
 1

Paper 150-31

Exploiting Consistent Program Documentation
Richard Koopmann Jr, Capella University, Minneapolis, MN

ABSTRACT
Just because documenting programs isn’t fun, doesn’t mean it shouldn’t be done. You’ve probably had to work off
programs written several years before by someone who wasn’t exactly faithful about program documentation. This
makes for a headache when trying to figure out what the point of a program is and why it was coded the way it was.
Fast-forward a few years...will your predecessors be frustrated by your lacking documentation, or will they be grateful
that you spent the time to describe the program? Perhaps programmers feel that by not documenting programs they
have more job-security, or maybe it’s form of hazing; either way, it didn’t help you. How will it help your
predecessors?

This paper moves beyond the simple practice of documenting programs to developing and implementing a system of
automatic documentation. The results, in native SAS® data set, can then be put through various PROCs to practically
any format to look like you spent hours drudging through your programs.

While the collection of steps described in this paper were developed using SAS 9.1.3 originally running under
Windows 2000 and then Windows XP, the basic concepts (and hopefully much of the code) should be transferable to
other versions of SAS and other operating systems.

INTRODUCTION
So you’ve been documenting your programs, right? Have you been doing it consistently? If the answer of either of
these questions is ‘No’, perhaps this paper can help change your programming habits by revealing some potential
benefits. Before reading Frank DiIorio’s paper on building utility macros and programs, my answers were ‘Yes’ and
‘Not really’ to these questions. While I made a good effort a documenting the programs that I thought needed to be
documented (which was typically limited to the complex ones), I certainly wasn’t doing it consistently across
programs. Sometimes I’d add the date the program was created, and sometimes not, sometimes I’d document
changes, and sometimes not. Sound familiar?

That all changed when I discovered abbreviations and keyboard macros. Abbreviations expand text via keyboard
macros. I set up an abbreviation to expand /**/ to a standard program header (see Code Listing 1 for an example)
that I use in all programs that take me more than 10 minutes to code. I’ve also assigned shortcut key combinations to
certain keyboard macros. If I’m feeling nimble, I can use the assigned key combo Ctrl+Alt+1 to insert the program
header; similarly, Ctrl+Alt+2 inserts a section marker to make browsing long code easier. So abbreviations,
keyboard macros, and shortcut key combinations were a quick way to insert consistent text.

After viewing the code listings scattered throughout this paper, you may be curious why I end block comments with a
semicolon; Block comments outside of data and proc steps end up getting folded when you collapse a step in the
enhanced editor. I find this very annoying, especially when your paging through a tall program. With a semicolon at
the end of block comments, the enhanced editor seems to treat the comment block as a separate step and will not
fold these parts into neighboring steps.

CONSISTENCY BETWEEN PROGRAMS
The best thing any programmer can do is to develop and adopt a set of programming conventions and stick with
them. Too often, I'd be faced with programs that used different naming conventions (some used onewordnames or
CamelCaseNames others used underscored_names). For example, sometimes the unique record identifier was
coded as ID, sometimes as uniqueid or UniqueID, and occasionally as Unique_ID. When merging data sets,
inconsistencies become headaches. I'd end up going into older data sets and to standardize things.

DOCUMENT PROGRAMS CONSISTENTLY
Just using the same conventions between programs is a good start, but if you are not consistently documenting your
programs, you're only doing half the job. If you think a program is straight forward enough that documentation is not
necessary, you may kick yourself three months down the road when you've got to go back and modify it to add new
functionality. A good question to ask yourself is ‘Would I mind re-writing this program in a month?’. If your answer is
no, you should document it.

PostersSUGI 31

 2

REAPING THE HARVEST OF YOUR CONSISTENCY
Assuming you've set your documenting conventions, stuck to them between programs, and have diligently
documented a number of your programs, you're ready take advantage of your consistency. Figure 1 shows the
process overview.

Figure 1. Process Overview.

THE STANDARD PROGRAM HEADER LAYOUT
Basic assumption of the collection of steps in this paper is that the program headers are in several of your programs.
Different programmers will inevitably find different parts more or less important and should add and drop sections
from the headers they adopt. The important thing is to consistently use a standard program header. An example of
the standard program header layout Harvest macro expects can be seen in Code Listing 1; note that the macro
prohibits page breaks within elements.

/*
 PROGRAM INFORMATION
 PROJ: SUGI31 Poster
 DESC: Provides aggregated program documentation.
 AUTH: Richard Koopmann richard.koopmann@capella.edu
 DATE: 2005-08-11

 INPUTS/OUTPUTS
 INs : A base directory.
 OUTs: HTML file in base directory.

piped dir
listing of
base dir

harvest macro to extract
details of .sas files

processing data step with
calls to macro

dir_list dataset containing
OS-level info on .sas files

prog_doc dataset
containing info on

processed .sas files

null data step to process
prog_doc and make final

html file

sas program documentation
.html file written to base dir

output

infile

output

appended to

details dataset containing
details on all prior .sas

files

sql step to combine datasets
and extract last modification

date and time

input

output

input

outfile
final cleaning steps to delete

intermittent datasets,
macros, & macro variables

temp dataset
containing details on the

current .sas file

call

return

PostersSUGI 31

 3

 MODIFICATIONS
 2006-01-19 Richard Koopmann richard.koopmann@capella.edu
 (+) Added section headers.
 2005-09-21 Richard Koopmann richard.koopmann@capella.edu
 (+) Added a proc datasets to clean up the dropping.
 (+) Added a data null step to generate html report.
 2005-08-31 Richard Koopmann richard.koopmann@capella.edu
 (+) Added code line number.
 (+) Added view combining file listing and detail listing.
 2005-08-30 Richard Koopmann richard.koopmann@capella.edu
 (+) Accommodate arguments of macro programs.
 2005-08-26 Richard Koopmann richard.koopmann@capella.edu
 (+) Filelist dataset includes only true .sas files.
 2005-08-25 Richard Koopmann richard.koopmann@capella.edu
 (+) Added Prog_Doc dataset.
 (-) Removed SQL proc to get paths and filenames.
 (*) Fixed Filesize field.
*/;

Code Listing 1. The Standard Program Header.

THE PIPED DIRECTORY LISTING
A piped fileref with the appropriate command switches (/s /-c in Windows XP) is used to retrieve a recursive dir
listing from the specified base directory; note the switch to suppress the thousand separator.

Also note the format of the date and time format of a directory listing can vary depending on your localized settings
and on the operating system. For example, Windows 2000 reports 03:00p while Windows XP reports 03:00 PM. This
is a subtle but important difference since the Dir_List Data Step uses SAS regular expressions and functions to sift
through the piped directory entries.

/**\
THE PIPED DIRECTORY LISTING
**/;
%let basedir=\\mspfile03\users\rkoopmann\SAS\projects;
filename dirlist pipe "dir &basedir.*.* /s /-c";

%let dirdate=\d\d\/\d\d\/\d\d\d\d;
%let dirtime=\d\d:\d\d [A|P]M;

Code Listing 2. The Piped Directory Listing.

THE HARVEST MACRO
Since we will be reading an unknown number of files spread across an unknown number of subdirectories, a macro is
the most efficient way of shuffling through the input files. The Harvest macro only needs to know the name and
location of the input file when it is called from within the Dir_List data step. One option to speed up the documentation
processing by only reading the program header portion of the input files (everything between /* and */;). Since I did
not intended on running this program very often, this option was not coded. I have set up a flag variable to use null
input statements (input;) once the input line position moves out of the program header. This allows for a total line
count for each program.

The Harvest macro contains a clear flag that, when set to 1 will remove any artifacts (if they exist) from prior runs. If
these artifacts are not cleaned up, new information would be appended to old information. This ensures the program
is starting from a clean slate when processing the directory listing.

/**\
THE HARVEST MACRO
**/;

PostersSUGI 31

 4

%macro harvest(path,name,clear);
 %if &clear %then %do;
 proc datasets library=work nolist;
 delete details _temp_;
 quit;
 %end;

 data _temp_(drop=buff isHead);
 format buff $250. path $200. name $30. line 8. field $15. value $100.;
 retain isHead path "&path." name "&name." field;

 infile "&path.\&name." EOF=LastRec missover dsd;
 input buff $ @;

 if _N_=1 & substr(buff,1,2) = '/*' then isHead=1;
 line = _N_;

 if isHead then do;
 select (upcase(substr(buff,1,4)));
 when ('PROJ') do; field='Project'; value=substr(buff,7); end;
 when ('DESC') do; field='Description'; value=substr(buff,7); end;
 when ('AUTH') do; field='Author'; value=substr(buff,7); end;
 when ('DATE') do; field='Create Date'; value=substr(buff,7,10); end;
 when ('INS') do; field='Inputs'; value=substr(buff,7); end;
 when ('OUTS') do; field='Outputs'; value=substr(buff,7); end;
 when ('REQS') do; field='Required Args'; value=substr(buff,7); end;
 when ('OPTS') do; field='Optional Args'; value=substr(buff,7); end;
 when ('2005','2006') do; /* should be a better method */
 field='Modified on'; value=substr(buff,1,10); output;
 field='Modified by'; value=substr(buff,12);
 end;
 when ('(+)','(-)','(*)') do;
 select (substr(buff,2,1));
 when ('+') field='Added';
 when ('-') field='Removed';
 when ('*') field='Changes';
 otherwise;
 end;
 value=substr(buff,5);
 end;
 when ('/*','PROG','INPU','MODI','ARGU') delete;
 when ('*/','*/;') isHead=0;
 otherwise do;
 if trim(buff)='' then delete;
 else value=buff;
 end;
 end;
 output;
 end;
 else input;
 return;
 LastRec:
 line=7;
 field='Total Lines';
 value=_n_;
 output;
 run;

 proc datasets library=work nolist;

PostersSUGI 31

 5

 append base=details data=_temp_;
 quit;
%mend harvest;

Code Listing 3. The Harvest Macro.

THE DIRECTORY LISTING DATA STEP
The Directory Listing Data Step is a fairly simple and straightforward (elegant when compared to the Harvest macro)
data step converts the piped directory listing into a dataset containing operating system-level information (e.g., path,
filename, size, and a date-time stamp of when the program was last modified). At the end of every step, the program
will call the Harvest macro; on the first call to the macro, the clear flag is set to trigger pre-cleaning. Since the macro
implements an appending datasets procedure, all the details get dumped into the same SAS dataset (dir_list).

/**\
THE DIRECTORY LISTING DATA STEP
**/;
data dir_list;
 if _N_ = 1 then do;
 retain re_file re_dir re_dirname firstfile;
 re_file=prxparse("/(&dirdate.)\s+(&dirtime.)\s+(\d+)\s+(\S.*)/");
 re_dir =prxparse("/(&dirdate.)\s+(&dirtime.)\s+<DIR>\s+(\S.*)/");
 re_dirname=prxparse("/Directory of (.+)/");
 firstfile=1;
 end;

 length dirname name $ 128;
 format DateTime dateampm16.;
 keep dirname datetime size name;
 retain dirname;

 infile dirlist;
 input;

 if lengthn(_infile_); * ignore blank records;

 * Parse file records;
 if prxmatch(re_file, _infile_) then do;
 call prxposn(re_file,1,pos,len); date=input(substr(_infile_,pos,len),mmddyy10.);
 call prxposn(re_file,2,pos,len); time=input(substr(_infile_,pos,len),time6.);
 call prxposn(re_file,3,pos,len); size=input(substr(_infile_,pos,len),comma32.);
 call prxposn(re_file,4,pos,len); name=substr(_infile_,pos,len);
 DateTime=dhms(date,0,0,time);
 if upcase(scan(name,-1,'.')) eq "SAS" then
 call execute('%harvest(' || trim(dirname) || ','
 || trim(name) || ',' || firstfile || ')');
 if firstfile then firstfile=0;
 output;
 end;

 * Parse directory records;
 else if prxmatch(re_dir, _infile_) then do;
 call prxposn(re_dir,1,pos,len); date=input(substr(_infile_,pos,len),mmddyy10.);
 call prxposn(re_dir,2,pos,len); time=input(substr(_infile_,pos,len),time6.);
 call prxposn(re_dir,3,pos,len); name=substr(_infile_,pos,len);
 DateTime=dhms(date,0,0,time);
 if name ~ in ('.','..') then output;
 end;

PostersSUGI 31

 6

 * parse base dir records;
 else if prxmatch(re_dirname,_infile_) then do;
 call prxposn(re_dirname,1,pos,len); dirname=substr(_infile_,pos,len);
 end;
run;

Code Listing 4. The Directory Listing Data Step.

THE PROGRAM DOCUMENTATION DATASET
The Program Documentation dataset contains all the information required to make the Program Documentation
HTML File. Information such as line count, author, description, project and modification entries can be found here.
The SQL proc also extracts the date and time of the last update to the dataset used in the processing data step
below.

/**\
THE PROGRAM DOCUMENTATION DATASET
**/;
proc sql noprint;
 *merge directory dataset with prog_doc dataset;
 create table Prog_Doc as
 select distinct dir.dirname, dir.name, dir.size, det.line, det.field, det.value
 from dir_list as dir left join details as det
 on dir.dirname = det.path and dir.name = det.name
 order by dir.dirname, dir.name, det.line
 ;

 *get 'last modified' datetime;
 select datepart(modate) format=worddate., timepart(modate) format=timeampm8.
 into :mdate, :mtime
 from dictionary.tables
 where libname eq "WORK" and memname eq "PROG_DOC"
 ;
quit;

Code Listing 5. The Program Documentation Dataset.

THE PROGRAM DOCUMENTATION PROCESSING DATA STEP
This data step steps through the Program Documentation Data Set and writes the Program Documentation HTML
File along with the JavaScript and cascading style sheets (CSS) needed for enhanced functionality. Pointer controls
are used to write the familiar nested indentation that many programmers use. Note the JavaScript and CSS sections
are hard-coded in the file; If you will be using this for several independent directories of programs, you should
consider linking to external .js and .css files.

/**\
The SAS Program Documentation.html Generating _null_ Data Step
**/;
data _null_;
 set Prog_Doc(where=(Field is not null)) end=isEnd;
 file "&basedir.\SAS Program Documentation.html";
 by dirname name;

 * variables used throughout the program;
 retain sq "'" Proj ProjName Prog ProgName;
 sval=compress(value,' /');
 snam=compress(name, ' /');
 dir=substr(dirname,28);

PostersSUGI 31

 7

 *Initialize HTML file;
 if _n_=1 then do;
 put @01 '<!DOCTYPE HTML PUBLIC "-//W3C//DTD HTML 4.01 Transitional//EN">'
 /@01 '<html>'
 /@03 '<head>'
 /@05 '<title>Program Documentation</title>'
 /@05 '<script language="Javascript">'
 /@07 'function toggle(targetId) {'
 /@09 'if (document.getElementById) {'
 /@11 'target = document.getElementById(targetId);'
 /@11 'label = document.getElementById("label" + targetId);'
 /@11 'if (target.className == "isClosed") // if currently isClosed'
 /@11 ' { target.className = "isOpened"; // set to isOpened'
 /@11 ' label.className = "setClosed"; }'
 /@11 'else'
 /@11 ' { target.className = "isClosed"; // else, hide'
 /@11 ' label.className = "setOpened"; }'
 /@09 '}'
 /@07 '}'
 /@05 '</script>'
 //@05 '<style type="text/css">'
 /@07 'body { background: #F2F1F1; width: 50em; }'
 /@07 'h1 { font-size: 120%; font: bolder; color: #E0D0B2; '
 'background-color: #800D1E; cursor: pointer; margin: 0;}'
 /@07 'h2 { font-size: 100%; font: bolder; color: #800D1E; '
 'background-color: #EDE4D4; cursor: pointer; margin: 0;}'
 /@07 'a { font-size: 80%; }'
 /@07 'div.project { border: solid #800D1E; margin: 5px; padding: 0; }'
 /@07 'div.program { border: solid #EDE4D4; margin: 5px; padding: 0; }'
 /@07 '.isOpened { display: block; }'
 /@07 '.isClosed { display: none; }'
 /@07 '.setOpened::before { content: "[+] "; font-size: 80%; }'
 /@07 '.setClosed::before { content: "[-] "; font-size: 80%; }'
 /@05 '</style>'
 /@03 '</head>'
 //@03 '<body>'
 ;
 end;

 * Start of project;
 if first.dirname then do;
 Proj+1; ProjName = value;
 Prog=.;
 put/@05 '<div class="project">'
 /@07 '<h1 class="setClosed" id="label' sval
 +(-1) '" onClick="javascript:toggle(' sq +(-1) sval +(-1) sq
 +(-1) ')">' PROJ +(-1) '. ' value +(-1) '</h1>'
 /@07 '<div class="isOpened" id="' sval +(-1) '">';
 end;

 * Start of program;
 if first.name then do;
 if first.dirname then put @09 '<a href="file:///H:' dir
 +(-1) '">browse project folder';
 Prog+1; ProgName = name;
 put/@09 '<div class="program">'
 /@11 '<h2 class="setOpened" id="label' snam
 +(-1) '" onClick="javascript:toggle(' sq +(-1) snam +(-1) sq
 +(-1) ')">' PROJ +(-1) '.' PROG ' H:' dir +(-1) '\' name

PostersSUGI 31

 8

 +(-1) '</h2>';
 if not last.name then; put @11 '<div class="isClosed" id="' snam +(-1) '">';
 if first.path then; put @13 '<a href="file:///H:' dir +(-1) '\' name
 +(-1) '">view program';
 if not last.name then; put @13 '<dl>' @;
 end;

 if not first.name and not last.name then do;
 if field ne 'Project' then do;
 if (lag(field)~=field) then /* Do not repeat change type */
 put @17 '<dt>' field +(-1) '</dt>';

 select (upcase(field));
 when ('AUTHOR','MODIFIED BY') do;
 author=scan(value,1) || ' ' || scan(value,2);
 email=scan(value,-1,' ');
 put @17 '<dd><a href="mailto:' email +(-1) '?subject=' %trim(ProjName)
 +(-1) ': ' %trim(ProgName) +(-1) '">' author +(-1) '</dd>';
 end;
 otherwise do;
 put @17 '<dd>' value +(-1) '</dd>';
 end;
 end;
 end;
 end;

 * End of program;
 if last.name then do;
 if not first.name then; put @13 '</dl>';
 if last.dirname then; put @11 '</div>';
 put @09 '</div>';
 end;

 * End of project;
 if last.dirname then do;
 put @07 '</div>'
 /@05 '</div>';
 end;

 * Finalize HTML file;
 if isEnd then do;
 put @05 "<p>Last updated: &mdate. at &mtime..</p>"
 /@03 '</body>'
 /@01 '</html>';
 end;
run;

Code Listing 6. The SAS Program Documentation.html Generating _null_ Data Step.

THE PROGRAM DOCUMENTATION HTML FILE
Figure 2 shows the final product. The html file makes use of simple JavaScript and CSS to display projects and
programs which can be expanded and collapsed by pressing the [+] and [-] symbols preceding the project and
program numbers. Projects and programs are numbered in alphabetical order with the first program of the first project
being numbered 1.1 (this corresponds to a program called 10week.sas in the Course Evaluation project). Directly
below each project and program, there is a link to display the project folder and program code, respectively. Within
each program, there are email links (which will populate the subject line with the project name and program name
when clicked) to email the author/reviser questions. Lastly, at the bottom of the file, there is a date and time stamp
indicating when the file was last updated.

PostersSUGI 31

 9

Figure 2. The SAS Program Documentation.html File.

CLEANING UP AFTER YOURSELF
Lastly, we clean up evidence that we were in the work library. Macro variables, filerefs, intermittent datasets, and the

PostersSUGI 31

 10

compiled harvest macro are all expunged. While the collection of steps described in this paper use the work library
exclusively (which is temporary by nature and will be purged by default after your SAS session has ended), it is still
good practice to keep your libraries tidy.

/**\
CLEANNING UP AFTER YOURSELF
**/;
%let basedir=;
filename dirlist clear;
%let dirdate=;
%let dirtime=;
proc datasets library=work nolist;
 delete _temp_ dir_list details Prog_Doc;
quit;
proc catalog catalog=work.sasmacr entrytype=macro;
 delete harvest;
quit;

Code Listing 7. Cleaning Up After Yourself.

POSSIBILITIES
This SAS portion of this program has many areas that can be improved upon including efficiency issues and
employing XML tagsets rather than HTML. The Harvest macro would also benefit from the flexibility of regular
expressions to identify and categorize lines in program headers rather than relying on exact locations.

The program could be adjusted to examine directories separately and place a file in each directory describing only
.sas files found in that directory. Since I wanted central documentation of programs, I opted for the single .html file
output in the base directory.

The Program Documentation HTML File can also be improved upon. An interesting feature that DiIorio described is
the ability to hyperlink between entries in the modification portion of the program header and the corresponding spot
in the program. Since my strict programming habits dictate that I must remove as much clutter from my code as
possible without impacting program functionality and readability, modification artifacts are quickly purged. An
interesting, and free, syntax highlighter (http://www.dreamprojections.com/SyntaxHighlighter/) could be incorporated
to provide a familiar view when browsing the Program Documentation HTML File.

CONCLUSION
I don’t know of a programmer who thinks documenting programs is fun. I don’t think it is supposed to be. But it is
necessary. Hopefully this paper along with the collection of steps will encourage better documentation habit for us
programmers.

REFERENCES
DiIorio, Frank. 2005. Rules for Tools – The SAS Utility Primer (Paper No. 268-30).
http://www2.sas.com/proceedings/sugi30/268-30.pdf

ACKNOWLEDGMENTS
While this program makes use of methods gleaned from many different sources, these were the most important:

• Basic idea of harvesting program headers came from Frank DiIorio’s excellent paper Rules for Tools.
• JavaScript code to toggle <div> tags taken from http://www.drupalart.org/togglediv
• DIR Parsing DATA Step based on SAS Support example

http://support.sas.com/rnd/base/topics/datastep/perl_regexp/prxdir.html

RECOMMENDED READING
Aster, Rick. 2000. Professional SAS Programming Logic. Paoli, PA: Breakfast Communications Corporation.

Cody, Ron. 2004. An Introduction to Perl Regular Expressions in SAS 9 (Paper 265-29),
http://www2.sas.com/proceedings/sugi29/265-29.pdf

PostersSUGI 31

 11

Grant, Paul. Creating Code Templates in the SAS Enhanced Editor Using Abbreviations and User Defined Keywords.
http://support.sas.com/sassamples/papers/0303_saseditor.pdf

CONTACT INFORMATION
Your comments and questions are valued and encouraged. Contact the author at:

Richard Koopmann Jr.
Capella University
Minneapolis, MN 55402
E-mail: richard.koopmann@capella.edu

SAS and all other SAS Institute Inc. product or service names are registered trademarks or trademarks of SAS
Institute Inc. in the USA and other countries. ® indicates USA registration. Other brand and product names are
trademarks of their respective companies.

PostersSUGI 31

	SUGI 31 Proceedings Table of Contents

