
 Case Study of the Hawk Development Project

1

LA-UR-05-9011

Approved for public release;
distribution is unlimited.

Title: Case Study of the Hawk Code
Project

Author(s): Richard Kendall, LANL ; Jeff Carver,
Mississippi State U.; Andrew Mark,
HPCMPO; Douglass Post; HPCMPO;
Susan Squires, Sun Microsystems, Inc.;
Dolores Shaffer, S&T Associates, Inc.

Los Alamos National Laboratory, an affirmative action/equal opportunity employer, is operated by the University of California for the
U.S. Department of Energy under contract W-7405-ENG-36. By acceptance of this article, the publisher recognizes that the U.S.
Government retains a nonexclusive, royalty-free license to publish or reproduce the published form of this contribution, or to allow
others to do so, for U.S. Government purposes. Los Alamos National Laboratory requests that the publisher identify this article as
work performed under the auspices of the U.S. Department of Energy. Los Alamos National Laboratory strongly supports academic
freedom and a researcher’s right to publish; as an institution, however, the Laboratory does not endorse the viewpoint of a publication
or guarantee its technical correctness.

Form 836 (8/00)

 Case Study of the Hawk Development Project

2

Case Study of the Hawk Code Project

Richard Kendall, Los Alamos National Laboratory, rpk@lanl.gov

Jeff Carver, Mississippi State U.,carver@cse.msstate.edu
Andrew Mark, DoD HPCMPO,amark@hpcmo.hpc.mil
Douglass Post, DoD HPCMPO,post@hpcmo.hpc.mil

Susan Squires, Sun Microsystems, Inc.,Susan.Squires@Sun.com
Dolores Shaffer, S&T Associates, Inc.,dshaffer@stassociates.com

Abstract

The DARPA High Productivity Computing Systems (HPCS) program is
sponsoring a series of case studies to identify the life cycles, workflows
and technical challenges of scientific code development representative
of the program’s participants. A secondary goal is to characterize how
software development tools are used and what enhancements would
increase the productivity of scientific code developers. The studies also
seek to identify “lessons learned” that can be transferred to the
general computational science community to improve the code
development process.

The Hawk code study is the second code project to be analyzed. This
project is based at a large institution under the sponsorship of a
federal sponsor. The code development team consisted of a computer
scientist and two engineers who developed an engineering code which
models a manufacturing process.

Categories and Subject Descriptors

D.2.0 [Software Engineering].
D.2.9 [Management]: Life Cycle, Productivity.

General Terms

Management, Verification

Keywords

High Performance Computing, Verification and Validation, Software
Project Management, Case Studies

 Case Study of the Hawk Development Project

3

1. Introduction

Through the sponsorship of the DARPA High Productivity Computing
Systems (HPCS) program, the present authors are performing studies
of high-performance computing application code development projects
in order to identify their critical success factors. These studies are also
intended to help hardware and software vendors identify issues that
must be addressed to improve the productivity of the code
development process and to develop a body of case studies for the
computational science and engineering community.

It is important in studies of this type to maintain the anonymity of the
code project, the host institution and the sponsoring agency or
company. As a consequence, “Hawk” is a pseudonym and details that
might reveal the identity of the code project have been omitted.

This study followed the methodology described in the Falcon case
study:

a. Identify the project and sponsors
b. Negotiate case study with team and sponsors
c. Complete pre-interview questionnaire process
d. Analyze the questionnaire and plan on-site interviews
e. Conduct on-site interview with the team
f. Analyze the on-site interview and integrate with questionnaire
g. Conduct follow-up to resolve unanswered questions
h. Write a report and iterate with code team and sponsor
i. Publish the report

2. Code Characteristics

The purpose of the Hawk code development project was to develop a
computational predictive capability to analyze the manufacture of a
family of composite material products. This would allow the sponsor to
minimize the use of time-consuming, expensive prototypes to ensure
the efficient fabrication of the products.

The manufacturing problem that the Hawk code addresses is governed
by three physical processes:

a. chemical reactions
b. heat transfer
c. fluid flow through a porous medium

 Case Study of the Hawk Development Project

4

The model for this process involves four independent variables:
pressure, temperature, void fraction and degree of completion of
chemical reaction. The fluid flow and thermal transport occur on
different time scales. In the previous generation of the Hawk code,
these variables were computed explicitly. The desire to model the
manufacturing process in three dimensions and the prohibitive length
of time to perform them with the earlier, explicit code—even on
supercomputers—resulted in the pursuit of an implicit treatment of the
model. The general computational approach is to use operator splitting
for fluid flow, heat transport, and the chemical reactions. The general
objective of a suite of runs of the Hawk code is to determine the
shortest time to manufacture the product with uniform properties.

Hawk employs an unstructured, fixed finite element mesh to represent
and resolve the objects to be manufactured. These can exhibit very
complex geometries which may require a significant effort to represent
in Hawk (months of staff-time). The development of the current
version of Hawk began in 1999-2000. The earlier version was
originally targeted for a Connection Machine system, with a data
parallel1 code architecture, but evolved into a message passing
architecture based on MPI (and targeted to machines like the SGI
Origin 3900). The future direction, in so far as port to future hardware
is concerned, of the Hawk code has been set by the adoption of MPI.
Hawk has been successfully ported to hardware developed by SGI
(Origin® 3900), Linux Networx (Evolocity® Cluster), IBM (P-Series®
690 SP) and Intel-based Windows platforms. Domain decomposition is
employed to promote parallelism and is implemented with Metis©.

Like the Falcon2 code, Hawk was developed with multiple languages.
There are approximately 134,000 lines of executable code in the
program library of which 67% are written in C++, and 18% in C. The
remaining 15% are in Fortran 90 and Python, primarily. All of the finite
element “objects” and object manipulation is coded in C++ (a strong
contrast to the Falcon project, which is based primarily on an object-
oriented instantiation of Fortran 77); the Fortran 90 code derives
primarily from third-party suppliers.

The code has been deployed to internal and external product
engineers, who use it with the help of the Hawk development team.
Development team support is important even in the production stage
because of the challenges associated with gridding the manufactured
objects. The number of customers is relative small (tens). In some
cases they come from industries external to the sponsor. The small

 Case Study of the Hawk Development Project

5

user base for Hawk represents a problem for its long-term survival—
the sponsor responds to user demand (b).

3. Code Project and Team

The Hawk Project had two phases. This report focuses primarily on
phase 2, which started in 1999-2000. During the second phase the
Hawk development project had a formal project development plan
(contract) from the beginning. The deliverables and performance
expectations were established in this contract with its sponsor. Care
was taken to ensure that the resources and schedules were consistent
with the objectives. The contract was reviewed annually. The plan
captured details like the maximum expected divergence between
scalar and parallel runs and the expected conformance to established
experimental results---both unusual for scientific codes. On the other
hand, the plan was not so rigid that it did not allow for any “surprises,”
the unexpected that is typical for scientific codes that extend modeling
capabilities into new realms (in this case, 3-D). Both the Hawk sponsor
and the development team consider the approach consisting of guiding
an “agile3” team (for example, one that emphasizes individuals and
interactions over processes and tools) with a flexible “contract” to be a
critical success factor for this project (a).

During both phases of the Hawk project, staffing was approximately 3
FTEs. In phase 2, the Hawk development team consisted of three
professionals: a computer scientist and two mechanical engineers.
The Hawk team believes that having a multi-disciplinary team
contributed to the success of the project (h). As one team member
stressed:

“In these types of high performance, scalable computing
(applications), in addition to the physics and mathematics, computer
science plays a very major role. Especially when looking at
optimization, memory management and making it <the code>
perform better.”

One member of the team covered the engineering and algorithmic
aspects of the project. The computer scientist provided special
expertise in “compiler optimization and parallel programming.” Both of
these team members had participated in the first phase of the project
(pre-2000). The third member of the most recent phase of the project
(phase 2) took primary responsibility for porting earlier code from F90
to C++. The computer scientist served as the team leader. The small
size of the team limited the degree of formality required to manage
the Hawk development project. Moreover, the team leader was able to
play a role in the development of the code, not just in the

 Case Study of the Hawk Development Project

6

management of the project. During phase 1, there was also a
mathematician and an HPC programmer assigned to the effort. The
cohesiveness of the current Hawk team and the shared project
framework provided by a flexible development plan made it possible
for such a small team to meet the expectations of its sponsors. This is
in contrast to phase 1, which lacked both team cohesiveness and a
development plan and was considered less successful (f). The sponsor
estimated that disruptive behavior of some members of the phase 1
team set the project back two years (g). An illuminating comment
regarding team cohesiveness was made by the team leader about the
mathematician who participated in the first phase of Hawk: “For the
longest time it was like he was speaking German and we were
speaking French.” The development of the current version of Hawk was
guided by the following principles:

• Generic, modular, efficient, simple
• Visually friendly
• Robust
• Standards-compliant
• Based on open source tools to the greatest extent possible
• Library-oriented

The members of the Phase 2 team were also guided by work principles
that enhanced their ability to work together well. This effective
working structure may have been factors in their ability to arrive to
solution more quickly. Ongoing and frequent communication during
development saved time. As one team member pointed out,

“I am at <a different location> right now and still working on code
development. Sometimes I will change something, submit
something, and I will get a call from <the team leader>. We talk a
couple times a day and we are always up to date on changes so
that communication is important” (i).

In phase 2 the team developed clear work roles and responsibilities
that encouraged collaboration. There was clear agreement during our
interview with the team members where several members commented
on this point.

“Only thing I can say is you need a multi-disciplinary team. It
<C++> is not a trivial language to deal with.”

“In these situations you need an equal mixture of subject theory,
the actual physics, and technology expertise. . .I was more involved

 Case Study of the Hawk Development Project

7

in the subject area and the specifics of the process being modeled.
Code development was more <in the hands of other team
members> in Hawk 2.”

Finally, the phase 2 team established expectations (rules) about such
things as code version control that helped minimize conflict.

Phase 1 of Hawk, launched during the early ‘90s, was anchored to a
procedural development approach implemented in Fortran 90. There
was a lack of modularity and little potential for code reuse. Portability
was also an issue. C++ offered a way to deal with the first two of
these problems. Moreover, it appeared to offer an especially attractive
way to deal with the problem of ensuring correctness of
implementation for the manipulation of mesh elements, which is a
central activity of the Hawk code. Other early development priorities
included efficiency, parallel scalability, maintainability, extensibility
and reduced development time. Of the twenty or so possible software
development metrics that could have been used to track the
development process, the Hawk team chose to employ:

• Lines of code
• Time-to-fix defects
• Test coverage
• Code performance
• Parallel scaling
• Number of users

The Hawk team recognized that performance was likely to be an issue
with an object-oriented approach based on C++ (the Falcon project
took a very different approach for this reason). The team judged that
it had to limit the use of performance robbing features of C++ like
inheritance and templates to ensure that the penalty for making this
choice of primary language was no greater than 20%. The 90/10
locality rule seems to apply to Hawk, namely that 10% of the code
consumes most of the runtime. For Hawk it is the linear solvers that
dominate the runtime. The Hawk solvers, from third-party sources, are
coded in C or Fortran and are very efficient. This greatly diminishes
the penalty that the use of C++ imposes on the rest of Hawk. An
approach like this, contrary to urban legend, shows that C++ can be
used competitively in a production-level scientific code (c).

Different message passing approaches were considered by the Hawk
development team during the early development phase (MPI vs. HPF
vs. Open MP). There were portability concerns about Open MP at the

 Case Study of the Hawk Development Project

8

time a decision had to be made and it was judged not to be well-suited
for use with unstructured grids. The experience with HPF was
discouraging—the learning curve seemed “as steep as with C++
without the benefits.”

Hawk was envisioned as a code that would span generations of
hardware. Uncertain future technology is a risk that codes with this
ambition must manage. The Hawk team made a conscious decision to
manage this risk by (1) requiring access to source code from third-
party sources, (2) avoiding proprietary solutions (that is, choosing
open source equivalents where possible), and (3) developing multiple
options as a fall-back position. The hardest risk to manage was that
experienced with some open source codes that did not adhere to
commonly accepted software standards (e).

4. Code Life Cycle and Workflow

Unlike the Falcon project reported on earlier, the Hawk project did not
establish firm expectations about the duration of the life cycle for this
code. An earlier incarnation of Hawk was started in the early ‘90s, so it
is fair to say that at least some of the capabilities of Hawk have
existed for nearly a decade. The developers of Hawk certainly had the
expectation that it would be useful over multiple generations of
hardware; however, the current instantiation of Hawk has only existed
through one generation.

The development of Hawk has followed the general life cycle described
in Figure 1. Hawk has experienced one production release, but there is
currently no formal support for this code, due to the lack of support
from customers (b). The deliverables described in the software
development plan have been completed. Minimal maintenance is
performed on a “volunteer” basis. There is a pending request to port
Hawk to the Cray X-1.

If we look at Hawk as a 2 phase process, we should consider phase 1
as an experimental phase, although it was not intended as such. The
code developed in phase 1 was evaluated and it was decided that

Formulate
Questions
and Issues

Develop
Computational

Approach
Develop
Code V&V

Production
Runs

Time line to solution Iterate

Make
Decisions,
Develop

Hypotheses
Analyze
Results

Figure 1: The life cycle of a typical scientific code

 Case Study of the Hawk Development Project

9

important changes were needed if the application was to be successful.
This broader view reinforces our understanding of a typical scientific
code life cycle, exhibited in Figure 1, as iterative, not linear, to include
1) an initial formulation of solution, 2) code experimentation
(intended, or not) and 3) an evaluation stage. The problem was then
reformulated to address issues raised in the code evaluation. The
middle steps in Figure 1 were repeated in the two phases of the Hawk
project.

The development approach for the second phase has been
characterized by the Hawk team itself as “iterative” with alpha and
beta releases and prototypes. This did not happen in the first phase.
Development is done in small increments that can easily be rolled back
if a problem is discovered. Nominally, 25% of the project resources
were devoted to analysis and design (the first two steps in Figure 1),
40% to code development and debugging, 20% to testing, and 15% to
production release and maintenance. These figures were based on the
recollections of Hawk team members, not on actual measurements
during the development cycle. The Hawk workflow was consistent with
the diagram presented in Figure 2.

Figure 2: Typical Scientific/Technical Code Development
Workflow.

Formulate
questions

Develop
Approach

Develop
Code

V&V Analyze
Results

Production
Runs

Decide;
Hypothesize

Define
Goals

Set global
Requirements

Identify
Customers

Define
General

Approach

Customer
input

Identify
algorithms

Detailed
Design

Recruit
Team

Detailed
Goals

Computing
environment

Select
Programming

Model

Write
Component

Debug
Component

Test
Component

Define
tests

Regression
Tests

Verification
Tests

Validation
Tests

Validation
Expts.

Identify
Models

Setup
Problems

Schedule
Runs

Execute
Runs

Store
Results

Initial
Analysis

Complete
Run

Optimize
runs

Optimize
Component

Analyze
Run

Identify
Next Run

Computational
Science
Workflow

Formulate
questions

Develop
Approach

Make
Decisions

Document
Decisions

Identify
Uncertainties

Identify
Next Step

Upgrade existing code
or develop new code

Formulate
questions
Formulate
questions

Develop
Approach
Develop

Approach
Develop

Code
Develop

Code
V&VV&V Analyze

Results
Analyze
Results

Production
Runs

Production
Runs

Decide;
Hypothesize

Decide;
Hypothesize

Define
Goals
Define
Goals

Set global
Requirements

Set global
Requirements

Identify
Customers

Identify
Customers

Define
General

Approach

Define
General

Approach

Customer
input

Customer
input

Identify
algorithms

Identify
algorithms

Detailed
Design
Detailed
Design

Recruit
Team

Recruit
Team

Detailed
Goals

Detailed
Goals

Computing
environment
Computing

environment

Select
Programming

Model

Select
Programming

Model

Write
Component

Write
Component

Debug
Component

Debug
Component

Test
Component

Test
Component

Define
tests

Define
tests

Regression
Tests

Regression
Tests

Verification
Tests

Verification
Tests

Validation
Tests

Validation
Tests

Validation
Expts.

Validation
Expts.

Identify
Models
Identify
Models

Setup
Problems

Setup
Problems

Schedule
Runs

Schedule
Runs

Execute
Runs

Execute
Runs

Store
Results
Store

Results

Initial
Analysis

Initial
Analysis

Complete
Run

Complete
Run

Optimize
runs

Optimize
runs

Optimize
Component

Optimize
Component

Analyze
Run

Analyze
Run

Identify
Next Run
Identify

Next Run

Computational
Science
Workflow

Formulate
questions
Formulate
questions

Develop
Approach
Develop

Approach

Make
Decisions

Make
Decisions

Document
Decisions
Document
Decisions

Identify
Uncertainties

Identify
Uncertainties

Identify
Next Step

Identify
Next Step

Upgrade existing code
or develop new code

 Case Study of the Hawk Development Project

10

Most of the experience with the Hawk code to date is confined to the
left half of the diagram above.

The Hawk development team made significant use of external life cycle
management tools. Their choices are summarized in Table 1.

Code Development Environment
Compilers/Interpreters C++,C,Fortran, Java
Scripts Python
Debuggers Valgrind, gbd
Performance Monitoring Speedshop, PAPI
Domain Decomposition Metis
Execution Environment
Element Generation CAD ProE
Visualization ICE, VTK, Paraview, Tecplot
Data Analysis XDMF (supports Paraview)
Code Development Process Tools
Configuration Management CVS
Bug Tracking Custom (~Bugzilla)
Code Documentation Doxygen
Support Libraries
Computational Mathematics PETc,VSS,PSPASES,CG
Parallel Programming Libraries MPI

 Table 1: Hawk Life Cycle Management Tools

The Hawk code verification procedure emphasized two approaches:

• Comparing code results to a relevant problem with an exact
answer

• Comparing calculated with expected results for a problem
specifically manufactured to test the code (the so-called method
of manufactured solutions4)

The Hawk development team also relied on the preservation of
conserved quantities and the preservation of symmetries as indicators
of the correctness of the code.

Validation focused on

• Controlled experiments conducted in the past
• Recent controlled experiments designed to certify the

performance of a component of the system

 Case Study of the Hawk Development Project

11

The Hawk development team has developed a test suite that exercises
51-75% of the code, which is typical of such projects. Atypical is the
fact that the Hawk program development plan established a priori
bounds on the acceptable conformance between scalar and parallel
runs of the code (within 1-2%) and the conformance between
simulations and experimental data (within 32%) from a history of past
performance and insights gained from the first phase of Hawk.

The Hawk project was managed to CMM level 2 (CMM2)5. By this we
mean that CMM2 attributes (such as documentation, a software
development plan, measures of effectiveness, etc.) were required by
the sponsor; however no formal accreditation by SEI was ever sought.

In summation, the Hawk code is at a cross-road. It is a good example
of a well-managed scientific code development project that has not
identified enough customer support to ensure its long-term viability (b).

5. “Lessons Learned”

The Hawk study has reinforced some lessons learned in previous
studies:

a. Successful scientific code development in small projects tends to
be “agile”, but planning is important to the success of scientific
software development projects.

b. Customers, not marketing departments or even sponsors,
determine the long-term fate of these codes.

c. Higher level languages (e.g. C++) can be successfully deployed
in the high performance milieu if used with care.

d. Portability is essential for long life cycle codes.
e. Risk management is important to the success of long-term

technical software development projects. An emerging risk is the
dependence on externally-developed tools, but the Hawk team
considered the failure to adhere to standards of open source
tools (ANSI, best programming practices) to pose the greater
risk.

f. Small code teams with only two or three members can operate
successfully with a minimum of processes if the team is highly
skilled and there is sufficient planning and interaction among the
team members (this is a corollary to a.).

g. Management support to limit damage by disruptive or
uncooperative team members is essential to success.

 Case Study of the Hawk Development Project

12

h. A multi-disciplinary team can be very efficient and effective. In
fact, the Hawk team believes that success was achieved because
of a multi-disciplinary team approach that combined expertise in
engineering, mathematics, programming and optimization.

i. During the formative stages of code development, good
communication is critical. The Hawk team evolved from one that
was initially co-located to one that is widely geographically
separated. The well-established patterns of communication
developed early on made this possible.

6. References

1. Dongarra, et. Al. Sourcebook of Parallel Computing,
Elsevier Science, San Francisco (2003), page 50.

2. Post, D.E, Kendall, R.P. and E.M. Whitney, “Case Study of
the Falcon Code Project,” 2nd Workshop on HPC
Applications, ACM/IEEE International Conference on
Software Engineering, St. Louis MO, May 22, 2005.

3. see http://www.agilealliance.com/
4. Roache, P.J. (2002), “Code Verification by the Method of

Manufactured Solutions,” Trans. ASME 124, pages 4-10.
5. see http://www2.umassd.edu/SWPI/processframework/cmm/
 cmm.html

