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INTRODUCTION 

We describe in this article methods for the design, conduct, and analysis of 
longitudinal studies. We define a longitudinal study as one in which each 
individual is observed on more than one occasion. The observation may be 
a measurement, such as diastolic blood pressure, or a state, such as presence 
or absence of asthma symptoms. We distinguish longitudinal studies 
from follow-up studies, in which individuals are followed until the occur­
rence of an event such as death or myocardial infarction. Issues of design 
and analysis that are unique to follow-up studies are not discussed in 
this paper. 

Longitudinal designs have two principal motivations. 

1. To increase the precision of treatment contrasts by eliminating interin­
dividual variation: This is achieved by observing each subject under the 
several treatment (or exposure) conditions to be compared. Such designs 
are called repeated measures designs, and include the cross-over design 
as a special case. Repeated measures designs use each subject as his or 

, 
her own control. 

2. To examine the individual's changing response over time: Longitudinal 
designs have natural appeal for the study of changes associated with 
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2 COOK & WARE 

development or aging. They have value for describing both temporal 
changes and their dependence on individual characteristics. 

We begin by comparing the advantages of cross-sectional designs, pure 
longitudinal designs in which a single cohort is followed over time, and 
mixed longitudinal designs, in which several cohorts are followed for a 
shorter period. We then discuss the design of longitudinal studies, particu­
larly the duration and frequency of measurement in studies of growth and 
aging, and describe methods for reducing the variability of observations. 
Because the data available for analysis depend on both the design and 
conduct of a study, we also discuss some of the major issues to be considered 
in the conduct of a longitudinal study. 

Finally, we consider the analysis of longitudinal studies. A considerable 
literature exists on the analysis of serial measurements using the general 
linear model. We describe these methods, particularly growth curve analy­
sis, tracking, and repeated measures analysis, and their extension to the 
typical situation in which the data are incomplete. We also discuss nonlin­
ear growth curve analysis and the analysis of serial binary responses. This 
article is written for the health scientist who is not a statistician but has 
some familiarity with the Analysis of Variance (ANOVA). Although we 
avoid detailed technical discussions, complete and current references to the 
statistical literature are provided. 

DESIGN 
Comparing Longitudinal and Cross-sectional Designs 
Longitudinal studies are usually motivated either by the desire for precise 
comparisons of treatments or by intrinsic interest in age- or time-related 
changes. But cross-sectional designs can also be used to compare treatments 
and to investigate age-related changes. Treatments can be administered 
simultaneously to separate groups of subjects. Similarly, age-specific stan­
dards for height and weight in children were originally developed from data 
gathered cross-sectionally. Frequently, investigators choose between alter­
native designs by comparing their precision, potential for bias, and feasibil­
ity. In this section, we compare the precision of longitudinal and 
cross-sectional designs, discuss the potential for bias due to age, time, and 
cohort effects, and conclude with a more general discussion of the trade-offs 
involved in choosing between a longitudinal and a cross-sectional study 
design. 

CONSIDERATIONS OF PRECISION Longitudinal studies give more pre­
cise estimates of temporal changes or treatment effects than cross-sectional 
studies of the same size. They achieve this gain in precision by eliminating 
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LONGITUDINAL STUDIES 3 

interindividual variability from the comparisons of interest. In a simple 
example, suppose that the variance of repeated measurements on the same 
individual is er 

2, and the variance of the average response among individu­
als is er 2. Then the variance of the difference between measurements on two 
individ�als is 2(er2+ er\ whereas the difference between two measure­
ments of the same individual is 2er 2 • If two treatments have different mean 

w 

responses but the same variances, the sample sizes per treatment group, 
NL and Nc, of longitudinal and cross-sectional studies of equal precision 
satisfy. 

2 2 Nc = NL [1 + (er ler )]. 
a w 

Longitudinal designs also vary in their efficiency. Machin (33) compared 
the efficiency of pure and mixed longitudinal designs for estimating a linear 
function of time. In the pure longitudinal study he assumed that the same 
n individuals were measured at p points in time. In his alternative design, 
m individuals were measured at k points, not necessarily the same for each 
individual, with m < n. This is a type of mixed longitudinal design in 
which, for example, not all individuals are measured at the same ages. 
Machin assumed that the correlation between measurements at any two 
successive points was p. He found that the relative efficiency of pure and 
mixed designs depends mainly on the value of p. If P is positive, as is usually 
the case with repeated measurements, the efficiency is greater for the mixed 
longitudinal design. Rao & Rao (42) also compared the efficiency of mixed 
longitudinal and cross-sectional designs. They found that the mixed design 
is preferable for moderate values of p if the objective is estimation of the 
difference in means for two occasions. 

Besides increasing precision by eliminating between-individual variation, 
repeated measurements on the same individuals reduce bias due to differen­
tial selection or confounding. If we take differences between measurements 
on the same individual, the magnitude of the change cannot be attributed 
to differences in race, sex, or other individual characteristics. In this sense, 
repeated measures designs are analogous to matched studies in their ap­
proach to controlling external variables. 

AGE-TIME-COHORT EFFECTS In the psychological and sociological lit­
erature, there has been much discussion of age, time, and cohort effects, and 
the roles of longitudinal and cross-sectional studies in estimating these 
effects (16, 23, 46, 49). The age effect represents changes in the average 
response due to the natural aging process. The time of measurement effect 
represents the impact of events in chronologie time that take place at the 
points of measurement. This includes the various treatments, external expo­
sures, or changes in observers. The cohort effect represents past history 
specific to a particular cohort and contributes to all measurements on the 
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4 COOK & WARE 

cohort. Examples may be events at birth, exposure to past epidemics or war, 
past environmental exposures, etc. It includes all time effects that took place 
before the start of the study. It also includes secular trends. The time of 
measurement effect is distinguished from the cohort effect in that it is a 
current temporary condition that affects all ages and cohorts. The three 
variables often actually serve as surrogates for other unobservable variables. 

We can include all three effects in a simple additive model. Let �jk be 
a measurement on a person from cohort i, of age j, and at time k. Then 
let 

where C j, a j' and tk represent the cohort, age and time effects, respectively, 
and eijk is the error term. The three effects cannot be estimated simulta­
neously, since age and time determine the cohort. Because of this relation­
ship, some authors, for example Goldstein (21), say that there are only two 
underlying dimensions and that no attempt should be made to distinguish 
three. Schaie (46) and van't Hof et al (49) point out that the three effects 
represent different biological processes, and that an effort to separate them 
should be made. 

The study types differ in which of the three effects can be estimated and 
which are confounded. In the cross-sectional study, all measurements are 
made at a single time, so that no time effect can be estimated. In our model, 
tk would be the same for all measurements. Also, we cannot separate the 
age and cohort effects in cross-sectional studies, since the age of the individ­
ual determines his or her cohort. Thus, cross-sectional studies yield biased 
estimates of the changes due to development or aging when cohort effects 
are substantial. In the pure longitudinal study we observe only one cohort, 
and comparisons within this group confound the age and time effects be­
cause the age uniquely determines the time of measurement. 

Schaie (46) and van't Hof et al (49) advocate the mixed longitudinal 
design. They show that age, time, and cohort effects can be estimated 
provided that these effects are given special mathematical forms. For exam­
ple, van't Hof et al model age effects as a quadratic function of time, and 
break up the time scale into three broad categories. They show how to use 
this design to estimate growth rates and norms. 

Rao & Rao (42) observe that the results from the three types of studies 
will be similar only if the factors that influence growth are stable over a long 
period of time. In this situation, the time and cohort effects would be 
negligible. Guire & Kowalski (23) argue that although stability over time 
is usually not true for sociological studies, it is often true for studies of 
physical growth. In particular, the short-term time effect is usually assumed 

A
nn

u.
 R

ev
. P

ub
lic

 H
ea

lth
 1

98
3.

4:
1-

23
. D

ow
nl

oa
de

d 
fr

om
 w

w
w

.a
nn

ua
lr

ev
ie

w
s.

or
g

 A
cc

es
s 

pr
ov

id
ed

 b
y 

49
.3

9.
19

4.
24

2 
on

 1
0/

09
/1

9.
 F

or
 p

er
so

na
l u

se
 o

nl
y.

 



LONGITUDINAL STUDIES 5 

to be zero, enabling us to use the pure longitudinal study to estimate age 
effects in a single cohort. 

The problem of separating age, time, and cohort effects arises only when 
cohort is defined by year of birth. When cohort is defined by exposure or 
treatment group, as in many comparative studies, this cohort effect is not 
confounded with age and time effects and can be estimated separately. In 
comparing exposure groups, age, time, and year-of-birth effects can usually 
be controlled even when they are not separately estimable. 

OTHER CONSIDERA nONS In some investigational settings, it is easy to 
choose between a longitudinal and a cross-sectional design. More often, the 
choice involves a series of trade-offs. Longitudinal designs give greater 
precision per observation, but observations may be more expensive or diffi­
cult to collect. Problems with missing or suspect data may be harder to solve 
in longitudinal studies. Implementation issues also influence design, since 
it is not always possible to sustain the commitment of investigators and 
participants, or the quality of study procedures. For these and other rea­
sons, the relative advantages of cross-sectional and longitudinal designs 
have been debated for years (20, 35, 46, 49). Kowalski & Guire (31) provide 
an extensive bibliography on this topic. Here, we assume that the debate 
has, in a specific investigational setting, been resolved in favor of longitudi­
nal studies, and we tum to a discussion of their design, conduct, and 
analysis. 

Designing a Longitudinal Study 
Once we have decided to conduct a longitudinal investigation, we must 
determine exactly how, when, where, and on whom the measurements will 
be taken. Longitudinal designs fundamentally have subjects crossed with 
occasions. This means that we must choose designs for selecting subjects 
and also the occasions at which they will be measured. Table I shows the 
data configuration for a balanced study in which each of N subjects is 
observed on the same p occasions. Because the issues involved in the design 
for subjects are not unique to longitudinal studies, we do not discuss them 
here. Cochran (9, 10) and Goldstein (21) examine some of the problems and 
methods for choosing these designs. In the sections that follow, we first look 
at designs for occasions, and then examine the further reduction of error 
variability. 

DESIGNS FOR OCCASIONS In choosing a design for occasions, we must 
decide at which points to take the observations. In studies designed to 
compare the means for several occasions, the occasions must give the con­
trasts of interest. In observational studies, this depends primarily on the 
qualitative questions being examined. The corresponding issue in experi-
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6 COOK & WARE 

. Table 1 Data configuration for a balanced longitudinal study 

Subjects 

1 
2 

N 

Occasions 

2 p 

mental studies is the allocation of treatments over time; this has been 
studied extensively (7, 11). 

The design for occasions is also important in growth studies in which 
development is modeled as a function of time or some other variable. How 
we define the measurement occasions can affect the efficiency of our study. 
Morrison (36) examined the optimal spacing of observations over intervals 
such as time. He considered constant, linear, and quadratic response func­
tions, and covariances reflecting Weiner or stationary Markov processes. He 
found that equal spacing was either optimal or close to optimal for all 
situations considered. 

Schlesselman (48) and Berry (3) examined design issues specifically for 
studies in which change was a function of time, giving emphasis to length 
of follow-up and frequency of measurement. Both authors considered a 
linear model for observations spaced equally in time, and analyzed the 
variance estimates of the estimated slope. Schlesselman computed an index 
of the precision of the slope estimate for various study durations and num­
bers of measurement points, and provided extensive tables showing the 

" 
precision under the various designs. If b is the estimated slope of the line, 
then the standard error of this slope may be written SE(b) = WO", where 
(T is the standard deviation of the individual's points about the line. The 
w term is a constant, depending on the frequency and duration of the study. 
Schlesselman tabulated values of w. A small subset of Schlesselman's tables 
is shown in Table 2. We can see that both increased duration and number 

Table 2 Values of w tabulated by duration and number of measurements 

Number of 
Duration in years 

measurements 3 5 10 20 

2 1.414 0.471 0.283 0.141 0.071 
6 1.195 0.398 0.239 0.120 0.060 

12 0.920 0.307 0.184 0.092 0.046 
24 0.678 0.226 0.136 0.068 0.034 
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LONGITUDINAL STUDIES 7 

of measurements lead to smaller standard errors, but that increased dura­
tion is more important in reducing variance. 

The tabulated precision is for the slope for one individual. If the mean 
rate of change for a group is desired, an estimate of the varia,Eon between 
individuals is needed. The standard error of the average slope b for a group 
is SE(b) = [«T! + W2(T2)/ N]l-2, where (T2 is the variance between individu­
als. Note that only the contribution of t�e variance about the individuals' 
lines, (T2, is affected by w. This implies that frequence and duration can have 
only a limited impact on this standard error once W (T < (T b' Any further 
reduction must be through increased sample size, N. 

Berry gives similar estimates of precision, but considers the special case 
of measuring forced expiratory volume (FEY) in adult men. He obtains 
estimates of the between-individual, within-individual, and measurement 
error variances from several other studies of changes in FEY. The between­
individual variability is actually the variability of the rate of linear decline 
between individuals, and the within-individual variability is calculated after 
removing the linear decline with time. In Schlesselman's notation, Berry 
assumes that (T = 0. l2liters and (Tb = 0.04 liters/year. Using these vari­
ances, Berry can give the true standard errors for the estimated linear 
decline in an individual and for a group for various follow-up durations and 
frequencies of measurement. Some of his values for the standard error of 
the average slope are given in Table 3. These are actually (SE(b)v'N since 
the standard error of the mean slope depends on the sample size. The 
standard errors are tabulated by years of follow-up and interval between 
measurements rather than number of measurements as in Table 2. Taking 
more measurements for the same duration has a small effect on the variance, 
while increasing duration reduces the variance substantially. 

Decisions about sample size may be based on the same computations. For 
descriptive studies of one population, we can specify a desired precision and 
estimate the required sample size. For example, to achieve a standard error 

Table 3 Standard errors (times N'h) for the mean slope of a group of indi­

viduals tabulated by duration and frequency of measurement 

Interval Duration in years 
between 

measurements 3 5 10 • 
full duration 0.174 0.069 0.052 0.043 
1 year 0.174 0.067 0.049 0.042 
6 months 0.174 0.060 0.046 0.041 
3 months 0.157 0.054 0.044 0.040 
1 month 0.114 0.046 0.041 0.040 
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8 COOK & WARE 

of E for the average linear slope across individuals, b, the necessary sample 
size is 

We need to specify duration and frequency as well as the variances (T2 and 
2 . N. (T b to arnve at . 
In comparative studies we wish to test differences between individuals. 

Schlesselman (47) gives an equation to calculate the sample size needed to 
detect a particular mean group difference a with given normal deviates 
Z" and Z f3 corresponding to the Q' and f3 error rates. This is 

N= 2(Z" + Zf3)2( 2 + 2 2) 
a2 (T b W (T . 

This assumes that we have already chosen the frequency and duration and 
have calculated w. 

There are other issues, of course, in choosing the frequency and duration 
of a study. Berry suggests that missing data should be anticipated; more 
frequent measurements may be desirable to minimize the information lost. 
Schlesselman (48) has considered the possibility of nonlinear functional 
relationships, or more complex linear functions. He argues that the presence 
of these more complex functions does not preclude one from assuming a 
linear model in the design stage. Simple straight line functions can be used 
for simplicity in planning, even if other functions will be used in the analy­
sis. Schlesselman cautions against using extreme designs, however, such as 
measurements taken only at the beginning and end of the study period, or 
very many measurements taken over a short time. More moderate designs 
will help us to detect nonlinearities in the data during analysis. 

REDUCING ERROR VARIABILITY Once we have a particular design 
plan, we may still try to reduce error variability further. In any study there 
are many different sources of variability. We can identify three generic 
sources of error for repeated measurements on individuals: 

1. Measurement error or intraoccasion variability, which we denote (T2. 
e 

This is the variability that would be evidenced if several measurements 
were taken on a single individual at the same occasion. It can be large, 
especially for measurements that are subjective or effort-dependent. 

2. Interoccasion variability, which we denote (T!. This is the variation 
between occasions in the "true" value for an individual, i.e. in the value 
that would be observed if there were no measurement error (for instance, 
a person's weight may fluctuate from day to day because of changes in 
diet or exercise). 
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LONGITUDINAL STUDIES 9 

3. Variation among individuals, which we denote as u 2. If we think of each 
a 

individual's values as fluctuating around some "true" or long-term aver-
age value, then these true values will vary among individuals. This is 
often the largest source of variability in serial measurements. 

The variance of a difference in means is a function of the interoccasion 
and measurement errors. For instance, let N be the number of individuals, 
p be the number of occasions, and r be the number of observations per 
occasion for each individual. Then the variance of the difference in sample 
means for any two occasions is: 

(*) 

As discussed above, we have eliminated the between-individual variation 
u 2 by taking differences of repeated measurements on individuals. 

a 
We can further reduce the variance (*) in two ways. 

1. Reduce the component variances u� and u�. To reduce interoccasion 
variability we may try to make experimental conditions as similar as 
possible on each occasion. For example, we could try to take weight or 
blood pressure measurements at the same time each day. To reduce 
u2 we can improve the accuracy of our equipment and procedures. This 

e 
is discussed in the section on conduct. 

2. Increase the size of the experiment. The variance (*) is a function of both 
N, the number of individuals, and r, the number of replications per 
occasion. As these get larger, the variance becomes smaller. If the mea­
surement error u2 is negligible, however, as it is with some measures, 

e 
taking more than one observation on each occasion is unnecessary. Of 
course, any precision gained through greater size must be weighed 
against the added cost of such increases. 

CONDUCT 

A study design is a plan for a data set that will efficiently test study 
hypotheses and estimate important parameters. Since analyses depend on 
the data actually collected, however, the value of a study depends equally 
on its design and its execution. Although the particulars of a well-conducted 
study depend on the variables measured and the goals of the study, some 
requirements for a well-executed study cut across disciplinary lines. 

In any study involving measurement, sources of bias and measurement 
error must be controlled. Ordinarily, this requires extensive training of 
observers and evaluation of the validity and reliability of measurement 
instruments. Thus, in the Hypertension Detection and Follow-up Program 
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10 COOK & WARE 

(27), a study in which blood pressure level was a critical measure of treat­
ment effect, random zero sphygmomanometers were used to avoid bias 
arising from digit preference or other subjective factors. Blood pressure 
measurement devices were rigorously pretested, and observers were re­
quired to participate in a one week training course and pass a certification 
examination. These procedures were intended to minimize interobserver 
and interinstrument variability. 

In a longitudinal study, there is an additional need to maintain study 
procedures over time. Instrument performance must be constantly moni­
tored and systematic bias reestimated. Similarly, investigators should plan 
for training of new observers and recertification of established observers to 
avoid deterioration of measurement procedures. Because this element of a 
study does not contribute directly to study results, it is a natural candidate 
for reduced effort during periods of tight budgets. To avoid this mistake, 
study designs and study budgets should include adequate support for this 
work. 

Investigators should establish a regular schedule for checking instru­
ments and observers, and the results of these checks should be retained as 
a part of the study records. When appropriate, instrument and observer 
number should be recorded with each observation, so that these variables 
can be considered in the analysis if necessary. In some studies, instrument 
and observer variability are comparable in magnitude to the effects under 
study and may bias estimates of effects of interest if not carefully controlled. 

Bias can also arise in the recording, transmission, and entry of study data. 
Although many studies emphasize extensive quality control for data entry 
to computer files, variability in reading participant records such as spiro­
grams or coronary angiograms and inconsistency in coding questionnaire 
data often represent more important sources of variability. These sources 
of uncertainty can be quantified and controlled only by additional quality 
assurance activity in the data collection system. Although observer variabil­
ity is a widely recognized phenomenon, specialists are often surprised by the 
extent of observer variability in interpreting diagnostic tests such as elec­
trocardiograms. Thus, duplicate readings should be introduced to quantify 
this variability, and blinded reading should be required when there is poten­
tial for bias in comparative work. 

A well-designed longitudinal study can also be threatened by problems 
of missing data. Data can be missing either because of procedural error 
during a regular visit or because a participant does not appear for a regular 
visit. Both events are harmful to the study. Most procedures for treating 
missing data in the analysis assume that data are missing at random (44), 
i.e. the probability of missing an observation does not depend on the value 
of that observation. When that assumption is true, the main consequences 
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LONGITUDINAL STUDIES 11 

of missing data are (a) inconvenience, because unbalanced data sets are 
more difficult to analyze, (b) loss of precision, because missing outcomes 
reduce the effective size of the study, and (c) problems with adjustment for 
covariates when their values are missing. 

In longitudinal studies, the assumption that observations are missing at 
random is frequently unjustified. Participants who are lost to follow-up are 
often atypical in terms of mobility, social class, and general health. This is 
a special threat to comparative studies in which different groups have 
different follow-up procedures. This problem is managed by introducing 
extra procedures to maintain follow-up of study participants and to encour­
age participation at regular visits. 

In summary, excellence in longitudinal research requires care in both the 
design and conduct of studies. The general goal in conducting the study is 
to execute the study as designed. Three important objectives in conducting 
longitudinal studies are the following: 

1. Minimize and quantify instrument and observer variability. 
2. Ensure accurate recording, coding, and transcription of data. 
3. Minimize nonparticipation and obtain complete data at regular visits. 

ANALYSIS 

To analyze longitudinal data, one must specify the probability distribution 
for each subject's set of responses. We shall at first assume that the outcome 
variable is a measurement that has a normal (Gaussian) distribution, then 
discuss non-parametric methods and the analysis of categorical outcome 
variables at the end of this section. For normally distributed outcome 
variables, the probability distribution is completely specified by (0) the 
expected outcome on each occasion for each sample of subjects and (b) the 
variances and covariances of the several measurements of a single subject. 

The approach to modeling the expected outcome depends on the goals 
of the study. In repeated measures studies, differences between occasions in 
the expected outcome for a single subject are attributed to changes in 
treatment or exposure conditions. The analysis begins by testing the equal­
ity of mean values over occasions and continues with estimation of the 
differences in means between occasions. The first part of the section on 
analysis shows how to use ANOV A techniques to perform that analysis. 
When changes in the expected outcome over occasions are due to growth 
or aging. or when occasions correspond to different levels of exposure, the 
analyst will want to model the changes over occasions. The second part of 
this section describes how to develop a model using polynomial or nonlinear 
growth curve analysis. We also explain the concept known as tracking. 
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12 COOK & WARE 

In longitudinal studies, the unit of observation is the set or vector of 
observations for a single subject. In the balanced design represented by 
Table 1, this vector is denoted by Yj = (yjJ. • • •  ,yj�. Even when we analyze 
a single outcome variable, longitudinal analysis frequently requires mul­
tivariate statistical methods. [For a discussion of the analysis of several 
outcome variables, see (31).] A model that does not recognize the interde­
pendence among observations for a single subject can give seriously mis­
leading results. If we assume that different measurements of a single subject 
are independent when they are actually positively correlated, the standard 
errors attributed to differences between means on different occasions will 
be too large, resulting in conservative tests and confidence intervals. For 
comparisons between groups, however, tests and confidence intervals will 
be nonconservative (26). 

We represent the general multivariate normal distribution for Y j by writ­
ing 

Yi '" N(Il, I), 

indicating that Y i has a multivariate normal distribution with mean value 
given by the vector Il and variances and covariances given by the p X P 
matrix I. Fortunately, we can sometimes make simplifying assumptions 
about the form of I that justify the use of univariate methods, as we 
illustrate in the next section. 

Mixed-Model Analysis of Variance 
Suppose that each subject in a single sample of size N is measured on the 
same p occasions characterized by different treatment or exposure condi­
tions. The data set has the form shown in Table 1, and the unit of observa­
tion is the vector of p observations for a single subject. 

We sometimes assume that observations on different occasions are inde­
pendent except for a shared subject effect, a deviation from the occasion 
mean that is constant over occasions. This leads to the linear model 

where Il is the unknown, overall mean; Uj is the difference between the 
mean on occasion j and the overall mean; bi is a contribution that varies 
among subjects and is common to all observations for a subject, eij is a 
random deviation that is independently distributed for different subjects or 
occasions. This is the mixed model of univariate ANOV A. When it is 
appropriate, the analyst can use univariate methods to investigate the occa­
sion means. Since the model implies constant variance over occasions and 
constant variance between occasions, the adequacy of this model can be 
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LONGITUDINAL STUDIES 13 

evaluated by testing whether � has this special form using the likelihood 
ratio method (40, 51). 

In repeated measures designs, the hypothesis often of interest is that 
the mean response is the same on each occasion. When the mixed model 
is correct and no observations are missing, this hypothesis can be tested by 
a ratio of mean squares having an F distribution with p-l and (N-l)(P-l)  
degrees of freedom (6). When the assumed covariance structure does not 
hold, this statistic has an F distribution with reduced degrees of freedom 
(22). ANOV A methods can also be used to estimate differences and other 
linear combinations of occasion meanS (6). For instance, if occasions corre­
spond to different levels of an exposure variable, a one degree-of-freedom 
test for trend can be constructed. 

MISSING DATA Although most articles and textbooks on the analysis of 
repeated measurements assume a complete data set, some observations are 
missing in most clinical and epidemiologic studies. When very few observa­
tions are missing, the analysis is minimally affected by omitting subjects 
with missing values or substituting estimates for missing values. Both of 
these methods can perform poorly, however, when the number of missing 
observations is substantial (24). In that situation, one needs an efficient 
method of analysis. Although many statisticians would recommend maxi­
mum likelihood methods for estimating and testing occasion means, the 
maximum likelihood estimates are often not available in closed algebraic 
form. 

One popular strategy for computing the maximum likelihood estimates 
is to adapt one of the many computer programs that maximizes functions. 
These programs are often based on the Newton-Raphson algorithm or 
modifications thereof. Alternatively, Orchard & Woodbury (38) proposed 
a method for computing maximum likelihood estimates based on iterative 
reestimation of the missing values, and Dempster et al (12) unified this 
method, calling it the EM algorithm. Laird & Ware (32) have shown how 
to use the EM algorithm to fit a wide class of models for longitudinal data. 
Although this work has simplified the use of maximum likelihood methods 
in longitudinal studies to some extent, special computer programs are still 
required. The analyst working with longitudinal data containing missing 
values has to choose either to develop or adapt the computing software 
needed for optimal analysis or to use ad hoc methods with known limita­
tions. 

EXTENSIONS OF THE MIXED MODEL The mixed-model analysis may 
also be appropriate for more complex designs. For instance, the design on 
occasions may involve factorial arrangements of treatments. Similarly, sev­
eral groups of subjects may be defined by different treatment sequences; 
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14 COOK & WARE 

cross-over designs are a widely used example. These more complex designs 
can also be analyzed by univariate ANOV A methods as long as the assump­
tion about error structure is justified. For an introduction to the extensive 
literature on the analysis of repeated-measures experiments using mixed­
model methods, see Winer (51) and Bock (6). 

Multivariate Analysis of Variance 
When the data consist of the NXp array shown in Table 1, but the vari­
ances and covariances of the repeated measurements do not satisfy the 
assumptions of the mixed-model ANOVA, an alternative model is required. 
Although univariate methods can be developed if the covariance matrix has 
other special forms (37), validity of the analysis is ensured if one uses a 
general multivariate model. We write this model in univariate notation as 

Yij = JLj + eij 

or in multivariate notation, as 

where ej is a p X 1 vector having a normal distribution with mean 0 and 
arbitrary covariance matrix �. 

ONE-SAMPLE PROBLEMS As in the mixed-model analysis, the objective 
of the multivariate analysis of a single sample is to characterize the occasion 
mean vector JL. If the occasions correspond to treatments, an analysis in 
terms of differences between occasions is appropriate. When the occasions 
correspond to points on a continuum, tests for trend or a polynomial 
representation may be useful. The previous remarks about missing data also 
apply to the multivariate analysis. Beale & Little (2) have described the 
implementation of the EM algorithm for maximum likelihood estimation 
in this setting. 

PROFILE ANALYSIS The multivariate approach to analyzing several 
samples of individuals observed on the same occasions is sometimes called 
profile analysis. If the average response for each group is plotted at each 
time of measurement, these points and the lines connecting them form the 
group profile. Three questions can be asked about the profiles of different 
groups: 

1. Are the profiles of the same shape (are the line segments parallel)? 
2. If the profiles are parallel, are they at the same level? 
3. If the profiles are parallel, are they horizontal? 
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LONGITUDINAL STUDIES 15 

Although the methods for this analysis are conceptually straightforward, 
they again are based on multivariate ANOVA (6, 5 1). 

Growth Curve Models 
In describing mixed-model and multivariate ANOV A for serial measure­
ments, we implicitly assumed that differences between occasions were due 
to "treatment" effects or random variation. We turn now to another 
important application of longitudinal designs, the study of growth, develop­
ment, and aging. 

The methodology for analyzing serial measurements from such studies 
is known as growth curve analysis. Its objectives are (a) modeling of the 
temporal process of changing response and (b) investigating the effects of 
individual characteristics or experiences on that process. 

When the period of observation is short or the pattern of change suffi­
ciently simple, an individual's series of expected responses, or growth curve, 

can be described by a polynomial in time or its surrogate. The effects of 
individual characteristics can be expressed as changes in the polynomial 
coefficients, for instance the level, rate of change, or rate of acceleration of 
the response. This formulation of the growth curve problem permits analy­
sis using the multivariate linear model. 

Suppose once again that the data are obtained in the configuration shown 
in Table 1. To fit a polynomial to the mean growth curve, we could use 
multivariate ANOV A methods. It is more fruitful, however, to formulate 
a random effects model similar to our mixed model. 

Suppose for specificity that each individual's growth curve is quadratic 
in time. We assume that the coefficients of this growth curve vary among 
individuals, and that deviations from this curve due to interoccasion vari­
ability and measurement error are independent with constant variance. We 
further assume that the polynomial coefficients are normally distributed in 
the population. We can write this model as 

Yij = ai + bi� + Cit� + eij' 

where the eij are independent errors given the coefficients ai, hi' Cj, and 

G) -N(T,A) 

where T is the vector of mean values of the polynomial coefficients and A 
the covariance matrix. One can also assume that the expected value of the 
polynomial coefficients depends on individual characteristics. These two-
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16 COOK & WARE 

stage models have been extensively studied (15, 40, 4 1) and methods for 
testing and estimation are well established. These models are especially 
useful for exploratory analysis, since the coefficients can be estimated for 
each individual, then explored further through graphical and unweighted 
regression analysis. For instance, the mean and variance of the slope, b, can 
be compared for groups with different exposure histories or other differ­
ences in experience. 

In growth curve analysis, an unbalanced design can result either from 
missing data or from variation in measurement times among subjects. The 
random effects model extends to this setting (25), and the family of random 
effects models described by Laird & Ware (32) includes polynomial growth 
models with arbitrary patterns of observation times. In many situations, 
however, this iterative analysis is closely approximated by a very simple 
analysis in which we fit a polynomial growth curve for each individual, then 
analyze the effect of individual characteristics and time-invariant exposure 
variables on these coefficients by ordinary linear regression, using the coeffi­
cients as summary statistics. Especially when the patterns of observations 
are similar among individuals, we recommend this two-step analysis both 
for efficiency and ease of interpretation. 

TRACKING Early studies of growth established that children tend to 
remain at a fixed percentile of the age-specific height distribution as they 
mature. This phenomenon, known as tracking, has interested both biologi­
cal scientists and statisticians. The idea is especially important for potential 
risk factors for disease, such as blood pressure or serum cholesterol level. 
If these characteristics track into adult life, persons at high risk can be 
identified during childhood. A recent series of articles in Biometrics ( 17, 34, 
50) described alternative models for this phenomenon. McMahan (34) 
proposed the model 

where (jJ.j' Uj) are the mean and standard deviation of the response at time 
(or age)j, k; is the deviation specific to individual i, and eij are independent 
errors. McMahan proposed an index measuring the fraction of interin­
dividual variation explained by tracking. Dockery et al (14) applied this 
index to repeated measurements of height and forced expiratory volume in 
one second (FEY I)' They found that FEY 1 exhibited tracking comparable 
in strength to height, though this tracking is less apparent because FEY 1 
is subject to large interoccasion variability. 

Although McMahan's model captures the essential feature of tracking, 
his model does not lead naturally to comparative analyses. If interest cen-
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LONGITUDINAL STUDIES 17 

ters on the effect of individual characteristics on growth, the preferred 
method begins by transforming the observations to achieve constant vari­
ance over occasions, and then uses the family of polynomial models. 

Time Series Methods 
A longitudinal data set can be viewed as a sample of short time series, one 
from each subject. Thus, an alternative to the general multivariate model 
may be suggested by consideration of the large family of models developed 
in the time series literature ( 1, 8). Although much of this literature is 
oriented to the analysis of a single, lengthy time series, some recent work 
has considered the analysis of numerous short series (18, 39). Autoregres­
sive models often are the intuitively appealing approach to modeling the 
covariance pattern in serial measurements because they allow positive cor­
relation between successive observations. For instance, in the one-sample 
problem without covariates, the first order autoregressive model implies 
that the deviations 

y . .  - AY·· 1 I.J I.J-

are independent for different values of j. Kowalski & Guire (31) have 
described applications of time series methods to longitudinal data and 
Joreskog (29) has developed a powerful unified theory for time series analy­
sis of longitudinal data. Because these models are no more efficient than 
multivariate models when the dataset is balanced, do not extend easily to 
highly unbalanced settings, and are relatively difficult to use for compara­
tive analysis, they have not been widely used in comparative research. 

Nonparametric Methods 
The normality assumption required for the methods thus far described is 
not always reasonable. Some investigators have investigated nonparametric 
methods for growth curve analysis ( 19, 54), but they quickly become in­
tractable or awkward to use when the design is unbalanced or individual 
characteristics are considered. Thus, when normality is in doubt, it is prefer­
able to use a normalizing transformation of the data whenever possible. 
When the outcome is categorical, special methods are required. We discuss 
binary outcomes below. 

Nonlinear Models 
All of the analyses described thus far utilize linear models, that is, models 
in which each individual's measurements arise from a multivariate normal 
distribution and have expected values that depend linearly on exposure or 
treatment variables and individual characteristics. However, linear models 
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18 COOK & WARE 

do not always suffice. Two important examples are (a) models for growth 
in stature and (b) models for binary outcome variables. We discuss these 
two problems in this section and illustrate the general issues in analyses 
using nonlinear models. 

ANALYZING GROWTH IN STATURE In the 1930s, a number of lon­
gitudinal studies of childhood growth and development were initiated in the 
United States and Europe. Numeric scientists involved in these studies 
began to refine mathematical models for the shape of individual growth 
curves. Popular models included the Jenss (28) curve, 

yet) = a + bt - exp(c+dt) 

for growth from zero to six years, and the Gompertz curve, 

y(t) = k exp[-exp(a-bt)] 

suggested by Wright (53) and developed by Winsor (52) and Richards (43). 
The logistic model, 

k y(t) = 1 + exp(a+bt) 

was also favored because of its simplicity, but none of these models per­
formed well for the entire period from infancy to adult life. In an effort to 
describe the entire growth process, Bock and colleagues (5) proposed the 
double logistic model, and later the triple logistic model (4) 

3 ki yet) 
=i � 1 1 + exp(ai+bit) 

When these models are used to analyze serial measurements, analysts 
usually assume that the coefficients of the model vary over individuals. This 
is conceptually equivalent to the assumption of polynomial growth models 
with random coefficients, but the theory has not been comparably devel­
oped. Unified analysis of serial measurements on several individuals, each 
described by a nonlinear growth curve and with coefficients randomly 
distributed in the population, is technically difficult and requires simplifying 
assumptions and iterative methods (4). 

A practical approach to this problem follows the unweighted analysis in 
the polynomial setting. To investigate how individual characteristics are 
related to growth, we can fit the selected nonlinear growth curve for each 
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LONGITUDINAL STUDIES 19 

respondent and summarize that individual's growth curve by the estimated 
coefficients of the nonlinear model. We then treat these estimated 
coefficients as independent and identically, normally distributed observa­
tions, with unknown covariance matrix and expected values depending 
linearly on the individual characteristics of interest. This dependence can 
then be investigated by standard multivariate linear regression methods. 
Once again, this method provides an intuitively appealing approach to data 
summarization and analysis. The method assumes that the individual esti­
mates are approximately normally distributed, and that interindividual 
variation dominates intraindividual variation. The reasonableness of these 
assumptions increases with the number of observations on each individual. 

ANALYZING SERIAL DICHOTOMOUS RESPONSE Korn & Whittemore 
(30) applied this idea successfully to the analysis of serial observations of 
the presence or absence of asthma symptoms on successive days for asth­
matics participating in panel studies in the Los Angeles area. If, for individ­
ual i. 

_ { 1, if symptoms on day t 
Yit - 0 h . , ot erWlse, 

and Pit = P(Yit = 1), Korn & Whittemore proposed the logistic regression 
model 

(�)-
�k log I - ai + hiY i,t-l + 1=1"'" CilXtl' - Pit 

In their model, the probability of symptoms depends on yesterday's status, 

Y i,t-l and characteristics of day t such as air quality and weather variables 
(xu, . • •  , Xtk)' The coefficients ai, hi, C ilo • • .  , Cik, are assumed to be 
normally distributed in the population, with covariance matrix D. If the 
maximum likelihood estimates, ai' hj, C ii, . . . , Cjk, of the logistic regression 
coefficients are computed for each individual, the asymptotic theory of 
maximum likelihood estimation implies that they will be approximately 
normally distributed with variance D + t, where � is the conditional 
variance of the maximum likelihood estimates and can be estimated directly 
from the data. Korn & Whittmore used this approach to fit linear regression 
models for logistic regression coefficients on individual characteristics. 
Their analysis required iterative weighted least squares, with reestimation 
of the covariance matrix, D, at each iteration. 
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20 COOK & WARE 

These examples suggest a general approach to analyzing interindividual 
variation in longitudinal data when observation of each individual is suffi­
ciently extensive. Each individual's data can be summarized in terms of 
estimates of the several important parameters. At the second step, these 
estimates are treated as normally distributed with mean values dependent 
on individual characteristics, and variances expressed as a combination of 
between and within individual variance. The dependence of these coeffi­
cients on individual characteristics is then investigated through iteratively 
reweighted least squares regression. This general approach applies for both 
linear and nonlinear models for the serial observations of a single individual. 

Computing Software 

The most useful computing packages for performing the analyses described 
in this section are the BMDP series ( 13) and the Statistical Analysis System 
(45). Both packages have mixed-model ANOVA, multivariate ANOVA, 
and nonlinear regression programs. Although BMDP is slightly more flexi­
ble for this purpose, neither series can handle mixed models with large 
numbers of individuals, and most programs require balanced data sets with 
no missing observations. The LISREL program (29) is also quite flexible, 
especially for modeling serial correlation and latent variables. For approxi­
mate analysis of more complicated data sets, one can eliminate observations 
or fill in missing values to achieve balance. For growth curve analysis, the 
unweighted methods described previously can be used. However, optimal 
analysis requires likelihood-based methods. To use these methods, the ana­
lyst must adapt a function-maximizing program of the type provided in 
BMDP and several other packages. request a copy of programs used by 
previous investigators, or develop new software. 

SUMMARY 

Longitudinal studies have a long history in medical and social science 
research. They offer a natural approach to the study of development and 
aging that allows the separation of age and cohort effects. They can also be 
used to produce precise estimates of treatment contrasts not subject to 
between-individual variability. Yet they are often more difficult and entail 
greater expense per observation than cross-sectional studies. Thus the 
choice between a longitudinal and a cross-sectional design in a specific 
setting may require a careful statement of study goals and a comparison of 
the validity, precision, and feasibility of the two strategies. 

The design of a longitudinal study has two aspects: a design for selecting 
subjects and a design for occasions. The issues involved in choosing subjects 
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LONGITUDINAL STUDIES 2 1  

are common to most observational studies, but the design for occasions 
involves issues unique to longitudinal studies. In studies of change over 
time, precision is influenced by sample size, frequency of measurement, and 
duration of measurement. Thus, the relative cost-effectiveness of different 
designs will depend on relative costs in these three dimensions. To protect 
the validity of a longitudinal study, investigators should plan monitoring 
procedures to standardize study procedures over time, and special effort 
may be required to reduce loss to follow-up. 

There are several approaches to analyzing serial measurements. If the 
object is to compare means on the several occasions, a form of Analysis of 
Variance can .be used, either univariate or multivariate, depending on 
whether simple assumptions about error structure hold and whether the 
design is balanced. For modeling the outcome as a function of time or some 
other variable, several forms of linear growth models can be used. Finally, 
if linear models are inappropriate, nonlinear models are available that, 
although more complex, may describe the pattern of growth more informa­
tively. 

Because they permit direct observation oftemporal change in individuals, 
longitudinal studies often lead to refinements in models for development 
and aging. In settings in which cohort effects are important, longitudinal 
methods are essential for studying age-related changes. Thus, longitudinal 
studies will continue to play an important role in medical and social­
scientific research, and, in some instances, represent the definitive method 
for studying temporal changes and the factors on which they depend. 
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