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Abstract

It is important to be able to trust the data within applications, and to ensure that
it has not been tampered with. To achieve this, companies employ audit trails with a
log of all changes made inside their applications. However, if this audit trail is saved in
the same way as the application data, it is still vulnerable to tampering. To solve this,
we research the use of blockchain with this audit trail. We discuss the fundamentals of
blockchain technology, and how it achieves data integrity. Next, we discuss the different
challenges of different blockchain implementations, of which the most important are data
privacy on a public blockchain, and transaction limits/costs. We describe two different
methods to overcome the data privacy concern: one based on data hashing and one based
on data encryption. However, only the approach based on data hashing is able to scale
in terms of transaction costs associated with the method. We create an Ethereum smart
contract and integrate it with an Apache Isis audit trail. This audit trail can then be
validated against the smart contract running on the Ethereum blockchain. We evaluate
the method using several scenarios, which show that this implementation is able to detect
data tampering, but not prevent it. Combined with a strong backup protocol and regular
validations, however, it is able to provide more certainty regarding data integrity than a
regular audit trail implementation.
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CHAPTER 1

Introduction

US Director of National Intelligence James Clapper stated that the next big cyber threat is data
manipulation [1] and technology magazine Wired has listed it as one of the biggest security threats
in 2016 [35]. To combat this threat, it is paramount to ensure that data within applications can
be trusted. As a way to achieve this, companies employ audit trails containing a log of application
interactions. An interaction in this context is defined by a user interacting with the application
in such a way that it changes the state of one or more entities within the persistent datastore,
including creating or deleting existing entities.

The audit trail offers a way to verify the current state of the application against the state
changes that have led up to it. However, if this audit trail is saved in the same way as the
application data, it is still vulnerable to tampering. What this means is that the audit trail can
only provide an indication of data integrity, but no guarantees.

A potential way to provide these guarantees is blockchain technology. Blockchain is a data
structure that distributes all data over a network of nodes, so that there is no single point of
failure, and no central control that might be compromised [32]. In order to further guarantee
data integrity, blockchain uses a consensus algorithm which allows the independent nodes to
approve correct transactions and reject malicious ones [7].

Since the strength of blockchain technology comes from its decentralised nature [32], there lies
a challenge in effectively conveying this data integrity guarantee to private business applications,
without giving unauthorised parties access to said application data.

Applications using the Apache Isis framework already have a way to easily integrate a regular
audit trail through the AuditerService 1 and the Incode Audit Module 2. This research aims to
use these services and integrate them with blockchain technology in order to test the validity of
this approach.

1.1 Research questions

In order to convey blockchain’s data integrity guarantee to a private business application by
building an audit trail on top of it, we formulated the following research questions:

Can we implement an automatic audit trail for Apache Isis appli-
cations, using blockchain technology?

(1)

We further specify the requirements of this implementation in the second research question:

Is this blockchain audit trail able to ensure that it has not been
tampered with, without sharing application data with unauthorised
parties?

(2)

1https://isis.apache.org/guides/rgsvc/rgsvc.html (Accessed 2018-06-06)
2http://platform.incode.org/modules/spi/audit/spi-audit.html (Accessed 2018-06-06)
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These questions are answered by studying the nature of blockchain, and creating an imple-
mentation for an automatic audit trail for Apache Isis, that integrates with blockchain. This
implementation is tested by simulating scenarios in which audit trail data gets tampered with.

10



CHAPTER 2

Theoretical background

2.1 Apache Isis

Apache Isis 1 is a Java software development framework based on Domain Driven Development
and the Naked Objects pattern [11]. It can be used to rapidly develop complex business appli-
cations by leveraging its power to dynamically generate a UI and REST API from the domain
model of the application at runtime. This allows for rapid prototyping of both applications and
new features within these applications, since no time needs to be spent on the presentation layer
of the application. If an application warrants a more complex, custom user interface, it is always
possible to use the generated REST API.

2.1.1 Domain Driven Design

Domain Driven Design is a paradigm for software development in which software is strictly
modelled after real-world systems and processes [26]. For this to work, it is important to work
together with a domain expert, who precisely understands these real-world systems and processes.
Between the domain expert and the developer, a Ubiquitous Language (UL) is defined, which
contains definitions of terms used in describing the behaviour of the systems, so that both the
domain expert and developer clearly understand the descriptions [26].

The real-world system and processes can then be specified with this UL, and the software can
be modelled after the specification using different building blocks. These building blocks include
[26]:

• Value Objects, which can contain different attributes, but no identity of its own. A date is
an example of a Value Object.

• Entities, which can contain different attributes, but also have a distinct identity in the
domain.

• Domain Events, which are events within the system that are deemed important by the
domain expert.

• Domain Services, which are encapsulations of business logic that isn’t necessarily related
to any value object or entity.

Whenever the real-world systems change, this is captured in the domain model, and the
software is adapted to reflect these changes in the domain model. This means that the software
always reflects the actual real-world systems and processes.

1https://isis.apache.org/ (Accessed 2018-04-10)
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2.1.2 Naked Objects

An oft-used pattern in software development is the Model-View-Controller (MVC) pattern. In
this pattern the View displays information to the user, the Controller processes the interactions
between the user and the View, and the Model contains the business logic [10]. However, in
practice, the presentation logic and business logic are often not separated well enough in web
applications, resulting in Controllers filled with business logic that belongs to the Model [10].

The Naked Objects pattern looks to fix these practical shortcomings by making the View and
Controller roles completely generic [25]. By doing so, the business application is written solely in
terms of domain entity objects. The entire presentation layer, otherwise coded with a View and
Controller role, is then automatically generated from the domain model. This translates into the
following three principles [25]:

• All business logic should be encapsulated in domain objects.

• The user interface is a direct representation of the domain objects.

• The user interface is derived automatically from the domain objects through reflection.

This leads to a faster development cycle and more agility, since the focus can remain on the
domain objects, and no extra time needs to be spent on the View and Controller roles of the
application.

2.1.3 Framework Domain Services

The Apache Isis framework offers different domain services in the form of APIs, which have been
implemented by the framework and can be called by the application, and SPIs, which can be
implemented by the developer inside the application, and will be called by the framework [12].
These services can be categorised by their uses and their place in the application.

Figure 2.1: Domain service categories. Downloaded from [12]

2.2 Audit Trail

An audit trail is a log of all interactions that happen inside an application, and more importantly,
their effects on the underlying data. This can be used as a way to verify the current state of the
application against the interactions and changes that led up to this state. In order to do this,
every piece of data in the application has to be traceable all the way back to the interaction that
created it, including all changes that have been made along the way.
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This makes it possible to see exactly when, by whom, and using which method the data was
changed. If some data within the application is not traceable in such a way, it means that either
the data in the application, or the data in the audit trail has been changed outside of the regular
application functionality. However, if the audit trail and the application have been tampered
with at the same time, in a way that the changed application corresponds correctly with the
changed audit trail, it can be difficult to detect these changes without taking extra measures.

2.2.1 Apache Isis AuditerService SPI & related SPIs

Apache Isis has several domain services available as an SPI, where the implementation of the
service is left to the application, and this implementation will automatically be called by the
framework. Apache Isis offers several such SPIs for auditing (or similar) purposes, as illustrated
in figure 2.2 [12].

Figure 2.2: Domain services used for auditing. Downloaded from [12]

In this figure we can see the different phases of interactions within the application, and
the different hooks that the services provide into this process. The CommandService SPI 2

captures a Command object, which includes the invoking user, the targeted object(s), and the
corresponding interaction [12]. The AuditerService SPI captures the actual changes caused by
the interaction by saving the invoking user, the changed property, and the pre- and post-values of
the property [12]. The PublisherService 3 captures the actual interaction, as well as a summary
of the changed properties [12]. These SPIs can be implemented to assist in auditing, depending
on the requirements. It is not unusual to use these services together.

2.3 Blockchain

Blockchain is a data structure that is distributed over a number of different nodes. It uses a
chain of so-called blocks to store data [7]. Every block header includes the root of a Merkle tree,
which contains the actual data inside of the block [7]. Besides this, every block also includes a
timestamp and a hash of the previous block in order to make it resistant to manipulation [7].

2https://isis.apache.org/guides/rgsvc/rgsvc.html (Accessed 2018-06-06)
3https://isis.apache.org/guides/rgsvc/rgsvc.html (Accessed 2018-06-06)
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Figure 2.3: Block contents and linking. Downloaded from [22]

If an attacker would change a past block’s data, its hash would change with it, and since the
changed hash is never referenced by another block, it would not get accepted [7]. This means
that in order to successfully change a past block they would have to fork the blockchain. The
rule with forks in the blockchain is that the longest chain is always the leading one, so in order
to have the modified block accepted by the network, the attacker would need to grow its chain
faster than the rest of the network combined to eventually catch up and pass the longest chain,
which is called a 51% attack [7]. Because the resources of the entire network are extensive in
major blockchains, this sufficiently guarantees the integrity of the data in the blockchain [7].

Figure 2.4: 51% attack in progress. Downloaded from [28]

2.3.1 Merkle Tree

Blockchain uses a Merkle tree to contain the data inside the block. Ethereum’s white paper
explains how this data structure functions [7]:

A Merkle tree is a type of binary tree, composed of a set of nodes with a large
number of leaf nodes at the bottom of the tree containing the underlying data, a set
of intermediate nodes where each node is the hash of its two children, and finally
a single root node, also formed from the hash of its two children, representing the
”top” of the tree.

Figure 2.5: Structure of a Merkle tree. Downloaded from [22]
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By using a Merkle tree, it is possible to receive the header of a block from one source, but
parts of the tree from other sources, while still being assured all data is correct [7]. This works
because all hashes propagate upwards into the tree, meaning that a change in one node modifies
all hashes of the nodes above the one that was originally changed. This would finally lead to a
different root hash, which would modify the block header, and would be perceived as a different
block [7].

Figure 2.6: Merkle tree conflict. Downloaded from [7]

2.3.2 Decentralised consensus

One of the important parts of blockchain is the ability to reach a decentralised consensus between
mutually distrusting parties. This problem dates back to the Byzantine Generals Problem, which
was formalised in 1982 [17]. This Byzantine Generals Problem is an abstract description of the
problems that arise when dealing when trying to reach consensus between these different mutually
distrusting parties.

In this problem several divisions of the Byzantine army encircle an enemy city, where every
division is commanded by a single general. After observing the enemy they must decide upon
a plan of action by sending messengers to each other. However, some of the generals might be
traitors who can try to prevent the loyal generals from reaching an agreement by relaying false
information [17].

Figure 2.7: Only with a coordinated attack can the generals win the battle, an uncoordinated
attack will result in defeat. Downloaded from [9]

In order to solve this problem, the Byzantine generals need to define an algorithm that allows
the loyal generals to agree upon the same plan of action, while a small number of traitors cannot
cause the loyal generals to adopt a bad plan [17]. An application that is able to satisfy these
requirements is said to be Byzantine Fault Tolerant.
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Blockchain addresses this problem with so-called consensus algorithms. These consensus
algorithms allow the nodes of the blockchain to reach consensus about the blocks that are added
to the blockchain. One of the most widespread algorithms for this is the Proof-of-Work algorithm,
employed by the Bitcoin blockchain, as well as several other high-profile blockchains. Part of
this algorithm entails giving out a financial reward for correctly validating transactions [24]. By
adding a financial reward to correctly validating transactions, mutually distrusting parties are
able to work together to keep the blockchain working.

2.3.3 Smart Contracts

A smart contract is a way to digitally enforce a contract or an agreement between parties through
code. This concept predates blockchain more than a decade, as the term was initially coined by
Nick Szabo in 1996 [31].

However only when blockchain was implemented did it finally become possible to imple-
ment these smart contracts without the need for a trusted third party. Smart contracts on the
blockchain were first implemented in the Ethereum blockchain, as proposed in the Ethereum
white paper [7].

Ethereum offers the ability to publish smart contracts on its blockchain, which can be executed
by the Ethereum Virtual Machine (EVM) [7]. By publishing these contracts to the Ethereum
blockchain, all involved parties can easily inspect the contract and they will be assured that the
contract will execute exactly as specified.

This offers possibilities to create decentralised applications, or Dapps, on the Ethereum
blockchain. The Ethereum white paper lists several use cases, such as sub-currencies (tokens), de-
centralised file storage, and even entire Decentralised Autonomous Organisations (DAOs), which
run entirely on business logic encoded into smart contracts [7].

At the same time, smart contracts are still code, and can contain bugs like any other code. In
the case of smart contracts, these bugs can have enormous consequences. One of these instances
is the attack on The DAO in 2016, where it was unintentionally possible to drain funds out of
this DAO into an attackers wallet, which is exactly what happened [18]. Millions of dollars worth
of Ether was stolen because of this one bug in the code.

In this instance, the nodes in the Ethereum network agreed on a hard fork, intentionally
changing the state of the blockchain, so that investors could retrieve the money they had invested
in The DAO, while the attacker lost his share [18].

This does raise philosophical questions and even legal issues, since these smart contracts are
supposed to be used to uphold a certain agreement. If the network decides not to honour this
agreement, it diminishes the value these smart contracts hold. Even though in this case it was
a clearly unintentional bug in the smart contract, it can be difficult to determine the difference
between the intention behind a smart contract and its actual behaviour.

In order to solve this issue, ABN Amro stated that they deploy smart contracts accompanied
with an attachment of the legal prose that the smart contract represents. If bugs should arise
at any moment, this legal prose will be leading in determining the intentions behind a smart
contract [6].

2.3.4 Public and private blockchains

There are different ways a blockchain can be deployed. There are blockchains that are com-
pletely open and public, so that anyone can see all activity on the chain, and conduct their
own transactions [16]. This is called a public or permissionless blockchain. Opposed to this
public or permissionless blockchain is the private or permissioned blockchain. In a permissioned
blockchain, the owner or owners of the blockchain are in control of who can view the blockchain,
and who can add new transactions [16].

These permissioned blockchains can be used by multiple corporations to work together in
the same industry, or by multiple departments of the same corporations. Since there is more
trust between parties in a private blockchain, there is less need for the more complex consensus
algorithms such as Proof-of-Work for the blockchain to function [16]. This is clearly reflected in
the consensus algorithm that blockchain framework Hyperledger Sawtooth uses for its consensus,
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Proof-of-Elapsed-Time, which uses a lottery function deciding which node will be able to add
the next block. From the Hyperledger Sawtooth documentation [14]:

PoET essentially works as follows... Every validator requests a wait time from an
enclave(a trusted function). The validator with the shortest wait time for a particular
transaction block is elected the leader. One function, say CreateTimer creates a
timer for a transaction block that is guaranteed to have been created by the enclave.
Another function, say CheckTimer verifies that the timer was created by the enclave
and, if it has expired, creates an attestation that can be used to verify that validator
did, in fact, wait the allotted time before claiming the leadership role.

It is also possible to use a blockchain within a single, smaller, organisation, with only one node
being able to write to the blockchain. However, this does not benefit from the decentralisation
and distribution of regular blockchains, which means they would present no benefits over a regular
relational database system in that regard.

2.3.5 Blockchains in practice

Blockchain was initially designed as the ledger of the Bitcoin cryptocurrency [24]. Today there
are many more cryptocurrencies using a public blockchain as their ledger. But as the blockchain
technology progresses, so do the use cases, piquing the interest of many corporations and even
governments across the world. The Republic of Georgia was the first country to run pilots
with land title registration on blockchain technology [30], which has since been successfully
implemented [4].

Ethereum offers the ability to create decentralised applications with smart contracts. Among
these Dapps are Golem 4, which is a project that allows people to rent out their idle computing
power, and Augur 5, which allows people to bet on the outcome of any future event by creating
peer-to-peer prediction markets.

However, Brian Behlendorf, the executive director of Hyperledger, stated that he is most
excited about the use cases that can make a significant social impact [19]. In particular, the
way blockchain is used for supply chain management by eliminating the need for a trusted third
party to certify products as they travel through the supply chain. This allows a consumer to
easily verify the product’s authenticity and provenance, and by doing so they can ensure that the
quality of the product is what they expect from it, or that it has been produced in accordance
with their personal values [19].

4https://golem.network/ (Accessed 2018-05-26)
5http://www.augur.net/ (Accessed 2018-05-26)
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CHAPTER 3

Method

3.1 Decision for blockchain implementation

There are several different ways to implement or use a blockchain in practice, many corporations
are using different public blockchains, or private blockchain implementations. The next step is
identifying the best way to use blockchain technology for our specific use case. We encapsulated
the requirements to our use of blockchain technology in the research questions. To reiterate this:
we want to ensure that the data in our audit trail has not been tampered with, without sharing
application data with unauthorised parties. The challenges that arise with different blockchain
implementations are discussed below.

3.1.1 Challenges in private blockchains

To see the challenges that arise in the use of a private blockchain, we have to look at the features
of the blockchain. A blockchain is able to ensure data integrity by linking a block with all its
ancestors using data hashes, and then making sure that the network as a whole has sufficient
resources to repel any 51% attacks [7]. From this it is already clear that a completely private
blockchain is not able to offer these same guarantees, as the network consists of a single node.
If this node gets compromised, it can change any data at will, offering no more guarantees than
a regular database.

To overcome this challenge it is possible to share a private network with other organisations.
However, in the use case we are describing, there is no reason other parties would be interested
in the shared data, which means that it would practically be a smaller, and therefore less-secure
version of a public blockchain.

3.1.2 Challenges in public blockchains

From highlighting the limitations of a private blockchain it has become clear that we need to
integrate with a public blockchain to really leverage the data integrity guarantee that it offers.
However, this does come with its own drawbacks in the context of a private business application,
because all data that is published to a public blockchain is publicly accessible. Since the data
may contain sensitive elements, it can’t just be published on a public blockchain without any
privacy measures.

To overcome these complications, we discuss two different approaches to add data privacy to
our implementation, while still leveraging the data integrity guarantees from a public blockchain.
The first method stores data hashes on the public blockchain, while storing the actual data
locally. The second method encrypts the data before publishing it to the public blockchain.
These methods are further elaborated below.
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3.1.3 Data Hashing & Blockchain Anchoring

US Patent application 20180025181 [2] presents a method to reliably store data and verify its
integrity with blockchain technology. The method describes storing (potentially many) data files
on a data storage module, and transmitting hashes of these data files to a public – or sufficiently
decentralised private – blockchain [2]. With this hash they store metadata, such as a timestamp,
file size, and other file metadata. The method then monitors these files, and whenever a change
occurs, this process is re-initiated, storing the new hash on the blockchain, with a link to the
previous one [2].

Figure 3.1: Visual representation of the method described in [2]. Extracted from [2]

While this method is specifically created for the validation of data files, this can be transferred
to application data as well. The methods of hashing stay the same, and the monitoring process
can be replaced by the Apache Isis framework, which automatically calls the SPI implementations
whenever the application state changes. This does mean that the audit trail data needs to
be stored separately from the public blockchain, since the data hashes that are stored on the
blockchain can only be used to verify existing data. What this means is that this method doesn’t
prevent tampering, it is only able to detect it when the data has been tampered with. With
a secure backup protocol, however, it is possible to retrieve the correct data after tampering
has been detected. Because only data hashes are stored on the blockchain, this method is very
scalable, since any size data can be hashed into a signature of 32 bytes [33].

As an extension to this method, a method called blockchain anchoring could be used. This
consists of saving the actual data in a private blockchain, where the latest block of this private
blockchain is periodically committed to a public blockchain [5]. This allows the implementation
to be configured to store fewer hashes on a public blockchain, depending on the need of the
implementation. Schneier & Kelsey state that a method for securing data integrity should be
configured based on the estimated frequency that the data is at risk of being tampered with
[29]. For instance, if it is estimated that the data is at risk of being tampered with about once a
month, it would be sufficient to only store the data hash on a public blockchain once every two
weeks.
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3.1.4 Data Encryption

The second method works by encrypting the data before storing it on a public blockchain. In its
most simple form this means that an encryption key needs to be saved to encrypt and decrypt
the data that gets stored on the public public blockchain. Then, all data is encrypted before
being stored on the blockchain, and it needs to be decrypted before being able to use the data
again. This means that there is no need to store a copy of the data locally, as is the case with
the first method. The application can rely fully on the data that is stored on the blockchain,
which also means that, unlike the first method, this method is able to prevent instead of only
detect tampering with the existing data.

As an extension to this method, more complex encryption schemes could be used in order to
further protect the data, and to grant multiple parties access to (parts of) the data using their
own authentication keys. One such method is described as part of the method for data integrity
described by Schneier & Kelly [29]. This method describes using an initial authentication key,
from which a new key is derived for every data entry. Then an encryption key is generated
from this authentication key. Every subsequent key can be derived from the initial one, meaning
the creator has access to all entries, but the keys for individual entries can be shared without
granting access to all other entries [29].

3.1.5 Transaction Limits

The drawback of using the encryption method, or of saving the data without a privacy implemen-
tation is that it takes up a lot more space on the blockchain than the method using data hashes.
Practically this means that bigger data entries need to be split up over different transactions,
since there are limits on the amount of data that a block can hold, and therefore limits on the
amount of data that a transaction can practically include.

With Ethereum, the limits per block are contained in the gas limit of the block, which is
currently at around 8 million gas for the Ethereum Main Net, but this limit can scale depending
on demand [34]. This gas is a unit of computation, and every operation that is executed on
the blockchain has a different gas cost associated with it [34]. An overview of these gas costs is
shown in figure 3.2.

The Yellow Paper specifies that every byte of non-zero data in a transaction costs 68 units of
gas, and every transaction costs 21 000 gas to start with [34]. This means that theoretically, the
maximum size of one transaction would be (8 000 000 - 21 000) / 68 000 ≈ 117 kB. However,
this only includes transaction data that is not stored. The yellow paper also states that the fee
to store a 32-byte word is 20 000 gas, translating to 640 000 gas per kilobyte of stored data [34].
This puts the limit to stored data per transaction at (8 000 000 - 21 000) / (640 000 + 68 000)
≈ 11 kB. This is not enough to store large values on the blockchain.

It is important to consider whether this limitation is relevant for the specific use case. When
only storing single integer values, this limit will not be reached, but when storing arbitrary-size
blobs, it is very likely that this data will need to be split up, thus adding extra complexity.

Besides these complications, every unit of gas on the Ethereum blockchain needs to be paid
for, so the costs of this method could increase rapidly. At the time of writing the price of one
unit of gas is around 10 GWei, or 0.00000001 Ether, and the price of one Ether is around e500.
This means the price to store one kB of data is around e4. These increased costs make storing
larger amounts of data impractical for realistic usage.
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Figure 3.2: Fees in gas for operations on the Ethereum blockchain. Extracted from [34]

3.2 Comparison of blockchain frameworks

If we use the data hashing approach, and extend it with blockchain anchoring, the data needs
to be stored on a private blockchain, which can be anchored to a public blockchain. To assist
in building private blockchains, multiple corporations have created frameworks for blockchain
construction, each with their own distinct features. Three of the biggest of these frameworks
are Hyperledger Sawtooth, Hyperledger Fabric, and Quorum. These frameworks are discussed
in the sections below, finally deciding on a best fit for this project.

3.2.1 Hyperledger Sawtooth

Hyperledger Sawtooth is a framework in the Hyperledger family, which focuses on modularity
and flexibility [20]. As such, it allows the creator of the blockchain to use their own consensus
algorithm by implementing a distinct interface for the publishing of a block, the verification
of this block, and the resolution of forks [20]. While Sawtooth provides these possibilities, it
also includes its own consensus algorithm, Proof-of-Elapsed-Time, which works using a random
lottery function [20].

Another distinguishing feature of Hyperledger Sawtooth is the ability to batch transactions.
When a user submits transactions, this is always done in a batch, although a batch can contain
as little as one transaction [20]. These batches are then submitted to a validator node, which
checks the (pre-defined) validity of all transactions inside the batch. If any of the transactions
inside the batch are invalidated, the entire batch is rejected. If all transactions are deemed valid,
they are applied by the validator node and added to the blockchain [20].

Next, Sawtooth defines transaction families as the way to change the state of the blockchain.
These transaction families are defined groups of operations that are allowed on the blockchain.
By limiting the amount of operations that are allowed within a transaction family, Sawtooth
is able to reduce the risk at mistakes with these transactions [23]. Sawtooth has several pre-
defined transaction families that can be readily used within blockchains built on top of it, from
the Integer Key family with just the increment, decrement and set operations, to a full EVM
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transaction family [23]. Besides these transaction families, network operators can define their own
transaction families by implementing a so-called transaction processor, which can be programmed
in a variety of programming languages [23]. By choosing the allowed transaction families within
the network, it is possible to select the level of versatility/risk thats right for the specific network
[23].

Finally, applications are able to interface with a Sawtooth blockchain through a well-defined
and clearly documented REST API, and Sawtooth offers SDKs in multiple languages to assist
in development [14].

3.2.2 Hyperledger Fabric

Hyperledger Fabric is similar to Hyperledger Sawtooth in the way that it allows for custom
algorithms for consensus and also for identity verification. Consensus within Hyperledger Fabric
is divided into three steps: endorsement, ordering, and validation and commitment [21].

When a transaction is proposed by a client, it is sent to endorsing peers. These endorsing
peers simulate the transaction, and return so-called RW sets, which capture all the data that
the transaction reads from and would write to the world state [21]. If the transaction passes
the pre-configured endorsement policy (e.g. a majority of peers must endorse a transaction), the
endorsed transaction is sent to an ordering service [21].

This ordering service determines the order in which the transactions are added to a block [21].
The implementation of this ordering service can be customised by the creator of the network;
the default implementation of the ordering service is one based on Apache Kafka [21]. While
this default ordering service is crash tolerant, it is not yet Byzantine Fault Tolerant, and this is
one of the next big steps that Hyperledger Fabric is working towards [21].

After ordering, the transactions are passed back to the endorsing peers, as well as to com-
mitting peers. These peers verify once more that the RW sets of the transactions still match the
current world state, based on this they validate or invalidate the transaction and commit them
to the blockchain. Even when they are invalidated they will still get logged to the blockchain,
but marked as invalid and they will not be executed [21].

One of the most important distinguishing features of Hyperledger Fabric is the ability to
create channels, which are full-fledged separate blockchains within the same network [21]. By
limiting who can join certain channels in the network, it is possible to keep certain transactions
private between the involved parties inside the channel.

Finally, the transaction logic and smart contracts within Hyperledger Fabric are called chain-
code, and are written in Go [21]. Chaincode invocations execute transactions against the current
state data. In order to make this more efficient, the most recent key/value pairs for all assets
are stored in a LevelDB database [21]. This database is an indexed view on the blockchain’s
committed transactions, and can always be regenerated by replaying all transactions.

Applications can interface with a Fabric blockchain through a Node or a Java SDK, and
several other SDKs are actively being developed [13].

3.2.3 Quorum

Quorum is a blockchain framework created by J.P. Morgan as a way to create permissioned
versions of the Ethereum blockchain. In their implementation they focused on staying very
close to the original Ethereum implementation so Ethereum developers would have no trouble
switching over to Quorum. The smart contracts engine is very similar to that of Ethereum,
and it is possible to run regular Ethereum smart contracts on a Quorum network without any
modifications [15].

Since Quorum is intended to be used for private permissioned blockchains, they offer different
kinds of consensus algorithms depending on the needs of the network. The first one is based on
the Raft protocol 1, which works by electing a leader, who is the sole block creator within the
network [15]. This allows for high throughput within the network, but is not Byzantine Fault
Tolerant, so it is not viable in every situation.

1https://raft.github.io/ (Accessed 2018-04-24)

23



As an alternative, Quorum implements the Istanbul BFT consensus protocol, which works by
picking a new validator node to be a proposer every block [15]. This selection is done in a round
robin fashion, meaning they are selected one after another, in a circular way. This proposer
then broadcasts a new block proposal to the other validator nodes, which all validate the block
proposal [15]. Once done, they broadcast a COMMIT message to all other nodes. Then, when
a node has received a COMMIT message from at least two thirds of all validators, the block is
inserted into the blockchain [15].

Finally, one of the most important features of Quorum is the addition of private transactions
to their blockchain. Hyperledger Fabric also offers private transactions, but the methods Quorom
and Fabric use to achieve this are different altogether. While Fabric uses channels, Quorum has
a separate Transaction Manager, which keeps track of the people who have access to certain
transactions [15]. Prior to broadcasting such a transaction, a node first replaces the original
transaction payload with a hash of the encrypted version of the payload that it receives from
the Transaction Manager. Parties that are included in the recipients of the transaction will then
receive the actual payload, while others will only see the hash [15].

3.2.4 Decision for blockchain framework

Because for this project a private blockchain will run within a single node, it will offer no
Byzantine Fault Tolerance, regardless of blockchain implementation. This also eliminates the
need for private transactions, because the data in this private blockchain does not need to be
shared. What is important for this project is the way application logic is written in the framework,
how an integration with Apache Isis applications can be made, and how an integration with a
public blockchain can be made.

In Hyperledger Sawtooth, the application logic is encapsulated within transaction families,
which can be programmed using several programming languages [23]. Integrations can be written
in several languages as well, but the Java SDK is still being worked on and can not be reliably
used [14]. This means that an integration with Apache Isis applications would be difficult.

Hyperledger Fabric does offer a production ready Java SDK to create integrations with its
blockchain [13]. However, all actual application logic is encapsulated within chaincode, which
can only be written using Go [21]. This would mean a lot of context switching. Since the project
already encapsulates a lot of context switching between blockchain and business applications,
using this could be detrimental to the project’s productivity.

Quorum is a bit different, since it is essentially built as a private version of the Ethereum
blockchain. This means that application logic is encapsulated in almost exactly the same way as
on a regular Ethereum blockchain, by creating smart contracts with a language such as Solidity
[15]. Most existing Ethereum tooling is also functional for a Quorum-based blockchain, which
offers possibilities. There is an extensive Java library 2 to connect with an Ethereum blockchain,
which also has functionality to include Quorum based blockchains. Because it is so similar in use
to Ethereum, the same code code be reused between the private and public instances if necessary.
Quorum seems to be the best choice for this project.

3.3 Implementation design

We presented two different solutions to the privacy problems of using a public blockchain. The
first one is saving the audit trail data on a private blockchain, and saving hashes of this data
on a public blockchain. The second solution is encrypting the audit trail data and adding the
encrypted data itself to a public blockchain.

While using data hashes is not able to prevent tampering from happening, it is the only
method that is able to scale to larger data entries, as storing encrypted data would cause the
costs of data storage to skyrocket. Therefore, the implementation will store the actual audit data
entries in the application’s own database, while a hash of this audit data entry will be stored on
the Ethereum blockchain for validation.

2https://web3j.io/ (Accessed 2018-04-26)

24



We will not add it in this implementation, but this method can be extended by storing the
audit data on a local instance of Quorum, which can be anchored to the Ethereum blockchain.
By using this extension it would be possible to further limit the amount of transactions to the
public Ethereum blockchain, by only committing certain block hashes.
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CHAPTER 4

Implementation

4.1 The AuditTrail Smart Contract

The cornerstone of our implementation is the AuditTrail smart contract that we use to store
hashes of the data we are saving locally. This smart contract is written for the Ethereum
blockchain, using the Solidity programming language. For the demo application, this contract is
deployed on the public Rinkeby Ethereum test network.

4.1.1 Solidity

Ethereum smart contracts are executed by the EVM. There are several languages that compile
to EVM bytecode, of which Solidity is the most important and most widely used. Solidity is a
language based on JavaScript that was specifically created to write smart contracts. As such, it
has been made to work with the limitations of the EVM, such as the gas limits.

This is visible in the data types of Solidity, which are quite rudimentary. These data types
are divided in value types, reference types, and mappings [8]. The value types consist of integers
(signed and unsigned), addresses, and fixed-length byte arrays. These value types can be further
specified in size, in order to fully utilise the available storage space. Signed and unsigned integers
can be specified in steps of eight bits from (u)int8 to (u)int256, and fixed-length byte arrays
can be specified in steps of one byte from bytes1 to bytes32 [8].

The reference types consist of arrays and structs. An array can hold any other data type
(including reference types), and can be dynamic [8]. Structs can be used to create new data
types, by defining named members, quite similar to structs in C [8]. Next, mappings are very
basic hashtable, that is just able to map a key to a value, without any other features, like being
able to iterate over all keys or values [8]. Finally, Solidity has the ability to emit events, which
are added to the transaction log on the blockchain, and can be accessed from outside of the
contract [8].

4.1.2 Truffle & Ganache

To assist in smart contract development, there is a suite of development tools for smart contract
development called Truffle 1. Truffle makes it easy to compile, link, and deploy contracts to the
Ethereum blockchain. It also offers features for contract migrations, and it offers an extensive
framework for unit testing smart contracts, with tests written either in Javascript or Solidity.

The same company also develops Ganache 2, a local development version of the Ethereum
blockchain. This local development blockchain only runs a single node, so it is very fast in
transaction times. It also provides a set of ten unlocked test accounts with 100 Ether each. This
makes Ganache perfect for fast development and testing of smart contracts.

1http://truffleframework.com/ (Accessed 2018-05-26)
2http://truffleframework.com/ganache/ (Accessed 2018-05-26)
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4.1.3 Smart contract functionality

To assist in explaining the functionality of the smart contract excerpts of the most important
parts of the contract are added below.

The AuditTrail smart contract’s main functionality comes from its dataHashes mapping.
This mapping contains the corresponding data hash for every transaction identifier that has
been audited by the contract. Besides this, it also saves an array of all transaction identifiers so
it can be iterated over.

The audit function of this contract saves the given transaction identifier and data hash in
this mapping, saves it to a list of audited transaction identifiers, and emits an Audit event. The
contract also contains a function to validate transactions, by comparing the passed transaction
identifier and data hash with the values inside the dataHashes mapping.

1 contract AuditTrail {

2 ...

3

4 bytes28[] public auditedTransactions;

5 mapping(bytes28 => bytes32) public dataHashes;

6 event Audit(bytes28 transactionIdentifier, bytes32 dataHash);

7

8 ...

9

10 function audit(bytes28 transactionIdentifier, bytes32 dataHash)

11 external ownerOnly {

12 require(dataHashes[transactionIdentifier] == 0,

13 "A transaction can only be audited once");

14 dataHashes[transactionIdentifier] = dataHash;

15 auditedTransactions.push(transactionIdentifier);

16 emit Audit(transactionIdentifier, dataHash);

17 }

18

19 function validate(bytes28 transactionIdentifier, bytes32 dataHash)

20 external view returns(uint8) {

21 return dataHashes[transactionIdentifier] == dataHash ? 0 : 1;

22 }

23 }

4.2 Integrating with Apache Isis applications

With a smart contract ready that can audit transactions, the next step is to implement an audit
trail using Apache Isis, that submits hashes of its audit data to this smart contract.

4.2.1 Web3j

To integrate Java applications with Ethereum-based blockchains there is a library called Web3j
3. It uses the Ethereum JSON-RPC 4 to interface with the blockchain, and it provides straight-
forward bindings to these RPC calls. Besides, it offers the ability to generate Java smart contract
wrappers from compiled Solidity code or Truffle specifications. This allows for seamless integra-
tions between the blockchain and the application.

To effectively use Web3j in Apache Isis applications, we created a specific domain service
Web3Service, which contains a web3j instance, the credentials for an Ethereum wallet, and a
wrapper around a deployed AuditTrail smart contract. Through configuration properties in
Apache Isis configuration files, it is possible to specify the private key for this Ethereum account
and the URL used to connect with a running blockchain instance. If no account credentials or

3https://web3j.io/ (Accessed 2018-05-17)
4https://github.com/ethereum/wiki/wiki/JSON-RPC (Accessed 2018-05-17)
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Ethereum URL are provided, the implementation uses a local Ganache instance with one of its
test accounts.

4.2.2 AuditerServiceUsingBlockchain implementation

To create an automatic audit trail, we implemented the Apache Isis AuditerService SPI. This
AuditerService SPI is defined as the following interface:

1 public interface AuditerService {

2 boolean isEnabled();

3 public void audit(

4 final UUID transactionId,

5 final int sequence,

6 String targetClass,

7 final Bookmark target,

8 String memberIdentifier,

9 final String propertyId,

10 final String preValue,

11 final String postValue,

12 final String user,

13 final java.sql.Timestamp timestamp

14 );

15 }

In the signature of the audit method of this interface, the transactionId signifies the
application interaction that caused the changes, while this transactionId in combination with
the sequence signifies the corresponding database transaction. The targetClass and target

signify the object that was changed, and the memberIdentifier and propertyId the specific
changed property.

The audit method is called by the framework for every state change that occurs as a result
of an interaction. This will most likely occur more than once per interaction, since a single
interaction can lead to multiple changes in state. If every audit call leads to a transaction on
the blockchain, the costs of this method would increase, keeping the base costs of a transaction
in mind.

To keep the number of blockchain transactions down, we choose to aggregate all changes
within a single database transaction and save this as a single ThreadLocal Audit Entry. At
the end of the transaction, a hash of the Audit Entry is taken, and is sent to the AuditTrail
smart contract, together with a transaction identifier, which is a representation of the transac

tionId, sequence and timestamp of the Audit Entry. This was achieved by also implementing
the PublisherService SPI. This SPI gets called at the end of each transaction, allowing us to
commit the aggregated Audit Entry.

The blockchain transaction is sent asynchronously, so that the rest of the application can
continue running while the transaction is executed on the blockchain. When the transaction
completes, a callback is called, adding the Ethereum transaction hash to the Audit Entry, so the
specific Ethereum transaction can be looked up.

4.2.3 Audit trail validation

Now that the hashes of all Audit Entries are getting added to the smart contract on the
blockchain, the final step is being able to validate that the Audit Entries that are stored in
the application’s database are still correct. To achieve this, individual Audit Entries can be
validated with a validate action, which calls the validate method on the AuditTrail smart con-
tract. This validate action stores the validation result on the Audit Entry, and updates its last
validation date.

The entire audit trail can also be validated, by validating every single Audit Entry in the
audit trail. This ensures that all Audit Entries in the audit trail are valid, but in order to fully
validate the audit trail, it is also checked for missing entries. This is done by iterating over
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all audited transaction identifiers that are saved in the smart contract, and verifying that the
corresponding Audit Entry can be found within the application. The results of this validation
are presented as three different lists – of validated audit entries, of invalidated audit entries, and
of missing audit entries.

When Audit Entries are missing or invalidated, steps need to be taken in order to restore the
correct data. The timestamp and transaction id of Audit Entries are known and stored on the
blockchain, which makes it easier to identify which data needs to be restored.
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CHAPTER 5

Evaluation

To evaluate the implementation, three different scenarios have been created, in which the data
inside the audit trail would be invalidated. After executing these scenarios we validate the audit
trail using the implementation described in the previous chapter.

For these scenarios, we have added the blockchain audit trail implementation to two demo
applications, which are based on actual applications that are being used. The first is based on
Incode’s Contact App 1, and is used for internal contact management within companies. The
second is a larger scale application based on Estatio 2, which is a full-fledged estate management
system.

5.1 Scenario 1 - Shift the blame

Sven, an employee of Acme Corporation, maliciously changes the email address of a contact in
the application. After doing so, he attempts to shift the blame to his coworker Peter by editing
the audit trail data outside of the application straight in the database. Sven hopes to gain a
professional advantage over Peter, who is a great source of jealousy for Sven, by reporting Peter’s
alleged incompetency to their superior.

Unknown to Sven, however, Acme had just upgraded their audit trail to the new implementa-
tion that is validated against the Ethereum blockchain. After Sven’s report, his superior decides
to validate the audit trail and sees that the corresponding audit entry is invalidated and has
been tampered with. The corresponding audit entry had not yet been included in the company’s
nightly backups, so while they could see that there had been tampering, they could not see who
the actual user was that changed the contact’s email address. In this case, there was enough
evidence to suspect Sven’s intentions, and as a result he is placed under closer supervision.

The steps to simulate this scenario are:

• Find a contact in the application.

• Change this contacts email address.

• Open the database that is connected with the application, and find the corresponding audit
entry.

• Change the user field of this audit entry from Sven to Peter.

After following these steps, running the audit trail validation inside the application results
in the corresponding audit entry being invalidated. Figure 5.1 shows that the edited audit entry
with user Peter has been invalidated.

1https://github.com/incodehq/contactapp (Accessed 2018-05-29)
2https://github.com/estatio/estatio (Accessed 2018-05-30
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Figure 5.1: The edited audit entry with user Peter has been invalidated.

5.2 Scenario 2 - Cover your tracks

Mary has worked at Acme Corporation for fifteen years, but lately she has been feeling close to
a burnout, and has decided she wants to quit her job and retire to the Colombian countryside.
To fill the gap in her finances, she changed the recipient on one of the company’s larger invoices
to her husband’s IBAN, which she edited back to the original after it had been paid. A few
days after this, she quits her job and is preparing to leave her old life behind. But as she is
getting ready, she finds out that her old company employs an audit trail, which contains all
actions taken inside the application, and now she wishes to cover her tracks. She still has her old
company credentials, which she uses to gain access to the application database. In the database
she removes all audit entries that log her changes.

Unknown to Mary still, Acme has the policy to routinely validate their audit trail against the
Ethereum blockchain at the end of every working day, so they notice the missing audit entries.
Since these entries had already been included in the company’s backups, the correct data can
easily be restored, and Mary’s malicious actions come to light. She is reported to the authorities,
and apprehended at the airport, just as she was leaving the country. Because the data in the
audit trail can be validated against the blockchain, this is reliably used as evidence in court, and
Mary and her husband are convicted of fraud.

The steps to simulate this scenario are:

• Change the IBAN of an invoice that still needs to be paid.

• Go through the payment process to.

• Open the database that is connected with the application, and change the IBAN back.

• In the database find the corresponding audit entries.

• Delete these audit entries and their ChangedProperties.

After following these steps, running the audit trail validation inside the application results
in several audit entries being reported as missing. Figure 5.2 shows that two audit entries with
timestamps around 18:25 are missing, which contained the interaction that changed the IBAN
and the payment to this IBAN. The final missing audit entry with timestamp around 18:39
contained the action that changed the IBAN back.
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Figure 5.2: The audit entries with timestamps 18:25:03, 18:25:15 and 18:39:11 are reported as
missing by the validation.

5.3 Scenario 3 - Inexperienced admin

Paul is one of the newer system administrators at Acme Corporation, and he is still getting
trained to use the systems and processes that are employed by the company. At his first day
working in the field he gets a request from his coworker Lucy to restore some files from a backup
a few days back. Not being knowledgeable enough, he performs a full server backup, which
incidentally includes the application database. Happy he could help, Paul informs Lucy that she
can access the files she needed, and he goes on with the rest of his day.

At the end of the day, the audit trail is validated, and Paul’s mistakes are discovered. Luckily,
they can reconstruct most of the correct data with the correct backups, but the changes that
had been made the same day as Paul’s mistake could not be recovered. This highlights a part
of the weakness of our implementation, but it also displays the way these kinds of mistakes can
at least be detected quite early on.

The steps to simulate this scenario are:

• Take a backup of the database.

• Make some changes in the application.

• Restore the backup.

After following these steps, running the audit trail validation inside the application results
in the last few audit entries being reported as missing. Figure 5.3 shows that the last two
audit entries are reported as missing, as these are the ones that were deleted while restoring the
database backup.
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Figure 5.3: The final two audit entries are missing as they have been removed in the restoring
of the backup.
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CHAPTER 6

Discussion

6.1 Conclusions

The objective of this study was to implement an automatic audit trail with Apache Isis, and use
blockchain to ensure that it has not been tampered with, without sharing application data with
unauthorised parties. In order to achieve this we have compared two different methods to use
blockchain.

The first method stores the audit trail in the regular application database, and stores hashes
of this audit trail data on the Ethereum blockchain to validate its integrity. The second method
stores the entire audit trail data in encrypted form on the Ethereum blockchain. The first method
is not able to prevent tampering from happening, and is only able to validate the audit trail
data. However, the second method is unable to scale because of the costs associated with storing
data on the blockchain, and is therefore not realistically viable.

We implemented the first method by implementing the Apache Isis AuditerService and Pub-
lisherService SPIs and using Web3j to connect it with an Ethereum smart contract that maps
transaction identifiers to their corresponding data hashes. We evaluated this implementation by
defining three different scenarios in which a regular audit trail would be insufficient to detect data
tampering. We described the steps needed to simulate these scenarios, after which we showed
the way our implementation would detect the tampering.

Using this research we are able to answer the research questions.

Can we implement an automatic audit trail for Apache Isis applications, using blockchain
technology?

Section 4.2 describes the implementation that was used to integrate an Ethereum smart
contract with an Apache Isis application. We manage to leverage the strength of Apache Isis by
implementing the AuditerService and PublisherService SPIs, and we are able to link this audit
trail to a deployed instance of the smart contract described in section 4.1.

We further specified the requirements of the implementation in research question 2:

Is this blockchain audit trail able to ensure that it has not been tampered with, without
sharing application data with unauthorised parties?

Section 3.3 describes the design of our implementation, as well as its limitations. Because
only hashes are stored on the blockchain no actual data is shared with the public. Because the
audit trail data is stored in the application’s own database, it is not resistant to tampering. This
means that our implementation can only be used to validate the integrity of the data, but not to
prevent tampering from happening. However, when paired with a regular backup and validation
protocol, it can be possible to retrieve and restore the correct data after tampering has been
detected.

We conclude that our implementation is not able to ensure that it has not been tampered
with, but it offers more certainty about the integrity of the data than a regular audit trail
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implementation does. We also conclude that the implementation offers this increased certainty
without sharing application data with unauthorised parties.

6.2 Limits of the implementation

We discussed in detail the limitation of only being able to detect tampering, rather than com-
pletely prevent it. This is not the only limitation to our implementation. Another weakness
is application crashes and outages during the auditing process. It could be possible to have an
application crash or other form of outage during the process of auditing a transaction. This could
lead to an incomplete audit entry being saved to the database, but nothing being transacted to
the blockchain, invalidating the audit entry.

Next, since some audit entries are impossible to retrieve or correct after being invalidated,
they will always be displayed in the list of invalidated audit entries. When an application is
in production for a long time and these incidents happen regularly, the list of invalidated audit
entries can grow to the extent where it will become difficult to detect newer errors because the
interface is cluttered with older invalidated entries.

Finally, when more than five blockchain transactions are pending simultaneously, new ones
don’t go through. This is usually not a problem, but it could be when a user is performing many
different actions in quick succession. In order to overcome this problem, a solution could be a
protocol to to automatically resend failed transactions after waiting for some time, or a protocol
to automatically queue new transactions when there are already too many pending transactions.

6.3 Recommendations for further research

To overcome the limitations of our hashing-based approach, it would be valuable to look for a way
to store the data itself in a way that could prevent tampering. As we discussed, encrypted data
could be stored on the blockchain directly, but this would lead to incredibly high costs. It would
be interesting to see if an implementation for this could be achieved, disregarding transaction
costs.

There could also be potential in IPFS 1. IPFS is a distributed files system that offers dedu-
plication and version history for all stored data. IPFS would allow data to be stored in a way
that is resistant to tampering because of its distributed nature and checksum verification. [3]

These kinds of guarantees look similar to the ones provided by blockchain, showing the
potential of IPFS to store the full audit trail data in encrypted form to prevent tampering
from happening. The IPFS website also shows the possibility to integrate IPFS with blockchain
technology by linking to certain specific versions of data in IPFS [27]:

IPFS and the Blockchain are a perfect match! You can address large amounts of
data with IPFS, and place the immutable, permanent IPFS links into a blockchain
transaction. This timestamps and secures your content, without having to put the
data on the chain itself.

1https://ipfs.io/ (Accessed 2018-05-31)
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API Application Programmer Interface. 11, 12, 23

DAO Decentralised Autonomous Organisation. 16
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IBAN International Bank Account Number. 32

IPFS InterPlanetary File System. 34

JSON JavaScript Object Notation. 28
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REST Representational State Transfer. 11, 23

RPC Remote Procedure Call. 28

SDK Software Development Kit. 22–24

SPI Service Provider Interface. 12–14, 20, 29, 33

UI User Interface. 11

UL Ubiquitous Language. 11
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APPENDIX A

Code repository

The full implementation code can be found and inspected at https://github.com/rkalis/blockchain-
audit-trail. This repository features a comprehensive README with further instructions on
where to find the specific code files, as well as detailed local installation instructions.
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