1−p)

d→ N(0, 1). Hence, consider

the T-test statistic Zn ≡
√
n
(
X̄n − 1

2

)
/
√

1
4

= 2
√
n
(
X̄n − 1

2

)
.

Under any p ≤ 1
2

in the null hypothesis,

P (Zn > Φ−1(1− α)) ≤ α,

for n large enough. (In fact, this equation holds with equality for p = 1
2
, and holds

with strict inequality for p < 1
2
.)

Corresponding to this test, you can derive the asymptotic power function, which is
βa(p) ≡ limn→∞ P (Zn > c), for c = Φ−1(1− α):

(Graph)

3Indeed, the Clopper-Pearson (1934) confidence intervals for p are based on inverting this exact
finite-sample test.
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• Note that the asymptotic power function is equal to 1 at all values under the
alternative. This is the notion for consistency for a test: that it has asymptotic
power 1 under every alternative.

• Note also that asymptotic power (rejection probability) is zero under every p of
the null, except p = 1

2
.

• (skip) Accordingly, we see that asymptotic power, vs. fixed alternatives, is not
a sufficiently discerning criterion for distinguishing between tests. We can deal
with this by considering local alternatives of the sort p̃ = 1

2
+ h/

√
n. Under ad-

ditional smoothness assumptions on the distributional convergence of
√
n(X̄n−p)√
p(1−p)

around p = 1
2
, we can obtain asymptotic power functions under these local

alternatives.

3.1 Likelihood Ratio Test Statistic: asymptotic distribution

Theorem 10.3.1 (Wilks Theorem): For testing H0 : θ = θ0 vs. H1 : θ 6= θ0, if
X1, . . . , Xn ∼ i.i.d. f(X|θ), and f(X|θ) satisfies the regularity conditions in Section
10.6.2. Then under H0, as n→∞:

−2 log λ( ~X)
d→ χ2

1.

Note: χ2
1 denotes a random variable from the Chi-squared distribution with 1 degree

of freedom. By Lemma 5.3.2 in CB, if Z ∼ N(0, 1), then Z2 ∼ χ2
1. Clearly, χ2 random

variables only have positive support.

Proof: Assume null holds. Use Taylor-series expansion of log-likelihood function
around the MLE estimator θ̂n:∑

i

log f(xi|θ0) =
∑
i

log f(Xi|θ̂n) +
∑
i

∂

∂θ
log f(Xi|θ)

∣∣
θ=θ̂n
· (θ0 − θ̂n)

+
1

2

∑
i

∂2

∂θ2
log f(Xi|θ)

∣∣
θ=θ̂n
· (θ0 − θ̂n)2 + ...

=
∑
i

log f(Xi|θ̂n) +
1

2

∑
i

∂2

∂θ2
log f(Xi|θ)

∣∣
θ=θ̂n
· (θ0 − θ̂n)2 + ...

(5)

where (i) the second term disappeared because the MLE θ̂n sets the first-order con-
dition

∑
i
∂
∂θ

log f(Xi|θ)
∣∣
θ=θ̂n

= 0; (ii) the remainder term is op(1). This is a second-
order Taylor expansion.
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Rewrite the above as:

−2
∑
i

log

(
f(xi|θ0)

f(Xi|θ̂n)

)
= − 1

n

∑
i

∂2

∂θ2
log f(Xi|θ)

∣∣
θ=θ̂n
·
[√

n(θ0 − θ̂n)
]2

+ op(1).

Now

− 1

n

∑
i

∂2

∂θ2
log f(Xi|θ)

∣∣
θ=θ̂n

p→ −Eθ0
∂2

∂θ2
log f(Xi|θ0) =

1

V0(θ0)
,

where V0(θ0) denotes the asymptotic variance of the MLE estimator (and is equal to
the familiar information bound 1/I(θ0)).

Finally, we note that
√
n(θ̂n−θ0)√
V0(θ0)

d→ N(0, 1). Hence, by the definition of the χ2
1 random

variable:
−2 log λ( ~X)

d→ χ2
1.

���

In the multivariate case (θ being k-dimensional), the above says that

−2 log(λ( ~X))
a
= n(θ0 − θn)I(θ0)−1(θ0 − θn) ∼ χ2

k.

Hence, LR-statistic is asymptotically equivalent to Wald and Score tests.

���

Example: X1, . . . , XN ∼ i.i.d. Bernoulli with prob. p. Test H0 : p = 1
2

vs.
H1 : p 6= 1

2
. Let Yn denote the number of 1’s.

λ( ~X) =

(
n
yn

) (
1
2

)yn (1
2

)n−yn(
n
yn

) (
yn
n

)yn (n−yn
n

)n−yn .
For test with asymptotic size α:

α = P (λ( ~X) ≤ c) (c < 1)

= P (−2 log λ( ~X) ≥ −2 log c)

= P (χ2
1 ≥ −2 log c)

= 1− Fχ2
1
(−2 log c)

⇒c = exp

(
−1

2
F−1
χ2
x

(1− α)

)
.

For instance, for α = 0.05, then F−1
χ2
x

(1 − α) = 3.841; α = 0.10, then F−1
χ2
x

(1 − α) =
2.706.
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