
Chapter 10

Document Object Model and

Dynamic HTML

The term Dynamic HTML, often abbreviated as DHTML, refers to the technique of making

Web pages dynamic by client-side scripting to manipulate the document content and presen-

tation. Web pages can be made more lively, dynamic, or interactive by DHTML techniques.

With DHTML you can prescribe actions triggered by browser events to make the page

more lively and responsive. Such actions may alter the content and appearance of any parts

of the page. The changes are fast and efficient because they are made by the browser without

having to network with any servers. Typically the client-side scripting is written in Javascript

which is being standardized. Chapter 9 already introduced Javascript and basic techniques

for making Web pages dynamic.

Contrary to what the name may suggest, DHTML is not a markup language or a software

tool. It is a technique to make dynamic Web pages via client-side programming. In the past,

DHTML relies on browser/vendor specific features to work. Making such pages work for all

browsers requires much effort, testing, and unnecessarily long programs.

Standardization efforts at W3C and elsewhere are making it possible to write standard-

based DHTML that work for all compliant browsers. Standard-based DHTML involves three

aspects:

447

448 CHAPTER 10. DOCUMENT OBJECT MODEL AND DYNAMIC HTML

Figure 10.1: DOM Compliant Browser

Browser

XHTML Document

DOM API

Javascript

1. Javascript—for cross-browser scripting (Chapter 9)

2. Cascading Style Sheets (CSS)—for style and presentation control (Chapter 6)

3. Document Object Model (DOM)—for a uniform programming interface to access and

manipulate the Web page as a document

When these three aspects are combined, you get the ability to program changes in Web pages

in reaction to user or browser generated events, and therefore to make HTML pages more

dynamic.

Popular withWeb developers, supported by all major browsers, and standardized, Javascript

provides the ability to program browser actions in response to events. To have true cross-

platform DHTML, we still need a uniform way for Javascript to access and manipulate Web

documents. This brings us to the DOM.

10.1 What Is DOM?

With cooperation from major browser vendors, the W3C is establishing the Document Object

Model (DOM) as a standard application programming interface (API) for scripts to access

and manipulate HTML and XML documents. Compliant clients, including browsers and

other user agents, provide the DOM specified API to access and modify the document being

processed (Figure 10.1). The DOM API gives a logical view of the document where objects

Brooks/Cole book/January 28, 2003

10.1. WHAT IS DOM? 449

Figure 10.2: DOM Tree Structure

<html>

<head> <body>

<p> <table>

text <tr>... <tr>...

...

document

styleSheets

represent different parts: windows, documents, elements, attributes, texts, events, style

sheets, style rules, etc. These DOM objects are organized into a tree structure (the DOM

tree) to reflect the natural organization of a document. HTML elements are represented by

tree nodes and organized into a hierarchy. Each Web page has a document node at the root of

the tree. The head and body nodes become child nodes of the document node (Figure 10.2).

From a node on the DOM tree, you can go down to any child node or go up to the parent

node. With DOM, a script can add, modify, or delete elements and content by navigating the

document structure, modifying or deleting existing nodes, and inserting dynamically built

new nodes. Also attached to the document are its style sheets. Each element node on the

DOM tree also contains a style object representing the display style for that element. Thus,

through the DOM tree, style sheets and individual element styles can also be accessed and

manipulated. Therefore, any parts of a page can be accessed, changed, deleted, or added

and the script will work for any DOM compliant client.

DOM also specifies events available for page elements. As a result, most events that used

to be reserved for links now work for all types of elements, giving the designer many more

ways to make pages dynamic and responsive.

Brooks/Cole book/January 28, 2003

450 CHAPTER 10. DOCUMENT OBJECT MODEL AND DYNAMIC HTML

10.2 A Demonstration

Let’s look at a simple example (Ex: DomHello) to illustrate DHTML. Figure 10.3 shows a

very simple page with the phrase Hello World Wide Web on it. And Figure 10.4 shows that

phrase becoming blue in a larger font on mouseover. The phrase goes back to normal again

on mouseout. This is not an image rollover.

The HTML source for the page is

<head><title>Hello WWW with DOM</title>

<script type="text/javascript" src="hwww.js">

</script></head><body>

<p>Move the mouse over the phrase:</p>

<p><span id="hello" onmouseover="over()"

onmouseout="out()">Hello World Wide Web

---and see what happens.</p>

</body></html>

Note we have attached the onmouseover and onmouseout event handlers to part of a para-

graph identified by the span with id="hello".

The Javascript defined event handling functions are in the file hwww.js:

function over()

{ el = document.getElementById("hello"); // (1)

el.style.color = "blue"; // (2)

el.style.fontSize = "18pt"; // (3)

el.style.fontWeight = "bold"; // (4)

}

Figure 10.3: Hello WWW

Brooks/Cole book/January 28, 2003

10.2. A DEMONSTRATION 451

Figure 10.4: Mouse over Phrase

function out()

{ el = document.getElementById("hello");

el.style.color = ""; // sets to default value

el.style.fontSize = "";

el.style.fontWeight = "";

}

The over function obtains a reference to the target by using the getElementById

method of the document element (line 1). The document is the root node of the DOM tree

and offers many useful properties and methods. The convenient call

document.getElementById(str)

gives you the element with str as id (or name). It returns a reference to the node on the

DOM tree that represents the desired element.

Once you have the node for a particular element, you can go to work on that node

accessing information from it or making changes to it. Here the over function sets style

properties for the element (lines 2-4) causing the to display in blue with 18-point

boldface font (Figure 10.4). The out function sets these style properties to the empty string

to go back to the default display (Figure 10.3).

Brooks/Cole book/January 28, 2003

452 CHAPTER 10. DOCUMENT OBJECT MODEL AND DYNAMIC HTML

10.3 DOM History and Architecture

Early browsers such as NN 3.0 and IE 3.0 have their own object models for representing

documents. Starting as early as 1997, the W3C began to organize the DOM working group

for establishing a cross-platform and language-neutral standard for access, traversal, and

manipulation of document objects. The first W3C recommendation was DOM Level 1 com-

pleted in October 1998. DOM Level 1 specifies a standard object-oriented interface to HTML

and XML documents. The Level 1 Core specifies the most central interfaces for the DOM

tree. The DOM Level 1 HTML and XML specifications inherit from the Core and specialize

in HTML and XML documents, respectively. The DOM specification for HTML/XHTML

is most important for website development. The very first DOM specification, informally

referred to as DOM Level 0, was built on existing conventions and practices supported by

NN 3.0 and IE 3.0. A second edition of DOM Level 1 is being finalized.

In November 2000, DOM Level 2 was completed and it extended Level 1 by adding

support for XML 1.0 namespaces, CSS, events and event handling for user interfaces and for

tree manipulation, and tree traversal. The Level 2 HTML specification was becoming a W3C

recommendation in 2002. DOM Level 3, still being developed, will add more sophisticated

XML support, the ability to load and save documents, etc.

As DOM evolves through levels of enhancements, its basic architecture remains stable.

The DOM architecture consists of modules covering different domains of the document object

model:

• DOM Core—specifies the DOM tree, tree nodes, its access, traversal, and manipula-

tion. The DOM Range and DOM Traversal modules provide higher-level methods for

manipulating the DOM tree defined by the Core.

• DOM HTML—inherits from the Core and provides specialized and convenient ways to

access and manipulate HTML/XHTML documents.

• DOM XML—inherits from the Core and provides support for XML specific needs.

Brooks/Cole book/January 28, 2003

10.4. BROWSER SUPPORT OF DOM 453

• DOM Events—specifies events and event handling for user interfaces and the DOM

tree. With DOM Events, drag and drop programs, for example, can be standardized.

• DOM CSS—defines easy to use ways to manipulate Cascading Style Sheets for the

formatting and presentation of documents.

There are other modules and they can be found at the W3C site: www.w3.org/DOM/.

When using Javascript to write DOM related code, it is important to realize that not

everything has been standardized. In particular, the window object is very browser depen-

dent. Also certain fields such as element.innerHTML and document.location, are not part

of the DOM specification.

10.4 Browser Support of DOM

Major vendors realize the importance of DOM and have begun to make their Web browsers

DOM compliant. NN 7 and IE 6 already have good DOM support. In particular NN led

the way in supporting DOM Level 1 and Level 2. Most examples in this chapter will work

under both NN 6, IE 6 and later versions.

To detect the extent of DOM support that a user agent (browser) provides, the following

type of Javascript code can be used:

var imp = document.implementation;

if (typeof imp != "undefined" &&

imp.hasFeature("HTML", "1.0") &&

imp.hasFeature("Events", "2.0") &&

imp.hasFeature("CSS", "2.0")

)

{

. . .

}

A browser is DOM compliant if it supports the interfaces specified by DOM. But it can

also add interfaces not specified or add fields and methods to the required interfaces. For

Brooks/Cole book/January 28, 2003

454 CHAPTER 10. DOCUMENT OBJECT MODEL AND DYNAMIC HTML

example NN and IE both add innerHTML to the HTMLElement interface. It is easy to test if

a field or method is available in a browser. For example,

if (document.getElementById)

. . .

tests if the getElementById method is available in the document object.

DOM compliance test suites are available from www.w3.org/DOM/Test/.

10.5 DOM API Overview

DOM is a “platform and language neutral interface that allows programs and scripts to

dynamically access and update the content, structure and style of documents. The document

can be further processed and the results of that processing can be incorporated back into

the presented page.”

Figure 10.5: The DOM API

Browser

DOM API
Javascript Code

DOM−Defined Objects

The DOM specifies an API (application programming interface) and provides a structural

view of the document. DOM lists required interface objects and themethods (functions in the

object) and fields (data entries in the object) each object must support. It is up to compliant

browsers (agents) to supply concrete implementation, in a particular programming language

and environment, for these objects, fields and methods. NN, IE and other browsers support

DOM through standard Javascript (Figure 10.5).

As an interface, each DOM object exposes a set of fields and methods for Javascript to

access and manipulate the underlying data structure that actually implements the document

Brooks/Cole book/January 28, 2003

10.5. DOM API OVERVIEW 455

structure. The situation is like a radio interface exposing a set of nobs and dials for the user.

If the radio interface were standardized, then a robot would be able to operate any standard

compliant radio.

The DOM tree represents the logical structure of a document. Each tree node is a

Node object. There are different types of nodes that all inherit the basic Node interface.

Inheritance is an important object-oriented programming (OOP) concept. In OOP, interfaces

are organized into a hierarchy where extended interfaces inherit methods and properties

required by base interfaces. The situation is quite like defining various upgraded car

models by inheriting and adding to the features of a base model. In DOM, the Node object

sits at the top of the interface hierarchy and many types of DOM tree nodes are directly

or indirectly derived from Node. This means all DOM tree node types must support the

properties and methods required by Node.

On the DOM tree, some types of nodes are internal nodes that may have child nodes of

various types. Leaf nodes, on the other hand, have no child nodes. While DOM has many

uses, our discussion focuses on DOM HTML which applies to HTML documents.

For any Web page, the root of the DOM tree is an HTMLDocument node and it is usually

available directly from Javascript as document or window.document. The document object

implements the HTMLDocument interface which gives you access to all the quantities associ-

ated with a Web page such as URL, stylesheets, title, characterSet, and many others

(Section 10.14). The field document.documentElement gives you the child node, of type

HTMLElement, that typically represents the <html> element (Figure 10.2). HTMLElement

(Section 10.9) is the base interface for derived interfaces representing the many different

HTML elements.

DOM Tree Nodes

The DOM tree for a Web page consists of different types of nodes (of type Node) including:

HTMLDocument —Root of the DOM tree providing access to page-wide quantities, stylesheets,

markup elements, and, in most cases, the <html> element as a child node.

Brooks/Cole book/January 28, 2003

456 CHAPTER 10. DOCUMENT OBJECT MODEL AND DYNAMIC HTML

HTMLElement —Internal and certain leaf nodes on the DOM tree representing an HTML

markup element. The HTMLElement interface provides access to element attributes

and child nodes that may represent text and other HTML elements. Because we focus

on the use of DOM in DHTML, we will use the terms element and HTML element

interchangeably. The document.getElementById(id) call gives you any element with

the given id.

Attr —An attribute in an HTMLElement object providing the ability to access and set an

attribute. The name field (a string) of an Attr object is read-only while the value field

can be set to a desired string. The attributes field of an HTMLElement object gives

you a NamedNodeMap of Attr objects. Use the length property and the item(index)

method of the named node map to visit each attribute. All DOM indices are zero-

based.

Text —A leaf node containing the text inside a markup element. If there is no markup

inside an element’s content, the text is contained in a single Text object that is the

only child of the element. The wholeText (or data) field returns the entire text as a

string. Set the data string or call the replaceWholeText(str) method to make str

the new text.

10.6 Getting Started with DOM

Let’s create a simple calculator (Ex: DomCalc) to demonstrate DOM and DHTML. The

user enters an arithmetic expression and clicks a button to perform the required computa-

tions. The answer is displayed in the regular running text of the page (Figure 10.6).

The HTML source shows the code for the input control (line A), the GO button (line B)

and the for displaying the computed result (line C).

<head><title>DOM Calculator</title>

<link rel="stylesheet" href="domcalc.css"

type="text/css" title="Dom Calculator" />

Brooks/Cole book/January 28, 2003

10.6. GETTING STARTED WITH DOM 457

Figure 10.6: A DHTML Calculator

<script type="text/javascript" src="domcalc.js"></script>

</head>

<body onload="init()"> /* initialization onload */

<h3>DOM Calculator</h3>

<p>Simply type in a string such as

<code>12 + 43 * 6</code> and click GO.</p>

<p>COMPUTE :

<input id="uin"

value="(5 - 2) * 8" maxlength="30" /> (A)

 <input value="GO" type="button"

onclick="comp(’uin’)" /> (B)

</p><p id="par">And the answer is:

00</p> (C)

</body>

The calculator is initialized immediately after page loading. The init and the comp (line B)

event handlers are in the Javascript file domcalc.js:

var answer;

function init()

{ answer = document.getElementById("ans")

.firstChild; // (D)

comp("uin");

}

Brooks/Cole book/January 28, 2003

458 CHAPTER 10. DOCUMENT OBJECT MODEL AND DYNAMIC HTML

Figure 10.7: Partial DOM Tree for Calculator Example

<body>

<p id="par">

Text

...

Text

function comp(id)

{ var el = document.getElementById(id); // (E)

var res = eval(el.value); // (F)

answer.data = res; // (G)

}

The global variable answer is initialized by the init function which is called via the onload

event, an event that takes place immediately after page loading is complete. The variable

answer holds the Text node, a lone child node in this case, of the ans (line D).

The comp function is called with the id of the user input element. The function obtains

the input text as the value field of the input element el (line E), evaluates the input

expression (line F), and sets the text of the ans to the result obtained by setting the

data field of the Text node answer (line G).

Without DOM, Javascript computed results are usually placed in <input> or <textarea>

elements (Ex: Convert in Section 9.14). Using the DOM interface, script computed results

can be placed anywhere on a displayed page by modifying the DOM tree. Figure 10.7 shows

the part of the DOM tree (in dark blue) that is used to display the results for the calculator.

HTMLDocument and HTMLElement interfaces are important and provide many methods and

properties useful in practice. They inherit from the basic Node interface which is presented

next.

Brooks/Cole book/January 28, 2003

10.7. THE DOM NODE INTERFACE 459

Figure 10.8: Types of Nodes
Document

Element HTMLElement

Attr

Text

Comment

Node HTMLDocument

10.7 The DOM Node Interface

In object-oriented programming, an interface specifies data values (called fields,1) and func-

tions (called methods) that are made available to application programs.

The Node interface is the base of all other node types on the DOM tree and provides

useful fields and methods for them.

Node Fields

Fields provided by a Node are read-only and include:

• nodeType—A small integer representing the derived type of the node. Figure 10.8 shows

common derived node types. The Node interface provides symbolic constants, such as

ELEMENT_NODE and TEXT_NODE, for values of nodeType (See WDP site for a list). The

function whichType demonstrates how to determine node type (Ex: WhichType):

function whichType(nd) // (a)

{ if (nd.nodeType == Node.ELEMENT_NODE) // (b)

window.alert("Element Node");

else if (nd.nodeType == Node.ATTRIBUTE_NODE)

window.alert("Attribute Node");

else if (nd.nodeType == Node.TEXT_NODE)

window.alert("Text Node");

...

}

1In the official DOM specification, fields are called attributes. To distinguish them from HTML attributes,

we use the commonly accepted term fields here.

Brooks/Cole book/January 28, 2003

460 CHAPTER 10. DOCUMENT OBJECT MODEL AND DYNAMIC HTML

Figure 10.9: Node Relations

node

firstChild lastChild...

previousSibling nextSibling

parentNode

The parameter nd is any DOM node whose type is to be determined (line a). The

nd.nodeType is compared with the type constants defined by the Node interface to

determine the node type of nd (line b).

• parentNode, firstChild, lastChild, previousSibling, and nextSibling—Related

Nodes of a node (Figure 10.9).

• nodeName and nodeValue—Strings representing the name and value of a Node. The

exact meaning of these strings depends on the node type, as shown in Table 10.1. For

example the nodeValue of any Element or HTMLElement node is null.

Table 10.1: Meaning of nodeName and nodeValue

Node Type nodeName nodeValue

Element Tag name null

Attribute Attribute name Attribute value string
Text #text Text string
Entity Entity name null

Comment #comment Comment string

• childNodes—A NodeList of child nodes of the node. Some nodes have children and

others don’t. For a Document or an HTMLElement node, child nodes represent the

HTML elements and text strings contained in that element.

The length field and the item(i) method of NodeList provide an easy way to visit

each node on the node list. For example (Ex: ChildNodes), applying the function

visitChildren:

Brooks/Cole book/January 28, 2003

10.7. THE DOM NODE INTERFACE 461

function visitChildren(id)

{ var nd = document.getElementById(id);

var ch = nd.childNodes;

var len = ch.length; // number of nodes

for (i=0; i < len; i++)

{ nd = ch.item(i); // node i

window.alert(nd.nodeName + " "

+ nd.nodeValue);

}

}

on the element with id="par"

<p id="par">Here is
 a picture.</p>

displays this sequence

#text Here is

IMG

BR

#text a picture.

• attributes—A NamedNodeMap of Attr nodes representing HTML attributes of the

node. Attribute nodes are not child nodes of a node but are attached to the node via

the attributes field. DOM defines a NamedNodeMap as a collection of nodes accessible

by name. Thus, attributes is a list of Attribute objects representing the HTML

attributes for a given node. Let att = nd.attributes be the attribute list of some

node nd, then you can go through all listed attributes with the code (Ex: AttrAccess):

var len = att.length;

for (i=0; i < len; i++)

{ window.alert(att.item(i).name + " = " +

att.item(i).value);

}

The length of the attribute list nd.attributes can be browser dependent. NN lists

only attributes set explicitly in the HTML code, whiel IE gives all possible attributes.

To examine a specific attribute you can use, for example, the code

Brooks/Cole book/January 28, 2003

462 CHAPTER 10. DOCUMENT OBJECT MODEL AND DYNAMIC HTML

var b = att.getNamedItem("border");

window.alert(b.value); // value of border

The value returned by getNamedItem is a node with the given name in the NamedNodeMap

or null.

The ownerDocument field of a node leads you to the root of the DOM tree. It is worth

emphasizing that the fields of Node are read-only. Assignments to them have no effect.

Also, NodeList and NamedNodeMap objects in the DOM are live, meaning changes to

the underlying document structure are reflected in all relevant NodeList and NamedNodeMap

objects. For example, if you get the childNodes of an HTMLElement, then subsequently add

or remove child nodes, the changes are automatically reflected in the childNodes you got

before. This behavior is usually supported by returning a reference to the data structure

containing the actual child nodes of the HTMLElement.

Node Methods

In addition to fields, the Node interface provides many methods, inherited by all node types.

These fields and methods combine to provide the basis for accessing, navigating, and modi-

fying the DOM tree. Specialized interfaces for other node types offer additional features for

functionality and convenience.

Among Node methods, the following are more frequently used.

• node.normalize()—Adjusts the subtree rooted at node to remove empty nodes and

to combine adjacent text nodes. The resulting normalized DOM tree has no empty

or adjacent text nodes. Before normization, a DOM tree may contain empty and/or

adjacent text nodes due to spacing and line breaks in the page source code. Such white

space are often used to avoid long lines and to make the source easier to read. For

example, the call

document.documentElement.normalize();

Brooks/Cole book/January 28, 2003

10.8. DOM TREE DEPTH-FIRST TRAVERSAL 463

normalizes the entire <html> node.

• node.hasChildNodes()—Returns true/false.

• node.hasAttributes()—Returns true/false.

• node.appendChild(child)—Adds child as a new child node of node.

• node.removeChild(child)—Removes the indicated child node from the node.

• node .insertBefore(child , target)—Adds the child node just before the specified

target child of this node.

• node .replaceChild(child , target)—Replaces the target child node with the given

child. If child is a DocumentFragment then all its child nodes are inserted in place of

target.

Note, if child is already in the DOM tree, it is first removed before becoming a new child.

Section 10.14 shows how to create a new node.

10.8 DOM Tree Depth-First Traversal

Using the DOM for DHTML basically involves accessing nodes and modifying nodes on the

DOM tree. The easiest way to access a target HTML element is to use

document.getElementById(id)

to obtain the node for the element directly by its id.

But it is also possible to reach all parts of the DOM tree by following the parent, child,

and sibling relationships. A systematic visit of all parts of the DOM tree, a traversal, may be

performed depth-first or breadth-first. In depth-first traversal, you finish visiting the subtree

representing the first child before visiting the second child, etc. In breadth-first traversal,

you visit all the child nodes before visiting the grandchild nodes and so on. These are

well-established concepts in computer science.

Brooks/Cole book/January 28, 2003

464 CHAPTER 10. DOCUMENT OBJECT MODEL AND DYNAMIC HTML

Let’s look at a Javascript program that performs a depth-first traversal (Ex: DomDft)

starting from any given node on the DOM tree. The example demonstrates navigating the

DOM tree to access information.

var result="";

function traversal(node)

{ result = ""; // (1)

node.normalize(); // (2)

dft(node); // (3)

alert(result); // (4)

}

function dft(node)

{ var children;

if (node.nodeType == Node.TEXT_NODE) // (5)

result += node.nodeValue;

else if (node.nodeType == Node.ELEMENT_NODE) // (6)

{ openTag(node); // (7)

if (node.hasChildNodes()) // (8)

{ children = node.childNodes; // (9)

for (var i=0; i < children.length; i++) // (10)

dft(children[i]);

closeTag(node); // (11)

}

}

}

Given any node on the DOM tree, the traversal function builds the HTML source code

for the node. It initializes the result string (line 1), normalizes the subtree rooted at node

(line 2), calls the depth-first algorithm dft (line 3), and displays the result (line 4).

The dft function recursively visits the subtree rooted at the node argument. It first

checks if node is a text node (a leaf) and, if true, adds the text to result (line 5). Otherwise,

if node is an element node (representing an HTML element), it adds the HTML tag for the

node to result by calling openTag (line 7), and, if there are child nodes, recursively visits

them (lines 8-10) before adding the close tag (line 11). The subscript notation children[i]

is a shorthand for children.node(i).

Brooks/Cole book/January 28, 2003

10.8. DOM TREE DEPTH-FIRST TRAVERSAL 465

function closeTag(node)

{ result += "</" + node.tagName + ">\n"; }

function openTag(node)

{ result += "<" + node.tagName;

var at;

if (node.hasAttributes()) // (12)

tagAttributes(node.attributes);

if (node.hasChildNodes())

result += ">\n"; // (13)

else

result += " />\n"; // (14)

}

function tagAttributes(am)

{ var attr, val;

for (var i=0; i < am.length; i++) // (15)

{ attr = am[i]; val = attr.value;

if (val != undefined && val != null // (16)

&& val != "null" && val != "")

{ result += " " + attr.name + "=\"" + // (17)

val + "\"";

}

}

}

The openTag function adds any attributes for the tag (line 12) by calling tagAttributes.

The open tag is terminated by either ">" (line 13) for non-empty elements or " />" for

empty elements (line 14) conforming to the XHTML convention.

The argument am of tagAttributes is a NamedNodeMap of Attr nodes. The function goes

through each attribute (line 15) and adds each defined attribute (line 16) to the result string

(line 17). Note the use of the name and value fields of an Attr node.

Figure 10.10 shows the first part of the result of the depth-first traversal when called

on the document.documentElement node corresponding to the <html> element of the page.

The complete example can be tested on the WDP site.

Brooks/Cole book/January 28, 2003

466 CHAPTER 10. DOCUMENT OBJECT MODEL AND DYNAMIC HTML

Figure 10.10: Traversal of DOM Tree

10.9 The DOM HTMLElement Interface

Derived node types (interfaces extending Node) add fields and methods specialized to a

particular node type and may provide alternative ways to access some of the same features

provided by Node. HTML markup elements in a page are represented by nodes extending

the base HTMLElement which itself extends Node. For each element in HTML, DOM HTML

provides an interface

HTMLFullTagNameElement

that derives from HTMLElement (Figure 10.11). The complete list of all the HTML element

interfaces can be found in the DOM HTML specification.

Figure 10.11: DOM HTML Interfaces

HTMLElement

Element

Node

HTMLAnchorElement HTMLFormElement...HTMLBodyElement

The HTMLElement interface is rather central for DHTML. Before we systematically discuss

the fields and methods of HTMLElement, let’s see it in action in an example (Ex: DomNav)

Brooks/Cole book/January 28, 2003

10.9. THE DOM HTMLELEMENT INTERFACE 467

Figure 10.12: DOM Tree Visual Navigation

where we combine navigation and modification of the DOM tree to achieve the kind of visual

effects attributable to DHTML.

We can illustrate DOM tree navigation visually by visiting a subtree representing a

<table> element, for instance. As you traverse the subtree, the part of the table corre-

sponding to the node being visited will be highlighted. A control panel enables you to go up

(to the parent node), down (to the first child), left (to the previous sibling) or right (to the

next sibling) within the table. The control panel also displays the tag name associated with

the current node (Figure 10.12).

The HTML code for the table that we will be traversing is shown here in an easy-to-read

form

<table id="tbl" border="1"

style="background-color: #def"

cellspacing="4" cellpadding="4" >

<tr><td>row 1, col 1</td>

<td>row 1, col 2</td>

<td>row 1, col 3</td></tr>

<tr><td>row 2, col 1</td>

<td id="center">row 2, col 2</td>

<td>row 2, col 3</td></tr>

<tr><td>row 3, col 1</td>

<td>row 3, col 2</td>

<td>row 3, col 3</td></tr>

</table>

In the actual file, we eliminate all line breaks and whitespaces between elements to avoid

potential extraneous nodes on the DOM tree.

Brooks/Cole book/January 28, 2003

468 CHAPTER 10. DOCUMENT OBJECT MODEL AND DYNAMIC HTML

The init() function is executed onload and sets the stage for the visual navigation:

var currentNode, tableNode, nameNode, normal, highlight;

function init()

{ tableNode=document.getElementById("tbl");

tableNode.normalize();

highlight="#0ff";

normal=tableNode.style.backgroundColor; // (A)

currentNode=document.getElementById("center"); // (B)

currentNode.style.backgroundColor = highlight; // (C)

nameNode=document.getElementById("tname").firstChild;

nameNode.data=currentNode.tagName; // (D)

}

The Javascript global variables used are:

• tableNode—the node for <table> that is to be traversed

• currentNode—the node for the current traversal position on the tableNode subtree

• nameNode—the node to display the tagName of currentNode

• normal and highlight—the background colors used to indicate visually the part of

the table being visited

The init() function assigns initial values to these variables. The normal background color

is set to the background of the table (line A). The center cell of the 3× 3 table is chosen as

the starting point of the traversal and currentNode is set (line B) and highlighted (line C).

The text of nameNode, at the center of the control panel, is set using the tagName field of an

HTMLElement (line D). The init() function is called onload:

<body onload="init()">

The control panel (Figure 10.12) for interactive traversal is another table

<table cellspacing="2" cellpadding="2">

<tr align="center">

<td></td>

Brooks/Cole book/January 28, 2003

10.9. THE DOM HTMLELEMENT INTERFACE 469

<td><input type="button"

value=" up " onclick="up()" /></td>

<td></td></tr>

<tr align="center">

<td><input type="button" value=" left "

onclick="left()" /></td>

<td id="tname" style="color: #0aa; (E)

font-weight: bold">tag name</td>

<td><input type="button" value="right"

onclick="right()" /></td></tr>

<tr align="center">

<td></td>

<td><input type="button" value="down"

onclick="down()" /></td>

<td></td></tr></table>

The data cell id=tname (line E) is used to display the tag name of the current traversal

position. The four buttons each triggers a corresponding function that does the obvious.

The up() function keeps the traversal from leaving the subtree (line F).

function up()

{ if (currentNode == tableNode) return; // (F)

toNode(currentNode.parentNode);

}

function down()

{ toNode(currentNode.firstChild); }

function left()

{ toNode(currentNode.previousSibling); }

function right()

{ toNode(currentNode.nextSibling); }

Each of these four functions calls toNode to visit the new node passed as the argument.

The toNode function does the actual work of walking from the current node to the new

node given as nd (line G). If nd is null or a leaf node (type TEXT_NODE), then nothing is done

(lineH). If we are leaving an internal node on the subtree the highlight is removed by calling

the removeAttribute method of the HTMLElement interface (line I). If we are leaving the

Brooks/Cole book/January 28, 2003

470 CHAPTER 10. DOCUMENT OBJECT MODEL AND DYNAMIC HTML

root tableNode, the original background color of the table is restored (line J). The arrival

node is then highlighted and set as the current node (lines K-L). Finally, the tag name of the

current node is displayed as the text content of nameNode (line M)

function toNode(nd) // (G)

{ if (nd == null ||

nd.nodeType == 3) // Node.TEXT_NODE // (H)

return false;

if (currentNode != tableNode)

currentNode.style.backgroundColor=""; // (I)

else

currentNode.style.backgroundColor = normal; // (J)

nd.style.backgroundColor = highlight; // (K)

currentNode=nd; // (L)

nameNode.data=currentNode.tagName; // (M)

return true;

}

The example , further illustrates the DOM tree structure, use of the style property of

HTML elements, and the tagName field. It also shows how DHTML can help the delivery of

information, enable in-page user interactions, and enhance understanding.

You can find the complete, ready-to-run, version in the example package. You may want

to experiment with it and see what it can show about the DOM tree and DHTML.

Assignment 5 suggests adding a display of the table subtree to show the current node

position on the subtree as the user performs the traversal.

10.10 HTMLElement Fields and Methods

Every HTML element is represented on the DOM tree by a node of type HTMLElement.

The HTMLELement interface extends the Element interface which, in turn, extends the basic

Node interface. We list often-used fields and methods available in any node object of type

HTMLELement.

• tagName—is a read-only field representing the HTML tag name as a string.

Brooks/Cole book/January 28, 2003

10.10. HTMLELEMENT FIELDS AND METHODS 471

• style—is a field to a style object representing the style declarations associated with

an element. For example, use element.style.backgroundColor to access or set the

background-color style. Setting a style property to the empty string indicates an

inherited or default style. If you change the style of an element by setting its style

attribute instead, the new style attribute replaces all existing style properties on that

element and, normally, that is not what you want to do. It is advisable to use the

style field to set individual style properties you wish to change.

• innerHTML—is a read-write field representing the HTML source code contained inside

this element as a string. By setting the innerHTML field of an element, you replace

the content of an element. This useful field is not part of the DOM specification but

supported by all major browsers.

• getAttribute(attrName)—returns the value of the given attribute attrName. The

returned value is a string, an integer, or a boolean depending on the attribute. Specif-

ically, a CDATA (character data) value is returned as a string; a NUMBER value is returned

as an integer; an on-or-off attribute value is returned as a boolean. A value from an

allowable list of values (e.g. left|right|center) is returned as a string. For an at-

tribute that is unspecified and does not have a default value, the return value is an

empty string, zero, or false as appropriate.

• setAttribute(attrName, value)—sets the given attribute to the specified string value.

• removeAttribute(attrName)—removes any specified value for attrName causing any

default value to take effect.

• hasAttribute(attrName)—returns true if attrName is specified for this element,

false otherwise.

When setting values, use lower-case strings for attribute names and most attribute values.

When checking strings obtained by tagName or getAttribute(), be sure to make case-

insensitive comparisons to guard against non-uniformity in case conventions. For example,

Brooks/Cole book/January 28, 2003

472 CHAPTER 10. DOCUMENT OBJECT MODEL AND DYNAMIC HTML

var nd = node1.firstChild;

var re = /table/i;

if (re.test(nd.tagName))

{ ... }

tests a tagName with the case-insensitive pattern /table/i.

HTML input control elements have these additional fields and methods

• name and value—are the name and value strings of an element to be submitted with

a form.

• focus()—causes the input element to get input focus so it will receive keyboard input.

• blur()—causes the input element to lose input focus.

• select()—selects the current textual content in the input element for user editing or

copying.

• click()—causes a click event on the element.

10.11 A Guided Form

Let’s look at a practical example of DHTML where we use a combination of style, DOM, and

Javascript to implement a guided form (Ex: GuidedForm). The idea is simple, we want to

guide the end user visually through the form. This can be done by highlighting the input

field that has keyboard focus (Figure 10.13). With a regular form, it is hard to spot which

field has input focus. Thus, a guided form can be more user friendly and less confusing.

Here is the HTML code for this example:

<head><title>DOM Example: Guided Form</title>

<link rel="stylesheet" href="guidedform.css"

type="text/css" title="guided form" />

<script type="text/javascript" src="guidedform.js">

</script></head>

Brooks/Cole book/January 28, 2003

10.11. A GUIDED FORM 473

Figure 10.13: A Guided Form

<body onload="init()" style="background-color: #def">

<form method="post" action="/cgi-bin/wb/join.cgi">

<p style="font-weight: bold; font-size: larger">

Join club.com</p>

<table width="280">

<tr><td class="fla">Last Name:</td>

<td><input onfocus="highlight(this)" (1)

onblur="normal(this)" (2)

name="lastname" size="18" /></td></tr>

<tr><td class="fla">First Name:</td>

<td><input onfocus="highlight(this)"

onblur="normal(this)"

name="firstname" size="18" /></td></tr>

<tr><td class="fla">Email:</td>

<td><input onfocus="highlight(this)"

onblur="normal(this)"

name="email" size="25" /></td></tr>

<tr><td></td>

<td><input onfocus="highlight(this)"

onblur="normal(this)"

type="submit" value="Join Now" /></td></tr>

</table></form></body>

The four input controls, last name, first name, email, and submit, call hightlight onfocus

(line 1) and normal onblur (line 2). The style of the form is defined in the guidedform.css

file.

td.fla

{ background-color: #d2dbff;

font-family: Arial, Helvetica, sans-serif

Brooks/Cole book/January 28, 2003

474 CHAPTER 10. DOCUMENT OBJECT MODEL AND DYNAMIC HTML

}

form input, select, textarea

{ background-color: #eef } /* (3) */

The background color of input controls have been softened a bit from pure white (line 3).

The actual highlighting is done by these Javascript functions:

var base="", high;

function init() { high = "#9ff"; } // (4)

function highlight(nd)

{ base = nd.style.backgroundColor; // (5)

nd.style.backgroundColor=high; // (6)

}

function normal(nd)

{ nd.style.backgroundColor=base; } // (7)

The init() function, called onload, defines the highlight color to use. Before highlighting

an input field (line 6), its background color is saved in the global variable base (line 5) for

later restoration. The onblur event handler normal restores the original background color

(line 7).

When experimenting with this example, you can move the input focus with the mouse

or forward with tab and backward with shift tab.

10.12 Fade-in Headlines

Another useful DHTML effect provides an easy and efficient way to include page headlines

that move into place as they fade in (Ex: FadeIn). The effect calls attention to the headline

and gives the page a touch of animation.

The HTML code for such a centered headline involves

<body id="bd" onload="centerNow(’ct’, 60, 50, 40, 25)">

Brooks/Cole book/January 28, 2003

10.12. FADE-IN HEADLINES 475

<p id="ct" class="headline"

onclick="centerNow(’ct’, 60, 50, 40, 25)">Super ABC Company</p>

The style of the headline is given by a style rule such as

p.headline

{ text-align: center;

font-family: verdana, arial, helvetica;

font-size: x-large;

font-weight: bold;

}

The Javascript function centerNow performs the centering while fading-in animation. You

specify the target color of the headline and the number of animation steps, it does the rest.

The function call

centerNow(id, r, g, b, steps)

gives the id of the headline element (ct in our example), the red, green, and blue components

of the target color rgb(r %, g %,b %), and an integer steps, the number of steps for the

animation.

To move the text from left to center, we use increasingly smaller right margins for the

centered text. Typically, we can begin with a 60% right margin and decrease it down to 0%

in the given number of steps. The code to set the right margin is

element.style.marginRight = setting + "%";

To achieve fade-in, we can repeatedly set the color style property

element.style.color = rgb(red, green, blue)

The animation can begin with the most-faded color and gradually change to the least-faded

color (the target color) in the given number of steps. To fade a color we increase the rgb

components while keeping their ratios. All colors used must keep the ratios among the rgb

components as closely as possible to the original ratios in the target color. See Figure 10.14

for a sample set of headline fade-in colors.

Here is a procedure to compute the most-faded color:

Brooks/Cole book/January 28, 2003

476 CHAPTER 10. DOCUMENT OBJECT MODEL AND DYNAMIC HTML

Figure 10.14: Color Fade In

1. Let the target color be rgb(r0 %, g0 %, b0 %).

2. Let high be the maximum of r0 , g0 and b0 .

3. Let m be a multiplier such that m * high = 100.

4. The most faded color is rgb(m*r0 %, m*g0 %, m*b0 %).

The multiplier m is ≥ 1. The fade-in can then be done by multiplying the target color by a

sequence of numbers from m to 1 in the given number of steps.

Now, let’s see how this is achieved in Javascript.

var steps, mar, m, r, g, b;

var sty=null;

function centerNow(nd, rr, gg, bb, st)

{ mar = 60; // (A)

steps = st; // (B)

r =rr; g =gg; b=bb; // (C)

if (sty == null)

sty = document.getElementById(nd).style; // (D)

margin_d = mar/steps; // (E)

m = 100/Math.max(Math.max(r, g), b); // (F)

color_d = (m-1.0)/steps; // (G)

centering();

}

Brooks/Cole book/January 28, 2003

10.12. FADE-IN HEADLINES 477

The centerNow function initializes the starting right margin, the total number of animation

steps, and the target color values (lines A-C). The sty (line D), the style of the headline

element, will be used repeatedly. The percentage setting of the right margin will decrease by

margin_d (line E) after each step. The multiplier m begins with the maximum value (line F)

and decreases by color_d (line G) after each step.

With these values set, centering() is called to perform the actual animation.

function centering()

{ if (steps > 1)

{ sty.marginRight = mar+"%"; // margin

sty.color="rgb(" +r*m+ "%," +g*m+ "%,"

+b*m+ "%)"; // color

mar -= margin_d; // decrements

m -= color_d;

steps--;

setTimeout("centering()", 18); // (H)

}

else // final position and color // (I)

{ sty.marginRight="0%";

sty.color="rgb("+r+"%,"+g+"%,"+b+"%)";

}

}

The centering function performs one step of the animation. It sets the right margin and

color and decrements the quantities that will be used in the next step. The Javascript built-

in function setTimeout (Section 9.17) schedules the call to centering after 18 milliseconds

(line H). A smooth animation requires some 30 frames per second, making the delay between

each step about 33 milliseconds. The last step of the animation (line I) makes sure we have

the correct centered position and the true target color, without floating-point errors.

You can easily modify this example for similar visual effects. For example, the in-place

fade-in (Figure 10.15) of a centered headline (Ex: InPlace) can be done with the same color

technique plus changes in the letter spacing. Recall the style property letter-spacing

controls the spacing between characters in a piece of text (Section 6.14).

With the variable sp set to 1 at first. The Javascript statements

Brooks/Cole book/January 28, 2003

478 CHAPTER 10. DOCUMENT OBJECT MODEL AND DYNAMIC HTML

Figure 10.15: In-place Fade-in

sty.letterSpacing = sp + "px";

sp++;

can be included in a fade-in function that is called for a given number of steps to fade in any

target headline. The full example (Ex: FadeIn) can be found at the WDP site and in the

example package.

10.13 Mouse Tracking

DOM also specifies an Event interface to provide standards for an event system, event names,

event registration, and event objects.

For example a MouseEvent object has the clientX and clientY fields giving, respectively,

the x and y coordinates of the mouse event position in the document display area. Using

these coordinates associated with the mousemove event, we can drag an element by moving

the mouse.

The following HTML code displays an image, a crystal ball, that when clicked will follow

the mouse until the mouse is clicked again (Ex: DragDrop).

<head><title>Drag and Drop</title>

<script type="text/javascript" src="dragdrop.js"></script>

</head> <body onload="init()">

<div id="ball" onclick="drag()" (1)

style="position: absolute;

top: 20px; left: 20px; z-index: 1">

<img src="crystalball_stand.gif" width="110" height="142"

alt="Crystal ball on a stand">

</div></body>

Brooks/Cole book/January 28, 2003

10.14. THE DOM HTMLDOCUMENT INTERFACE 479

The technique is straight forward. A mouse click calls the Javascript function drag() (line 1)

that sets up the trackMouse event handler for the mousemove event (line 3). Mouse tracking

changes the absolute position of the crystal ball. The left and top style properties are set

to the event coordinates plus any scrolling that may have taken place for the browser window

(lines 5-6).

// file: dragdrop.js

var ball, ballstyle;

function init()

{ ball = document.getElementById(’ball’);

ballstyle = ball.style;

}

function drag()

{ if (document.onmousemove)

document.onmousemove = null; // (2)

else

document.onmousemove = trackMouse; // (3)

}

function trackMouse(e) // (4)

{ var x = e.clientX + window.scrollX; // (5)

var y = e.clientY + window.scrollY; // (6)

ballstyle.left = x + "px"; // left style property

ballstyle.top = y + "px"; // top style property

}

A second mouse click calls drag() and cancels the mouse tracking (line 2).

10.14 The DOM HTMLDocument Interface

Browsers display Web pages in windows. Each window has a unique document object that

represents the entire Web page displayed in the window. The document object contains all

other elements in the page.

The document object, implementing the DOM HTMLDocument interface which inherits

from the Document interface, offers fields and methods useful for page-wide operations.

Brooks/Cole book/January 28, 2003

480 CHAPTER 10. DOCUMENT OBJECT MODEL AND DYNAMIC HTML

HTMLDocument Fields

A select set of fields available from the document object is listed here.

• documentElement—the <html> element of the page.

• body—the <body> element of the page.

• URL—a read-only string for the complete URL of the page.

• title—the title string specified by <title>.

• referrer—the read-only URL of the page leading to this page (empty string if no

referrer).

• domain—the read-only domain name of the Web server that supplied the page.

• cookie—a semicolon-separated string of name=value pairs (the cookies) associated

with

• anchors, applets, forms, images, links—read-only lists of different elements in the

page: <a> elements as named anchors, <applet> elements, <form> elements,

elements, and <a> and <area> elements as href links, respectively. Such a list has a

length field, an item(n) method, and a namedItem(name) method which returns an

element with name as id or, failing that, as name.

HTMLDocument Methods

Frequently used methods of the document object include:

• createElement(tagName)—returns a newly created element object for the <tagName>

element. By setting attributes and adding child nodes to this element, you can build

a DOM structure for any desired HTML element.

• createTextNode(textString)— returns a node of type TEXT_NODE containing the given

textString.

Brooks/Cole book/January 28, 2003

10.15. GENERATING NEW CONTENT 481

Figure 10.16: History Recording Calculator

• getElementById(id)— returns the unique HTML element with the given id string.

We have seen this method used often.

• getElementsByTagName(tag)—returns a list of all elements with the given tag name

in the document.

10.15 Generating New Content

Applying the features discussed in the previous section, let’s do more with DHTML by

adding new content to a displayed HTML page. The content is computed by Javascript,

built into element nodes, and placed on the DOM tree.

A Session-Recording Calculator

To get started, we can take the interactive calculator example (Ex: DomCalc) shown

in Figure 10.6 and make it more useful by recording the current answer and displaying a

history of computation steps. The answer from the previous step can be used in the next

step (Figure 10.16).

The HTML code for the session calculator (Ex: DomSession) is revised slightly from

Brooks/Cole book/January 28, 2003

482 CHAPTER 10. DOCUMENT OBJECT MODEL AND DYNAMIC HTML

that for the basic calculator of Ex: DomCalc:

<body onload="init()">

<h3>DOM Calculator Session</h3>

<p>Simply type in a string such as

<code>12 + 43 * 6</code> and click GO.</p>

<p>COMPUTE :

<input id="uin" name="uin" maxlength="30" />

<input value="GO" type="button"

onclick="comp(’uin’)" /></p>

<p>And the answers are:</p>

<div id="session"> </div></body> (A)

The empty <div> is where the computation session will be displayed (line A).

The init() function (line B) is called onload to obtain the <div> element and store it in

the global variable session.

var session, ans = 0; // global variables

function init()

{ session=document.getElementById("session"); // (B)

}

function comp(id)

{ var input = document.getElementById(id);

var str = input.value; // (C)

ans = eval(str); // (D)

var ansNode = document.createTextNode("ans: "

+ str + " = " + ans); // (E)

var parNode = document.createElement("p"); // (F)

parNode.appendChild(ansNode); // (G)

session.appendChild(parNode); // (H)

input.value=""; // (I)

}

The comp function, triggered by the GO button, obtains the user input (line C) and evaluates

it. The Javascript function evel (line D) takes any string and executes it as code. The result

obtained is stored in the global variable ans (line D) which can be used in the subsequent

step. To record the computation step, it creates a new text node (line E), wraps a <p>

Brooks/Cole book/January 28, 2003

10.16. A SMART FORM 483

element around it (lines F-G), and appends the element as a new (last) child of the session

<div> (line H). Finally, the input field is cleared (line I), ready for the next step. Users may

use ans in the next computation step to perform a session of stpes (Figure 10.16). Further,

users may store values for use in subsequent steps by creating their own variables with input

strings such as:

taxRate = 0.08

total = subtotal + subtotal * taxRate

10.16 A Smart Form

As another example of dynamically adding and removing page content, let’s add some smarts

to the guided form discussed in Section 10.11 (Figure 10.13).

Figure 10.17: Smart Form I

A website in North America may collect customer address and telephone information

without asking for an international telephone country code. But, if the customer selects a

country outside of North America, it may be a good idea to require this information as well.

In may situations, the information to collect on a form can depend on data already entered

on the form. It would be nice to have the form dynamically adjusts itself as the user fills

out the form. This can be done with DHTML.

Brooks/Cole book/January 28, 2003

484 CHAPTER 10. DOCUMENT OBJECT MODEL AND DYNAMIC HTML

As an example, let’s design a smart form (Ex: SmartForm) that examines the country

setting in the address part of the form and adds/removes (Figures 10.17 and 10.18) an input

field for the international telephone code.

Our strategy is straight-forward:

1. When the country name is selected, the onchange event triggers a call to check the

country name.

2. Any country outside North America causes an input field to be added to obtain the

telephone country code.

3. If the country is inside North America, then any telephone country code input field is

removed.

Figure 10.18: Smart Form II

The HTML code is as follows:

<head><title>DOM Example: Smart Form</title>

<link rel="stylesheet" href="guidedform.css"

type="text/css" title="dynamic guided form" />

<script type="text/javascript" src="smartdform.js">

</script>

</head>

<body onload="init()" style="background-color: #def">

<form method="post" action="http:/cgi-bin/join.pl">

<p style="font-weight: bold; font-size: larger">

Join club.com</p>

Brooks/Cole book/January 28, 2003

10.16. A SMART FORM 485

<table><tbody id="tb"> (A)

<tr><td class="fla">Full Name:</td>

<td><input onfocus="highlight(this)"

onblur="normal(this)"

name="fullname" size="20" /></td></tr>

<tr><td class="fla">Country:</td>

<td><select id="country" name="country"

size="1"

onfocus="highlight(this);"

onchange="countryCode(this);" (B)

onblur="normal(this);" >

<option value="US">USA</option>

<option value="CA">Canada</option>

<option value="MX">Mexico</option>

<option value="CN">China</option>

<option value="RU">Russian Federation

</option>

</select></td></tr>

<tr><td class="fla" >Telephone:</td>

<td><input onfocus="highlight(this)"

onblur="normal(this)"

name="phone" size="20" /> (C)

###-###-####</td></tr>

<tr id="bt"><td></td> (D)

<td><input onfocus="highlight(this)"

onblur="normal(this)"

type="submit" value="Join Now" /></td>

</tr></tbody></table></form></body>

The onchange event of <select> triggers the function countryCode (line B) which can

add/remove a form entry for the telephone country code. The new form entry will be a new

table row element, a child <tr> of <tbody> (line A) inserted just before the row (line D) for

the submit button.

The init() function, executed onload, sets the telephone instruction node (inode) to

the pinst span (lines C and 1). The text child of inode (line 2) can be replaced later by a

generic instruction (oph) for other countries (line 3).

var oph, iph, inode;

Brooks/Cole book/January 28, 2003

486 CHAPTER 10. DOCUMENT OBJECT MODEL AND DYNAMIC HTML

function init()

{ inode = document.getElementById("pinst"); // (1)

iph = inode.firstChild; // (2)

oph = document.createTextNode(

" AreaCode-Phone Number"); // (3)

}

Two additional global variables (line 4) are used: crow (the table row to be created) and

cc (the <input> element for the telephone country code). The isLocal function checks to

see if a country is local to North America (line 5).

var crow = null, cc=null; // (4)

function isLocal(ct) // (5)

{ return (ct == "US" || ct == "CA"

|| ct == "MX");

}

function countryCode(country)

{ var d1, d2, t1, t2, button;

var tbody = document.getElementById("tb");

if (isLocal(country.value)) // (6)

{ if (crow != null)

{ tbody.removeChild(crow); // (7)

inode.replaceChild(iph, oph);

cc = crow = null; // (8)

}

return;

}

// country outside North America

if (crow != null) // (9)

{ cc.value = ""; return; } // (10)

crow = document.createElement("tr"); // (11)

crow.appendChild(makeLabel()); // (12)

crow.appendChild(makeCC()); // (13)

button = document.getElementById("bt"); // (14)

tbody.insertBefore(crow, button); // (15)

inode.replaceChild(oph, iph); // (16)

}

Brooks/Cole book/January 28, 2003

10.16. A SMART FORM 487

A call to countryCode is triggered by the onchange event on the <select> element for

the country part of an address. If the given country is in North America, it removes any

telephone country code entry from the form, restores the phone instructions, resets the global

variables, and then returns (line 6-8).

The function continues to process country which is outside of North America. If the

telephone country code entry is already displayed (line 9), it simply makes sure any previously

entered code is removed and returns (line 10). Otherwise, a new <tr> element is created

(line 11), filled with two table cells (lines 12-13), and inserted into the table body just before

the submit button (lines 14-15). The generic phone instruction is also put in place (line 16)

Each of the following functions makes a <td> element for the table row needed (Fig-

ure 10.19). The input element is made to match the style and dynamic behavior of other

input controls in the form (lines 17-18). A text label is created by makeLabel() and the

actual input element for the telephone country code is created by makeCC() which also sets

the global variable cc.

function makeLabel()

{ var t, d;

d = document.createElement("td");

d.setAttribute("class", "fla");

t = document.createTextNode("Country Code:");

d.appendChild(t);

return d;

}

function makeCC()

{ var t, d;

d = document.createElement("td");

cc = document.createElement("input"); // (17)

cc.setAttribute("onfocus", "highlight(this)");

cc.setAttribute("onblur", "normal(this)");

cc.setAttribute("name", "cc");

cc.setAttribute("id", "cc");

cc.setAttribute("size", "7"); // (18)

d.appendChild(cc);

t = document.createTextNode("(example: 86 for China)");

d.appendChild(t);

Brooks/Cole book/January 28, 2003

488 CHAPTER 10. DOCUMENT OBJECT MODEL AND DYNAMIC HTML

Figure 10.19: Creating A Form Entry

return d;

}

Note these element creation functions use setAttribute to set up many attributes so the

newly created form entry fits in with the style and dynamic behavior on this smart form.

Experiment with Ex: SmartForm and see for yourself.

One small problem for this form shows up when you click the back button after submitting

the form, perhaps because of an error in filling the form. The form contains the data you

entered, but the telephone code entry disappears. It is possible to add code to the init()

function called onload to fix this problem and the solution is left as an exercise (Assignment

8).

10.17 Reordering Rows in Tables

Applying DHTML, we can make tables more usable by allowing the end user to reorder rows

based on the contents of cells in any given table column. Thus, tables representing invoices,

shopping carts, airfares, addresses, student grades, and so on, can be sorted at will by the

end user. The user may want to list the largest amount first, the least expensive item first,

or names alphabetically. With DHTML, the user can do this by clicking the mouse and

the sorting will be performed by client-side Javascript. Not going back to the server, the

redisplay is instantaneous and very dynamic.

For example, the shopping cart in Figure 10.20 is in increasing Amount. The same shop-

ping cart is shown in Figure 10.21 in increasing unit Price.

Brooks/Cole book/January 28, 2003

10.17. REORDERING ROWS IN TABLES 489

Figure 10.20: Shopping Cart Sorted by Amount

In this example (Ex: TableSort), clicking (double-clicking) on a table header cell sorts

that column in increasing (decreasing) order.

Sortable Table Organization

The HTML code for the sortable table is organized as follows.

• The first table row is placed within a <thead> element and contains table header (<th>)

cells connected to event onclick and ondblclick handlers. These cells have a button

look to visually indicate their active nature. Here is a typical <th> cell:

<th class="button"

onclick="sortTable(2, ’num’, ’1’);"

ondblclick="sortTable(2, ’num’, ’-1’);">Price</th>

The arguments to sortTable are column position (a zero-based index), numerical or

alphabetical ordering (num or str), and increasing or decreasing order (1 or -1). Here

is the header for the Item column

Brooks/Cole book/January 28, 2003

490 CHAPTER 10. DOCUMENT OBJECT MODEL AND DYNAMIC HTML

<th class="button"

onclick="sortTable(0, ’str’, ’1’);"

ondblclick="sortTable(0, ’str’, ’-1’);">Item</th>

• The sortable table rows are organized in a <tbody> group with a given id, tb in our

example. Each sortable column must contain all numbers or all text strings. Here is a

typical row

<tr id="cc" valign="middle" align="right">

<th>Hand Shovel</th>

<td align="center">T01</td>

<td>4.99</td> <td>10</td> <td>49.90</td></tr>

The table layout and the button look for clickable table header cells are created with CSS

rules (Section 6.12):

table.sort tr { background-color:#f0f0f0; }

table.sort th.button

{ background-color: #fc0; border-width: 3px;

border: outset; border-color: #fc0

}

Table Sorting

Now let’s look at the Javascript code for table sorting.

As stated in the previous subsection, onclick and ondblclick events on an active table

header trigger calls to the sortTable function with appropriate arguments: column position

(c), numerical or alphabetical ordering (n), and increasing or decreasing direction(d).

var col=null, numerical=false, direction=1;

function sortTable(c, n, d)

{ if (col==c && Number(d)==direction) return; // (a)

col=c; // (b)

direction = Number(d);

Brooks/Cole book/January 28, 2003

10.17. REORDERING ROWS IN TABLES 491

Figure 10.21: Shopping Cart Sorted by Price

numerical = (n == "num"); // (c)

var tbody = document.getElementById("tb"); // (d)

var r = tbody.childNodes; // (e)

n = r.length;

var arr = new Array(n);

for (i=0; i < n; i++) arr[i]=r.item(i); // (f)

quicksort(arr, 0, n-1); // (g)

for (i=0; i < n; i++) tbody.appendChild(arr[i]); // (h)

}

If c is the same as the recorded column position col and d the same as the recorded sorting

direction (line a), the sorting has already been done and the sortTable returns immediately.

To prepare for sorting, the arguments are stored in the global variables (lines b-c). The child

nodes of <tbody> are copied into a new array arr (lines d-f). The copying is needed because

tbody.childNodes is a read-only list. The notation (line f)

r.item(i)

gets you the i-th item on the list of child nodes. It is possible that the notation r[i] will

also work.

Brooks/Cole book/January 28, 2003

492 CHAPTER 10. DOCUMENT OBJECT MODEL AND DYNAMIC HTML

The call to quicksort (line g) sorts the array arr with the quicksort algorithm, one

of the most efficient sorting algorithms known. The elements on the sorted arr are then

appended in sequence as children of <tbody> (line g).

Inserting existing nodes from the DOM tree into the DOM tree is very different from

inserting newly created nodes (Section 10.16). An existing node is first removed from the

DOM tree automatically before it is inserted. The removal is necessary to protect the

structure integrity of the DOM tree. This is why no explicit removal of child nodes from

<tbody> is needed before appending the nodes from the sorted array arr.

If you accept the quicksort function as a magical black box that does the sorting, then

we have completed the description DHTML table sorting.

For those interested, the inner workings of quicksort are presented next.

Quicksort

The basic idea of the quicksort algorithm is simple. First pick any element of the array to be

sorted as the partition element pe. By exchanging the elements, the array can be arranged

so all elements to the right of pe are greater than or equal to pe, and all elements to the

left of pe are less than or equal to pe. Now the same method is applied to sort each of the

smaller arrays on either side of pe. The recursion is terminated when the length of the array

becomes less than 2.

function quicksort(arr, l, h)

{ if (l >= h || l < 0 || h < 0) return; // (1)

if (h - l == 1) // (2)

{ if (compare(arr[l], arr[h]) > 0) // (3)

{ swap(arr, l, h) } // (4)

return;

}

var k = partition(arr, l, h); // (5)

quicksort(arr, l, k-1); // (6)

quicksort(arr, k+1, h); // (7)

}

Brooks/Cole book/January 28, 2003

10.17. REORDERING ROWS IN TABLES 493

The quicksort function is called with the array to be sorted, the low index l and the high

index h. It sorts all elements between l and h inclusive. If the sorting range is empty

(line 1), quicksort returns immediately. If the range has just two elements (line 2), they

are compared (line 3) and switched (line 4) if necessary; and quicksort returns. For a wider

range, partition is called to obtain a partition element and the left and right parts of the

array. Each of these two parts is sorted by calling quicksort (lines 6-7).

The call compare(a, b) compares the arguments and returns a positive, zero, or negative

number depending for a > b, a equals b, or a < b. The signs are reversed for sorting in

decreasing order.

function compare(r1, r2)

{ ke1 = key(r1, col); // (8)

ke2 = key(r2, col);

if (numerical) // (9)

{ ke1 = Number(ke1);

ke2 = Number(ke2);

return direction * (ke1 - ke2);

}

return (direction * strCompare(ke1, ke2)); // (10)

}

For sorting HTML tables, compare is called with DOM nodes r1 and r2 representing two

different table rows. The function key obtains the string content in the designated table cell

(line 8) and compares them either numerically as numbers (line 9) or as alphabetically as

text string (line 10).

The function key extracts the textual content (line 12) of the table cell from the given

row r at the column position c.

function key(r, c)

{ var cell = r.firstChild;

while (c > 0)

{ cell = cell.nextSibling;

c--;

}

return cell.firstChild.nodeValue; // (12)

}

Brooks/Cole book/January 28, 2003

494 CHAPTER 10. DOCUMENT OBJECT MODEL AND DYNAMIC HTML

The strCompare function compares two text strings a and b by comparing corresponding

characters.

function strCompare(a, b)

{ var m = a.length;

var n = b.length;

var i = 0;

if (m==0 && n==0) return 0;

if (m==0) return -1;

if (n==0) return 1;

for (i=0; i < m && i < n; i++)

{ if (a.charAt(i) < b.charAt(i)) return -1;

if (a.charAt(i) > b.charAt(i)) return 1;

}

return (m - n);

}

And swapping two elements on the array is simple.

function swap(arr, i, j)

{ var tmp = arr[i];

arr[i]=arr[j];

arr[j]=tmp;

}

Now we can turn our attention to partition, the work horse in the quicksort algorithm.

The function is called with an array arr, and a sorting range, defined by the low index l

and the high index h, which has at least 3 elements. The function picks the middle element

as the pe (line 13), and partitions the given range into two parts separated by the pe. All

elements to the left of pe are less then or equal to pe and all elements to the right of pe are

greater than or equal to pe. The index of the pe is returned (line 18).

function partition(arr, l, h) // h > l+1

{ var i=l, j=h;

swap(arr, ((i+j)+(i+j)%2)/2, h); // (13)

var pe = arr[h];

while (i < j)

{ while (i < j && compare(arr[i], pe) < 1) // (14)

{ i++; } // from left side

Brooks/Cole book/January 28, 2003

10.18. A TICTACTOE GAME 495

while (i < j && compare(arr[j], pe) > -1) // (15)

{ j--; } // from right side

if (i < j) { swap(arr, i++, j); } // (16)

}

if (i != h) swap(arr, i, h); // (17)

return i; // (18)

}

Searching from the left (line 14) and right (line 15) end of the range, it looks for a pair of

out-of-order pair of elements and swaps them (line 16). When done, it moves the pe back

into position (line 17) and returns.

The complete quicksort and the table sorting example can be found in the example

package.

10.18 A TicTacToe Game

With DHTML many kinds of interactive games can be implemented. Let’s look at TicTacToe

as an example (Ex: TicTacToe). A CSS controlled <table> can server as the playing board.

Moves are made by clicking on the game board squares. Two files x.gif and o.gif provide

the graphical images for the game tokens (Figure 10.22).

The HTML code for the game board is a 3 by 3 <table>:

<table class="tic" cellspacing="0" border="0">

<tr><td id="tl" onclick="play(’tl’)" (a)

width="37" height="44"> </td>

<td id="tc" onclick="play(’tc’)" (b)

width="37" height="44"> </td>

<td id="tr" onclick="play(’tr’)" (c)

width="37" height="44"> </td>

</tr>

...

</table>

The first row is shown here. The other rows are entirely similar. Each table cell (<td>)

Brooks/Cole book/January 28, 2003

496 CHAPTER 10. DOCUMENT OBJECT MODEL AND DYNAMIC HTML

Figure 10.22: TicTacToe Game

has an id and a class attribute set to a string such as tl (top-left line a) and tr (top-

right line c). We thus simply identify the nine game squares. Each <td> has a width and

height setting to accommodate the game token image that, when played, will replace the

non-breaking space place holder as the content of <td>. Onclick, each <td> calls

play with its own id.

The game board is drawn with CSS border settings. For example, the style for the top

left square is

td#tl // id selector

{ border-right: thin #000 solid;

border-bottom: thin #000 solid;

}

And the style for the center square is

td#cc

{ border-top: thin #000 solid;

border-left: thin #000 solid;

border-right: thin #000 solid;

border-bottom: thin #000 solid;

}

Brooks/Cole book/January 28, 2003

10.18. A TICTACTOE GAME 497

These table cell styles when combined with the cellspacing and border attributes for

<table>, draws the game board.

In the Javascript code, nine variables (line 1) are used to indicate whether a game square

is open (zero) or taken (nonzero). The function play plays a token on the given (id) position.

It returns immediately if the square is not open (line 2). Otherwise, it proceeds to place

a token in the target square. It sets cell to the target <td> element (line 3), marks the

position as taken by player one or player two (line 4), obtains an element object representing

the game token (line 5), saves a copy of the content of <td> in the global variable sp (line 6),

and replaces the content of cell with the token (lines 7-8).

var tl=0, tc=0, tr=0, cl=0, cc=0,

cr=0, bl=0, bc=0, br=0; // (1)

var which=false, sp=null;

function play(id)

{ if (eval(id) > 0) return; // (2)

var cell = document.getElementById(id); // (3)

eval(id + (which ? "= 1;" : "=2;")); // (4)

tnode = token(); // (5)

if (sp == null)

sp = cell.firstChild.cloneNode(true); // (6)

cell.removeChild(cell.firstChild); // (7)

cell.appendChild(tnode); // (8)

}

The saved sp is used when restoring the game board for another game. Note, the call

cloneNode(true) performs a deep copy of a node, copying all nodes in the subtree rooted

at the node. If the argument false is given, only the children of node will be copied.

The token function creates a new element for x.gif or o.gif depending on the

setting of the Boolean variable which (line 9) whose value alternates every time token is

called (line 10).

function token()

{ var t = document.createElement("img");

if (which) // (9)

t.setAttribute("src", "o.gif");

Brooks/Cole book/January 28, 2003

498 CHAPTER 10. DOCUMENT OBJECT MODEL AND DYNAMIC HTML

else

t.setAttribute("src", "x.gif");

which = ! which; // (10)

t.setAttribute("width", "35");

t.setAttribute("height", "40");

t.style.display = "block"; // (11)

return t;

}

The token image displays as a block element (line 11) so it fits exactly on the board. The cen-

ter square (id=cc), calls newgame() on double click which restores the game board (line 12)

and resets the game variables (line 13) for another game.

function newgame()

{ blank(tl, "tl"); blank(tc, "tc"); // (12)

blank(tr, "tr"); blank(cl, "cl");

blank(cc, "cc"); blank(cr, "cr");

blank(bl, "bl"); blank(bc, "bc");

blank(br, "br");

tl=tc=tr=cl=cc=cr=bl=bc=br=0; // (13)

}

function blank(n, id)

{ if (n == 0) return; // no token

var cell = document.getElementById(id);

cell.removeChild(cell.firstChild);

if (sp != null)

cell.appendChild(sp.cloneNode(true));

}

The function blank replaces a board position with a token by a copy of the saved blank

node sp. The function blank can be simplified to

function blank(n, id)

{ if (n == 0) return; // no token

var cell = document.getElementById(id);

cell.innerHTML = " ";

}

Brooks/Cole book/January 28, 2003

10.18. A TICTACTOE GAME 499

for browsers that support the innerHTML feature. Under NN and IE all HTML elements have

the innerHTML field that gives you the HTML code contained inside the element. You can

also set this field to modify the content of any element. It is very convenient for programming.

This simple implementation is functional enough to be used by two players. Chapter-end

exercises suggest improvements to this program. isectionWindows and Frames

Before the introduction of DOM, browsers such as NN and IE already had their own

objects for windows, frames, and various HTML elements. DOM makes the document model

more complete, systematic, and uniform across all browsers. The DOM addresses only the

object structure of the document. The window object that represents the on-screen window

containing the document is not part of the DOM specification. Many important features of

the window object do work consistently across major browsers (Section 9.12). In particular

window.document gives you the root of the DOM tree.

With the introduction of DOM, browser vendors are implementing the window object in

the same DOM spirit leading to a more functional, and better defined interface to the window

object. Since version 6, NN is leading the way in this regard. Materials in this section show

how the window object works with frames and the DOM tree in NN 6 and later versions.

The window Object

Useful fields of window include

• window.document—a reference to the root of the DOM tree conforming to the DOM

Document interface.

• window.frames—an array of frames in this window.

• window.innerHeight, window.innerWidth—the height and width in pixels for content

display in the window.

• window.navigator—a reference to the navigator object (Section 9.11).

• window.parent—the parent window containing this window or null.

Brooks/Cole book/January 28, 2003

500 CHAPTER 10. DOCUMENT OBJECT MODEL AND DYNAMIC HTML

• window.top—the top-level window.

• window.screen—an object representing the computer display screen.

Many window methods have been described in Section 9.12. We list a few more here.

• window.dump(str)—outputs str to the Javascript console.

• window.print()—prints window.document

Vertical Page Positioning

Sometimes, a page layout calls for the positioning of an HTML element at a certain vertical

position in the display window. For example a site entry may be a graphics image or a Flash

animation that is vertically centered in the window or starts 1/3 of the way down. Vertical

centering is not easy with HTML alone. But can be done rather simply with DHTML.

Here is a simple example (Ex: VCenter).

<body onload="vcenter()" style="margin: 0">

<table width="100%" cellpadding="0" cellspacing="0"> (1)

<tr><td><img id="padding" src="img/clear.gif"

alt="padding" width="100" height="150" /></td></tr> (2)

<tr align="left">

<td style="width:100%; height:300px">

<img src="img/entry.gif" width="1200"

height="300" style="border-style:none" /></td>

</tr></table></body>

The entry graphic entry.gif is 300 pixels high. It needs to be centered vertically in the

window. We put the graphic in the second row of a table that covers the whole window

(line 1). The first row is a padding provided by a transparent image (line 2) whose height is

set dynamically by the Javascript function vcenter():

function vcenter()

{ var ht = window.innerHeight-300; // (3)

ht = (ht - ht%2)/2; // (4)

var cell = document.getElementById("padding"); // (5)

Brooks/Cole book/January 28, 2003

10.19. A CODE EXPERIMENTER 501

cell.setAttribute("height", ht); // (6)

}

window.onresize=vcenter; // (7)

To center vertically, vcenter computes the difference of the window inner height and the

height of the image to be centered (line 3). Dividing that by 2 gives the height of the desired

padding which is set as the height attribute of the padding image (lines 4-6). The function

is called on load and also on window resizing (line 3) so the element stays centered. This

idea is easily generalized to perform other dynamically computed vertical positioning.

The WDP website provides the complete working version of this example.

10.19 A Code Experimenter

For people learning or using HTML, style sheets, and Javascript, it is often beneficial to

experiment with code fragments to see their effects. We can build a page with two frames,

side-by-side (Ex: TryCode). In one frame, the user can enter and edit code in a textarea.

With DHTML, the other frame can show the effect of the code (Figure 10.23).

The frameset page has the following code.

<head>

<title>Code Experimenter</title></head>

<frameset cols="40%,60%">

<frame frameborder="1" id="codeframe" src="code.html"

scrolling="auto" />

<frame id="resultframe" src="result.html" />

</frameset>

</html>

The result.html page is very simple.

<head><title>Results</title></head>

<body><p>The result is shown here</p></body>

</html>

And the code.html page contains the textarea for entering and editing experimental code.

Brooks/Cole book/January 28, 2003

502 CHAPTER 10. DOCUMENT OBJECT MODEL AND DYNAMIC HTML

Figure 10.23: Code Experimenter

<textarea style="width:100%; background-color: #def"

id="code" cols="65" rows="16">

Put your HTML code fragment here. (1)

Anything that the HTML body

element may contain is fine. (2)

</textarea>

<p><input name="result" type="button"

value="Show result" onclick="show()" />

<input type="button" value=" Cancel "

onclick="goBack()" /></p>

<p>You can enter and edit code in this window,

and click on "Show result" to see the result in

the window on the right. Click "Cancel" to go

back to the hands-on page.</p>

</body></html>

The HTML source contained in textarea (lines 1-2) can be anything here. The user will

enter the code interactively for experimentation. The Javascript code in code.html supports

the desired effects. The Show result button calls show(). It obtains the document object

in the window for the frameset (line A). Note window is the window for the codeframe

and from this frame window.top (or window.parent is the window for the frameset. From

Brooks/Cole book/January 28, 2003

10.20. DHTML ACCESS TO WEB SERVICES 503

the resultframe element (line B), we obtain its document object (line C) and the <body>

element (line D) in that document to show the code. We applied the HTMLDocument method

getElementsByTagName (Figure 10.14) to get the body element.

The HTML source in the textarea is assigned as the content innerHTML of the <body>

element (lines E-F).

<head>

<script type="text/javascript">

function show()

{ var b = window.top.document; // (A)

var f = b.getElementById("resultframe"); // (B)

var d = f.contentDocument; // (C)

var bb = d.getElementsByTagName("body").item(0); // (D)

var c= document.getElementById("code"); // (E)

bb.innerHTML=c.value; // (F)

}

function goBack() { window.top.back(); }

</script>

This example also shows the usage of frame objects and how they can interact under

DOM.

10.20 DHTML Access to Web Services

DHTML can do many things to make Web pages more responsive and more functional. But

it is, up to this point, restricted to operating on data already in the page and input by the

user from the keyboard. DHTML can be much more powerful and useful if it can manipulate

data from other Web pages and perhaps even obtain data from server-side programs. The

data thus obtained can be incorporated at appropriate places in a Web page. For example,

a stock price can be obtained and inserted in an article on stock trading; a travel page can

display weather forecast information of the departure and arrival cities for the travel dates;

maps and driving directions can be included for stores and businesses, etc.

Brooks/Cole book/January 28, 2003

504 CHAPTER 10. DOCUMENT OBJECT MODEL AND DYNAMIC HTML

Figure 10.24: Fortune Cookie Web Service

Thus, Web services provide well-defined data and DHTML can fetch such data dynami-

cally and insert them at designated places on the DOM tree. A Web service does not have to

return a complete HTML page. It may return just an HTML fragment suitable for inclusion

in another Web page. In time such usage will be common-place and standardized.

To show how this can work with current DHTML techniques, let’s look at a fortune cookie

program (Figure 10.24). This program Ex: Fortune works with two frames as follows.

• When the end user clicks on the picture of a crystal ball, a request is made to a Web

service that returns a fortune cookie message.

• The fortune cookie page is loaded in a hidden frame and contains Javascript code which

will deposit the fortune cookie HTML fragment into the viewing frame.

The frameset code hides the first frame (line 1) and shows only the second frame (line 2).

<?xml version="1.0" encoding="UTF-8" ?>

<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Frameset//EN"

Brooks/Cole book/January 28, 2003

10.20. DHTML ACCESS TO WEB SERVICES 505

"http://www.w3.org/TR/xhtml1/DTD/xhtml1-frameset.dtd">

<html xmlns="http://www.w3.org/1999/xhtml"

xml:lang="en" lang="en">

<head><title>Web Service Access</title></head>

<frameset rows="0,*">

<frame id="hide" name="hide" src="empty.html" /> (1)

<frame id="show" name="show" src="fortune.html" /> (2)

</frameset>

</html>

The empty.html file is very simple and can be anything similar to

<?xml version="1.0" encoding="UTF-8" ?>

<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Strict//EN"

"http://www.w3.org/TR/xhtml1/DTD/xhtml1-strict.dtd">

<html xmlns="http://www.w3.org/1999/xhtml"

xml:lang="en" lang="en">

<head><title>hidden access</title></head>

<body></body></html>

The fortune.html page displays the crystal ball and ties it to the access of the fortune

cookie service (line 3).

<head>

<title>Web Service Demo: Fortune Cookie</title>

<script type="text/javascript" src="service.js"></script>

</head>

<body style="font-size: Large; margin: 50px 10%">

<p >Want to get a fortune?

Ask the crystal ball !</p>

<p>

<img onclick="comp(’/cgi-bin/fortune.pl’)" // (3)

style="float: left; margin-right: 1em;

margin-bottom: 1em;"

src="img/crystalball_stand.gif"

width="110" height="142"

alt="Crystal ball on a stand" /></p>

<p id="ans" class="ans">

000<*@!+_($&0000000<*@!+_($ // random letters

&0000000000<*@!+_($&</p>

</body>

Brooks/Cole book/January 28, 2003

506 CHAPTER 10. DOCUMENT OBJECT MODEL AND DYNAMIC HTML

The comp function is in service.js. It obtains the frameset window (line 4), then the

window object for the hidden frame (line 5) and sets its location to the target URL t.

function comp(t)

{ tw = window.top; // (4)

afw = tw.frames["hide"]; // (5)

afw.location=t;

}

The loading of the result page from the fortune.pl service is completely hidden. And the

result page contains Javascript code to modify the DOM tree of the show frame.

The Perl code for fortune.pl is as follows.

#!/usr/bin/perl

my $xhtml_front =

’<?xml version="1.0" encoding="UTF-8" ?>

<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Strict//EN"

"http://www.w3.org/TR/xhtml1/DTD/xhtml1-strict.dtd">

<html xmlns="http://www.w3.org/1999/xhtml"

xml:lang="en" lang="en">’;

$ft = ‘/usr/games/fortune‘; ## (6)

print <<END;

Content-type: text/html

$xhtml_front

<head><title>Fortune</title>

<script type="text/javascript">

function act()

{ nd = document.getElementById("fortune"); // (7)

code = nd.innerHTML; // (8)

td = window.top.document; // (9)

f = td.getElementById("show");

afd = f.contentDocument;

bb = afd.getElementById("ans");

bb.innerHTML=code; // (10)

}

</script></head>

<body onload="act()" id="fortune">

<p style="color: blue"> $ft </p>

Brooks/Cole book/January 28, 2003

10.21. FOR MORE INFORMATION 507

</body></html>

END

exit;

The Perl program calls the UNIX program fortune (line 6) which generates a randomly

selected ”fortune cookie” message each time it is called. The ”fortune” is sent in the <body>

of the returned page. The Javascript function act is called when the returned page is loaded

to obtain the HTML code in the <body> (lines 7-8) and place the HTML code in the ans

element of the show frame (lines 9-10).

Due to security concerns, the Web service must be provided by the same Web server that

supplied the show frame page. Only the Javascript code in such pages are allowed to access

and modify the show frame page.

The list of files involved in this example are:

• webservice.html—the frameset

• fortune.html—the show frame page

• empty.html—the hide frame page

• service.js—Javascript included in fortune.html

• fortune.pl—Perl CGI script delivering the fortune cookie and Javascript code

The technique considered here can be applied together with the code experimenter (Sec-

tion 10.19) to load different pages for experimentation.

10.21 For More Information

This chapter gets you started in standard-based DHTML. As DOM, Javascript, and CSS

standards grow and evolve, and as browser compliance becomes more complete and wide

spread, DHTML will be an increasingly more powerful and effective tool for delivering dy-

namic Web pages.

Brooks/Cole book/January 28, 2003

508 CHAPTER 10. DOCUMENT OBJECT MODEL AND DYNAMIC HTML

For more information on the W3C standards see www.w3c.org. For DOM bindings to

the ECMA Script see

www.w3.org/TR/REC-DOM-Level-1/ecma-script-language-binding.html

For the Netscape implementation of DOM see the Gecko DOM reference

www.mozilla.org/docs/dom/domref/dom_shortTOC.html

For standard-based DHTML sample codes see, for example,

www.mozilla.org/docs/dom/samples/

dmoz.org/Computers/Programming/Languages/

JavaScript/W3C_DOM/Sample_Code/

webfx.eae.net

10.22 Summary

DHTML is a technique that combines Javascript, CSS, and HTML. DOM is a W3C recom-

mended standard API for accessing and modifying HTML and XML documents. DHTML

with DOM results in powerful and cross-platform code.

Browsers support the DOM specified API and provides the required objects and methods

for Javascript programming. The window.document object implements the HTMLDocument

interface and gives you the root node of a Web page. Each element on this DOM tree corre-

sponds to an HTML element in the source document and implements the HTMLElement in-

terface, derived from Element which extends Node. The document.getElementById method

is handy for obtaining the DOM object representing any HTML element with an assigned

id. Starting from any node el on the DOM tree you can follow the child (el.childNodes,

el.firstChild), parent (el.parentNode) , and sibling (el.nextSibling, el.previousSibling)

Brooks/Cole book/January 28, 2003

EXERCISES 509

relations to traverse the entire tree or any parts of it. You can also access and mod-

ify element attributes (el.getAttribute(attr), el.setAttribute(attr, value)) and styles

(el.style.property).

The DOM API allows you to systematically access, modify, delete and augment the

DOM tree resulting in altered page display: e.removeChild(node), e.appendChild(node),

e.replaceChild(new, old), e.insertBefore(new, node). New tree nodes can be created

in Javascript with document.createElement(tagName), document.createTextNode(string).

When you combine event handling, including those generated by window.setTimeout(),

and style manipulations, many interesting and effective dynamic effects can be achieved for

your Web pages.

Accessing Web services with DHTML promises to allow developers to add value to Web

pages by including information dynamically produced by various services on the Web.

Exercises

Review Questions

1. What is DHTML? Explain in your own words.

2. What are three important enabling technologies for standard-based DHTML?

3. What is DOM? the DOM tree? the most basic Node object?

4. Name important types of nodes on the DOM tree and describe the DOM tree for a

Web page in detail.

5. Write down the Javascript code for obtaining the DOM node for an HTML element

with a given id and for determining its node type.

6. What is the nodeName and nodeValue for an HTMLElement?

7. Describe the HTMLElement interface.

Brooks/Cole book/January 28, 2003

510 DOCUMENT OBJECT MODEL AND DYNAMIC HTML

8. Explain the fields and methods in the HTMLDocument interface. Which object available

by Javascript supports this interface?

9. How does Javascript modify the presentation style of an element on the DOM tree?

10. Compare the window object described in Section 10.18 and Section 9.12.

11. Explain the concept of Web service and the access of Web services with DHTML.

Assignments

1. Improve the Ex: DomHello in Section 10.2 and make the mouseover action also

change the text “over the phrase” to “out of the phrase”. Test and see how well

it works.

2. Modify the Ex: DomCalc in Section 10.6 and present a display in the form string

= result.

3. Test the normalize method of Node (Section 10.7) to see how well it is supported by

your browser.

4. Consider Ex: DomDft in Section 10.8). The traversal does not take comments into

account. Modify the dft function to remedy this and test the traversal on pages that

contain comments. (Hint: Node.COMMENT_NODE is 8.)

5. Consider the visual navigation of DOM tree (Section 10.9). Take (Ex: DomNav)

and add a tree display of the table. As the user navigates the table, show the current

position also on the DOM tree display.

6. Consider the guided form example in Section 10.11. Add the correctness check of email

from Section 9.15) to it.

7. Follow the in-place fade-in example in Section 10.12 and write the code to achieve

fade-out.

Brooks/Cole book/January 28, 2003

EXERCISES 511

8. Take the ”disappearing country code” problem described at the end of Section 10.16

and fashion a solution.

9. Add a unmove button to the TicTacToe program in Section 10.18 to take away the

last move made.

10. Improve the TicTacToe program in Section 10.18 by adding the ability to play with

the computer. (Hint: add move generation.)

11. Construct a pocket calculator using DHTML. Layout the LCD window and calcula-

tor buttons with a table and simulate the functions of the common calculator with

onclick events on the buttons.

Brooks/Cole book/January 28, 2003

512 DOCUMENT OBJECT MODEL AND DYNAMIC HTML

Brooks/Cole book/January 28, 2003

