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Cluster Analysis of Genomic
Data

K. S. Pollard and M. J. van der Laan

Abstract
We provide an overview of existing partitioning and hierarchical

clustering algorithms in R. We discuss statistical issues and methods
in choosing the number of clusters, the choice of clustering algorithm,
and the choice of dissimilarity matrix. We also show how to visualize
a clustering result by plotting ordered dissimilarity matrices in R. A
new R package hopach, which implements the Hierarchical Ordered
Partitioning And Collapsing Hybrid (HOPACH) algorithm, is pre-
sented (van der Laan and Pollard, 2003). The methodology is applied
to a renal cell cancer gene expression data set.

13.1 Introduction

As the means for collecting and storing ever larger amounts of data develop,
it is essential to have good methods for identifying patterns. For example,
an important goal with large-scale gene expression studies is to find bio-
logically important subsets of genes or samples. Clustering algorithms have
been widely applied to microarray microarray data analysis (Eisen et al.,
1998).

Consider a study in which one collects on each of I randomly sampled
subjects (or more generally, experimental units) a J-dimensional gene ex-
pression profile Xi, i = 1, . . . , I: for example, Xi can denote the gene
expression profile of cancer tissue relative to healthy tissue within a ran-
domly sampled cancer patient. To view clustering as a statistical procedure
it is important to consider Xi as an observation of a random vector with
a population distribution we will denote with P . These I independent and
identically distributed (i.i.d.) observations can be stored in an observed
J × I data matrix X. Genes are represented by I-dimensional vectors
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[Xi(j) : i = 1, . . . , I], while the samples are represented by J-dimensional
vectors Xi. The goal could now be to cluster genes or samples. A cluster is
a group of similar elements. Each cluster can be represented by a profile,
either a summary measure such as a cluster mean or one of the elements
itself, which is called a medoid or centroid.

13.2 Methods

13.2.1 Overview of clustering algorithms

For the sake of presenting a unified view of available clustering algorithms,
we generalize the output of a clustering algorithm as a sequence of clus-
tering results indexed by the number of clusters k = 2, 3, . . . and options
such as the choice of dissimilarity metric. The algorithm is a mapping from
the empirical distribution of X1, . . . , XI to this sequence of k-specific clus-
tering results. For instance, this mapping could be the construction of an
agglomerative hierarchical tree of gene clusters using 1 minus correlation
as dissimilarity and single linkage as distance between clusters. Given a
clustering algorithm, consider the output if the algorithm were applied to
the data generating distribution P (i.e., infinite sample size). We call this
output a clustering parameter, where we stress that any variation in the
algorithm results in a different parameter. An example is the J-dimensional
vector of gene cluster labels produced by applying a particular partitioning
method (e.g., k-means using Euclidean distance) with a particular number
of clusters (e.g., k = 5) to P . We might think of these as the true cluster
labels, in contrast to the observed labels from a sample of size I. Another
parameter is the k-dimensional vector of cluster sizes produced by the same
algorithm.

We will focus on non-parametric clustering algorithms, in which one
makes no assumptions about the data generating distribution P . Model
based clustering algorithms are based on assuming that the vectors Xi

are i.i.d. from a mixture of distributions (e.g., a multivariate normal mix-
ture). The clustering result is typically a summary measure, such as the
conditional probabilities of cluster membership (given the data), of the
maximum likelihood estimator of the data generating distribution (Fraley
and Raftery, 1998, 2000). Of course, if one only views this mixture model
as a working model to define a clustering result, then these approaches
fall in the category of non-parametric clustering algorithms. In this case,
however, statistical inference cannot be based on the working model, and,
contrary to the case in which one assumes this mixture model to contain
the true data generating distribution, there does not exist a true number
of clusters.
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13.2.2 Ingredients of a clustering algorithm

We review here the choices one needs to consider before performing a clus-
ter analysis.

Dissimilarity matrix: All clustering algorithms are (either implicitly or
explicitly) indexed by a choice of dissimilarity measure, which quantifies
the distinctness of each pair of elements (see Chapter 12). For clustering
genes, this is a J ×J symmetric matrix. Typical choices of dissimilarity in-
clude Euclidean distance, Manhattan distance, 1 minus correlation, 1 minus
absolute correlation and 1 minus cosine-angle (i.e., : 1 minus uncentered
correlation). The R function dist allows one to compute a variety of dissim-
ilarities. Other distance functions are available in the function daisy from
the cluster package or from the bioDist package. In hopach we have writ-
ten distancematrix and implemented specialized versions of many of the
standard distances. Data transformations, such as standardization of rows
or columns, are some times performed before computing the dissimilarity
matrix.

Number of clusters: One must specify the number of clusters or an
algorithm for determining this number. In Section 13.2.7, we discuss and
compare methods for selecting the number of clusters, including various
data-adaptive approaches.
Criterion: Clustering algorithms are deterministic mappings that aim to
optimize some criterion. This is often a real-valued function of the clus-
ter labels that measures how similar elements are within clusters or how
different elements are between clusters. The choice of criterion can have a
dramatic effect on the clustering result. We recommend a careful study of
a proposed criterion so that the user fully understands its strengths and
weaknesses (i.e., its scoring strategy) in evaluating a clustering result. Sim-
ulations are a useful tool for comparing different criteria.

Searching strategy: One sensible goal is to find the clustering result
that globally maximizes the selected criterion. Because of computational
issues, heuristic search strategies (that guarantee convergence to a local
maximum) are often needed. If the user prefers a tree structure linking all
clusters, then forward or backward selection strategies are often used, and
they do not correspond with local maxima of the criterion.

13.2.3 Building sequences of clustering results

We can classify clustering algorithms by their searching strategies. Fig-
ure 13.1 compares the clustering results from a partitioning (pam) and a
hierarchical (diana) algorithm.
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Partitioning: Partitioning methods, such as self-organizing maps (SOM)
(Törönen et al., 1999), partitioning around medoids (PAM) (Kaufman and
Rousseeuw, 1990), and k-means, map a collection of elements (e.g., genes)
into k ≥ 2 disjoint clusters by aiming to maximize a particular criterion.
In this case, a clustering result for k = 2 is not used in computing the
clustering result for k = 3.
Hierarchical: Hierarchical methods involve constructing a tree of clusters
in which the root is a single cluster containing all the elements and the
leaves each contain only one element. These trees are typically binary; that
is, each node has exactly two children. The final level of the tree can be
viewed as an ordered list of the elements, though most algorithms produce
an ordering that is very dependent on the initial ordering of the data, and
is thus not necessarily distance based.
A hierarchical tree can be divisive (i.e., built from the top down by re-
cursively partitioning the elements) or agglomerative (i.e., built from the
bottom up by recursively combining the elements) . The R function di-

ana [R package cluster, Kaufman and Rousseeuw (1990)] is an example of
a divisive hierarchical algorithm, while agnes (R package cluster,Kaufman
and Rousseeuw (1990)) and Cluster (Eisen et al., 1998) are examples of
agglomerative hierarchical algorithms. Agglomerative methods can be em-
ployed with different types of linkage, which refers to the distance between
groups of elements and is typically a function of the dissimilarities between
pairs of elements. In average linkage methods, the distance between two
clusters is the average of the dissimilarities between the elements in one
cluster and the elements in the other cluster. In single linkage methods
(nearest neighbor methods), the dissimilarity between two clusters is the
smallest dissimilarity between an element in the first cluster and an element
in the second cluster.
Hybrid: The hierarchical ordered partitioning and collapsing hybrid
(HOPACH) algorithm (van der Laan and Pollard, 2003) builds a tree of
clusters, where the clusters in each level are ordered based on the pairwise
dissimilarities between cluster medoids. This algorithm starts at the root
node and aims to find the right number of children for each node by alter-
nating partitioning (divisive) steps with collapsing (agglomerative) steps.
The resulting tree is non-binary with a deterministically ordered final level.

Several R packages contain clustering algorithms. Table 13.2.3 provides
a non-exhaustive list. We use the agriculture data set from the pack-
age cluster to demonstrate code and output of some standard clustering
methods.

> library("cluster")

> data(agriculture)

> part <- pam(agriculture, k = 2)

> round(part$clusinfo, 2)
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Figure 13.1. Partitioning versus hierarchical clustering. The agriculture data
set from the package cluster contains two variables (Gross National Product per
capita and percentage of the population working in agriculture) for each country
belonging to the European Union in 1993. The countries were clustered by two
algorithms from the package: (i) pam with two clusters and (ii) diana. The results
are visualized as a clusplot for pam and a dendrogram for diana.

size max_diss av_diss diameter separation

[1,] 8 5.42 2.89 8.05 5.73

[2,] 4 7.43 4.30 12.57 5.73

> hier <- diana(agriculture)

> par(mfrow = c(1, 2))

> plot(part, which.plots = 1, labels = 3, col.clus = 3,

+ lwd = 2, main = "PAM")

> plot(hier, which.plots = 2, lwd = 2, main = "DIANA")
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Package Functions Description
cclust Convex clustering methods
class SOM Self-organizing maps
cluster agnes AGglomerative NESting

clara Clustering LARge Applications
diana DIvisive ANAlysis
fanny Fuzzy Analysis
mona MONothetic Analysis
pam Partitioning Around Medoids

e1071 bclust Bagged clustering
cmeans Fuzzy C-means clustering

flexmix Flexible mixture modeling
fpc Fixed point clusters, clusterwise

regression and discriminant plots
hopach hopach, boothopach Hierarchical Ordered Partitioning and

Collapsing Hybrid
mclust Model-based cluster analysis
stats hclust, cophenetic Hierarchical clustering

heatmap Heatmaps with row and column
dendrograms

kmeans k-means

Table 13.1. R functions and packages for cluster analysis (CRAN, Bioconductor).

13.2.4 Visualizing clustering results

Chapter 10 describes a variety of useful methods for visualizing gene expres-
sion data. The function heatmap, for example, implements the plot employed
by Eisen et al. (1998) to visualize the J × I data matrix with rows and
columns ordered by separate applications of their Cluster algorithm to both
genes and arrays. Figure 13.2 shows an example of such a heat map. Heat
maps can also be made of dissimilarity matrices (Figure 13.6 and Chap-
ter 10), which are particularly useful when clustering patterns might not
be easily visible in the data matrix, as with absolute correlation distance
(van der Laan and Pollard, 2003).

As we see in Figures 13.2 and 13.1, there appears to be two clusters, one
with four countries and another with eight. All visualizations make that
reasonably obvious, although in different ways.

> heatmap(as.matrix(t(agriculture)), Rowv = NA,

+ labRow = c("GNP", "% in Agriculture"), cexRow = 1,

+ xlab = "Country")
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Figure 13.2. Heatmap for hierarchical clustering of the countries in the agricul-

ture data set. The function hclust produces a dendrogram that is equivalent to
that produced by diana with left and right children swapped at several nodes.
Note that the ordering of countries in the diana tree depends a great deal on
their order in the input data set, so that permuting the rows before running the
algorithm will produce a different tree. The hopach (and to a lesser degree the
hclust tree) is not sensitive to the initial order of the data.

13.2.5 Statistical issues in clustering

Exploratory techniques are capable of identifying interesting patterns in
data, but they do not inherently lend themselves to statistical inference.
The ability to assess reliability in an experiment is particularly crucial with
the high dimensional data structures and relatively small samples presented
by genomic experiments (Getz G., 2000; Hughes et al., 2000; Lockhart and
Winzeler, 2000). Both jackknife (K.Y. et al., 2001) and bootstrap (Kerr
and Churchill, 2001; van der Laan and Bryan, 2001) approaches have been
used to perform statistical inference with gene expression data. van der
Laan and Bryan (2001) present a statistical framework for clustering genes,
where the clustering parameter θ is defined as a deterministic function S(P )
applied to the data generating distribution P . The parameter θ = S(P ) is
estimated by the observed sample subset S(PI), where the empirical distri-
bution PI is substituted for P . Most currently employed clustering methods
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fit into this framework, as they need only be deterministic functions of the
empirical distribution. The authors also establish consistency of the clus-
tering result under the assumption that I/ log[J(I)] → ∞ (for a sample of
I J-dimensional vectors), and asymptotic validity of the bootstrap in this
context.

An interesting approach to clustering samples is to first cluster the genes
and then cluster the samples using only the gene cluster profiles, such as
medoids or means (Pollard and van der Laan, 2002b). In this way, the
dimension of the data is reduced to the number of gene clusters so that
the multiplicity problem for comparing subpopulations of samples is much
less. Gene cluster profiles (particularly medoids) are very stable and hence
the comparison of samples will not be affected by a few outlier genes [see
also Nevins et al. (2003)]. Pollard and van der Laan (2002b) generalize
the statistical framework proposed in van der Laan and Bryan (2001) to
any clustering parameter S(P ), including algorithms that involve clustering
both genes and samples.

13.2.6 Bootstrapping a cluster analysis

Though the clustering parameter θ = S(P ) might represent an interest-
ing clustering pattern in the true data generating distribution/population,
when applied to empirical data PI , it is likely to find patterns due to noise.
To deal with this issue, one needs methods for assessing the variability of
θI = S(PI). One also needs to be able to test if certain components of θI

are significantly different from the value of these components in a specified
null experiment. Note that θI and PI depend on the sample size I.

To assess the variability of the estimator θI , we propose to use the boot-
strap. The idea of the bootstrap method is to estimate the distribution of θI

with the distribution of θ∗I = S(P ∗
I ), where P ∗

I is the empirical distribution
based on an i.i.d. bootstrap sample [i.e., a sample of I i.i.d. observations
X∗

i (i = 1, . . . , I) from PI ]. The distribution of θ∗I is obtained by applying
the rule S to P ∗

I , from each of B bootstrap samples, keeping track of pa-
rameters of interest. The distribution of a parameter is approximated by
its empirical distribution over the B samples. There are several methods
for generating bootstrap samples.

• Non-parametric: Resample I arrays with replacement.

• Smoothed non-parametric: Modify non-parametric bootstrap
sampling with one of a variety of methods (e.g., Bayesian bootstrap
or convex pseudo-data) for producing a smoother distribution.

• Parametric: Fit a model (e.g., multivariate normal, mixture of
multivariate normals) and generate observations from the fitted
distribution.
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The non-parametric bootstrap avoids distributional assumptions about the
parameter of interest. However, if the model assumptions are appropriate,
or have little effect on the estimated distribution of θI , the parametric
bootstrap might perform better.

13.2.7 Number of clusters

Consider a series of proposed clustering results. With a partitioning al-
gorithm, these may consist of applying the clustering routine with k =
2, 3, . . . , K clusters, where K is a user-specified upper bound on the num-
ber of clusters. With a hierarchical algorithm the series may correspond to
levels of the tree. With both types of methods, identifying cluster labels
requires choosing the number of clusters. From a formal point of view, the
question “How many clusters are there?” is essentially equivalent to ask-
ing “Which parameter is correct?” as each k defines a new parameter of
the data generating distribution in the non-parametric model for P . Thus,
selecting the correct number of clusters requires user input and typically
there is no single right answer. Having said this, one is free to come up
with a criterion for selecting the number of clusters, just as one might have
an argument to prefer a mean above a median as location parameter. This
criterion need not be the same as the criterion used to identify the clusters
in the algorithm.

Overview of methods for selecting the number of clusters. Cur-
rently available methods for selecting the number of significant clusters
include direct methods and testing methods. Direct methods consist of op-
timizing a criterion, such as functions of the within and between cluster
sums of squares (Milligan and Cooper, 1985), occurrences of phase transi-
tions in simulated annealing (Rose et al., 1990), likelihood ratios (Scott and
Simmons, 1971), or average silhouette (Kaufman and Rousseeuw, 1990).
The method of maximizing average silhouette is advantageous because it
can be used with any clustering routine and any dissimilarity metric. A
disadvantage of average silhouette is that, like many criteria for selecting
the number of clusters, it measures the global clustering structure only.
Testing methods take a different approach, assessing evidence against a
specific null hypothesis. Examples of testing methods that have been used
with gene expression data are the gap statistic (Tibshirani et al., 2000), the
weighted average discrepant pairs (WADP) method (Bittner et al., 2000), a
variety of permutation methods (Bittner et al., 2000; Hughes et al., 2000),
and Clest (Fridlyand and Dudoit, 2001). Because they typically involve re-
sampling, testing methods are computationally much more expensive than
direct methods.

Median Split Silhouette. Median split silhouette (MSS) is a new di-
rect method for selecting the number of clusters with either partitioning
or hierarchical clustering algorithms (Pollard and van der Laan, 2002a).
This method was motivated by the problem of finding relatively small,
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possibly nested clusters in the presence of larger clusters (Figure 13.3). It
is frequently this finer structure that is of interest biologically, but most
methods find only the global structure. The key idea is to evaluate how
well the elements in a cluster belong together by applying a chosen clus-
tering algorithm to the elements in that cluster alone (ignoring the other
clusters) and then evaluating average silhouette after the split to determine
the homogeneity of the parent cluster. We first define silhouettes and then
describe how to use them in the MSS criterion.

Suppose we are clustering genes. The silhouette for a given gene is cal-
culated as follows. For each gene j, calculate the average dissimilarity aj

of gene j with other genes in its cluster. For each gene j and each cluster l
to which it does not belong, calculate the average dissimilarity bjl of gene
j with the members of cluster l. Let bj = minl bjl. The silhouette of gene
j is defined by the formula: Sj = (bj − aj)/ max(aj , bj). Heuristically, the
silhouette measures how well matched an object is to the other objects in
its own cluster versus how well matched it would be if it were moved to the
next closest cluster. Note that the largest possible silhouette is 1, which
occurs only if there is no dissimilarity within gene j’s cluster (i.e., aj = 0).
A silhouette near 0 indicates that a gene lies between two clusters, and a
silhouette near -1 means that the gene is very similar to elements in the
neighboring cluster and hence is probably in the wrong cluster.

For a clustering result with k clusters, split each cluster into two or more
clusters (the number of which can be determined, for example, by maxi-
mizing average silhouette). Each gene has a new silhouette after the split,
which is computed relative to only those genes with which it shares a par-
ent. We call the median of these for each parent cluster the split silhouette,
SSi, for i = 1, 2, . . . , k, which is low if the cluster was homogeneous and
should not have been split. MSS(k) = median(SS1, . . . , SSk) is a mea-
sure of the overall homogeneity of the clusters in the clustering result with
k clusters. We advocate choosing the number of clusters which minimizes
MSS. Note that all uses of median can be replaced with mean for a more
sensitive, less robust criterion.

The following example of a data set with nested clusters demonstrates
that MSS and average silhouette can identify different numbers of clus-
ters. The data are generated by simulating a J = 240 dimensional vector
consisting of eight groups of thirty normally distributed variables with the
following means: µ ∈ (1, 2, 5, 6, 14, 15, 18, 19). The variables are uncorre-
lated with common standard deviation σ = 0.5. A sample of I = 25 is
generated and the Euclidean distance computed.

> mu <- c(1, 2, 5, 6, 14, 15, 18, 19)

> X <- matrix(rnorm(240 * 25, 0, 0.5), nrow = 240,

+ ncol = 25)

> step <- 240/length(mu)

> for (m in 1:length(mu)) X[((m - 1) * step + 1):(m *

+ step), ] <- X[((m - 1) * step + 1):(m * step),
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+ ] + mu[m]

> D <- dist(X, method = "euclidean")

Next, we check the number of clusters k identified by average silhouette
with the function silcheck and by MSS with the function msscheck, both
provided in the package hopach. These return a vector with the number of
clusters optimizing the corresponding criterion in the first entry and the
value of the criterion in the second.

> library("hopach")

> k.sil <- silcheck(X)[1]

> k.mss <- msscheck(as.matrix(D))[1]

> pam.sil <- pam(X, k.sil)

> pam.mss <- pam(X, k.mss)

We plot the distance matrix with the J = 240 variables ordered according
to their pam cluster labels with each choice of k. We mark the two sets of
cluster boundaries on each axis.

> image(1:240, 1:240, as.matrix(D)[order(pam.sil$clust),

+ order(pam.mss$clust)], col = topo.colors(80),

+ xlab = paste("Silhouette (k=", k.sil, ")", sep = ""),

+ ylab = paste("MSS (k=", k.mss, ")", sep = ""),

+ main = "PAM Clusters: Comparison of Two Criteria",

+ sub = "Ordered Euclidean Distance Matrix")

> abline(v = cumsum(pam.sil$clusinfo[, 1]), lty = 2, lwd = 2)

> abline(h = cumsum(pam.mss$clusinfo[, 1]), lty = 3, lwd = 2)

We have previously reported simulation results for MSS on a variety of
data sets and relative to other direct methods (Pollard and van der Laan,
2002a). We refer the reader to the figures in that manuscript for further
illustration of the MSS methodology.

HOPACH algorithm. The R package hopach implements the Hierar-
chical Ordered Partitioning and Collapsing Hybrid (HOPACH) algorithm
for building a hierarchical tree of clusters (Figure 13.4). At each node, a
cluster is split into two or more smaller clusters with an enforced ordering
of the clusters. Collapsing steps uniting the two closest clusters into one
cluster are used to correct for errors made in the partitioning steps. The
hopach function uses the median split silhouette criterion to automatically
choose (i) the number of children at each node, (ii) which clusters to col-
lapse, and (iii) the main clusters (pruning the tree to produce a partition
of homogeneous clusters). We describe the method as applied to clustering
genes in an expression data set X, but the algorithm can be used much
more generally. We will use the notation PAM(X, k, d) for the PAM al-
gorithm applied to the data X with k clusters (k < 10 for computational
convenience) and dissimilarity d.

Initial level: Begin with all elements at the root node.
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Figure 13.3. Median split silhouette (MSS) versus average silhouette. The Eu-
clidean distance matrix from a data set with nested clusters is plotted here with
the variables ordered according to their cluster labels. Blue corresponds to small
and peach to large dissimilarity. The nested structure of the data is visible. Lines
mark the boundaries of the PAM clusters, with the number of clusters k de-
termined either by minimizing MSS or maximizing average silhouette. Average
silhouette is more robust and therefore typically identifies fewer clusters.

1. Partition: Compute PAM(X, k, d) and MSS(k) for k = 2, . . . , 9. Accept
the minimizer k1 of MSS(k) and corresponding partition PAM(x, k1, d) as
the first level of the tree. Also compute MSS(1). If MSS(1) < MSS(k1),
print a warning message about the homogeneity of the data.
2. Order: Define the distance between a pair of clusters (i.e., linkage) as
the dissimilarity between the corresponding medoids. If k1 = 2, then the
ordering does not matter. If k1 > 2, then order the clusters by (a) building
a hierarchical tree from the k1 medoids or (b) maximizing the empiri-
cal correlation between distance j − i in the list and the corresponding
dissimilarity d(i, j) across all pairs (i, j) with i < j with the function
correlationordering.
3. Collapse: There is no collapsing at the first level of the tree.

Next level: For each cluster in the previous level of the tree, carry out the
following procedure.
1. Partition: Apply PAM with k = 1, . . . , 9 as in level 1, and select the
minimizer of MSS(k) and corresponding PAM partitioning.
2. Order: Order the child clusters by their dissimilarity with the medoid of
the cluster next to the parent cluster in the previous level.
3. Collapse: Beginning with the closest pair of medoids (which may be on
different branches of the tree), collapse the two clusters if doing so improves
MSS. Continue collapsing until a collapse is rejected (or until all pairs of
medoids are considered).The medoid of the new cluster can be chosen in a
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Figure 13.4. The HOPACH hierarchical tree unfolding through the steps of the
clustering algorithm. First, the root node is partitioned and the children in the
next level are ordered deterministically using the same dissimilarity matrix that
is used for clustering. Next, each of these nodes is partitioned and its children
are ordered. Before the next partitioning step, collapsing steps merge any similar
clusters. The process is iterated until the main clusters are identified. Below the
main clusters, the algorithm is run down without collapsing to produce a final
ordered list.

variety of ways, including the nearest neighbor of the average of the two
corresponding medoids.
Iterate: Repeat until each node contains no more than 2 genes or a maxi-
mum number of levels is reached (for computational reasons the limit is 16
levels in the current implementation).

Main clusters: The value of MSS at each level of the tree can be used
to identify the level below which cluster homogeneity improves no further.
The partition defined by the pruned tree at the selected level is identified
as the main clusters.

The path that each gene follows through the HOPACH tree is encoded
in a label with one digit for each level in the tree. Because we restrict the
number of child clusters at each node to be less than ten, only a single
digit is needed for each level. Zero denotes a cluster that is not split. A
typical label of a gene at level 3 in the tree looks like 152, meaning that
the gene is in the second child cluster of the fifth child cluster of the first
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cluster from level 1. In order to look at the cluster structure for level l of the
tree, simply truncate the final cluster labels to l digits. Chapter 20 provides
some relevant concepts and notation regarding paths and path labelling in
graphs.

We refer the reader to van der Laan and Pollard (2003) for a comparison
of HOPACH with other clustering algorithms. In simulations and real data
analyses, we show that hopach is better able to identify small clusters and
to produce a sensible final ordering of the elements than other algorithms
discussed here.

13.3 Application: renal cell cancer

The renal cell cancer data package kidpack contains expression measures
for 4224 genes and 74 patients. The tumor samples (labeled green) are
compared to a common reference sample (labeled red). Log ratios measure
expression in the control relative to each tumor.

13.3.1 Gene selection

To load the kidpack data set:

> library("kidpack")

> data(eset, package = "kidpack")

> data(cloneanno, package = "kidpack")

First, select a subset of interesting genes. Such a subset can be chosen in
many ways, for example with the functions in the genefilter and multtest
packages. For this analysis, we will simply take all genes (416 total) with
log ratios greater than 3-fold in at least half of the arrays. This means that
we are focusing on genes that are suppressed in the kidney tumor samples
relative to the control sample. One would typically use a less arbitrary
subset rule. We use the IMAGE ID (Lennon et al., 1996) as the gene name,
adding the character ”B” to the name of the second copy of any IMAGE
ID.

> library("genefilter")

> ff <- pOverA(0.5, log10(3))

> subset <- genefilter(abs(exprs(eset)), filterfun(ff))

> kidney <- exprs(eset)[subset, ]

> dim(kidney)

> gene.names <- cloneanno[subset, "imageid"]

> is.dup <- duplicated(gene.names)

> gene.names[is.dup] <- paste(gene.names[is.dup],

+ "B", sep = "")

> rownames(kidney) <- gene.names
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> colnames(kidney) <- paste("Sample", 1:ncol(kidney),

+ sep = "")

13.3.2 HOPACH clustering of genes

It is useful to compute the dissimilarity matrix before running hopach, be-
cause the dissimilarity matrix may be needed later in the analysis. The
cosine-angle dissimilarity defined in Chapter 12 is often a good choice for
clustering genes.

> gene.dist <- distancematrix(kidney, d = "cosangle")

> dim(gene.dist)

[1] 416 416

Now, run hopach to cluster the genes. The algorithm will take some time
to run.

> gene.hobj <- hopach(kidney, dmat = gene.dist)

> gene.hobj$clust$k

[1] 84

> table(gene.hobj$clust$sizes)

1 2 3 4 5 7 9 18 24 42 80 112

52 8 13 3 1 1 1 1 1 1 1 1

> gene.hobj$clust$labels[1:5]

[1] 22200 22200 21300 23200 43000

The hopach algorithm identifies 84 gene clusters. Many of the clusters are
1 to 4 genes, though some are much larger. The cluster labels show the
relationships between the clusters and how they evolved in the first few
levels of the tree. Next, we examine how close clones that represent the
same gene (i.e., genes with a ”B” in their name) are to one another in the
HOPACH final ordering.

> gn.ord <- gene.names[gene.hobj$fin$ord]

> Bs <- grep("B", gn.ord)

> spaces <- NULL

> for (b in Bs) {

+ name <- unlist(strsplit(gene.names[gene.hobj$fin$ord][b],

+ "B"))

+ spaces <- c(spaces, diff(grep(name, gn.ord)))

+ }

> table(spaces)

spaces

1 4 6 14 17 35 53 54 72 90 129

5 1 1 1 1 1 1 1 1 1 1
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Five of the fifteen pairs of replicate clones appear next to each other, and
all of them appear closer to one another than expected for a random pair
of clones.

13.3.3 Comparison with PAM

The hopach clustering results can be compared to simply applying PAM
with the choice of k that maximizes average silhouette (using the function
silcheck).

> bestk <- silcheck(dissvector(gene.dist), diss = TRUE)[1]

> pamobj <- pam(dissvector(gene.dist), k = bestk,

+ diss = TRUE)

> round(pamobj$clusinfo, 2)

size max_diss av_diss diameter separation

[1,] 68 0.96 0.64 1.10 0.39

[2,] 348 0.94 0.45 1.21 0.39

While hopach identifies 84 clusters of median size 1, pam identifies 2 larger
clusters. This result is typical in the sense that hopach tends to be more ag-
gressive at finding small clusters, whereas pam is more robust and therefore
only identifies the global patterns (i.e., fewer, larger clusters).

13.3.4 Bootstrap resampling

For each gene and each hopach cluster we can compute the proportion of
bootstrap data sets where the gene is in the cluster. These are estimates
of the membership of the gene in each cluster and can be considered as a
form of fuzzy clustering.

> bobj <- boothopach(kidney, gene.hobj, B = 100)

The argument B controls the number of bootstrap resampled data sets used.
The default value is B= 1000, which represents a balance between precision
and speed. For this example, we use B= 100 since larger values have much
longer run times. The bootplot function makes a barplot of the bootstrap
reappearance proportions (see Figure 13.5).

> bootplot(bobj, gene.hobj, ord = "bootp", main = "Renal Cell Cancer",

+ showclusters = FALSE)

13.3.5 HOPACH clustering of arrays

The HOPACH algorithm can also be applied to cluster samples (i.e., ar-
rays), based on their expression profiles across genes. This analysis method
differs from classification, which uses knowledge of class labels associated
with each sample (i.e., array). Euclidean distance may be a good choice for
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Figure 13.5. The bootplot function makes a barplot of the bootstrap reappear-
ance proportions for each gene and each cluster. These proportions can be viewed
as fuzzy cluster memberships. Every cluster is represented by a different color.
The genes are ordered by hopach cluster, and then by bootstrap estimated mem-
bership within cluster and plotted on the vertical axis. Each gene is represented
by a very narrow horizontal bar. The length of this bar that is each color is pro-
portional to the percentage of bootstrap samples in which that gene appeared in
the cluster represented by that color. If the bar is all or mostly one color, then
the gene is estimated to belong strongly to that cluster. If the bar is many col-
ors, the gene has fuzzy membership in all these clusters. The continuity of colors
across the genes indicates that nearby clusters are more likely to “swap” genes
than more distant clusters.

clustering arrays, because it measures differences in magnitude, which is
often what we are interested in detecting when comparing the expression
profiles for different samples. A comparison of magnitude is valid, because
we expect the data from different arrays to be on the same scale after
normalization has been performed.

> array.hobj <- hopach(t(kidney), d = "euclid")

> array.hobj$clust$k

[1] 51

51 array clusters are identified. The function dplot can be used to visualize
the ordered dissimilarity matrix corresponding with the HOPACH tree’s
final level. Clusters of similar arrays will appear as blocks on the diagonal
of the matrix (Figure 13.6). We can label the arrays from patients with
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Renal Cell Cancer: Array Clustering
Ordered Distance Matrix
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Figure 13.6. HOPACH clustering of patients with Euclidean distance. Patients are
ordered according to the final level of the tree. Red corresponds to small distance
and white to large distance. Dotted lines indicate the clusters boundaries in the
level of the tree with minimum MSS. Many patients cluster alone, but there are
several small groups of very similar patients. The ordering of patients by hopach

coincides well with tumor type. cc: clear cell, p: papillary, ch: chromophobe.

different tumor types (clear cell, papillary, and chromophobe) and examine
how these labels correspond with the clusters.

> tumortype <- unlist(strsplit(phenoData(eset)$type, "RCC"))

> dplot(distancematrix(t(kidney), d = "euclid"), array.hobj,

+ labels = tumortype, main = "Renal Cell Cancer: Array Clustering")

13.3.6 Output files

Gene clustering and bootstrap results table. The makeoutput function
is used to write a tab delimited text file that can be opened in a spreadsheet
application or text editor. The file will contain the hopach clustering results,
plus possibly the corresponding bootstrap results, if these are provided. The
argument gene.names can be used to insert additional gene annotation, in
this case accession numbers.

> gene.acc <- cloneanno[subset, "AccNumber"]

> makeoutput(kidney, gene.hobj, bobj, file = "kidney.out",

+ gene.names = gene.acc)
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Figure 13.7. MapleTree zoom view of a single cluster in the kidney data. Genes are
ordered according to their bootstrap membership. Red represents overexpression
in control relative to tumor samples, and green is the opposite.

Bootstrap fuzzy clustering in MapleTree. MapleTree (Lisa Simirenko)
is an open source, cross-platform, visualization tool for graphical browsing
of results of cluster analyses. The software can be found at SourceForge.
The boot2fuzzy function takes the gene expression data, plus corresponding
hopach clustering output and bootstrap resampling output, and writes the
(.cdt, .fct, and .mb) files needed to view these fuzzy clustering results
in MapleTree.

> gene.desc <- cloneanno[subset, "description"]

> boot2fuzzy(kidney, bobj, gene.hobj, array.hobj,

+ file = "kidneyFzy", gene.names = gene.desc)

The three generated files can be opened in MapleTree by going to the
Load menu and then Fuzzy Clustering Data. The heat map contains only
the medoid genes (cluster profiles). Double clicking on a medoid opens a
zoom window for that cluster, with a heat map of all genes ordered by
their bootstrap estimated memberships in that cluster, with the highest
membership first. Figure 13.7 contains the zoom window for gene cluster
15. The medoid and two other genes have high bootstrap reappearance
probabilities.

HOPACH hierarchical clustering in MapleTree. The MapleTree
software can also be used to view HOPACH hierarchical clustering results.
The hopach2tree function takes the gene expression data, plus correspond-
ing hopach clustering output for genes or arrays, and writes the (.cdt, .gtr,
and optionally .atr) files needed to view these hierarchical clustering re-
sults in MapleTree. These files can also be opened in other viewers such
as TreeView (Michael Eisen), jtreeview (Alok Saldanha), and GeneXPress
(Eran Segal).

> hopach2tree(kidney, file = "kidneyTree", hopach.genes = gene.hobj,

+ hopach.arrays = array.hobj, dist.genes = gene.dist,

+ gene.names = gene.desc)

The hopach2tree function writes up to three text files. A .cdt file is al-
ways produced. When hopach.genesis not NULL, a .gtr is produced, and
gene clustering results can be viewed, including ordering the genes in the
heat map according to the final level of the hopach tree and drawing the
dendrogram for hierarchical gene clustering. Similarly, when hopach.arrays

is not NULL, an .atr file is produced, and array clustering results can
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Figure 13.8. MapleTree HOPACH hierarchical view of a section of the gene tree
and all of the array tree. Red represents overexpression in control relative to tumor
samples, and green is the opposite. Two copies of the clone with I.M.A.G.E. ID
469566 appear near each other in the tree.

be viewed. These files can be opened in MapleTree by going to the Load
menu and then HOPACH Clustering Data. By clicking on branches of the
tree, a zoom window with gene names for that part of the tree is opened.
Figure 13.8 illustrates this view for a section of the the kidney data in
MapleTree.

13.4 Conclusion

This chapter has provided an overview of clustering methods in R, includ-
ing the new hopach package. The variety of available dissimilarity measures,
algorithms and criteria for choosing the number of clusters give the data
analyst the ability to choose a clustering parameter that meets particular
scientific goals. Viewing the output of a clustering algorithm as an estimate
of this clustering parameter allows one to assess the reliability and repeata-
bility of the observed clustering results. This kind of statistical inference
is particularly important in the context of analyzing high-dimensional ge-
nomic data sets. Visualization tools, including data and distance matrix
heatmaps, help summarize clustering results.




