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Cost-per-Impression Pricing and Campaign Delivery
for Online Display Advertising

Pricing and capacity management represent significant challenges for web publishers that generate revenues

by selling advertising space on their websites. Advertisers approach a publisher to book an advertising cam-

paign, requesting a number of impressions to be delivered regularly throughout the campaign duration.

Publishers offer multiple advertising plans. They face uncertainty in demand and supply, which generates

non-uniformity in the campaign delivery. Based on a stylized model of the publisher’s operation, we suggest

a capacity allocation mechanism parameterized by a display frequency that allocates viewers to ads in a

rotating manner. Through a large-capacity system analysis and under the suggested mechanism, we prove

that the fluid price and display frequency are asymptotically optimal. We also obtain correction terms for

the fluid solution when used under a regular regime. The pricing and display frequency can be translated

into inputs to delivery engines used in practice. We obtain data from a publisher and perform an exten-

sive numerical analysis that reveals the interrelation between prices, traffic load, impressions, and display

frequency.
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1. Introduction

Online advertising has been a fast growing area within the media industry with 26 billion dollars

revenues in 2010 (IAB (2011)). The Internet, with its access to an enormous consumer base, remains

a very attractive media to advertisers and offers many different display possibilities compared to

traditional media. Web publishers providing content and services commonly use advertising as the

main revenue source for their businesses instead of charging usage or subscription fees. The two

largest areas of online advertising are display advertising and sponsored search advertising. In the

latter, pricing is well defined with auctions as the main mechanism. However, pricing in display

advertising is often ad-hoc and could benefit from systematic approaches. A very common pricing

scheme in display advertising is the pay-per-impression scheme1 where the advertiser pays for each

time his ad is displayed to a visitor.

In display advertising, most web publishers use delivery engines such as Dart by DoubleClick

to deliver the contracts made with advertisers. However, the engines require important inputs

from the user (such as the frequency of display) that are not easy to determine. Furthermore, the

1 Other pricing schemes are i) Pay-per-click where the advertiser pays for each time a visitor clicks on his ad. ii)
Pay-per-action where the advertiser pays only if the visitor purchases the product being advertised.
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capacity management task of the engines is often disconnected from pricing decisions leading to

suboptimal results.

Web publishers continuously face uncertain demand from advertisers (or agencies acting on their

behalf) and are not (as in, e.g., TV broadcasting), restricted by a specific season or horizon. In

this paper, we consider a capacity management problem from a continuous-time infinite horizon

point of view. Advertisers want a certain number of viewers to see their ad, which needs to be

matched with uncertain supply from viewers visiting the website. We consider contracts between

publishers and advertisers that specify the price charged per impression, the number of impressions

to be delivered, and the campaign duration. An unwritten rule, rarely included in a contract yet of

great concern to the advertiser, requires the impressions to be delivered regularly throughout the

campaign horizon. Our model explicitly accounts for this rule.

The main contributions of the paper are the following. First, we suggest a stylized, infinite-

horizon model based on continuous time dynamics that is relevant for web publishers. The model

captures operational challenges related to supply and demand uncertainties, regular delivery, and

time constraints. It allows one to study the interconnection between the typical drivers of the

online problem; price per impression, capacity allocation, and display frequency, on one hand, and

the campaign delivery and the uncertainty generated, on the other. Second, we obtain from an

analysis performed on large-capacity systems, a simple and effective policy (price per impression,

capacity allocation, and display frequency) that reduces the impact of uncertainty and maximize

revenues. The allocation mechanism used to obtain the solution relies on matching ads and viewers

in a rotating manner. The solution itself could be the input to delivery engines used in practice. In

particular, we show that the suggested pricing policy and the allocation mechanism (induced by the

solution to the deterministic/fluid problem) are asymptotically optimal. Third, from a methodology

point of view, in large-scale operations, a balanced loading setting is proven to be economically

optimal causing little congestion and irregularity effects. This methodology is extended to multiple

types of advertising plans. Fourth, in the online advertising media, publishers are able to collect a

large amount of data on their advertising operations. The complexity of their operational problems

makes it hard to take full advantage of such data sets. However, relying on the model developed

in this paper, enriched with two demand models adapted to the online setting, and based on data

from the Scandinavian web publisher Aller Internett, we present an extensive numerical analysis

that gives insights into the interrelation between design parameters (e.g., display frequency, size of

the contract) and the system’s performance (e.g., delivery shortage).
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The paper is organized as follows. In the next section we review the literature. In Section 3 we

introduce the model ingredients and provide a discussion on the main assumptions. In Section 4 we

set up the problem, formulate the non-uniformity cost that induces uniform service delivery, and

solve the fluid version of the problem, which motivates the allocation mechanism chosen. In Section

5 we analyze the single advertising plan under this suggested allocation mechanism and obtain an

asymptotically optimal solution of the optimization problem. This asymptotic analysis implies an

approximation of the non-uniformity cost, which we analyze in detail. In Section 6 we extend the

single advertising plan case to the multi-plan setting. Section 7 is devoted to a numerical analysis

based on data from the Scandinavian web publisher. In the concluding section we list some further

research questions.

2. Literature Overview

The work presented in this paper is related to the literature on concurrent capacity and pricing

management. It involves many aspects of a revenue management problem where a finite capacity

(in terms of viewers per unit of time as well as advertising slots) needs to be allocated among

different advertisers’ campaigns. A comprehensive reference of revenue management models and

applications is the book by Talluri and van Ryzin (2004). In many ways the problem we study is

different from the typical revenue management setting. First, the supply is uncertain and provided

over a specified horizon. Second, in the online setting where the duration can last for weeks and

slots might be shared by multiple advertisers, the notion of a dedicated resource is harder to define,

especially in the presence of both demand and supply uncertainty. The setting we consider makes

our work closer to the literature on capacity management using queueing systems techniques. Such

approach was used previously in the context of a revenue management. The paper of Savin et al.

(2005) models the rental car problem as a multi-server queueing system with a continuous stream of

customer arrivals having independent and exponentially distributed rental times. Many differences

exist with that model starting with the supply dynamics mentioned above. Furthermore, that paper

considers two classes of customers with accept-reject type control policy. We consider multiple

types of advertising plans and allow campaigns to incur delays. A more recent work using such

a continuous time approach in online advertising is that of Radovanovic and Zeevi (2009). They

consider the allocation of advertisers’ campaigns to a set of products based on specified budget

and effectiveness. They suggest an asymptotically optimal allocation driven by an LP solution.

The problem specifics are different from ours. In particular, Radovanovic and Zeevi (2009) do

not consider any pricing control and are not explicitly constrained by a number of impressions or

campaign duration.



Authors’ names blinded for peer review
4 Article submitted to ; manuscript no. (Please, provide the mansucript number!)

Another stream of literature in the queueing context relevant to ours is the one using large-

capacity systems in the so-called Halfin-Whitt regime (see Halfin and Whitt (1981)). This type of

setting has been used extensively in various applications, in particular in call centers (see Gans

et al. (2003) for an overview). In the context of pricing and capacity sharing, both Maglaras

and Zeevi (2003) and Maglaras and Zeevi (2005) provide an equilibrium analysis determining the

demand rate and among other results obtain approximations for the optimal solution through

“large-capacity asymptotics”. The asymptotic analysis they undertake is similar in nature to the

one we perform in the single plan case (where the “heavy-traffic” regime is shown to be optimal

from an “economic optimization” point of view). Nevertheless, both the system we study and its

analysis remain different from theirs. In particular, we look at capacity allocation decisions under

fixed total capacity, while they consider capacity sizing. We discuss these differences more in detail

in Section 5.2.

Some aspects of pricing and capacity management in TV broadcasting are similar to the online

advertising case (see Araman and Popescu (2010) and Bollapragada and Mallik (2008)). These

papers also consider the supply to be uncertain as well as the number of contracted impressions

needed to be met through accumulation of viewers seeing the ad. However, in TV broadcasting,

the problem is naturally set as a finite horizon with two channels: the upfront demand, which

is contracted at the beginning of the horizon and the scatter market demand that gets realized

throughout the horizon. The paper that is possibly the closest to our paper in terms of context is

Roels and Fridgeirsdottir (2009) who consider dynamic admission control and delivery of adver-

tising contracts over a finite horizon. The problem is formulated as a dynamic program and a

Certainty Equivalent Control heuristic is proposed and tested.

Finally, there is a large body of literature on online advertising in general. We refer the reader

to Ha (2008) who provides an overview of online advertising research in advertising journals and

Evans (2008) summarizes the economics of the online advertising industry. Scheduling of online ads

is one of the most popular topics within the operations research literature. The work by Kumar

et al. (2006) provides a good overview on that stream of literature.

3. Modeling Framework

We consider a web publisher that generates revenues by posting ads on its website. The publisher

offers J different advertising plans that the advertisers can choose from. A plan j (1≤ j ≤ J), is

defined by the number of viewers, Nj, that should see the ad (number of impressions) during a

period of Tj (campaign duration) with the price pj charged per impression. The uncertainty present
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in the system does not allow the publisher to commit to an exact number of impressions Nj and

an exact duration Tj. We observe in practice two types of contracts that we address in the paper.

N-Contracts. The publisher can commit to a certain number of impressions, Nj, and the ad is

displayed until that number is met. The publisher then designs the system so that the expected

campaign duration is Tj. We call this contract the N-contract.

T-Contracts. The publisher keeps the ad in the system for exactly Tj units of time, after which

the ad is removed. The publisher designs the system so that the expected number of viewers that

will see the ad during Tj is Nj. We call this contract a T-contract. In the T-constract, the advertiser

will only pay for the number of impressions collected at the end of the campaign, which is Nj in

expected value.

Both types of contracts can be implemented in practice in delivery engines such as Dart by

DoubleClick. The publisher offers either of the two types. Note that we are slightly abusing the

notation by letting Nj and Tj represent either the expected value or the exact value. However, the

context should clarify which representation is being used.

3.1. The Demand

The web publisher is approached continuously by advertisers (or agencies acting on their behalf)

requesting advertising campaigns. The advertisers choose one of the plans offered by the web

publisher and as a result their ad is then displayed during a certain period of time and shown to

a certain number of viewers. One typical form of demand realization is when advertisers place an

order for an advertising campaign through an online platform, the same way one can rent a car or

reserve a hotel room. We assume the demand to follow a Poisson process, which depicts the number

of advertisers requesting a campaign through the website. This is a realistic assumption in the online

platform setting (see, e.g., Radovanovic and Zeevi (2009)) and a common assumption in service

settings in general (see, e.g., Savin et al. (2005)). More specifically, we let (vi,j : i≥ 1,1≤ j ≤ J) be

an i.i.d. sequence of interarrival times (the times separating two campaign requests for the same

plan), which are exponentially distributed with mean 1/λj.

3.2. The Supply

The supply for the web publisher’s advertising operation consists of the viewers visiting the website.

A website often consists of multiple webpages that viewers can either visit directly or through links

from the homepage. The overall traffic, to which ads can be displayed to (often referred to as the

inventory), is the combined traffic from all webpages belonging to the website. We formulate the

aggregated traffic of viewers visiting all the webpages and we assume it to be a Poisson process with
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rate µ (see Gong et al. (2005) who argue that traffic of web servers could be well approximated by

a Poisson process). Without loss of generality, the reader can think of the website as being made

of one single webpage, which viewers visit according to a Poisson process with an aggregated rate

µ. We let (ui : i≥ 1) be the i.i.d. sequence of interarrival times of viewers.

3.3. The Service Procedure

Every page of a website is assumed to have s advertising slots. The advertisers pay for each time

a visitor uploads the webpage while their ad is on display. Every visit counts as one impression

towards the total count of Nj impressions. Furthermore, every time a viewer uploads the page the

number of impressions delivered goes simultaneously up by one for all ads posted.

3.4. Summary of the Main Modeling Assumptions

Tactical vs. Upfront Contracts. Our investigation shows that publishers face two types of con-

tracts. “Upfront” contracts are those long term bookings placed by few but major advertisers that

are negotiated and displayed over a long period of time such as a year. They are in many ways

similar to TV broadcasting contracts. For such contracts, the publisher reserves a capacity and

is not impacted much by daily uncertainties. The other types of contracts that the publisher face

are often known as “tactical” contracts and can be booked at any time. In TV broadcasting, most

of the capacity is sold upfront and the remaining is left for the so-called “scatter market”. In the

online world, the tactical contracts represent a large portion and are more challenging to manage

with possible missed sales due to capacity shortages. In this paper we focus on tactical contracts.

Targeting. Advertisers sometimes specify a few characteristics of the viewers they would like their

ads to be displayed to (e.g., a male interested in sport). Overall, targeting is becoming a major

characteristic of ad-networks/exchanges. It is a complex problem, beyond the scope of this paper.

We restrict our attention to advertisers that are targeting the same pool of viewers. This is still a

rich and common setting in practice. In the data set we analyze from Aller Internett, the publisher

does not offer any targeting as the online magazines it runs attract a well defined audience.

Negotiations. We do not model contract negotiations but capture, at an aggregated level, the

uncertainty of demand, some of which could be the result of negotiations.

4. Problem Formulation

We consider a web publisher that maximizes the profit rate in steady-state while meeting the

advertisers’ contract requirements. Given, the number of impressions, Nj, and the duration of the

campaigns, Tj, the publisher decides on the price, pj, per impression to charge for an advertising

plan j, and on a policy, π, of how to allocate the viewers to the campaigns.
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In practice, every time a viewer visits the website, the publisher decides which ads to display,

depending on how many campaigns are currently unfulfilled, the number of impressions already

allocated to each, and the remaining campaign durations. In addition, the publisher aims at deliv-

ering a campaign’s impressions in a regular way (an advertiser is not keen on having, e.g., all his

impressions delivered in the beginning of the campaign horizon, leaving only few towards the end).

In all its generalities, this is an untractable dynamic and stochastic optimization problem. Deliv-

ery engines deal with this problem using some optimization techniques but require many inputs

from the advertiser. Our objective is to model the problem at a tactical level and focus on the

link between the pricing and campaign delivery components. The output of our model can help

advertisers setting inputs for their delivery engine.

Revenues. The web publisher collects revenues for each impression made with total revenues

of pjNj per campaign requesting plan j. We denote by λ = (λ1, λ2, ..., λJ) the vector of demand

intensities generated when the advertiser sets the vector of prices p = (p1, p2, ..., pJ) for the J

plans available. We let N= (N1,N2, ...,NJ). We assume the demand function, λ(p), has an inverse

p(λ) and that the revenue rate rj(λ ;N) := λj pj(λ,N)Nj is concave in λ, which is a common

assumption in the literature (see, e.g., Gallego and van Ryzin (1997)).

Fulfillment Constraint. In the case of a T-contract the publisher keeps the ad in the system

for exactly Tj units of time during which, on average Nj viewers see the ad. In the case of an

N-contract, the ad is displayed Nj times with the constraint that the expected campaign duration

is Tj. We formulate these constraints later in this section.

In addition to the fulfillment constraint, the advertisers expect the impressions to be delivered

regularly throughout the campaign horizon. The reasons for this requirement are numerous: i) an

online campaign is often a part of a campaign across multiple media that the advertiser is investing

in and the advertiser expects that these advertising efforts are synchronized. ii) There are empirical

studies (see Chatterjee et al. (2003)) that show that the impact of a campaign on one viewer is

greater when it is spread out than when it is condensed in time. That is even more relevant in

our case, as we do not (similarly to many web publishers) track unique viewers. iii) A regular

campaign is less biased to the specific content of the website and thus the ad has less chance to

be associated with a specific event addressed on the web site that occurs at some point during the

campaign duration.

For modeling purposes, we introduce a cost of non-uniformity as a way to capture the regularity

agreement and to avoid extreme policies. We recognize that some non-uniformity is acceptable,

but such cost creates an incentive for the publisher to spread the campaign as much as possible
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throughout its duration. We also argue below that this cost measures the uncertainty present in

the system and thus allows the publishers to balance between the level of uncertainty and the

expected revenues.

Non-Uniformity Cost. During a campaign length Tj, a certain number of viewers, n(Tj), visit the

website with an average of µTj. We number these viewers from 1 to n(Tj). As these viewers arrive,

a policy π selects Nj of them to meet the campaign requirement. We denote by Aπ
i the position

of the ith viewer allocated to the campaign according to policy π. We denote by νπ
i =Aπ

i+1 −Aπ
i ,

the gap between viewers i and i + 1 that are allocated to the campaign. If we want to deliver

Nj impressions evenly in Tj, then νπ
i should be exactly equal to µTj/Nj. The non-uniformity cost

ought to measure how uneven the delivery of viewers to a specific campaign is and we measure it

as the deviation from the ideal allocation of µTj/Nj. For that purpose we use a normalized mean

squared error type cost given by

Cπ
j =

cj
µTj/Nj

( Nj∑
i=1

(
Eνπ

i −µTj/Nj

)2)1/2

, (1)

where cj is a positive constant. The main results of the paper hold under a general form of the cost

function. In the next section we show that the cost of non-uniformity can be avoided in the deter-

ministic setting. However, the presence of uncertainty in both demand and supply results inevitably

in an irregular campaign delivery measured by the non-uniformity cost. This cost increases as

the uncertainty increases. Therefore, under a regularity requirement, the cost of non-uniformity

accounts for the impact of uncertainty in the optimization problem.

We move now to state the generic optimization problem. As mentioned before the publisher’s

goal is to determine the price, pj, per impression to charge and the service policy, π, to use that

maximizes the profit given the contractual agreement with the advertiser. As we have a one-to-one

relationship between λ and p we choose to determine the optimal λ. The optimization problem

can be stated as follows for the T-contract:

max
λ,π

J∑
j=1

rj(λ,N)−λjC
π
j (PT )

s.t. E[#Impressionsπj ] =Nj 1≤ j ≤ J.

The optimization problem for the N-contract has the same objective function as the one above

with the constraint E[Durationπ
j ] = Tj. We denote that problem by PN .

The exact formulation for the non-uniformity costs and the constraints depend on the policy π

adopted. We formulate those in Section 5.
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4.1. Fluid Problem

To gain an insight into the solution structure of our problem, we analyze the case where uncertainty

is disregarded, which we denote by the fluid problem. The advertiser sets a price, p0, which deter-

mines the rate, λ0, at which campaigns are requested in a way that the system remains stable, i.e.,∑J

j=1 λjNj ≤ sµ, where s is the number of advertising slots. We denote by ρ :=
∑J

j=1 λjNj/(sµ)

the publisher’s utilization. We suggest a policy π0, which we prove to be optimal in this setting.

The policy π0 is structured such that campaigns requiring the same plan j are grouped together.

A fixed proportion of viewers, f0
j , is then directed to each group of campaigns belonging to plan j

with
∑J

j=1 f
0
j ≤ 1. Hence, campaigns requesting plan j are allocated viewers at a rate µf0

j . In order

to satisfy the fulfillment constraint with zero non-uniformity cost, each ad is not shown to every

viewer, rather it is shown to every κ0
j = µf0

j (Tj/Nj) viewer (i.e., with a display frequency of 1/κ0
j).

In the absence of uncertainty, this policy ensures uniform delivery as long as there are exactly sκ0
j

campaigns requested at any point in time. Note that the number of campaigns requesting plan j

at any point in time is exactly equal, by Little’s law, to λ0
j T . By letting f0

j = λ0
jNj/(sµ), we get

that λ0
j T = sµf0

j T/Nj = sκ0
j .

In conclusion, the policy π0 guarantees in a fluid setting that the fulfillment constraint is met

and avoids any cost of non-uniformity. It remains to solve for λ0, which is the solution to the

following concave optimization problem

max
λ

J∑
j=1

λj pj(λ ;N)Nj (MP0)

s.t. ρ=
J∑

j=1

λj Nj/(sµ)≤ 1.

The following proposition summarizes the solution to the optimal solution in the fluid setting.

We denote by λ̄ the maximizer of the revenue function,
∑J

j=1 rj(λ,N) =
∑J

j=1 λj pj(λ ;N)Nj.

Proposition 1 We consider the fluid case where exactly every 1/λj time unit an arrival of a

campaign requesting plan j occurs and exactly every 1/µ time unit an arrival of a viewer occurs.

In this case, the publisher should follow policy π0 defined above with the parameters:

f0
j =

λ0
jNj

sµ
and κ0

j =
µf0

j Tj

Nj

,

and the arrival rates such that

i.) if
∑J

j=1 λ̄jNj/(sµ)≤ 1, then λ0 = λ̄,

ii.) otherwise, for all j ∈ J , we solve for the unique λ0 that satisfies
∑J

j=1 ∂λi
rj(λ;N) = mNi

sµ
,

where m is a constant uniquely determined by
∑J

j=1 f
0
j = 1.
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All proofs are provided in Appendix A. Practically, the allocation mechanism π0, suggested

above, implies that multiple ads would share the same advertising slots. This takes advantage of

the fact that the total arrival rate of viewers to a website, µ, is much larger than the rate, Nj/Tj,

at which a campaign should be delivered in order to satisfy the fulfillment constraint.

In the absence of uncertainty, the previous solution provides a relationship between, the price

per impression or demand rate λ0
j , each plan’s share of capacity, f0

j and the display frequency,

1/κ0
j . This solution clearly generates the best possible revenues and incurs zero non-uniformity

cost. Therefore, it will be considered as a benchmark for the stochastic setting.

4.2. Partitioned Uniform Allocation Policy

When uncertain demand and supply are present in the system, a non-uniformity cost cannot be

avoided no matter which static policy, π, is implemented. Furthermore, determining an optimal

policy across all policy classes does not seem tractable. Our goal is to suggest a policy that is

simple to model and performs well in terms of trading off revenues and cost of non-uniformity. We

first propose a class of policies inspired by the fluid problem discussed above and then determine

the optimal policy within that class.

We restrict ourselves to a class of policies π defined through a set of parameters (fj, κj) assigned

to each plan j, 1≤ j ≤ J . As in the fluid setting, the first parameter fj, is the share of capacity (in

terms of viewers) that the web publisher directs to all campaigns requesting plan j. The second

parameter κj regulates the frequency of display of these campaigns. We call this class of policies

partitioned uniform allocation (PUA). By following such policy, the dynamics are decoupled in the

sense that all campaigns requiring plan j are allocated a Poisson process of viewers with rate µfj.

Every viewer of that process is directed to a set of s ads in a rotating manner so that if viewer

i sees one set of s ads, the next viewer, i+ 1, sees another set of s ads and so on; until viewer

i+ κj, who sees the same set of ads as viewer i, and the cycle starts again. This way, campaigns

are uniformly spread receiving one impression for every κj viewers directed to plan j.

We call a campaign belonging to plan j active, if it is part of the sκj campaigns that viewers are

being directed to in a rotating manner. In the stochastic setting, the number of active campaigns

varies through time. If this number drops below sκj, then the web publisher, in order to keep

the constant pace, complements the active campaigns by showing viewers filler ads (e.g., Yahoo

website showing Yahoo ads or ads for non-profit organizations). If the number of active campaigns

is already at sκj, then every additional campaign requested has its starting time delayed (set

to passive). Passive campaigns become active in a first-come-first-served manner when currently
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active campaigns are completed. The solution to the optimization problem should guarantee that

this delay is acceptable.

In summary, each campaign experiences first a small lag (or delay) Wj (possibly none) during

which no viewers are allocated to it, then when one of the sκj slots is available it becomes active.

Active campaigns of plan j are allocated viewers at a rate µfj. Each viewer is then directed to

a specific set of s campaigns at a rate κj. Any other mechanism (even dynamic) that one could

implement in practice would generate inevitably irregularity in the display. The aggregation of

the non-uniformity generated by a mechanism throughout the campaign duration is to be com-

pared to that initial lag that PUA type mechanisms generate. Because of its quadratic structure,

the cost of non-uniformity penalizes more PUA type mechanisms than ones with more dispersed

non-uniformity. Consequently, the solution (in terms of pricing, display frequency and capacity

allocation) obtained under a PUA mechanism is expected to be more conservative than other

mechanisms that aim for regular delivery. In addition, we show below that the PUA mechanism is

optimal under large-scale systems. Finally, we note that this allocation mechanism has similarities

with the so-called “partitioned nesting” policy that is used in yield management where the seller

reserves a fraction of its total capacity to each class of customers.

5. Single Plan Under PUA Policy

In this section, we assume that the publisher offers only one type of a plan (i.e. J = 1 and f1 = 1).

We focus on solving the single plan version of problems PT and PN . Let us first formulate the

fulfillment constraint, which guarantees that N impressions are collected during time T . We let

ϖ = EW and refer to it as the delay. (A superscript T and N will be added as necessary to

differentiate between the two contracts). We denote by n(t) the number of viewers that visit the

website in (0, t), which is a Poisson random variable with mean µt. In the T-contract case, the ad

will be posted during T −W , which is the effective campaign duration and will be displayed to

the viewers at a frequency of 1/κ. Thus the expected number of viewers that see the ad in T −W

is (µ/κ)(T −ϖT ). Hence, the fulfillment constraint is given by, N = (µ/κ)(T −ϖT ), equivalently,

ϖT = T −Nκ/µ. In the N-contract case, the effective campaign duration is
∑Nκ

i=1 ui, where ui’s

are the interarrival times of viewers. The contract requires E
∑Nκ

i=1 ui +ϖN = T , which leads to

ϖN = T −Nκ/µ. Therefore, the form of the fulfillment constraint is the same for both contracts,

even though the formulation of the delay is different. By allowing κ to be any real number, both

constraints will be proven to admit a unique solution.

The objective function is made of two terms, the revenue function and the cost of non-uniformity

discussed earlier. The number of viewers that arrive since a campaign is requested and until it
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is allocated its first viewer, is n(W ) + κ, where n(t) is the Poisson counting process of viewers

during time t as defined above. The other N −1 viewers are uniformly allocated to that campaign.

The non-uniformity cost generated by a campaign delivery is the measure of the deviation from a

uniform allocation. It can be formulated by recalling Equation (1) and the fact that the fulfillment

constraint requires on average, every κ0 = µT/N viewers to be allocated to an ad (which is exact

in the fluid setting).

C = c
((En(W )+κj −κ0

κ0

)2
+(N − 1)

(κ−κ0

κ0

)2)1/2

= c
((

µϖ/κ0 − (1− κ

κ0
)
)2

+(N − 1)
(
1− κ

κ0

)2)1/2

= c
(N(N − 1))1/2

T
ϖ.

The main results of this paper hold for more general costs of non-uniformity, as they translate into

a function of the moments of W . For clarity of exposition, we focus in the rest of this paper on this

mean-squared error type cost, linear in ϖ. From now on, it is essential to think of the delay as an

aggregated measure of how spread out a campaign delivery is. As the number of impressions, N ,

is large, we let C = c N
T
ϖ. Putting the optimization components together, the publisher solves for:

max
λ,κ

{
λp(λ;N)N − cN

T
λϖ(λ,κ)

}
(P)

s.t. ϖ(λ,κ
)
= T −Nκ/µ and ρ= λN/(sµ)≤ 1.

The utilization ρ measures how loaded the system is. It is independent of κ. This is intuitive

as κ is a parameter of the allocation mechanism, which primary role is to pace and allocate the

total capacity among the different campaigns of the same plan. That said, both the allocation

mechanism chosen and the contract offered do affect the utilization level through the optimal

pricing policy they generate. We introduce another load factor that turns out to play a critical

role in the dynamics of the problem. We define the ratio ϱ = λT/sκ and call it the congestion

factor. It is the ratio between the average number of campaigns that are currently booked and

not yet fulfilled and the maximum possible number of active campaigns sκ. It represents another

measure of the load of the system, which depends on both κ and λ and can be smaller or larger

than one. Using both load factors, we re-write the equality constraint as ϖ(λ,κ) = T (1−ρ/ϱ). This

relationship implies that meeting the number of impressions during time T imposes a trade-off

between the non uniformity of the campaign and the two load factors. In particular, it requires

that ρ≤ ϱ or equivalently κ≤ κ0.

Next, we formulate and analyze in details the delay. We then solve Problem (P ) for large systems

and obtain a limiting solution, which corresponds to the fluid solution and hence shows that the

uniform allocation mechanism suggested is asymptotically optimal.
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5.1. The Non-Uniformity Cost

One of the main contributions of this paper is the analysis of the impact of demand and sup-

ply uncertainties on the web publisher. These uncertainties affect the web publisher through two

interrelated dimensions: i.) the N contracted impressions might not be delivered (in the case of

the T-contract - duration T might not be met for the N-contract), ii.) the publisher might not be

able to maintain a uniform delivery of the impressions. Under the uniform allocation mechanism

suggested above, the impact of these two dimensions are captured through the non-uniformity cost,

which is proportional to the delay. The delay therefore quantifies the uncertainty in the system and

measures its impact. Moreover, it allows one to measure the cost of rejecting advertisers if delays

are not accepted in practice (i.e., number of rejected advertisers could be estimated to be λϖ.)

The next result gives an expression of the delay for both T-contracts and N-contracts.

Proposition 2

i.) Under a T-contract, the delay is given by

ϖT (λ,κ) =E
[
T −

sκ∑
i=1

vi
]+

,

where vi’s are the interarrival times of the advertisers.

ii.) Under an N-contract, the delay is given by

ϖN(λ,κ) =Emax
n≥0

n∑
i=1

Xi(λ,κ),

where the sequence (X1,X2, ...) is i.i.d. with X1
d
=

∑Nκ

i=1 ui −
∑sκ

i=1 vi, and ui’s and vi’s are the

interarrival times of the viewers and the advertisers, respectively.

iii.) No matter which type of contract is used, the delay satisfies the following:

for all κ≥ 1, ϖ(κ)≤ϖ(1) and ϖ(κ)→ 0, as κ→∞.

The results stated in Proposition 2 give a precise formulation of the delay a campaign incurs

under PUA. The optimization strives to keep the cost of non-uniformity that depends on the

delay to a minimum. The main property that enables us to derive this formulation is the fact that

campaigns are fulfilled in the order they were booked, which results directly from the allocation

policy adopted. It is possible to get a closed form formulation for the delay.

Corollary 1 Under a PUA mechanism, we have that

ϖT (λ,κ) = Te−λT

∞∑
j=sκ

(
1− sκ

j+1

)(λT )j
j!

. (2)
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A similar explicit formula as in Corollary 1 can be found for the N-contract (see page 338 of

Ross (1996)). These formulations can be useful for instance to obtain monotonicity results but are

not of much help when solving the optimization problem.

Next, we move to solving the optimization problem under a special regime whereby we let

the demand and supply take large values (asymptotic analysis). We induce from this solution an

approximation of the delay that is coherent and consistent with the setting we are in. We then

analyze this approximation, which will be instrumental for the multi-plan setting and our numerical

analysis.

5.2. Asymptotically Optimal Solution

In this section we present an asymptotic analysis of the optimization problem (P ) set in a regime

where demand and capacity grow large. Specifically, we define a sequence of problems (P n) param-

eterized by an integer n≥ 1. We let λn(·) = nλ(·) and µn = nµ, while keeping T n = T and Nn =N .

We denote by

Πn(p,κ) = λn(p)pN − cλn(p)ϖ(λn(p), κ)

the profit rate achieved by problem (P n) when price p per impression and the display frequency

1/κ are selected.

Furthermore, we define the function Ψ(x) = ϕ(x)−xΦ̄(x) on R where ϕ and Φ are the standard

normal pdf and cdf. The function Ψ is increasing and convex where Ψ′(x) =−Φ̄(x)≤ 0 and Ψ′′(x) =

ϕ(x)≥ 0. We use hereafter the notation o(·) for two real functions f and g where g(x) = o(f(x)) for

all x in a neighborhood of x0 if g(x)/f(x)→ 0 as x→ x0. The next result gives an exact solution

to problems (P n) when n grows large. We denote by e0 the elasticity coefficient of the demand

function around λ0, with e0 = λ0′ p0/λ0, where λ0′ is the derivative of λ with respect to price taken

at p0 = λ−1(λ0). We recall that λ̄ is the maximizer of the revenue function r(λ;N) = λp(λ;N)N

and we define ρ̄= λ̄N
µs

. We assume in the next result that |e0|> 1, i.e., the fluid demand is elastic2.

Proposition 3 Suppose that the arrival stream of advertisers requesting a T-contract follows the

demand process described in Section 3.1 with both demand and supply rates scaled as suggested

above. Assume that ρ̄ > 1 and λ0′ exists and is finite such that |e0|> 1. Then the solution of the

optimization problem (λn, κn) is such that

i.) λn = λ0 n−λ0ϖT−η
T

√
n+ o(

√
n)

ii.) κn = κ0n−κ0ϖT

T

√
n+ o(

√
n)

2 A similar assumption was also imposed by Maglaras and Zeevi (2003). We refer the reader to that paper for a brief
discussion and illustrative examples of price-demand elasticity.
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iii.) ρn = 1− ϖT−η
T
√
n
+ o(1/

√
n)

iv.) ϖT,n(λn, κn) = ϖT
√
n
+ o(1/

√
n),

as n→∞, where ϖT = σΨ(−η/σ) and σ=
√
sκ0/λ0. Finally, denote by Π0,n := λ0p0Nn the profit

obtained in the fluid setting. The optimal profit under the stochastic setting is given by

v.) Πn

Π0,n = 1 − ξ∗/
√
n + o(1/

√
n), as n → ∞, where ξ∗ = c

p0
ϖT

T
+ (1 + 1/e0)ϖ

T−η
T

and η is the

unique solution to

Φ̄(−η/σ) =
(
1+

c

p0(1+1/e0)

)−1
.

This result shows that, in the single plan case, the fluid solution given in Proposition 1 is

asymptotically optimal. It also suggests an improved solution by providing a correction term to

the fluid limit. We obtain a similar result for the N-contract. The delay ϖN does not have a simple

closed form (see the result stated in Appendix A). However, it is easy to show that ϖT ≤ ϖN ,

which implies that campaigns running under N-contracts face more irregularity than those running

under T-contracts. We analyze the asymptotic results numerically in Section 7.3 and confirm that

the profit generated from a T-contract always upperbounds the profit of an N-contract.

When we un-scale the demand function and the capacity we see that the demand rate approaches

λ0 and the frequency parameter κ approaches κ0. Hence, under the right regime applying the

fluid solution guarantees a close-to-optimal behavior. This result is in line with the asymptotic

optimality of a fixed price policy in the context of revenue management (see, e.g., Gallego and van

Ryzin (1994)) and in the context of capacity sharing as in Maglaras and Zeevi (2003). The result

v.) in Proposition 3 emphasizes further this conclusion, where we see that the fluid solution ensures

a decreasing gap in profits (in the order of 1/
√
n) with respect to the deterministic setting.

By scaling linearly the capacity, the requirement, N of one campaign becomes increasingly

smaller than the total capacity µn T . Hence, the publisher is driven to share this capacity among

an increasing number of advertisers and thus increases the demand load and with it the number

of active campaigns slots, sκn, at a comparable rate.

The asymptotic solution presented above is made of the fluid component and a correction term

characterized by η, which is uniquely defined. A simple asymptotic analysis shows that the con-

gestion factor is

ϱn = ρn(1− ϖT

T
√
n
+ o(1/

√
n))−1 = 1+

η

T
√
n
+ o(1/

√
n),

as n→∞. In other words, as the system scales, it optimally moves towards a balanced load, and

η/T is the rate at which the congestion factor reaches one. Similarly, the utilization gets close to

one as well (such that
√
n(1− ρn) converges to a constant), while the delay approaches zero or
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equivalently the campaigns delivery become more regular. This is a key result where the optimiza-

tion tends to drive the system into high utilization while reducing the impact of uncertainty. This

behavior has been highlighted previously in various queueing contexts starting with Whitt (1992)

and made explicit through economic considerations in Maglaras and Zeevi (2003) and Maglaras

and Zeevi (2005). The analysis in these papers is based on a multi-server queueing system in heavy

traffic obtained through the Halfin-Whitt regime (see Halfin and Whitt (1981)), i.e., by holding

constant the probability of delay. The embedded queueing behavior that is generated in our case

is different from the above papers. First, ours is not a typical multi-server queue as campaigns

do not have independent service times, instead their effective duration is governed by the viewers’

arrival process. Our model is similar to that of Maglaras and Zeevi (2003) and Maglaras and Zeevi

(2005) as capacity sharing is a fundamental feature. However, ours is obtained through the uniform

delivery policy while theirs is obtained through processor sharing; more importantly, we consider a

control on the price and the capacity allocation while keeping the total capacity fixed, and where

they focus on pricing and capacity sizing. Moreover, Maglaras and Zeevi (2003) and Maglaras and

Zeevi (2005) consider a queueing loss system while the delay in our case is the main representation

of non-uniformity. The dynamics of the system in our case are primarily driven by the behavior of

the congestion factor ϱ parameterized by η and not as much by the utilization factor ρ. Finally,

another difference is that our results are proven to hold (see Section 6) in the multiple plan setting.

By following the proof of Proposition 3, one can observe that the results i.) - iv.) are valid for

any value of η as long as
√
n (1− ϱn)→ η/T . Even the elasticity constraint is not required except

for v.). Whether ϱ is larger or smaller than one depends on the sign of η. If the elasticity is high

(in absolute value) then η depends on the ratio c/p0, which is the units delay cost divided by the

marginal revenue per impression. If this ratio is small (i.e., the penalty cost of delaying a campaign

is not significant compared to the revenues) then η is large and positive and ϱ > 1. On the other

hand, if the ratio is larger than 1 then η is negative and the larger the ratio is the more negative η

is and ϱ< 1. Finally, if the elasticity e0 ≈−1 then Φ̄(−η/σ) is close to zero and η is again negative

and ϱ< 1.

It is important to stress that the notion of slots sharing multiple ads introduced through the

allocation mechanism suggested, allows the publisher to share the increasing capacity among the

increasing number of advertisers while meeting the advertisers’ requirements. The result of Propo-

sition 3 proves the asymptotic optimality of the uniform allocation mechanism, which implies that

the concept used in practice of sharing slots is quite effective in reducing the implied uncertainty

and generating maximum revenues.
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To summarize, for systems where the capacity µ is large relatively to N , say µ= n, computing

the fluid solution together with setting the optimal congestion factor ϱ through the computation

of η allows one to solve for the optimal price and the display frequency and be able to measure

the system’s performance through the utilization (ρ≈ 1− ϖT−η
T
√
µ
), the irregularity (ϖT ≈ ϖ√

µ
), and

the profit (Π ≈ Π0(1− ξ∗/
√
µ)). It is important to highlight that this asymptotic analysis leads

to approximations that numerically (see Section 7.3) are valid for reasonable values of n (≈ 5),

making these results even more valuable in practice.

5.3. The Cost of Non-Uniformity and Its Approximation

The previous section presents an optimal solution to Problem (P ) when the system is scaled.

This solution also induces a natural approximation of the cost of non-uniformity. We denote the

approximated delay by

ϖT
a (λ,κ) =

√
sκ

λ
Ψ
(sκ−λT√

sκ

)
.

(See Corollary 2 below). This formulation is interesting as it defines a simple relationship between

the publisher’s control parameters, price and display frequency, and the resulting level of irregu-

larity in the campaigns delivery. As we have argued above, this formulation can be a valid rep-

resentation of the cost of non-uniformity for other delivery mechanisms (beyond PUA). Recall

that Proposition 2 and Corollary 1 give expressions of the delay. The first one was instrumental

for the asymptotic analysis but both are not easy to manipulate beyond such a limiting regime.

Moreover, they are hard to use numerically especially in the context of an optimization with an

equality constraint. We devote this section to studying the suggested approximation. In Section

7.2 we compare numerically the performance of the approximation to the simulated values of the

delay. We define Problem (Pa) similarly to Problem (P ) where the cost of non-uniformity is being

replaced by its approximation:

max
λ,κ

{
λp(λ;N)N − cN

T
λϖT

a (λ,κ)
}

(Pa)

s.t. ϖa(λ,κ
)
= T −Nκ/µ and ρ≤ 1.

By following a similar proof to Proposition 3 one can show that the solutions to Problems (Pa)

and (P ) are asymptotically the same.

Corollary 2 Under the same scaling as before, the asymptotic solution to the sequence of optimiza-

tion problems (P n
a ) is asymptotically the same as that of (P n) given in Proposition 3. In particular

√
n |λn

a −λn| → 0 and
√
n |κn

a −κn| → 0 and ϖn/ϖa(λ
n, κn)→ 1, as n→∞.
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For the rest of this section, we characterize the delay in a normal regime. We start by some

monotonicity results, which show that the suggested approximation is not only relatively close to

the actual delay but they both behave in a similar way with respect to λ and κ.

Proposition 4

i.) ϖT
a and ϖT are both increasing in λ

ii.) ϖT (λ,0) = T and ϖT
a (λ,κ)→ T as κ→ 0 and ∂κϖ

T
a (λ,κ)→−s/λ as κ→ 0

iii.) ϖT
a and ϖT are both decreasing in κ and go to zero as κ→∞.

Parts i.) and iii.) in the previous result show in particular, how on average the delay behaves

with respect to the two main control variables, price and display frequency, independently of any

fulfillment constraint. The first result is intuitive, as the demand rate increases, the irregularity

increases as well. The second behavior is less intuitive. If we disregard the fulfillment constraint

and assume that the price is fixed, then by increasing κ two phenomena compete. On one hand,

more campaigns can be active simultaneously, which tends to reduce the lag, but on the other

hand the delivery pace decreases, which tends to keep a campaign active longer. Part iii.) shows

that one lever is stronger, as κ increases the delay decreases. Equivalently, if the publisher runs

simultaneously more campaigns (by reducing their display frequency, 1/κ), an economies-of-scale

effect is generated, which reduces the impact of uncertainty and makes the delivery on average

more uniform. Next, we introduce the fulfillment constraint and discuss its impact on the delay.

Proposition 5

i.) For any fixed value of λ, both equations ϖT (λ,κ) = T −Nκ/µ, and ϖT
a (λ,κ) = T −Nκ/µ,

admit a non-zero solution. We denote by κ(λ) (resp. κa(λ)) the largest one.

ii.) Furthermore, κ(λ) (resp. κa(λ)) is decreasing in λ all else fixed with κ(λ)≤ κ0 (resp. κa(λ)≤

κ0). Finally, ϖ
T (λ,κ(λ)) (resp. ϖT

a (λ,κ(λ))) is increasing in λ.

Proposition 5 i.) guarantees that the equality constraint has a non-empty solution set and reduces

the optimization to a single variable. We note that for fixed λ, the largest solution to the constraint

κ(λ) (resp. κa(λ)) guarantees the smallest delay among the other solutions (if many exist3). In ii.),

the monotonicity of κ is intuitive. If the price per impression is lowered, the demand rate increases

and with it the number of impressions to be met during T . Therefore, to meet the fulfillment

constraint, one needs to direct more viewers to the ads and that is achieved by increasing the

display frequency, i.e., by decreasing κ. As λ increases κ(λ) decreases and the resulting delay also

3 We show in the proof of Proposition 5 that κa, the non-zero solution to the equality constraint, is unique.
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increases. Finally, recall that the fluid model solution (λ0, κ0) represents an upper bound for both

values of λ and κ.

Proposition 6

i.) The approximated cost function, ca(λ,κ) :=
cN
T
λϖT

a (λ,κ), is convex in λ for fixed κ and is

convex in κ for fixed λ, if and only if, ϱ := λT/sκ< ϱ0 for some ϱ0 > 1. Finally, the cross derivative

of the cost function is negative and its hessian is non-positive for all values of λ and κ.

ii.) The function ca(λ,κ(λ)) is concave in λ for all λ≤ λ0.

Proposition 6 i.) shows that the objective function in Problem (Pa) does not behave “nicely”

as the hessian is non-positive. However, from ii.) we can see that once the constraint is embedded

into the objective (i.e. ϖ(λ,κ(λ))), the objective function becomes concave in λ (on the entire

feasible set). In particular, this implies that the optimal solution (λ∗, κ∗) is unique, which is very

helpful especially for the numerical analysis. Furthermore, one can easily prove that κ(·) is not

only decreasing but also concave in λ (for the latter conclusion see the proof of Proposition 4 in

Appendix A). The result in i.) shows that the cost (respectively, the profit) function is convex

(concave) in each variable separately. The condition ϱ< ϱ0 is not that constraining. First, because

ϱ0 > 1 does not impose any upper bound on the utilization (ρ can still take any value in (0,1),

and thus no restriction on the price itself except on the gap between λT and κs. Second, if we

recall the analysis for large scale systems, we know that the control variables will drive naturally

the system towards high utilization and thus both load factors ρ and ϱ close to one, which would

not be affected by the constraint on the congestion factor. The concavity results obtained in the

previous proposition are quite helpful in solving other variants of our problem where the fulfillment

constraint is relaxed (e.g., a system where only a minimum number of impressions is guaranteed.)

6. Multiple Advertising Plans Under PUA policies

6.1. Problem Formulation

In this section we revisit the general formulation (MP ) where the publisher offers a number of

plans J > 1. As we mentioned earlier PUA policies have the advantage of being tractable and

simple to implement. By applying a PUA policy, where campaigns requiring the same plan j are

grouped together and viewers are uniformly allocated to them, the non-uniformity cost and the

fulfillment constraint become tractable. Both are reduced to a linear function of the delay. One

property of the PUA policy is that among campaigns of the same plan j, the one that is booked

first is always delivered first. This property allows one to formulate the non-uniformity cost and

with it the optimization problem.
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The PUA policies are similar in nature to partitioned nesting policies often adopted in yield

management. The latter are known to perform well in practice yet are clearly suboptimal. Similarly,

the PUA policies we suggest, have their inefficiencies, especially in the multi-plan case due to

their non-work-conserving nature. For instance, if one group of campaigns, requiring plan j, is

experiencing a slow booking rate while another plan i is being flooded with advertisers, it is

possible that the slots sκj allocated to plan j are under-utilized while those allocated to plan i

are saturated with some campaigns experiencing a positive delay. However, setting optimally the

price per impression for each plan, pj, the display frequency through κj, as well as the proportion

of viewers, fj, directed to each plan, strives to eliminate these inefficiencies. Moreover, similarly

to the single-plan setting, we show below that a well designed PUA is asymptotically optimal.

Therefore, the solution obtained in this setting can well be used under a different mechanism (e.g.,

as an input to a delivery engine) and it would still behave almost optimally as long as regular

delivery is important.

As defined before, we denote by λ= (λ1, λ2, ..., λJ) the vector of demand intensities generated

when the advertiser sets the vector of prices p = (p1, p2, ..., pJ) for the J plans available. The

publisher solves the following problem:

max
λ,κ,f

{ J∑
j=1

λj pj(λ ;N)Nj −
cjNj

Tj

λjϖ
T
j (λj, κj)

}
(MP)

s.t. ϖT
j (λj, κj

)
= Tj −Njκj/(µfj), j = 1,2, ..., J

ρj := λj Nj/(sµfj)≤ 1, j = 1,2, ..., J,
J∑

j=1

fj ≤ 1.

Two settings could be considered. The first one relates to non-substitutable plans where λj(p ;N) =

λj(pj ;Nj). These plans divide the set of advertisers into disjoint classes. Every advertiser from

a specific class is associated with one plan and decides whether to buy that plan or not. This

setting makes sense when the plans are very different and segment the market naturally. In the

case of substitutable plans, we consider one class of advertisers approaching the web publisher who

could be interested in any of the J plans offered. The advertiser then selects the plan that fits

his campaign best. Hence, the arrival rate for plan j is affected by all the J plans. We suggest in

Section 7.1 two price-demand functions covering each case. For clarity purposes, we present the

results here for non-substitutable plans. All the analysis extends to substitutable ones.

We end this section by suggesting another formulation of the optimization problem (MP). For

that, we take advantage of the separability of the objective function, the necessarily binding con-

straint on the proportions and the redundant utilization constraint. This formulation requires a
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version of the delay that is differentiable in κ. Therefore, we use the approximation ϖa instead

of ϖ, defined in the previous section, which is asymptotically equal to ϖ, leads to the same fluid

analysis, and is also differentiable. We will drop the subscript a.

∂

∂fj

[cjNj

Tj

λjϖj(λj, κj(fj;λj))
]
=m

λj = argmax
λj

{
λjpj(λj)−

cjNj

Tj

λjϖj(λj, κj(fj;λj))
}

(OC)

J∑
j=1

fj = 1,

where m (a Lagrange multiplier) is a constant independent of j.

6.2. Asymptotically Optimal Solution

In this section we present an asymptotic analysis of the multi-plan problem (MP ) set in a regime

where demand and capacity grow large. We follow the same approach as in Section 5.2 and define

a sequence of problems (MP n) parameterized by an integer n, which will increase towards infinity.

We let λn
j (·) = nλj(·) and µn = nµ while keeping T n

j = Tj and Nn
j =Nj. The approach we use to

solve the asymptotic regime relies on the general formulation given in the previous section and on

the asymptotic solution of the single plan problem. First, based on the second equality condition

of (OC), we adjust the single class asymptotic analysis by defining for all n a set of capacity

portions f j
n for each advertising plan j. Second, we use the first equation of (OC) to determine a

characterization of fj, which holds in particular for fn
j . Finally, we solve for fn

j recalling the last

equation of (OC).

Proposition 7 Suppose that the arrival stream of advertisers follows the demand process described

in Section 3.1 and both demand and supply rates are scaled as suggested above. Assume that ρ̄j > 1

and that the first derivatives of λj(·) w.r.t. p at λ0
j , λ

0
j
′
, exist and are finite for all 1≤ j ≤ J . The

solution of the optimization problem parameterized by n is such that

i.) λn
j = λ0

j n−λ0
j (

ϖT
j −ηj

T
+ ςj)

√
n+ o(

√
n)

ii.) κn
j = κ0

j n−κ0
j (ςj +

ϖj

T
)
√
n+ o(

√
n)

iii.) fn
j = f0

j − f0
j ςj/

√
n+ o(1/

√
n)

iv.) ρnj = 1− ϖT
j −ηj

T
√
n

+ o(1/
√
n)

v.) ϖT,n
j (λn

j , κ
n
j ) =

ϖT
j√
n
+ o(1/

√
n),

where, for all 1≤ j ≤ J , we have ϖT
j = σ0

j Ψ(−ηj/σ
0
j ), with σ0

j =
√

sκ0
j/λ

0
j . The values of ηj’s are

given by Φ(−ηj/σ
0
j ) = (1+m/Nj)

−1, for some positive m. Finally, we denote by Π0,n =
∑

j λ
0
j p

0
j Nj n

the profit obtained in the fluid setting. The optimal profit in the stochastic setting is of the form
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vi.) Πn

Π0,n = 1− ξ(m)/
√
n+ o(1/

√
n), where m is selected to minimize ξ(m).

The second order terms of the capacity portions, ςj’s, and that of the profit, ξ(m), are formulated

in the proof of Proposition 7 in Appendix A. Furthermore, the existence of the ηj’s is guaranteed

as long as m is positive. This constraint translates to conditions on the demand function, similar

to the one on the elasticity (i.e., |e0|> 1) in the single plan case.

The result above shows that the fluid solution remains asymptotically optimal despite the com-

plexity of the multi-plan setting. Recall that the value of Π0 is independent of the capacity allocation

mechanism used. Hence, the result shows that this optimal solution can be reached by implementing

our suggested PUA policy, which is then asymptotically optimal. Hence, the ineffectiveness inher-

ited by decoupling the advertising plans is diluted in large-scale systems and is not exaggerated as

one could have expected.

The asymptotic solution reveals how the fluid solution gets corrected. Compared to the single

plan, the policy components include a new factor, which is the capacity portion, fj. This proportion

has a complicated correction term (see Appendix A) as it is linking all the plans together. It is

sensitive to the delay ϖT
j and the utilization through the term, ϖT

j − ηj, experienced by all the

plans. The numerical analysis identifies some of these adjustments. Note that to our knowledge this

kind of multi-product setting has not been analyzed before in the context of Halfin-Whitt regimes,

obtained through economic considerations.

7. Numerical Analysis

Our numerical analysis is based on data from a large Scandinavian web publisher, Aller Inter-

nett, which runs several online magazines. It does not charge subscription fees rather revenues are

generated by posting ads on the websites. There is a sales team that takes down orders for adver-

tising campaigns where some negotiation can take place using a rate card price as a starting point.

Even though the actual time the order was placed is not kept track of, the starting time of the

campaigns are randomly spread, which reflects the randomness of the ordering time. Furthermore,

the randomness on the traffic side is evident with large fluctuations throughout the day as well

as across days for the same time of the day. Aller Internett does not offer its advertisers targeted

impressions (e.g. young males interested in sport), however, the magazines have targeted audience

(e.g., IT and women magazines).

The data is from a particular online magazine that Aller Internett runs with 600,000 visitors

on average per day (it does not track unique visitors). We consider around 250 orders made over

a six month period after mid year 2009 to the beginning of 2010. On average there are about
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1.3 campaigns4 starting per day. The average duration of the campaigns (excluding the long-term

contracts) is 40 days. The advertisers request different number of impressions to be delivered with

the average being around 2 millions. The advertisers are not restricted to select from a menu of

campaign lengths or number of impressions. However, we do see their choices clustered around

3 values of the campaign length (30 - 50, 70 and 90 days) and number of impressions (1, 2 and

3.5 million). Aller Internett uses Dart by DoubleClick to deliver the advertising campaigns, which

requires multiple inputs such as how many ads can share a slot, for which our display frequency

parameter κ could represent a good proxy.

7.1. Price-Demand Models

In order to perform the numerical analysis we explore in details the relationship between the price

per impression, the number of impressions offered and the resulting demand rate. We suggest two

models to depict this relationship; a utility-based demand function and a budget-based demand

function. All our analysis holds for general demand functions. As argued in the literature (see,

e.g., Gallego and van Ryzin (1994)), the demand rate λ(p) can be considered to be a non-price-

dependent demand rate Λ multiplied by the probability that the specific buyer has a reservation

price larger than the listed price. The models we suggest generalize this idea to the setting of

the online problem, where the probability of booking a campaign depends also on the number of

impressions expected to be delivered. The two models are as follow:

Utility-based demand function. For this demand function we assume that advertisers interested

in booking a campaign will only do so if their net utility is positive. In the single-plan setting the

net utility is formulated as follows:

U(p;N) = θNα − pN

where θ is a measure of the sales impact generated by a campaign. (This model can easily be

extended to the multi-plan case for both non-substitutable and substitutable plans.) The parameter

θ is advertiser dependent and is taken to be uniformly distributed on [0,Θ]. The resulting demand

rate λ(p;N) is given by

λ(p;N) = ΛP(U(N)≥ 0) =Λ
(
1−Θ−1 pN 1−α

)
or, equivalently, p(λ;N) =Θ

(
1− λ

Λ

)
Nα−1.

Budget-based demand function. In this model, we assume that advertisers approach the website

while having a budget constraint β (equivalent to a reservation price for the entire campaign)

4 There are some long-term contracts but those are becoming less common and we exclude them.



Authors’ names blinded for peer review
24 Article submitted to ; manuscript no. (Please, provide the mansucript number!)

on their spending and a minimum number of viewers ν to reach. For tractability, we assume ν

to be a uniform random variable on [0,M ] and β a normally distributed random variable with

mean h(ν) := dν + g and a standard deviation σb. We consider the setting where multiple plans,

(Nj, pj), are offered to a single class of advertisers (identified by d, g,M,σb). The advertisers book

a campaign only if their budget constraint is satisfied and their reach target is fulfilled (i.e., ν <Nj

and β > pjNj). We prove that for 1≤ j ≤ J,

λj(p;N) =
Λ

dM
(Gj+1(Nj)−Gj(Nj)).

We denote by Gj(N) = E[ϵj ∧ dN ]+ with GJ+1(N) = dN , where ϵj is a normal random variable

with mean mj := pjNj − g and standard deviation σb.

Based on the data available to us from Aller Internett, we try to generate reasonable estimates

of the models’ parameters to use for our numerical analysis.

7.2. Delay Approximation

To verify the quality of the approximation for the delay, which the non-uniformity cost depends

on, we compare in Table 1 the simulated value of the delay to its approximation for the T contract

through their absolute and relative difference (∆T and ∆T (%), resp.). For that, we explore different

values of κ for the parameter values chosen: µ= 600,000, s= 5, T = 40, and N = 2,000,000. We

consider two values for the price per impression (corresponding to utilizations of 0.8 and 0.95). The

κ ρ ϖT ϖT
a ∆T ∆T (%) ρ ϖT ϖT

a ∆T ∆T (%)

1 0.80 35.83 35.83 0.00 0.00 0.95 36.49 36.49 0.00 0.00
5 0.80 19.16 19.17 0.00 -0.02 0.95 22.46 22.46 0.01 0.02
10 0.80 1.58 1.61 -0.03 -2.11 0.95 5.38 5.33 0.05 0.91
15 0.80 0.00 0.00 0.00 -660.94 0.95 0.02 0.04 -0.02 -93.35

Table 1 Approximations of the delay for the T-contract and the simulated values

approximation for ϖT performs in general very well. When κ increases the campaign delay goes

to zero and thus the difference goes to zero as well, making the relative difference quite unstable.

However, the relative difference is quite low for the values of κ (≤ κ0 = 12) of interest to us.

7.3. Asymptotic Solution

We now analyze the asymptotic optimal solution and focus on the single plan case. A similar

analysis can be done for the multi-plan case. We use a utility based price-demand function and

set s and T as above with Λ = 30, c= 0.022, α= 0.9, and Θ = 0.09, in line with Aller Internett’s

data. We explore two sets of (µ;N): (40,000; 400,000) and (200,000; 2,000,000). The first case has

the asymptotic parameter η = 0.48 and the second one has η =−0.43. Both cases have the same
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elasticity, e0 =−59. As illustrated in Section 5.2, we scale the capacity and the demand function

linearly by introducing a parameter n that we increase from 1 to 50. The values of n below 25

correspond to reasonable settings in practice. The value n= 50 is an extreme case. In Table 2 we

compare the values of the optimal solution obtained using the asymptotic approach (λn and κn) to

the one obtained using the approximation of the non-uniformity cost (λa and κa). The differences

(∆a,n(λ) and ∆a,n(κ)) are the relative differences measured in %. We also list the fluid values, λ0

and κ0. The last columns are dedicated to the two utility measures and the comparison of the delay

for the T and N-contracts.

Table 2 confirms the theoretical result of Proposition 3 and that Problem (Pa) is asymptotically

equivalent to Problem (P ). Furthermore, it illustrates how the uncertainty can be absorbed by

increasing κ and/or by decreasing λ away from their fluid values. We start with the case of µ=

40,000 and N = 400,000 (the first four lines in the table). We observe that the demand rate remains

very close to its fluid counterpart. The value of κ is more impacted by the presence of uncertainty;

it is still asymptotically close to the fluid solution. In the lower part of the table the values of µ

and N are 200,000 and 2,000,000. In this case η is negative and thus ϱn converges to one from

below, which imposes a constraint on the utilization (ρ ≤ ϱ). This forces the demand rate a bit

further away from the fluid limit. Hence, we do see a slightly larger gap between λn and λ0 and an

opposite behavior for κ with respect to κ0.

On the delay side, which captures the campaign irregularity and the non-uniformity cost, the

values are reasonable with less than 1.70 day delay (out of a 40-days campaign) for n≥ 5. Again,

the importance of this delay is that it measures the uncertainty in the system reflected by the non-

uniformity cost. If in practice, the publisher cannot afford a delay beyond a certain time length,

then an additional constraint can be imposed, which will dictate a higher price and probably a

lower display frequency. Equivalently, this indicates that the publisher has underestimated the

importance of the non-uniformity cost and should use a higher cost parameter c.

Table 3 considers the difference in profit measured in relative error (%). The difference in the

optimal profit based on the approximation of the delay compared to the asymptotic optimal profit

is less than 1.04% for all values of n. The second column shows that the asymptotic optimal profit

converges to the fluid one. The third column makes the comparison to the profit values based on

the simulated delay and the difference is negligible. The last column compares the two contracts

through their profits. We observe that the T-contract’s profit is always higher as shown in Section

5.2 but their relative difference seems to converge reasonably fast.
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n λ0n λa λn ∆a,n(λ) κ0n κa κn ∆a,n(κ) ρn ϱn ϖT,n

1 0.50 0.46 0.46 0.38 4 3.57 3.62 -1.34 0.92 1.01 3.81
5 2.50 2.41 2.41 0.06 20 19.10 19.15 -0.24 0.96 1.01 1.70
10 5.00 4.87 4.87 0.03 40 38.75 38.79 -0.11 0.97 1.00 1.21
25 12.50 12.29 12.29 0.01 100 98.05 98.09 -0.04 0.98 1.00 0.76
50 25.00 24.71 24.71 0.01 200 197.26 197.31 -0.02 0.99 1.00 0.54

1 0.50 0.45 0.45 0.32 4 3.62 3.66 -1.27 0.91 0.99 3.36
5 2.50 2.40 2.39 0.05 20 19.21 19.25 -0.22 0.96 1.00 1.50
10 5.00 4.85 4.85 0.02 40 38.90 38.94 -0.11 0.97 1.00 1.06
25 12.50 12.26 12.26 0.01 100 98.28 98.32 -0.04 0.98 1.00 0.67
50 25.00 24.67 24.67 0.00 200 197.58 197.62 -0.02 0.99 1.00 0.48

Table 2 Asymptotic optimal values for the T-contract with comparison to the approximate optimal values. The first set

of lines have µ= 40,000 and N = 400,000 and the next have µ= 200,000 and N = 2,000,000. The differences

are presented in %.

n ∆a,n(Π) ∆0,n(Π) ∆sim,n(Π) ∆T,N(Πn)

1 -0.81 16.10 -0.39 13.68
5 -0.15 7.37 -0.07 5.95
10 -0.07 5.24 -0.04 4.18
25 -0.03 3.33 -0.01 2.63
50 -0.01 2.36 -0.01 1.85

1 -1.04 17.38 -0.47 14.89
5 -0.19 7.98 -0.10 6.46
10 -0.09 5.68 -0.04 4.53
25 -0.04 3.61 -0.02 2.85
50 -0.02 2.56 0.00 2.01

Table 3 Asymptotic optimal profit values for the T-contract compared to the approximate profit, the fluid profit, the

simulated profit, and the asymptotic optimal profit for the N-contract. The first set of lines have µ= 40,000 and

N = 400,000 and the next have µ= 200,000 and N = 2,000,000. The numbers are presented in %.

7.4. Numerical Analysis for The Single Plan

We analyze numerically the single-plan case and extract insights beyond the analytical results

derived so far. We consider the budget price-demand function. The numerical results for the optimal

solution are based on the approximation of the delay for the T-contract. We choose the parameter

values extracted from the Scandinavian web publisher’s data and set µ= 600,000, s= 5, T = 40,

M = 3,000,000, Λ= 30, c= 0.022, α= 0.98, Θ= 0.09, g= 6000, d= 0.07, and σb = 15,000.

We consider the effect of increasing the number of impressions on the optimal solution, see

Table 4. In the fluid setting, as the number of impressions increases, the demand rate first increases

before hitting the upper bound for which ρ0 = 1 and then it decreases. The display frequency,

1/κ, increases as the number of impressions increases. In the stochastic setting, both the arrival

rate and the display frequency absorb the uncertainty by deviating away from their fluid values.

However, the value of κ decreases with N more aggressively. This can be illustrated through the
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N λmbda0 λ∗ ∆(λ) κ0 κ∗ ∆(κ) ρ0 ρ∗ ϱ Shortage

400,000 0.05 0.05 0.00 60.00 60.00 0.00 0.01 0.01 0.01 0.00
600,000 3.12 3.12 0.00 40.00 40.00 0.00 0.62 0.62 0.62 0.00
800,000 3.75 3.57 4.77 30.00 29.34 2.21 1.00 0.95 0.97 3.26
1,000,000 3.00 2.93 2.50 24.00 22.76 5.17 1.00 0.98 1.03 3.64
2,000,000 1.50 1.47 1.89 12.00 10.72 10.66 1.00 0.98 1.10 5.15
3,500,000 0.86 0.84 2.17 6.86 5.83 15.00 1.00 0.98 1.15 6.81

Table 4 Fluid and optimal values for different number of impressions based on the budget price-demand function. The

differences are presented in %.

congestion factor ϱ= λT
sκ
. This ratio increases with N (see Table 4) implying a larger gap between

the two decision variables, i.e., κ decreases faster than λ allowing the profit to remain close to

the fluid benchmark. These observations confirm the following. First, from a pricing point of view,

one should expect, in a loaded system, a larger price per impressions for larger contracts5. Second,

the allocation mechanism relying on regular delivery, turns out to be critical in managing the

uncertainty by creating effective economies-of-scale (recognized and discussed previously in the

asymptotic analysis).

Note that ∆(κ) = 1 − κ∗/κ0 = ϖ/T . Hence, ∆(κ) measures the delay proportionally to the

campaign length. For most contract sizes the delay should be acceptable (less than 5.17% of the

duration). For large ones (N ≥ 2,000,000), the uncertainty is amplified and the non-uniformity is

harder to manage. If that is a serious issue for the web publisher, then the load ought to be reduced

by, for instance, increasing the price per impression.

Finally in Table 4 we measure the shortage, which is the number of impressions under delivered

by the fluid solution. A web publisher that disregards uncertainty will consistently miss on the

expected number of impressions targeted. The number of impressions under delivered increases

with N , starting at around 3% for low values of N and exceeding easily 6% for large ones.

A few other parameters can be explored such as the number of slots, the traffic, etc. We will

conclude by exploring the impact of demand uncertainty by considering a variant of the Poisson

process modeling the arrivals of campaigns. For that, we let as before (vi : i≥ 1) be an i.i.d. sequence

of interarrival times (times separating two campaign requests), with mean 1/λ and standard devia-

tion γ/λ, (all other moments are unchanged). In the Poisson case, v1 is exponential and γ = 1. The

number of campaigns booked in a period of time t has an average of λt and for large t, its standard

deviation can be approximated by γ
√
λt (see, e.g., Ross (1996)). If we look at weekly demand,

5 This is not surprising from an operations point of view as more impressions mean more workload. For example,
Yahoo! recognizes the uncertainty caused by the supply scarcity and takes it into account when pricing by offering a
higher price if the contract uses up a big portion of the impression inventory.
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i.e., t = 7, for a demand rate of 1 advertiser/day, a value of γ = 3 leaves us with a coefficient of

variation of 1.13, a quite reasonable value. We vary γ between 1 and 4. The behavior of the system

with respect to the uncertainty parameter, γ, is of the same nature as the uncertainty impact we

explored earlier through N , see Table 5. The demand rate is affected in a nonlinear way but the

κ absorbs here more of the uncertainty and decreases quickly with γ. This behavior stresses the

critical role of display frequency in handling uncertainty.

γ λ0 λ∗ ∆(λ) κ0 κ∗ ∆(κ) Shortage

1 3.00 2.93 2.56 24.00 22.76 5.46 3.64
2 3.00 2.86 4.95 24.00 21.37 12.30 7.28
3 3.00 2.80 7.11 24.00 19.84 20.97 10.93
4 3.00 2.75 8.96 24.00 18.17 32.09 14.57

Table 5 Fluid and optimal values for different values of the uncertainty parameter γ based on the budget price-demand

function with N = 1,000,000

7.5. Numerical Analysis for Multiple Plans

We now move to the multi-plan setting where we perform a numerical analysis for two plans with

the same campaign length but different number of impressions. We determine the optimal price

to charge, the optimal display frequency, and the optimal capacity proportion for Plan 1 with

N1 = 1,000,000 and for Plan 2 with N2 = z ·N1, 1 ≤ z ≤ 5. We choose the parameters similarly

as in the single plan case with µ = 600,000, si = 5, Ti = 40, Λi = 30/2, ci = 0.022, and γi = 1.

Purposely, we picked the utility price-demand function that represents non-substitutable plans in

order to keep the interaction of the two plans at an operational level. Each class of advertisers has

a different utility function with α1 = 0.99, α2 = 1.01, and Θ1 = 0.07, Θ2 = 0.05. The magnitude of

the values chosen were inspired by our data set.

Figure 1 shows the profit for the two plans as well as the total profit of the system. The behavior

of the profit for Plan 2 depends highly on the parameters (α2,Θ2) relatively to (α1,Θ1). Clearly,

the prices are set to take advantage of the more profitable plan. What is quite consistent among

different parameter values is the decreasing nature of the profit of Plan 1. As the two plans become

more distant, i.e., N2/N1 is large, more viewers are inevitably directed to Plan 2 (see Figure 5),

which hurts Plan 1. The total profit is first increasing and will decrease eventually, here at the

value of N = 3.5 million.

Next, we observe in Figure 2 the intuitive operational fact that as N2 increases not only does

the demand for Plan 2 decrease but also the demand for Plan 1. Many web publishers do not

consider this direct impact of different plans on each other. In Figure 3 we see that the display

frequency increases with N2 as the same capacity is shared across larger workload (higher number
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Figure 2 Two plans: Optimal demand rate

of impressions). The display frequency parameters help with absorbing the impact of uncertainty

and stop the demand rates from dropping aggressively by allowing them to remain close to their

fluid values. Note that the utilization for both plans is decreasing in N2 (see Figure 4).

The impact of uncertainty in this two-plan model is more pronounced than in the single plan

setting and the relative difference between the overall profit of the stochastic model and the profits

under a deterministic setting is on average at around 8.2%. This reasonable performance of the

stochastic model has been achieved through a complex interaction between the different pricing

and operational variables.

We end this section by studying the impact of increasing the number of advertising plans offered.

We increase the number of plans from 2 to 9 in the following way. We uniformly select the number

of impressions for each plan between the smallest value of 1 million impressions and the maximum

value of 10 millions with all of them having the same duration. Figure 6 shows that the PUA mech-

anism, despite the embedded ineffectiveness we previously discussed, does perform well compared

to the fluid model. We note that the worst performance of the stochastic model under a uniform

capacity allocation is when the number of plans is moderate (around 3 or 4 plans).

8. Conclusions

This paper develops a novel modeling framework for an operation facing uncertainties from both

supply and demand while capturing specific delivery requirements. It is inspired by an online

advertising problem whereby a web publisher needs to decide on the optimal price to charge per

impression and the parameters governing the campaign delivery. The web publisher is constrained

by the number of impressions and the campaign duration selected by the advertiser who expects a

regular delivery throughout the campaign duration. The irregularity in the delivery is captured by

a cost of non-uniformity. We suggest an allocation mechanism, the partitioned uniform allocation,
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Figure 6 Profit for multiple advertising plans

that guarantees a uniform display of an ad through most of the duration of the campaign with

the possibility of a delayed starting time. This mechanism relies on having the advertising slots

sharing multiple ads in a rotating manner. Through a large-capacity system analysis, we obtain the

optimal values for the price per impression and the campaign delivery control parameters. These

values correspond to the solution of the fluid/deterministic problem corrected by square root terms,

proving that the fluid values together with the allocation mechanism are asymptotically optimal.

The allocation we suggest has many advantages. Not only is it simple and asymptotically optimal,

it is a means that allows one to link the control parameters to the system’s uncertainty through

the non-uniformity cost, making the optimization problem tractable. It is interesting to stress that

the optimization problem under a large capacity drives the system into high utilization (under

a Halfin-Whitt regime) while keeping the delivery irregularity small (even converging to zero).

Undeniably, such behavior is the result of economies-of-scales induced by the allocation mechanism

itself.

In practice, publishers use delivery engines relying on some optimization to allocate viewers
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regularly to campaigns. They need to set a price per impression and divide their capacity among

the different campaign types and fix the display frequency of an ad. Having in mind our asymptotic

analysis, we believe that the simple formulation of the pricing, the capacity portion and the ad’s

display frequency, solution of our optimization problem, could represent reasonable inputs to use

in practice.

The framework proposed in this paper considers several complexities of the online problem. How-

ever, some simplifying assumptions were made that could generate relevant extensions. Advertisers

are in reality very keen on targeted advertising where they specify the attributes of the viewers that

see their ads. We have assumed the viewers to be homogeneous as the Scandinavian publisher, (on

which we base our numerical analysis) does for each of their online magazines. However, extending

our results to non-homogeneous viewers is both relevant and interesting. We have assumed the

traffic follows a Poisson process which is a valid assumption at an aggregated level. But, exploring

time non-homogenous processes would certainly add value at an operational level. Some publishers

take orders through an online system and can easily change their prices. Extending our analysis to

dynamic pricing and dynamic display frequency are both challenging and relevant extensions.
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APPENDIX A: Main Proofs

A1. Proof of Proposition 1. i.) is straightforward. ii.) The constraint in MP0 is necessarily

binding. This is a separable concave optimization problem. The formulation of the solution results

directly from the KKT conditions. �

A2. Proof of Proposition 2. The key feature of this setting is the constant number of impres-

sions, N , required by all advertisers. Despite the uncertainty in the arrival of viewers, such uncer-

tainty does not alter the order of the advertisers leaving the system (after having their campaign

fulfilled). This order is the same than the one they had when they initially approached the pub-

lisher. We rank the slots from 1 to sκ and, when multiple slots are free, we assign advertisers to

the lowest ranking slot. We can then tell, at arrival, on which slot (among the sκ available) the ad

will be displayed. Therefore, the slots dynamics can be decoupled each having its arrival process.

Let Ui be the time the ith campaign takes to be completed once it had started to be displayed. The

sequence U = (Ui : i≥ 1) is stationary. Every κ viewers is directed to the same campaign, and every

campaign needs N viewers. Thus, U1
D
=
∑Nκ

j=1 uj where the uj’s are the interarrival times between

viewers. Similarly, let Vj+1 =
∑j+sκ

l=j+1 vl
D
=

∑sκ

l=1 vl, where, vl’s are the interarrival times between

campaigns. Similarly to the dynamics of a single server queue, we can track the delay of each

advertiser. Assume that the nth was assigned a certain slot (among the sκ) then the next campaign

that will be assigned the same slot is the (n+sκ)th campaign received. The arrival time between two

consecutive campaigns sharing the same slot is
∑n+sκ

l=n+1 vl = Vn+1. The formulation of the delay a

campaign suffers follows a Lindley’s type recursionWn+sκ = [Wn+Un−Vn+1]
+. Notice here thatWn

is independent of Un and Vn+1. Unfolding this recurrent equation leads to Wn
D
=max0≤m≤nSm(κ)

with Sm(κ) =
∑m

j=1Xj and Xj = Uj−sκ − Vj−sκ+1. Observe that X1 is the difference between two

gamma distributed random variable (and not the difference between two exponentially distributed

r.v.). This Lindley relationship implies that the stationary distribution of the delay exists and

is finite almost surely. Furthermore, it is equal in distribution to an infinite horizon maximum

of a random walk Wn ⇒M(κ) = maxn≥0Sn(κ), as n→∞. Of course, Wsn+1,Wsn+2, ..Wsn+s are

dependent random variables as their associated campaign is fulfilled with (at least partially) the

same viewers. However, all these variables converge weakly to the same random variable M and

hence, Wn as well. This single server queue type-relationship implies that when both ui’s and vi’s

are exponentially distributed, then the delay function is equal in distribution to the waiting of a

single server queue with interarrival times and service times distributed respectively as gamma

random variables.
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We move now to i). In the case of a T-contract, the nth campaign is satisfied always before the

(n+1)st: (An + T >Ak + T for all n and k < n where Aj is the arrival time of the jth campaign)

and hence the order is preserved. Is it possible that the delay of a campaign reaches T and so leaves

the system before being displayed at all? This is not possible. We prove that by contradiction.

Assume the nth campaign is the first one that the system has dropped and was not displayed.

By definition of the nth campaign, the previous campaign: (n− 1)st was served and must have

departed before the nth was dropped without being displayed. This is not possible. Now, from the

Lindley relationship, we have in the T-contract case (i.e. T =Wn+Vn), that Wn+sκ = [T −Vn+1]
+.

By letting n go to infinity we obtain the result.

Finally, we prove iii.). In the T-contract case, [T −
∑sκ

j=1 vi]
+ ≤ [T −

∑s

j=1 vi]
+ a.s.. Moreover, by

the Strong Law of Large Numbers (SLLN),
∑sκ

j=1 vi →+∞ a.s., which implies that W T (κ)→ 0 a.s.

As for the N-contract,WN(κ) =maxm≥0 Sm(κ)
d
=maxmκ≥0 Sm(1)≤maxm≥0Sm(1)

d
=WN(1). Again

by the SLLN, Sm(κ)→−∞ a.s. and hence, WN(κ)→ 0 a.s.. �

A3. Proof of Corollary 1. We let N(T ) = max{j : Aj ≤ T}, where Aj is the time of the jth

arrival of an advertiser. Observe that N(T ) is a Poisson random variable with rate λT . Hence, for

the values of N(T ) below sκ, [T −Asκ]
+ = 0 and so,

ϖT (κ) =
∞∑
j=0

E
[
[T −Asκ]

+|N(T ) = j
]
P(N(T ) = j) =

∞∑
j=sκ

E
[
(T −Asκ)|N(T ) = j

]
P(N(T ) = j).

Furthermore, we recall that conditioned on N(T ) = j, the random variables, {A1,A2, ...,Aj} are

distributed as j i.i.d. uniformly distributed random variables on (0, T ) and so Asκ is the sκ order

statistics which is known to be beta distributed with parameters (sκ, j +1− sκ). Hence, EAsκ =

T/(j+1) · sκ, which proves the result. For the N-contract, the result is based on Spitzer’s formula

see page 338 of Ross (1996). �

A4. Proof of Proposition 3.

Lemma 1. Let X be a normal random variable with mean η and standard deviation σ. The

expected value of the truncated normal is given by E[X]+ = σΨ(−η/σ), where the function Ψ is

defined for all x, as Ψ(x) = ϕ(x)−xΦ̄(x) (see Section 5.2). Furthermore, Ψ is decreasing on R and

for all x∈R, Ψ(−x)>x with Ψ(−x)/x→ 1, as x→+∞.

Proof. By definition Ψ(x) = ϕ(x)−xΦ̄(x)≥−x. Ψ(x)/x= ϕ(x)/x− Φ̄(x)→−1 as x→−∞.

We move to the proof of Proposition 3. Let µn = nµ, while T n = T , Nn =N and λn = nλ(·).

Notice that any solution to the delay constraint requires that T − Nκn

nµ
≥ 0 and hence that κn

n
≤ µT

N
.
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Furthermore, the utilization being bounded by one requires that λn

n
≤ sµ

N
. We consider the log-

moment generating function of the quantity
∑sκn

i=1 vi−
sκn

λn . As long as λn/n is bounded away from

zero, we have that

logE expθ(
sκn∑
i=1

vi −
sκn

λn
) = θ2

sκn

2λn2 +O(n−2). (a1)

Consider any converging subsequence of κn and another converging subsequence of λn. Form the

bounded sequence nκn/λn2. Let mn a common subsequence and denote by l the finite limit of

mnκ
mn/λmn2. We recall here a result that will be used throughout the proof and that is, if any con-

verging bounded subsequence converge to the same finite limit then the entire sequence converges

to that same limit. For clarity of exposition we index the subsequence by m instead of mn. We have

that
√
m (

∑sκm

1 vi − sκm

λm )⇒ Y
d
= σ0Z as m→∞, where Z is a standard normal random variable

and σ0 =
√
s l. The fulfillment constraint can be written as follows

√
m (T − Nκm

mµ
) = E

[√
m (T −

sκm

λm ) + Y + εm
]+

, where εm → 0 as m→∞. Equivalently, we have, 0 = Emax
{√

m(Nκm

mµ
− sκm

λm ) +

Y +εm,−
√
m(T − Nκm

mµ
)
}
. Consider a first regime made of subsequences of m (we use now the index

j) for which
√
j(T − Nκj

jµ
)→+∞. For such subsequences, the first term in the maximum ought to

go to zero in expected value as j gets large and thus
√
j(Nκj

jµ
− sκj

λj )→ 0 as j →∞. In particular,

Nκj

jµ
− sκj

λj = sκj

λj (ρ
j −1)→ 0 as j →∞. This convergence implies that ρj → 1 i.e. λj/j → λ0 = sµ

N
and

in turn κj/j → λ02l. From the RHS of the fulfillment constraint we conclude that in such regime,

the limiting system has a finite delay ϖj → T − Nλ02l
µ

≥ 0

The other possible regime is made of all subsequences for which
√
m(T − Nκm

µm ) are bounded.

Consider in such regime any converging subsequence, such that
√
j(T − Nκj

jµ
)→ϖ, for some non

negative finite ϖ. For that to occur, we must have
√
j (T − sκj

λj )→ η for some finite η. From these

two limits, we conclude again that κj/j → κ0 = µT/N and λj/j → sκ0/T = sµ
N
. From both possible

regimes, we conclude that all converging subsequences of κn/n and λn/n converge respectively to

κ0 and λ0 as n→∞. In this context, and based on the above Lemma 1 we have that
√
nϖn =

E
[√

n (T − sκn

λn )+Y +εn
]+ → σ0Ψ(−η/σ0) where σ

02 = sκ0/λ02. But again, in theory, η depends on

the subsequence nj. The equality constraint at the limit insures that σ0Ψ(−η/σ0) =ϖ and hence,
√
j ϖj =ϖ+ o(1), as j →∞.

In both regimes, the revenue side of the profit is maximized at the limit (with λn → λ0 or

equivalently ρn → 1 as n→∞). However, the second regime reaches at the limit a zero delay as

opposed to a non-zero delay for the first regime. Thus the second regime always outperforms the

first i.e. no matter the subsequence, as j gets larger the solution to the profit maximization ought

to follow the second regime. We inject in the optimization constraint, the formulation of ϖj and

solve for κj. We obtain that κj = (T − ϖT
√
j
+ o(1/

√
j)) λj

sρj
= κ0j− µϖT

N

√
j+ o(

√
j).
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In turns, we inject the expression of κj in the term (
√
j(T − sκj/λj) and get that

√
j (T − sκj/λj) =

√
j T (1− (ρj)−1)+ (ρj)−1ϖT + o(1) (a2)

which implies that
√
j (1−ρj)→ d≥ 0. By writing λj = λ0j− lj, we first have that (lj N)/(

√
jsµ)→

d and then replace it in Equation (a2), we obtain λj = λ0 j − sµd
N

√
j + o(

√
j). We let j → ∞ in

Equation (a2) and conclude that −dT +ϖT = η. Note that if d = 0, then η = ϖ = σΨ(−η/σ)

and that equation does not have any solution (Lemma 1). Hence, d= (ϖT − η)/T > 0, and, λj =

λ0 j − λ0/T (ϖT − η)
√
j + o(

√
j). The pricing policy that guarantees this arrival can be implied

from a Taylor expansion of λj(·) in the neighborhood of p0 := λ−1(λ0). We write λj(pj) = λ0j +

(pj − p0)λ′0j + o((pj − p0)j), where λ0′ = λ′(p0), the first derivative of λ at p0. By comparing the

two expressions of λj as j is large, we conclude that pj = p0 − λ0 (ϖT−η)

λ0′ T
1√
j
+ o(1/

√
j).

The entire policy is constructed at this point. We still have a free parameter η to determine (which

could eventually depend on the subsequence indexed by j). We recall that the profit obtained in

the deterministic setting is Π0,j = λ0 p0N j which is an upper bound of the the profit rate in the

stochastic case. The parameter η will be selected in order to maximize that ratio for large j.

Πj(λj, κj) = λj pj N − cN/T λj ·ϖT,j(λj, κj)

=
(
λ0j−λ0/T (ϖT − η)

√
j+ o(

√
j)
)
·
(
p0 − λ0 (ϖT − η)

λ0′ T

1√
j
+ o(1/

√
j)
)
N

− cN/T
(
λ0j−λ0/T (ϖT − η)

√
j+ o(

√
n)
)
(ϖT/

√
j+ o(1/

√
j)

= λ0p0N j− p0λ0N (ϖT − η)/T
√

j− λ02 (ϖT − η)N

λ0′ T

√
j− cN/Tλ0ϖT

√
j+O(1)

= λ0p0N j−λ0p0N/T
[
ϖT (1+λ0/(λ0′p0)+ (cN/T )T/(p0N))− η(1+λ0/(λ0′p0))

]√
j+O(1)

= λ0p0N j−λ0p0N/T
[
ϖT (1+1/e0 + c/(p0))− η(1+1/e0)

]√
j+O(1).

Hence, Πj

Π0,j = 1− ξ(η)/
√
j + o(1/

√
j), where ξ(η) = 1/T

[
ϖT (1 + 1/e0 + c/p0)− η(1 + 1/e0)

]
. We

pick η, so as to minimize ξ(η). We take the derivative of ξ with respect to η and recall that ϖ′(η) =

Φ̄(−η/σ) and so η∗ = −σΦ̄−1
((

1 + c
p0(1+1/e0)

)−1
)

as long as e0 < −1. This also proves that the

constant η is unique independent of the subsequence, which also means that all the subsequences

of λn and κn are asymptotically the same which proves the result.

Proposition 8 Consider the case of N-contracts. Suppose that the input stream of advertisers fol-

lows a Poisson process and both demand and supply are scaled as suggested in Section 5.2. Assume

that λ0 ≤ λ̄ and λ0′ exists and is finite such that e0 > 1. Then, the solution of the optimization

problem (λn, κn) is such that

i.) λn = λ0 n−λ0 ηN

T

√
n+ o(

√
n)
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ii.) κn = κ0 n−κ0ϖN

T

√
n+ o(

√
n)

iii.) ρn = 1− ηN/(T
√
n)+ o(1/

√
n)

iv.) ϖN,n(λn, κn) =ϖN/
√
n+ o(1/

√
n)

v.) If the profit obtained in the deterministic setting is Π0,n = λ0 p0N n then, the ratio Πn/Π0,n

is of the form Πn

Π0,n = 1−β(η)/
√
n+ o(1/

√
n),

where, ϖN = Emaxr≥0 Sr, and (Sr : r ≥ 0) is a random walk with normally distributed increments

with mean ηN and standard deviation σ= (κ
0N

µ02
+ κ0s

λ02
)1/2; ηN is selected so that β(η) is minimized.

We do have approximations of ϖN . One of them, ϖN ≈ σ2

2ηN
is given by Kingman (1965). If we

replace ϖN by this approximation, the optimal value of β is given by β∗ = ηN/T (1 + 1/e0) +

cN/T/(p0N)σ2/(2ηN), and ηN = σ
√

c
2p0(1+1/e0)

, when again e0 <−1. The proof will be skipped. It

follows the same approach as for the T-contract.

A5. Proof of Proposition 4. We start by showing monotonicity ofϖT in κ and λ.We recall (see

Shaked and Shanthikumar (1994)) that for any renewal process (Sn : n≥ 0) Sn ≤st Sn+1 where ≤st

denotes a stochastic ordering (i.e. for any increasing function ϕ, Eϕ(Sn)≤Eϕ(Sn+1). In particular,

we apply this to the decreasing function ϕ(x) = [T −x]+ and conclude that for κ1 <κ2,

ϖ(κ1) =E
[
T −

Nκ1∑
k=1

vk
]+ ≥E

[
T −

Nκ2∑
k=1

vk
]+

=ϖ(κ2). (a3)

The same proof applies to show monotonicity in λ as long as v is stochastically decreasing in λ.

We move to ii.). By definition, ϖ(λ,0) = T. We denote by ακ =
sκ−λT√

sκ
and σ1 =

√
s/λ. As κ→ 0,

αk →−∞. Based on Lemma 1 (stated above), Ψ(x)/x→−1 as x→−∞. Hence, σ1

√
κΨ(ακ) ∼

−σ1

√
κ (sκ/λ−T )/(σ1

√
κ)→ T as κ→ 0. We consider the derivative with respect to κ. We denote

by α′
κ the derivative of α w.r.t. κ. Similar calculations show that as κ→ 0,

∂κϖa(κ,λ) = σ1/(2
√
κ)Ψ(ακ)−σ1

√
κ Φ̄(ακ)α

′
κ

∼ σ1/(2
√
κ)(−(s/λ)/σ1

√
κ+T/(σ1

√
κ)−σ1

√
κ((s/λ)/(2σ1

√
κ)+T/(2σ1κ

3/2))

∼−(s/λ)/2+T/(2κ)− ((s/λ)/2+T/(2κ)) =−s/λ.

(a4)

We leave the proof of the monotonicity of ϖa with respect to κ and λ to Proposition 6. �
A6. Proof of Proposition 5.

i.) For clarity purposes, we drop the T and the λ inϖT (λ,κ) and write it asϖ(κ), a function of κ.

We do the same with ϖT
a . We fix λ≤ λ0. We start with Problem Pa. We denote by l(κ) = T −Nκ/µ.

Note that l(0) =ϖ(0) =ϖa(0). From a previous proposition, the derivative ϖ′
a(0) = −s/λ while

l′(0) =−N/µ. The upper bound on the utilization, ρ≤ 1, translates in |l′(0)| ≤ |ϖ′
a(0)|. The two

functions l and ϖa have the same positive starting point, and the latter is steeper at zero and
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decreases to zero (ϖ(κ)→ 0 as κ→∞); while the former goes to −∞ (l(κ)→−∞ as κ→∞).

Therefore, the two functions must intersect. We denote by κa(λ) the largest value (in case many

exist) at which the two functions intersect. Note that the revenue function is independent of κ

while the delay function is decreasing in κ and hence, as long as the constraint is satisfied a largest

possible κ is optimal. We will see below that ϖ is either concave or convex first and then concave

and it is not hard to see that the intersection with T −Nκ/µ cannot occur except in the concave

region which make this intersection unique.

As for Problem P , we first recall that the constraint needs to be adjusted for the fact that κ is

defined on K= {κ : κs∈N}). For that we analyze Pl where ϖ is replaced by ϖl. ϖl(κ) is equal to

ϖ(κ) on K and in between, it is defined through linear interpolation. We look at

ϖ(1)− l(1) =E[T −
s∑

i=1

vi]
+ − (T −N/µ) =Emax{N/µ−

s∑
i=1

vi,−(T −N/µ)}

≤max{N/µ− s/λ,−(T −Nµ)} ≤ 0,

(a5)

where the first inequality is obtained by Jensen’s inequality and the convexity of the max function

and the second inequality results from the utilization ρ≤ 1. Hence, ϖl intersects with l at κ≥ 1

and there exists, as we discussed above, a unique κ that guarantees the smallest delay cost.

ii.) Finally, the monotonicity of κ(λ) and κa(λ) in λ is the result of ϖ and ϖa being both

increasing in λ. The delays are always non-negative which implies that both κa and κ are upper

bounded by κ0. �
A7. Proof of Proposition 6. We skip the proof of this proposition which is based on straight-

forward yet tedious derivative calculations.

A8. Proof of Proposition 7. We disregard the index identifying each plan when there is no

confusion from doing so. We also disregard the upper index T . We denote by λ0,j, κ0,j, f0,j the

solution of the fluid model. For clarity of exposition and without loss of generality we assume

that these sequences converge for each plan j to some finite limits. In principle, we should work

throughout the proof with subsequences of κn/n and λn/n and prove that these subsequences

converge to the same limit as we did in the single plan proof. Following the same steps as in

the proof of the single plan case, we have that κn resp. λn is given by κn = (T −ϖj)µnfn/N =

(Tµ/N)fn n−(µϖ/N)fn
√
n+o(

√
n) resp., λn = λ0fn n− λ0fn

T
(ϖ−η)

√
n+o(

√
n). Similarly to the

single plan case, a free parameter η is introduced (for each plan), such that
√
n (T − sκn/λn)→ η,

and
√
n (T −

∑sκn

i=1 vi)⇒N (η,σ), with σ02 = sκ0/λ02. Again,
√
nϖn →ϖ := σΨ(−η/σ). From the

fluid solution of the multi-plan problem and the fact that fn is bounded, we conclude that any

subsequence of fn must converge to f0. We then write fn = f0(1− ςn).
√
n (1− ρn) =

√
n (sµfn −λ0N + lnN/n)/(sµfn)

=
√
n (−sµf0ςn + lnN/n)/(sµfn).

(a6)



Authors’ names blinded for peer review
Article submitted to ; manuscript no. (Please, provide the mansucript number!) 39

We denote by ς the limit of
√
nςn as n→∞. Hence, ln = ((d+ ς)sµf0/N)

√
n+ o(

√
n), as n→∞.

Without loss of generality, we assume a uniform c := 1. Given the solution λn of MP n, the cost

optimization problem defined by G(λ) allows to obtain the corresponding κn and fn. The latter

are parametrized by ηn, hence the solution to the minimization problem G(λ) has the η′s as its

solution. The limiting cost in (c7) is
∑

j Nj/Tjλ
0
jϖj and it is a function of the free variables ηj’s

defined above. For every plan j the fulfillment constraint at the limit is given by −dj T +ϖj = ηj.

Finally, the proportion constraint can be reduced to
∑

j ςjf
0
j = 0. Given λn, the quantity lnj is also

given for all n, hence the sum
∑

j l
n
j Nj/(sµ

√
n) is a constant. Furthermore,

∑
j l

n
j Nj/(sµ

√
n) =∑

j djf
0
j =

∑
j(ϖj −ηj)f

0
j = constant. We can characterize the η’s by minimizing the limiting cost.

min
ηj

∑
j

Nj/Tjλ
0
jϖj

s.t.
∑
j

(ϖj − ηj)f
0
j = constant.

(a7)

Recall that λ0
j = sµ/Njf

0
j . The optimality conditions are given by the following set of equations

parametrized by a constant m. For all 1≤ j ≤ J,
f0
j

Tj
∂ηjϖj −mf0

j ∂ηjϖj +mf0
j = 0. Recalling again

that Ψ′(x) =−Φ̄(x), we obtain that for all j,
Φ̄(−ηj/σj)

Φ(−ηj/σj)
=mTj. This uniquely defines all the ηj’s as

a function of m. The value of m will be characterized later by the profit maximization.

What we still need to do is to obtain an asymptotic approximation of fn. In other words get

a second order approximation of ςn. In order to obtain the second order approximation for the

capacity portion fj, it will be necessary to obtain a more accurate approximation of ϖn involving

ςn. To do that, we use the approximation ϖa developed for the single plan. Recall that for a fixed

set of proportions fj’s,
√
n |ϖn−ϖn

a | → 0 as n→∞ and for all plans j. This convergence is uniform

in fj. We use the condition given by Equation (c8) which allows a characterization of f through

the derivative of ϖa with respect to f . Note that ∂fλϖa(κ(f);λ) = λκ′(f)∂κϖa(κ(f)) =mA. We

take the derivative of the fulfillment constraint equation and we obtain that ∂fϖa(κ(f);λ) =

−Nκ′(f)/(µf) +Nκ(f)/(µf2). Putting together the previous equations, we obtain a formulation

of κ′(f), when re-injected in the first equation gives

λNκ(f)

µf2
· ∂κϖa

∂κϖa +N/(µf)
=mAT/N. (a8)

We recall that the derivative of ϖa with respect to κ, is ∂κϖa =
√

s/κ/(2λ)ϕ(ακ) − s/λΦ̄(ακ),

where ακ =
√
sκ− λT/

√
sκ. If we introduce the scaling by n, it is easy to see that the first term

in this derivative is of an order smaller than the second one. Hence, injecting the derivative in

Equation (a8), we get that

mn
AT/N =

Nκn

µnfn2 ·
λn∂κϖa(κ

n, λn)

∂κϖa(κn, λn)+N/(µnfn)
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=−Nκn/fn

fn
· Φ̄nλn

− Φ̄n + ρn
= s(T −ϖn)/N µ2n2/(µn)

ρnΦ̄n

ρn − Φ̄n
,

where Φn =Φ(ακn). We introduce at this point another notation, Φ0 =Φ(−η/σ). A similar notation

will also be used for Φ̄ and ϕ. We turn now to study the ratio ρnΦ̄n

ρn−Φ̄n . For that we start by getting

an approximation of ακn when n is large.

ακn =− λn

√
sκn

(T − sκn

λn
) =

√
sκn − λnT√

sκn

=
√

sµnfn/N(T −ϖn)− sµnfnρnT

N
√

sµnfn/N(T −ϖn)

=

√
sµT

N
(nfn)1/2(1−ϖn/T )1/2 −

√
sµT

N
(nfn)1/2

ρn

(1−ϖn/T )1/2

=

√
sµT

N
(nfn)1/2

(
1− ϖ

2T
√
n
− (1− d√

n
)(1+

ϖ

2T
√
n
)
)

=

√
sµT

N
(nfn)1/2

(
− ϖ

T
√
n
+

d√
n

)
=−(1− ς

2
√
n
)
η

σ
+ o(1/

√
n).

(a9)

A Taylor expansion around −η/σ gives the following Φ̄n − Φ̄0 = η
σ

ςn

2
ϕ0 + o(1/

√
n) = − η

σ
ςn

2
ϕ0 +

o(1/
√
n). So, Φ̄n

Φn = Φ̄0

Φ0 (1− η
σ

ϕ0

2Φ0Φ̄0 ς
n)+ o(1/

√
n).

Hence, mn
AT = (1 − ϖT

T
1√
n
) Φ̄

0

Φ0 (1 − η
σ

ϕ0

2Φ0Φ̄0 ς
n)(1 + d Φ̄0

Φ0
√
n
) = Φ̄0

Φ0 (1 − (ϖ
T

T
− d Φ̄0

Φ0 )
1√
n
− ζηςnj ),

where ζ = 1
σ

ϕ0

2Φ̄0Φ0 . We also have that
mn

A
m

= 1 − (
ϖj

Tj
− ϖj−ηj

Tj
mTj)/

√
n − ζjηjςj/

√
n. We multi-

ply by f0
j /(ζjηj) and sum on all the classes while recalling that

∑
j f

0
j ς

n
j = 0. We get

mn
A

m
= 1−∑

j

f0j
ηjζjTj

(ϖj−mTj(ϖj−ηj))∑
j

f0
j

ηjζj

√
n

. By replacing the formulation of mn
A/m in the expressions of ςj, we get the

expression of ςj as a function of m. ζjηjςj =

∑
j

f0j
ηjζjTj

(ϖj−(ϖj−ηj)mTj)∑
j

f0
j

ηjζj

− (
ϖj

Tj
− ϖj−ηj

Tj
mTj). Similarly

to the single plan case, the value of m is selected to maximize the profit ratio of the stochastic

model with the fluid one. By taking advantage of the calculations in the single plan case, we have

that the profit for each plan j is: Πn
j (λ

n
j , κ

n
j , f

n
j ) = λ0

jp
0
jNj n−λ0

jp
0
jNj/T

[
ϖT

j (1+1/e0j +c/p0j)−(ηj−

ςj)(1 + 1/e0j)
]√

n+O(1). We sum over the profits for all the plans and divide by the total fluid

profit, Π0,n =
∑

j λ
0
j p

0
j Nj n, we conclude that Πn

Π0,n = 1− ξ(m)/
√
n+ o(1/

√
n), where m is selected

to minimize ξ(m). Note that ηi and ςi are both functions of m. �
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SUPPLEMENT MATERIAL

In the following, we included material that we are aware will not be published nor reviewed by

the referees. We believe this material could be helpful for the refereeing process. In the below, we

included material related to B1. Aggregation procedure for the supply, B2. Price demand functions,

B3. Data estimation. We also included material related to proofs that were skipped from the

main document. These proofs do not bring any additional contribution. They are either tedious

calculations or similar to other proofs already detailed in Appendix A. These proofs relate to C1.

Proof of Proposition 1, C2. Proof of Proposition 6, C3. Proof of Proposition 8 and C4. General

solution of the multi-plan optimization problem.

B1. The Aggregation Procedure for the Supply

We describe how the traffic coming to all webpages within the website can be aggregated and

modeled as one source. We denote by (ui : i≥ 1) the aggregated sequence of interarrival times of

all viewers to all the webpages belonging to the website, which is the time between two uploads

of any webpages on the website. We assume that any page requested and uploaded by a viewer

contains s identical slots and that the viewer sees all the s ads displayed at that time.

Let us now illustrate how the traffic of viewers to the different webpages belonging to the same

website can be aggregated. First, we consider a website made of a single page. Then the ui’s are

the times between two viewers visiting the webpage. Suppose now that the website is made of a

homepage and two other pages where viewers arrive (according to a Poisson process) first at the

homepage at a rate µ0, spend an exponential time and then leave the homepage at the same rate.

They might then access each page i= 1,2 with probability qi or leave the website with probability

1− (q1+ q2). The aggregated process of viewers accessing any of the three pages on this website is

Poisson with rate µ= (1+ q1 + q2)µ0. If viewers can go directly to pages 1 and 2 with rate µ1 and

µ2 then the aggregated rate is µ= (1+q1+q2)µ0+µ1+µ2. The ui’s are then the interarrival times

of this aggregated process. Hence, we are counting viewers in terms of number of pages uploaded

independently of the actual page (as long as it has advertising slots).

B2. Price-Demand Functions

We derived two price-demand functions suitable in the online advertising setting. Note that even

though the price and the demand rate are the key variables, the number of impressions, N , also

plays an important role.

Utility-based demand function For this demand function we assume that advertisers interested
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in booking a campaign will only do so if their net utility is positive. In the single-plan setting the

net utility is formulated as follows:

U(p;N) = θNα − pN

where θ is a measure of the sales impact generated by a campaign. (This model can easily be

extended to the multi-plan case for both non-substitutable and substitutable plans.) The first term

of the net utility is the benefit provided by the N impressions and the second one is the amount

paid. The parameter θ is advertiser dependent and is taken to be uniformly distributed on [0,Θ].

When the parameter α< 1, it depicts a repetition wear-out, i.e., a diminishing marginal benefit of

repeatedly reaching the same individuals. When α > 1, it depicts an increasing marginal benefit

whereby the number impacted is larger than those that saw the ad. In the case where α = 1,

the price demand function is independent of the number of impressions contracted. The nominal

demand rate λ(p;N) is given by

λ(p;N) = ΛP(U(N)≥ 0) =Λ
(
1−Θ−1 pN 1−α

)
or, equivalently, p(λ;N) =Θ

(
1− λ

Λ

)
Nα−1.

Furthermore, the revenue rate achieved is given by r(λ;N) := λp(λ;N)N and we denote its

maximizer λ̄= argmax{r(λ;N) : λ≥ 0}. We have,

λ̄=
Λ

2
; p̄=

Θ

2Λ
Nα−1 ; r(λ̄;N) =

ΛΘ

4
Nα.

This is a linear price demand function where the demand rate decreases as the price increases

(all else constant) and thus is consistent with the general price demand functions available in the

literature. In the case where α = 1, the price demand function is independent of the number of

impressions contracted. When α > 1, the demand rate increases when the number of impressions

offered increase (all else constant). This depicts some economies of scale behavior, whereby the price

per impression decreases with larger N . In the case where α< 1, the demand rate decreases as the

number of impressions increase. By contracting more impressions the advertiser’s additional cost

is increasing marginally more than the corresponding revenues generated. Hence, the advertisers

ready to book an order decreases. Finally, the price and demand rate maximizers are constant

independent of the number of impressions.

This price-demand function can easily be extended to the multi-plan case for both non-

substitutable and substitutable plans.

Budget-based demand function
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In this model, we assume that advertisers approach the website while having a budget constraint

β (equivalent to a reservation price for the entire campaign) to spend and a minimum number of

viewers ν to reach. These two factors (budget and reach) can be the output of an optimization

problem that the advertiser runs before approaching the web publisher (see Zhao (2000)). From the

web publisher side, these two thresholds are considered to be random across the advertisers. For

tractability, we assume ν to be a uniform random variable on [0,M ] and β a normally distributed

random variable with mean h(ν) := dν+ g and a standard deviation σb. (The function h could be

obtained through a linear regression on available data and models the correlation between the two

variables.) We write β = dν + g + ϵ where ϵ ∼ N (0, σb). We consider the setting where multiple

plans, (Nj, pj), are offered to a single class of advertisers (identified by d, g,M,σb). The advertisers

book a campaign only if their budget constraint is satisfied and their reach target is fulfilled (i.e.,

ν < Nj and β > pjNj). Among those plans that satisfy both constraints, we assume that they

pick the plan that delivers the highest number of impressions.6 The number of impressions in this

model impacts the demand differently than in the utility based model. We introduce the following

notations: ϵj := ϵ+mj is a normally distributed random variable with mean mj := pjNj − g and

standard deviation σb.

We have that for 1≤ j ≤ J,

λj(p;N) = ΛP(0≤ ν ≤Nj, pjNj ≤ β ≤ pj+1Nj+1)

= ΛP(0≤ dν ≤ dNj, pjNj − g+ ϵ≤ dν ≤ pj+1Nj+1 − ξ+ ϵ)

= ΛEϵP
(
[ϵ]+j ≤ dν ≤ ϵj+1 ∧ dϵj ≤ dNj

)
=ΛEϵP

(
[ϵj ∧ dNj]

+ ≤ dν ≤ [ϵj+1 ∧Nj]
+
)

=
Λ

dM

(
E[ϵj+1 ∧ dNj]

+ −E[ϵj ∧ dNj]
+
)

=
Λ

dM
(Gj+1(Nj)−Gj(Nj)).

We denote by Gj(N) = E[ϵj ∧ dN ]+ with GJ+1(N) = dN . Note that the second to last equality

above is simply the difference between two normally distributed random variables with respective

means mj and mj+1 truncated at both 0 and Nj. Simple calculations related to the truncated

normal distribution show that

Gj(N) =
[
mjΦ(mj)− (mj − dN)Φ(mj − dN)−

(
ϕ(mj)−ϕ(mj − dN)

)
σb

]
= dN +σb(Ψ(mj/σb)−Ψ((mj − dN)/σb)),

6 Simple modifications can be made to model an advertiser that would select the cheapest plan among all plans that
satisfy both constraints.
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where Ψ(x) = ϕ(x)−xΦ̄(x) as defined in 5.2. Finally, we note that simple modifications need to be

made to model an advertiser that would pick the cheapest product (instead of the most expensive

one) that meet his constraints.

B3. Data Estimation

We next estimate the price-demand relationships. We focus on the two models defined above

and based on the data available to us from Aller Internett, we try to generate reasonable estimates

of the models’ parameters. We pick a particular ad (of size 468x400) as a representative ad of

our aggregated analysis and notice price variations that often result from negotiations and could

reflect how much the publisher needed to lower the price to get the contract. For the utility price-

demand function we set the parameter Θ to correspond to the largest price recorded, Θ= 0.09. To

estimate the budget function properly we would need to have access to the budget of the individual

advertisers. However, the price times the impressions requested give us a sense of the budget and

we use it as a proxy. We then perform a regression and estimate g= 6,000, d= 0.07 and σ= 15,000

with an adjusted R2 of 92%. Based on the orders considered we set M = 3,000,000 and based on

the amount of orders during the horizon of the data and by scaling it by their market share we set

Λ= 30.

C1. Proof of Proposition 1

Proof. The fluid optimization problem can be states as follows:

max
λ,κ,f

J∑
j=1

λj pj(λ ;N)Nj

s.t. ρj := λj Nj/(sµfj)≤ 1, j = 1,2, ..., J
J∑

j=1

fj ≤ 1.

The KKT conditions for this problem are:

−
∑
j∈J

∂λi
rj(λ;N)+

ziNi

sµfi
= 0, i= 1,2, ..., J

−ziλiNi

sµf2
i

+m= 0, i= 1,2, ..., J

zi(
λiNi

sµfi
− 1) = 0, i= 1,2, ..., J

m(
∑
j∈J

fj − 1) = 0

λiNi

sµfi
− 1≤ 0, fi, zi ≥ 0, i= 1,2, ..., J∑

j∈J

fj ≤ 1, m≥ 0,

where the zi’s are the Lagrange multipliers. We divide the solution space into two parts:
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i.) If
∑

j∈J λ̄jNj/(sµ) ≤ 1 then ρ̄i := λ̄iNi/(sµ) ≤ 1, i = 1,2, ..., J . If we set fi = ρ̄i we have a

feasible solution with
∑

j∈J fj =
∑

j∈J ρ̄j ≤ 1 that satisfies the KKT conditions with m= 0, zi = 0,

and
∑

j∈J ∂λi
rj(λ;N) = 0, i= 1,2, ..., J . Hence, λ0

i = λ̄i and f0
i = λiNi

sµ
, i= 1,2, ..., J .

ii.) If
∑

j∈J λ̄jNj/(sµ)> 1 we have
∑

j∈J λ̄jNj/(sµfj)> 1 because fj ≤ 1, j = 1,2, ..., J . Let us

now assume that ρ̄j ≤ 1, j = 1,2, ..., J . This means using the fifth KKT condition that
∑

j∈J ρ̄j ≤∑
j∈J fj ≤ 1, which leads to a contradiction. Hence, the revenue maximizing solution, λ̄, cannot

satisfy the KKT conditions and based on the first KKT condition there exists i such that zi ̸= 0,

which means that m ̸= 0 (second condition). Furthermore, having m ̸= 0 means that zi ̸= 0, i =

1,2, ..., J and that we must have
∑

j∈J fj = 1 to satisfy the fourth KKT conditions. By setting

fi = ρ̄i, i= 1,2, ..., J , and solving
∑

j∈J ∂λi
rj(λ;N) = ziNi

sµfi
= mfi

λi
= mNi

sµ
with

∑
j∈J fj = 1, we have

a solution satisfying all KKT conditions.

�

C2. Proof of Proposition 6

We already know that r is concave in λ and independent of κ.Wemove now to study the convexity

of c(λ,κ) through a computation of the different derivatives of the cost function with respect to

λ and κ. We will prove also through these simple but tedious calculations the monotonicity of ϖa

stated in the Proposition 4. Without loss of generality we let c= 1. Let x=
√
sκ and and y = λ.

Recall that Ψ′ ≤ 0 and Ψ′′ ≥ 0. We write, ακ =
√
sκ−λT/

√
sκ= x−T y/x := f(x, y). It is easy to

that

f ′
x(x,y) = 1+T y/x2 ≥ 0 and f ′′

x,x(x) =−2T y/x3 ≤ 0.

On the other hand,

f ′
y(x, y) =−T/x and f ′′

y,y ≡ 0.

Finally,

f ′′
y,x = 1+T/x2.

We move to c(λ,κ) = cλϖa(λ,κ) := g(x, y) = xΨ(f(x,y)). We look at the derivative with respect

to λ.

g′y(x,y) = xf ′
yΨ

′(f) =−TΨ′(f)≥ 0 and g′′y,y(x, y) = xf ′2
y Ψ′′(f) = T 2/xΨ′′(f)≥ 0.

We conclude that c(·, κ) is increasing concave in λ. We move now to the cross derivative.

g′′y,x =−Tf ′
xΨ

′′(f)≤ 0. (c1)
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We conclude that the cross derivative of c is non-positive. Finally, we look at the the derivatives

with respect to κ.

g′x(x, y) =Ψ(f)+xf ′
xΨ

′(f) =Ψ(f)+x(1+T y/x2)Ψ′(f)

= ϕ(f)− (x−T y/x)Φ̄(f)−x(1+T y/x2)Φ̄(f)

= ϕ(f)− 2xΦ̄(f).

(c2)

Finally,
g′′x,x(x, y) = f ′

xΨ
′(f)+ f ′

xΨ
′(f)+xf ′′

x,xΨ
′(f)+xf ′2

x Ψ′′(f)

=Ψ′(f)(2f ′
x +xf ′′

x,x)+xf ′2
x Ψ′′(f)

= 2Ψ′(f)+xf ′2
x Ψ′′(f)

=−2Φ̄(f)+x(1+T y/x2)2ϕ(f).

(c3)

We take one further derivative of g

g′′′x,x,x(x, y) = 2f ′
xϕ(f)+ (x(1+T y/x2)2)′ϕ(f)−x(1+T y/x2)2ff ′

xϕ(f)

= ϕ(f)(2f ′
x +(x(1+T y/x2)2)′ −x(1+T y/x2)2ff ′

x)

= ϕ(f)(2(1+T y/x2)−x(1+T y/x2)3(x−T y/x)

+ (1+T y/x2)2 +x(2(1+T y/x2)(−2Ty/x3)))

= ϕ(f)(2(1+T y/x2)−x2(1+T y/x2)3(1−T y/x2)

+ (1+T y/x2)2 − 4Ty/x2((1+T y/x2))2)

(c4)

The sign of the previous equation is the same as the sign of the term inside the parenthesis. We

look at that term and show

(1+Ty/x2)(2−x2(1+Ty/x2)2(1−Ty/x2)+ 1+Ty/x2 − 4Ty/x2)

= (1+Ty/x2)(3− 3Ty/x2 −x2(1+Ty/x2)(1−Ty/x2))

= (1+Ty/x2)(1−Ty/x2)(3−x2(1+Ty/x2)2)

= (1−T 2y2/x4)(3−x2(1+Ty/x2)2

=
(
1− (λT/(sκ))2

)
(3− sκ(1+λT/(sκ))2).

(c5)

We divide the positive line in two regions, depending on whether ϱ< 1 or ϱ≥ 1. Hence, if ϱ≥ 1 (i.e.

κ < λT/s), then g′′′x,x,x is positive (as long as sκ > 3/4). Hence, g′′x,x is increasing in this domain.

Eventually when ϱ< 1 and κ is large enough, g′′′x,x,x becomes negative and g′′x,x decreases. It is easy

to see that g′′′ will change sign once. By noticing that g′′x,x = (0, y) =−2, that for ϱ= 1, f ≡ 0 and

g′′x,x(x, y) =−1+4ϕ(0) ·x≥−1+4ϕ(0) ·
√

3/4> 0 and limx→+∞ g′′x,x(x, y) = 0, we conclude that g′′

changes sign only once as well and there exists x0 in the region ϱ > 1 where g′′x,x = 0. We denote

ϱ′0(λ)> 1 the value of ϱ at that point. This shows that ca(λ,κ) is convex in κ as long as ϱ < ϱ′0. If

ϱ > ϱ′0, then g′′ is negative. The second derivative of ∂κ,κca =
√
s/2κ−1/2(−s/(2x2)g′x + g′′x,x). The

term inside the parenthesis is equal to −sϕ(f)/(2x2) + sΦ̄(f)/x− 2Φ̄(f) + x(1 + T y/x2)2ϕ(f) =
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ϕ(f)(−s/(2x2) + x(1 + T y/x2)2) + Φ̄(f)(s/x− 2), which is again positive for κ small enough and

so there exists ϱ′′0(λ) such that for ϱ < ϱ′′0 ca is convex. We denote by ϱ0 = ϱ′0 ∨ ϱ′′0 > 1. Depending

on the values of λ, ϱ′0 could be equal to ∞ and then ca is convex in κ for all κ.

Finally, we look at the hessian of g which gives us

(2Ψ′(f)+xf ′2
x Ψ′′(f)) ·T 2/xΨ′′(f)− (Tf ′

xΨ
′′(f))2 = 2T 2/xΨ′(f)Ψ′′(f)≤ 0.

We turn to ii.) We multiply both sides of the constraint by λ and take the derivative in that

constraint equation with respect to λ. We get that

∂λc(λ,κ(λ) = ∂1c(λ,κ(λ))+κ′(λ)∂2c(λ,κ(λ))

= T −Nκ(λ)−λN/µκ′(λ).

We take the derivative again with respect to λ and obtain that

∂λ,λc(λ,κ(λ) = ∂1,1ca(λ,κ(λ))+ 2κ′(λ)∂1,2ca(λ,κ(λ))+κ′′(λ)∂2ca(λ,κ(λ))+κ′(λ)2∂2,2ca(λ,κ(λ))

=−2N/µκ′(λ)−λN/µκ′′(λ).

First, we notice that for fixed λ, the derivative with respect to κ of ϖa at κ(λ) is strictly less (in

absolute value) than N/µ. Hence, ∂2ca(λ,κ(λ)+λN/µ)≤ 0. Second, for fixed λ, the delay function

starts concave in κ and then becomes convex. We saw that the derivative at zero is steeper than

the derivative of T −Nκ/µ. Therefore, the two functions cannot intersect except in the concave

area and so ∂2,2ca(λ,κ(λ)> 0 and ϱ at such point is always smaller than ϱ0(λ). Applying i.), we

conclude that as long as ∂2,2ca > 0, then κ′′(λ)≤ 0 (i.e. κ(λ) is concave in λ). Now we go back to

the the second derivative of ca(λ,κ(λ)) with respect to λ and observe that it is always positive. �

C3. Proof of Proposition 8

For the sake of the proof, we drop the index N . We recall that

W n d
=max

r≥0
Sn
r (κ

n),

where Sn
r (κ

n) =
∑r

i=1 Y
n
i where, Y n

i

d
= Y n

1

d
=
∑Nκn

j=1 un
j −

∑sκn

j=1 v
n
j with EY n

1 = κn (N/µn− s/λn)≤ 0.

The sequence (λn, κn) is formed, for every n ≥ 1, as the solution to the optimization problem

(P n). From the fulfillment constraint we have that T −Nκn/µn ≥ 0 and hence the sequence κn/n≤

κ0 := µT/N . Moreover, the utilization being smaller than one implies that the sequence λn/n ≤

λ0 := sµ/N . Finally, the sequence κn/λn is also bounded as λn is assumed to be away from zero.
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Consider any subsequence κm/m that converges to l <∞. The finiteness of such limit l implies

that κm(N/µm2 + s/λm2)→ 0 as m→∞. The inter-arrivals of campaigns and viewers are both

exponentially distributed, we conclude that the log-moment generating function of the random

variable Y n
1 is given by

logE expθY n
1 = θκn (N/µn − s/λn)+ θ2κn(N/µn2 + s/λn2)+O(n−2). (c6)

The first term κm (N/µm − s/λm) = κms/λm (ρm − 1)≤ 0 and all other terms go to zero with m.

We infer that limsupm→∞ Y m ≤ 0 a.s. The same holds for Sm
r for all r. Therefore, their maximum,

Wm ⇒ 0 as m→∞. By bounded convergence, EWm =ϖm → 0, as m→∞. From the the equality

constraint we conclude that ϖm → T −Nl/µ as m→∞. This imposes that l = κ0 := µT/N and

hence the entire sequence κn/n converges to κ0 as n→∞.

Similarly, consider a subsequence λm/m that converges to some finite limit l′ as m→∞. Con-

sider the log-moment generating function with θ replaced by θ
√
m. The quantity, mκm(N/µm2 +

s/λm2)→Nκ0/µ
2+ sκ0/l

′2 as m→∞; While limsupm→∞
√
mκm (N/µm− s/λm) = η≤ 0 and pos-

sibly infinite. Assume that η <∞, in this case κm (N/µm−s/λm)→ 0 and thus Nκ0/µ−sκ0/l
′ = 0,

equivalently l′ = λ0 and so all subsequences, that lead to some η finite have that λm/m → λ0.

Any subsequence that lead to an η infinite will still have to satisfy λm/m→ 0; otherwise, it will

generate lower profits at the limit. In the finite case, limm→∞
√
mY m = Y where Y is a normal

random variable with mean η and standard deviation σ0 = (Nκ0/µ
2+ sκ0/λ

2
0)

1/2. As for the delay,

we claim that
√
mWN,m ⇒maxr≥0 Sr, where Sr =

∑r

i=1 Yi with Yi’s i.i.d. with Y1
d
= Y . To prove

it, we rely on Theorem 6.1 on page 285 of Asmussen (2003) which only require uniform integra-

bility of
√
mY m

i , which is guarantied by the fact that EmY m
1

2 → σ2
0 as m →∞. We denote by

ϖN = Emaxr≥0Sr and ϖm = ϖN/
√
m+ o(1/

√
m) as m → ∞. The rest of the proof follows the

exact same steps as in the T-contract case. The parameter η is uniquely selected by maximizing

the ratio of the profit in the stochastic setting with that in the fluid setting. If the subsequence

indexed by m was selected so that η is infinite, in this case, ϖN = 0 and
√
m(T −Nκm/µm)→ 0

as m→∞ and thus κm = κ0 + o(1/
√
m), which implies by injecting κm in

√
mκm (N/µm − s/λm)

and recalling that the latter converge to −∞ that λm/m= λ0 + lm where
√
mlm →−∞. Hence,

the demand rate grows at a slower rate than the subsequences corresponding to a finite η. �

C4. General Solution of the Multi-Plan Optimization Problem

We discuss here a formulation of the general case of the multi-plan optimization problem which

is helpful in performing the asymptotic analysis. We first formulate the problem as follows

max
λj ; j∈J

∑
j∈J

rj(λj;Nj)Nj −G(λ)
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where,

G(λ) = min
κj ,fj ; j∈J

∑
j∈J

cjλjϖj(λj, κj) (c7)

s.t. ϖj(κj;λj) = Tj −
Njκj

µfj
and

J∑
j=1

fj = 1.

First, we recall that by construction λj(T−ϖT
j )≤ sκj (as the average number of ads being displayed

at every point in time is less than the slots available by design). Thus, λj(T − (Tj −
Njκj

µfj
))≤ sκj

which implies that the constraints fj ≤ λjNj/sµ are always satisfied. Recalling thatϖT
j is decreasing

in κj, we conclude that for a given demand rate λj the constraint on the delay function determines

completely κj as a function of fj. We denote by κj(fj;λj) the value of κj for each fj given λj.

It is not hard to see that κj(fj;λj) is increasing in fj while ϖT
j is decreasing in κj and thus the

constraint
∑J

j=1 fj ≤ 1 ought to be binding. The above minimization problem is separable and thus

the optimality conditions can be re-written as follows

∂

∂fj

[
cjNj/Tjλjϖj(λj, κj(fj;λj))

]
=mA, (c8)

λj = argmax
λj

{
λjpj(λj)− cjNj/Tjλjϖj(λj, κj(fj;λj))

}
, (c9)

J∑
j=1

fj = 1, (c10)

where mA (a Lagrange multiplier) is a constant independent of j. Practically, we first solve the

second set of conditions, which is an optimization problem similar to the single plan problem. That

solution gives the optimal demand rates as a function of the proportion, λj(fj). We integrate these

in the first set of conditions. For each reasonable value of mA, the set of equations in (c8-c10)

admit a unique solution fj, (if there are multiple solutions then one picks the largest one knowing

that κ is in increasing in f and ϖT is decreasing in κ). Hence, for each value of the constant m,

we can construct
∑J

j=1 fj and then pick the value of m that yields
∑J

j=1 fj = 1.


