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Chapter 2 

Simple Linear Regression Analysis 

 

The simple linear regression model 

We consider the modeling between the dependent and one independent variable. When there is only one 

independent variable in the  linear regression model, the model is generally termed as simple linear  

regression model.  When there are more than one independent variables in the model, then the linear model 

is termed as the multiple linear regression model. 

 

The linear model 

Consider a simple linear regression model 

 0 1y X      

where y  is termed as the dependent or study variable and  X  is termed as independent  or explanatory 

variable. The terms 0  and 1  are the parameters of the model. The parameter 0  is  termed as   intercept 

term  and the parameter 1  is termed as slope parameter. These parameters are usually called as regression  

coefficients. The unobservable error component   accounts for the failure of data to lie on the straight line 

and represents the difference between the true and observed realization of y .  There can be several reasons 

for such difference, e.g., the effect of all deleted variables in the model, variables may be qualitative, inherit 

randomness in the observations etc. We assume that    is observed as independent and identically 

distributed  random variable with mean zero and constant  variance 2 . Later, we will additionally assume 

that   is normally distributed. 

 

The independent variables is viewed as controlled by the experimenter, so it is considered as non-stochastic 

whereas y  is viewed as a random variable with 

0 1( )E y X    

and 

 2( ) .Var y   

Sometimes  X  can also be a random variable. In such a case, instead of  simple mean and simple variance of  

y , we consider the conditional mean of y  given X x  as 

 0 1( | )E y x x    
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and the conditional variance of  y  given X x  as 

 2( | )Var y x  . 

 

When the values of  2
0 1, and    are known, the model is completely described. The parameters 0 1,   and  

2  are generally unknown in practice and    is unobserved. The determination of the statistical model 

0 1y X      depends on the determination (i.e., estimation ) of  0 1,   and  2 . In order to know the 

values of these parameters, n  pairs of observations ( , )( 1,..., ) on  ( , )i ix y i n X y  are observed/collected  and  

are used to determine these  unknown parameters. 

 

Various  methods of estimation can be used to determine the estimates of the parameters. Among them, the 

methods of least squares and maximum likelihood are the   popular methods of estimation. 

 

Least squares estimation 

Suppose  a sample of  n   sets of paired observations ( , )  ( 1, 2,..., )i ix y i n  are available. These observations 

are assumed to satisfy the simple linear regression model and so we can write 

 0 1 ( 1, 2,..., ).i i iy x i n       

The principle of least squares estimates the parameters 0 1and   by minimizing the sum of squares of 

difference between the observations and the line in the  scatter diagram. Such an idea is viewed from 

different perspectives. When the vertical difference between the observations and the line in  the scatter 

diagram is considered and its sum of squares  is minimized to obtain the estimates of  0 1and  , the method 

is known as direct regression. 
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Alternatively,  the sum of squares of difference between the observations and the line in horizontal direction 

in the scatter diagram  can be minimized  to obtain the estimates of 0 1and  . This is known as reverse  (or 

inverse) regression method. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Instead of horizontal or vertical errors, if  the sum of squares of perpendicular distances between the 

observations and the line in the scatter diagram is minimized to obtain the estimates of 0 1and  , the 

method  is known as orthogonal regression or major axis regression method. 
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Instead of minimizing the distance, the area  can also be minimized. The reduced major axis regression 

method  minimizes the sum of the areas of rectangles defined between the observed data points and the 

nearest point on the line in the scatter diagram to obtain the estimates of regression coefficients. This is 

shown in the following figure: 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

The method of  least absolute deviation regression considers the sum of the absolute deviation of the 

observations from the line in the vertical direction in the scatter diagram as in the case of direct regression  to 

obtain the estimates of 0 1and  . 

 

No assumption is required about the form of probability distribution of i  in deriving the least squares 

estimates. For the purpose of deriving the statistical inferences only,  we assume that 'i s  are  random 

variable with  2( ) 0, ( ) and ( , ) 0 for all  ( , 1, 2,..., ).i i i jE Var Cov i j i j n           This assumption is 

needed to find the mean, variance and other properties  of the least squares estimates. The assumption that  

'i s  are normally distributed is utilized while constructing the tests of hypotheses and confidence intervals 

of the parameters. 

 

Based on these approaches, different estimates of 0 1and   are obtained which have different statistical 

properties. Among them the direct regression approach is more popular. Generally, the direct regression 

estimates  are referred as the least squares estimates or ordinary least  squares estimates. 
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Direct regression method 

This method is also known as the ordinary least squares estimation.  Assuming that a set of n  paired 

observations on ( , ), 1, 2,...,i ix y i n  are available which satisfy the linear regression model 0 1y X     . 

So we can write the model for each observation as 0 1i i iy x     , ( 1, 2,..., )i n . 

 

The direct regression approach minimizes the sum of squares 

 2 2
0 1 0 1

1 1

( , ) ( )
n n

i i i
i i

S y x    
 

      

with respect to 0 1and    . 

 

The partial derivatives of  0 1( , )S    with respect to 0  is 

 0 1
0 1

10

( , )
2 ( )

n

t i
i

S
y x

   
 


   

   

and the partial derivative of  0 1( , )S    with respect to 1  is  

 0 1
0 1

11

( , )
2 ( )

n

i i i
i

S
y x x

   
 


   

  . 

The solutions of 0 1and     are obtained by setting 

 

0 1

0

0 1

1

( , )
0

( , )
0.

S

S

 

 











 

The  solutions of these two equations are called the direct regression estimators, or usually called as the 

ordinary least squares (OLS) estimators of  0 1and    . 

 

This gives the ordinary least squares estimates 0 0 1 1of and  of b b   as 
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Further, we have  
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The  Hessian matrix which is the matrix of second order partial derivatives  in this case is given as  
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where  (1,1,...,1) '  is a n -vector of elements unity and 1( ,..., ) 'nx x x  is a n -vector of observations on X .  

The matrix *H  is positive definite if its determinant and the element in the first row and column of  *H  are 

positive. The determinant of  H  is given by  

  

2 2 2

1
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1

* 2

2 ( )

0.

n

i
i

n

i
i

H n x n x
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The case when  2

1

( ) 0
n

i
i

x x


   is not interesting because all the observations  in this case are identical, i.e. 

ix c  (some constant).  In such a case there is no relationship between x  and y  in the context of regression 

analysis.  Since  2

1

( ) 0,
n

i
i

x x


   therefore  0.H   So H  is positive definite for  any  0 1( , );   therefore 

0 1( , )S    has a global minimum at  0 1( , ).b b  
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The fitted line or the fitted linear regression model is 

 0 1 .y b b x   

The predicted  values are 

 0 1ˆ ( 1, 2,..., ).i iy b b x i n    

The difference between the observed value iy  and the fitted (or predicted) value  ˆiy  is called as a residual. 

The thi  residual is defined as  

 

0 1

ˆ~ ( 1,2,..., )

ˆ

( ).

i i i

i i

i i

e y y i n

y y

y b b x

 

 

  

 

 

Properties of the direct regression estimators: 

 

Unbiased property: 

Note that 1 0 1andxy
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This 1b  is an unbiased estimator of 1 . Next   
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Thus  0b  is an  unbiased estimators of  0 .  
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Variances:  

Using the assumption that 'iy s  are independently distributed, the variance of  1b  is 
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The variance of  0b  is 

 2
0 1 1( ) ( ) ( ) 2 ( , ).Var b Var y x Var b xCov y b    

First we find that 
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Covariance: 

The covariance between  0b  and  1b  is 
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It can further be shown that the ordinary least squares estimators  0b  and  1b  possess the minimum variance 

in the class of linear and unbiased estimators.  So they are termed as the Best Linear Unbiased Estimators 

(BLUE).  Such  a property is known as  the Gauss-Markov theorem which is discussed later in multiple 

linear regression model. 

 

Residual sum of squares: 

The residual sum of squares is given as 
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Estimation of  2  

The estimator of  2  is obtained from the residual sum of squares as follows. Assuming that iy  is normally 

distributed,  it follows that  resSS   has a 2  distribution with ( 2)n  degrees  of freedom, so 

                2
2

~ ( 2).resSS
n


  

Thus using the result about the expectation of a chi-square random variable, we have 

2( ) ( 2) .resE SS n    

Thus an unbiased estimator of  2  is 

 2 .
2

resSS
s

n



 

Note that resSS   has only ( 2)n   degrees of freedom. The two degrees of freedom are lost due to estimation 

of  0b  and  1b .  Since  2s  depends on the estimates 0b  and 1b , so it is a model  dependent estimate of  2 . 

 

Estimate of variances of 0b  and  1b : 

The estimators of variances of  0b  and 1b  are obtained  by    replacing 2  by  its estimate 2 2ˆ s   as follows: 
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   In the light of this property, ie  can be regarded as an 

estimate of unknown  ( 1,..., )i i n  .  This helps in verifying the different model assumptions on the basis of  

the given sample ( , ),  1, 2,..., .i ix y i n  

 

Further, note that  
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(iii)   
1 1

ˆ
n n

i i
i i

y y
 

   and  

(iv)   the fitted line always passes through ( , ).x y  

 

Centered Model: 

Sometimes it is useful to measure the independent variable around its mean. In such a case, model 

0 1i i iy X      has a centered version as follows: 

0 1 1

*
0 1

( ) ( 1, 2,..., )
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i i

i i
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where *
0 0 1x    . The sum of squares due to error is given by  
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we get the direct regression least squares estimates of *
0 1and   as 

 *
0b y  

and 

 1
xy
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respectively. 

 

Thus the form of the estimate of  slope parameter 1  remains same in usual and centered model whereas the 

form of the estimate of intercept term changes in the usual and centered models. 

 

Further, the Hessian matrix of the second order partial derivatives of   *
0 1( , )S    with respect to  *

0 1and   

is positive definite at  * *
0 0b   and  1 1b   which ensures that  *

0 1( , )S    is minimized at * *
0 0b   and  

1 1b  . 
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 Under the assumption that 2( ) 0, ( ) and ( ) 0  for all 1, 2,...,i i i jE Var Cov i j n         , it follows that 

 

* *
0 0 1 1

2 2
*
0 1

( ) , ( ) ,

( ) , ( ) .
xx

E b E b

Var b Var b
n s

 

 

 

 
 

In this case,  the fitted model of   *
0 1( )i i iy x x       is 

 1( ),y y b x x    

and the predicted values are 

 1ˆ ( ) ( 1,..., ).i iy y b x x i n     

Note that  in centered model  

  *
0 1( , ) 0.Cov b b   

 

No intercept term model: 

Sometimes in practice, a model without an intercept term is used in those situations when 0 0i ix y    for 

all 1, 2,...,i n .  A no-intercept model is  

  1   ( 1, 2,.., ).i i iy x i n     

For example, in analyzing the relationship between the velocity ( )y  of a car and its  acceleration ( )X , the 

velocity is zero when acceleration is zero. 

 

Using the data ( , ), 1, 2,..., ,i ix y i n  the direct regression least squares  estimate of  1  is obtained by 

minimizing  2 2
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gives the estimator of 1  as  
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The second order partial derivative of  1( )S   with respect to 1  at 1 1b   is positive which insures that  1b  

minimizes  1( ).S   
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Using the assumption that  2( ) 0, ( ) and ( ) 0  for all 1, 2,...,i i i jE Var Cov i j n         ,  the properties 

of  *
1b  can be derived as follows: 

  

* 1
1

2

1

2
1

1

2

1

1

( )
( )

         

         

n

i i
i

n

i
i

n

i
i

n

i
i

x E y
E b

x

x

x


























 

This  *
1b  is an unbiased estimator of  1 .  The variance of  *
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and an unbiased estimator of  2  is obtained as  
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Maximum likelihood estimation  

We assume that ' ( 1, 2,..., )i s i n   are independent and identically distributed  following a normal 

distribution  2(0, ).N    Now we use the method of maximum likelihood to estimate the parameters of the 

linear regression model 

 0 1 ( 1, 2,..., ),i i iy x i n       

the observations ( 1, 2,..., )iy i n  are independently distributed with  2
0 1( , )iN x    for all  1, 2,..., .i n   

The likelihood function of the given observations ( , )i ix y  and unknown parameters  0 1,   and  2  is 

 
1/ 2

2 2
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2 2

n

i i i i
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L x y y x    
 

            
  

The maximum likelihood estimates of  0 1,   and  2   can be obtained by maximizing 2
0 1( , ; , , )i iL x y     or 

equivalently in 2
0 1ln ( , ; , , )i iL x y     where 
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The normal equations are obtained by partial differentiation of log-likelihood with respect to 2
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and equating them to zero as follows: 
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The solution of these normal equations give the maximum likelihood estimates of  0 1,   and  2  as 
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respectively. 

 

It can be verified that the Hessian matrix of second order partial derivation of  ln L  with respect to  0 1,  , 

and  2  is negative definite at  0 0 1 1, ,b b     and  2 2s    which ensures that the likelihood function is 

maximized at these values. 

 

Note that the least squares and maximum likelihood estimates  of  0  and  1  are identical. The least squares 

and maximum likelihood  estimates of  2   are different. In fact, the least squares estimate of  2  is 

 2 2

1

1
( )

2

n

i
i

s y y
n 

 
   

so that it is related to maximum likelihood estimate as  

2 22
.

n
s s

n


  

 

Thus  0b  and 1b  are unbiased estimators of 0  and  1  whereas 2s  is a biased estimate of  2 , but it is 

asymptotically unbiased. The variances of  0b  and  1b  are same as of  0 andb 1b  respectively but 

2 2( ) ( ).Var s Var s  

 

Testing of hypotheses and confidence interval estimation for slope parameter: 

Now we consider the tests of hypothesis and confidence interval estimation for the slope parameter of the 

model under two cases, viz., when 2  is known and when  2  is unknown. 

 

Case 1: When 2  is known: 

Consider the simple linear regression model  0 1 ( 1, 2,..., )i i iy x i n      . It is assumed that 'i s  are 

independent and identically distributed and follow 2(0, ).N   

 

First we develop a test for the null hypothesis related to the slope parameter 

 0 1 10:H    

where  10  is some given constant. 
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Assuming  2  to be known, we know that 
2

1 1 1 1( ) , ( ) and
xx

E b Var b b
s

   is a linear combination of 

normally distributed  'iy s .  So 

 
2

1 1~ ,
xx

b N
s


 
 
 

 

and so the following statistic can be constructed 

 1 10
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b
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s






  

which is distributed as (0,1)N  when  0H  is true. 

 

A decision rule to test  1 1 10:H    can be framed  as follows:   

Reject  0H  if 1 / 2Z Z  

where /2Z  is the / 2  percent points on normal distribution.   

 

Similarly, the decision rule for one sided alternative hypothesis can also be framed. 

 

The 100 (1 )%  confidence interval for  1  can  be obtained  using the 1Z  statistic as follows: 
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So 100 (1 )%  confidence interval for  1  is  
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where  / 2z  is the / 2  percentage point of the (0,1)N  distribution. 
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Case 2: When 2  is unknown: 

When  2  is unknown then we proceed as follows.  We know that  

2
2

~ ( 2)resSS
n


   

and 

 2.
2

resSS
E

n
    

 

Further,  2/resSS   and  1b  are independently distributed.  This result will be proved formally later in next 

module on multiple linear regression. This result also follows from the result that under normal distribution, 

the maximum likelihood estimates, viz., the sample mean (estimator of population mean) and the sample 

variance (estimator of population variance) are independently distributed, so 1b  and 2s  are also 

independently distributed. 

Thus the  following statistic can be constructed: 
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which follows a t -distribution with ( 2)n  degrees of freedom, denoted as 2nt  ,  when   0H  is true. 

 

A decision rule to test  1 1 10:H    is to 

 reject  0H  if  0 2, / 2nt t   

where 2, / 2nt   is the / 2  percent point of the t -distribution with ( 2)n   degrees of freedom. Similarly, the 

decision rule for one sided alternative hypothesis can also be framed. 

 

The 100 (1 )%  confidence interval of  1  can be obtained  using the 0t   statistic as follows: 
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Consider 
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So the 100 (1 )%  confidence interval 1  is  

1 2, /2 1 2, /2, .
( 2) ( 2)

res res
n n

xx xx

SS SS
b t b t

n s n s  

 
    

 

 

Testing of hypotheses and confidence interval estimation for intercept term: 

Now, we consider the tests of hypothesis and confidence interval estimation for intercept term under two 

cases, viz., when 2  is known and when 2  is unknown. 

 

Case 1: When 2  is known: 

Suppose the null hypothesis under consideration is  

 0 0 00: ,H    

where 2  is known, then  using the result that 
2

2
0 0 0 0

1
( ) , ( ) and

x

x
E b Var b b

n s
 

 
   

 
 is a linear 

combination of normally distributed random variables, the following statistic  

 

0 00
0

2
2 1

xx

b
Z

x
n s








 
 

 
 

has a  (0,1)N  distribution when  0H  is true. 

A decision rule to test  1 0 00:H    can be framed  as follows:   

Reject  0H  if 0 /2Z Z  

where /2Z  is the / 2  percentage points on normal distribution.  Similarly, the decision rule for one sided 

alternative hypothesis can also be framed. 
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The 100 (1 )%  confidence intervals for  0  when  2  is known can be derived using the 0Z  statistic  as 

follows: 

 /2 0 /2

0 0
/2 /2

2
2

2 2
2 2

0 /2 0 0 /2

1

1
1

1 1
1 .

xx

xx xx

P z Z z

b
P z z

x
n s

x x
P b z b z

n s n s

 

 

 



 



   

    

 
 

 
     

      
    
           
     

 

 

So the 100 (1 )%  of confidential interval of  0  is  

     
2 2

2 2
0 / 2 0 / 2

1 1
, .

xx xx

x x
b z b z

n s n s  
    
       
     

 

 

Case 2: When 2  is unknown: 

When  2  is unknown, then the following statistic is constructed 

 0 00
0

21
2

res

xx

b
t

SS x
n n s




 
   

 

which follows a t -distribution with ( 2)n  degrees of freedom, i.e., 2nt    when  0H  is true. 

 

A decision rule to test  1 0 00:H    is as follows: 

Reject  0H  whenever  0 2, / 2nt t   

where 2, / 2nt   is the / 2  percentage point of the t -distribution with ( 2)n   degrees of freedom. Similarly, 

the decision rule for one sided alternative hypothesis can also be framed. 

 

The 100 (1 )%  confidence interval of  0  can be obtained as follows: 
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Consider 
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So 100(1 )%  confidence interval for 0  is  

2 2

0 2, / 2 0 2, / 2

1 1
, .

2 2
res res

n n
xx xx

SS SSx x
b t b t

n n s n n s  

    
             

 

 

Test of hypothesis for  2  

We have considered two types of test statistics for testing the hypothesis about the intercept term and slope 

parameter- when 2  is known and when 2  is unknown. While dealing with the case of known 2 , the 

value of 2  is known from some external sources like past experience, long association of the experimenter 

with the experiment, past studies etc. In such situations, the experimenter would like to test the hypothesis 

like 2 2
0 0:H    against 2 2

0 0:H    where 2
0  is specified. The test statistic is based on the result  

2es
22

~r
n

SS 
  . So the test statistic is  

 2es
0 22

0

~r
n

SS
C 

   under 0H .  

The decision rule is to reject 0H  if 2
0 2, /2nC    or 2

0 2,1 /2nC    .  
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Confidence interval for  2  

A confidence interval for  2  can also be derived as follows. Since 2 2
2/ ~ ,res nSS     thus consider 

 2 2
2, /2 2,1 /22

1res
n n

SS
P    

  
      

 

 2
2 2

2,1 / 2 2, / 2

1res res

n n

SS SS
P

 

 
   

 
    

  
. 

The corresponding 100(1 )%  confidence interval for  2  is 

 
2 2

2,1 / 2 2, / 2

, .res res

n n

SS SS

    

 
 
  

 

 

Joint confidence region for  0  and 1 : 

A joint confidence region for  0  and  1  can also be found.  Such region will provide a 100(1 )%  

confidence that both the estimates of  0  and  1  are correct. Consider the centered version of the linear 

regression model 

 *
0 1( )i i iy x x       

where  *
0 0 1x    .  The least squares estimators of  *

0  and  1  are 

*
0 1and ,xy

xx

s
b y b

s
   

respectively.   

 

Using the results that  
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1 1

2
*
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When  2  is known, then the statistic 

 
* *
0 0

2
~ (0,1)

b
N

n






    and    1 1

2
~ (0,1).

xx

b
N
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Moreover, both the statistics are independently distributed. Thus 

 

2

* *
20 0
12

~
b

n

 


 
  
 
 
 

     and        

2

21 1
12

~

xx

b

s

 


 
 

 
 
 
 
 

 

are also independently distributed because  *
0 1andb b  are independently distributed.  Consequently, the sum 

of these two 

 
* * 2 2

20 1 1
22 2

( ) ( )
~ .o xxn b s b  

 
 

  

 

Since 

 2
22

~res
n

SS 
   

and resSS  is independently distributed of  *
0b  and  1b , so the ratio 

* * 2 2
0 0 1 1

2 2

2, 2

2

( ) ( )
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~ .
( 2)
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n b s b
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Substituting  *
0 0 1b b b x   and  *

0 0 1x    , we get 

 
2

2
f

res

Qn

SS

  
  

   
 

where 

 2 2 2
0 0 0 1 1 1 1 1

1 1

( ) 2 ( )( ) ( ) .
n n

f t i
i i

Q n b x b b x b   
 

         

Since 

 2, 2

2
1

2
f

n
res

Qn
P F

SS


       
  

 

holds true for all values of  0  and 1 , so the 100 (1 ) % confidence region  for 0  and 1  is 

 2, 2;1 .

2
.

2
f

n
res

Qn
F

SS  

   
 

. 

This confidence region is an ellipse which gives the 100 (1 )%  probability that  0  and  1  are contained 

simultaneously in this ellipse. 
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Analysis of variance:  

The technique of analysis of variance is usually used for testing the  hypothesis related to equality of more 

than  one parameters, like  population means or  slope parameters. It is more meaningful  in case of multiple  

regression model  when there are more  than one slope parameters. This technique  is discussed and  

illustrated here to understand the related basic concepts and fundamentals which will be used in developing 

the analysis of variance in the next module in multiple linear regression model where the explanatory 

variables are more than two. 

 

A test statistic for testing 0 1: 0H    can also be formulated using the analysis of variance technique as 

follows. 

 

On the basis of the identity 

 ˆ ˆ( ) ( ),i i i iy y y y y y      

the sum of squared residuals is 

 

2
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2 2

1 1 1
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S b y y

y y y y y y y y



  

 

      



  
 

Further consider 
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n n

i i i i
i i
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y y y y y y b x x

b x x

y y

 





    

 

 

 





   

Thus we have 

 2 2 2

1 1 1

ˆ ˆ( ) ( ) ( ) .
n n n

i i i i
i i i

y y y y y y
  

        

 The term 2

1

( )
n

i
i

y y


  is called the sum of squares about the mean, corrected sum of squares of  y  (i.e., 

SScorrected), total sum of squares, or .yys   
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The term 2

1

ˆ( )
n

i i
i

y y


 describes the deviation: observation minus predicted value, viz., the residual sum   of  

squares, i.e., 2

1

ˆ( )
n

res i i
i

SS y y


   

whereas the term  2

1

ˆ( )
n

i
i

y y


  describes the proportion of variability explained by regression, 

2
e

1

ˆ( ) .
n

r g i
i

SS y y


   

 

If all observations  iy  are located on a straight line, then in this case    2

1

ˆ( ) 0
n

i i
i

y y


   and thus 

ecorrected r gSS SS . 

 

Note that er gSS  is completely determined by 1b  and so has   only one  degrees of freedom. The total sum of 

squares  2

1

( )
n

yy i
i

s y y


   has ( 1)n  degrees of freedom due to  constraint 
1

( ) 0
n

i
i

y y


   and resSS  has 

( 2)n   degrees of freedom as it depends on   the determination of  0b  and  1b . 

 

All sums of squares are mutually independent and distributed as  2
df  with df  degrees of freedom if the 

errors are normally distributed. 

 

The mean square due to regression is 

 e
e 1

r g
r g

SS
MS   

and mean square due to residuals is  

2
resSS

MSE
n




. 

The test statistic for testing  0 1: 0H    is 

 e
0 .r gMS

F
MSE

  

If  0 1: 0H    is true, then  er gMS  and  MSE  are independently distributed and thus 

 0 1, 2~ .nF F   
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The decision rule for  1 1: 0H    is to reject 0H  if 

 0 1, 2;1nF F    

at   level of significance.  The test procedure can be described in an  Analysis of variance table. 

 

Analysis of variance for testing 0 1: 0H    

Source of variation Sum of squares Degrees of freedom Mean square             F 

Regression  er gSS     1      er gMS              e /r gMS MSE  

Residual  resSS             2n        MSE  

Total   yys             1n    

 

Some other forms of ,reg resSS SS and yys  can be derived as follows: 

The sample correlation coefficient then may be written as 

.xy
xy

xx yy

s
r

s s
  

Moreover,  we have 
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s s
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s s
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The estimator of  2  in this case may be expressed as 
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Various alternative formulations for  resSS  are in use as well: 

 

2
0 1

1

2
1

1

2
1 1

2
1

2

[ ( )]

[( ) ( )]

2

 

( )
  .

n

res i i
i

n

i i
i

yy xx xy

yy xx

xy
yy

xx

SS y b b x

y y b x x

s b s b s

s b s

s
s

s





  

   

  

 

 




 



Regression Analysis  |  Chapter 2  | Simple Linear Regression Analysis |  Shalabh, IIT Kanpur 
 26 26 26 

 

Using this result, we find that 

 corrected yySS s  

and 

 

e
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2
1

1

( )

 .

r g yy res
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SS s SS
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s

b s

b s

 







 

 

 

Goodness of fit of regression 

It can be noted that a fitted model can be said to be good when residuals are small. Since resSS  is based on 

residuals, so a measure of quality of fitted model can be based on resSS . When intercept term is present in the 

model, a measure of goodness of fit  of the model is given by 

 

2

e

1

.

res

yy

r g

yy

SS
R

s

SS

s

 


 

This is known as the coefficient of determination. This measure is based on the concept that how much 

variation in y ’s  stated by yys  is explainable by regSS  and how much unexplainable part is contained in 

resSS .  The ratio e /r g yySS s  describes the proportion of variability that is explained by regression in relation 

to the total variability of  y .  The ratio /res yySS s  describes the proportion of variability that is not covered 

by the regression. 

 

It can be seen that 

 2 2
xyR r  

where  xyr  is the simple correlation coefficient between x and y. Clearly  20 1R  , so a value of  2R  closer 

to one indicates the better  fit and value of  2R  closer to zero indicates the poor  fit. 
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Prediction of values of study variable 

An important use of linear regression modeling is to predict the average and actual values of study variable. 

The term  prediction of value of study variable corresponds to knowing the value of  ( )E y  (in case of 

average value) and value  of y  (in case of actual value) for a given value of explanatory variable. We 

consider both the cases. 

 

Case 1: Prediction of average value 

Under the linear regression model 0 1 ,y x      the fitted model  is 0 1y b b x   where 0 1andb b  are  the 

OLS estimators of  0 1and   respectively. 

Suppose we want to predict the value of  ( )E y  for a given value of  0x x .  Then the predictor is given by 

 
00 / 0 1 0ˆ( | ) y xE y x b b x   . 

Predictive bias 

Then the prediction error is given as 
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y x E y b b x E x
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Then 

0| 0 0 1 1 0ˆ ( ) ( ) ( )

0 0 0

y xE E y E b E b x        
  

 

Thus the predictor 
0/y x  is an unbiased predictor of  ( ).E y  

 

Predictive variance:   

The predictive variance of  
0|ˆ y x  is 
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Estimate of predictive variance 

The predictive variance can be estimated by substituting 2 2ˆby MSE    as 

 


0

2
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y x
xx
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PV
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Prediction interval estimation: 

The 100(1- )%  prediction interval for 0( / )E y x  is obtained as follows: 

The predictor 
0|ˆ y x  is a linear combination of normally distributed random variables, so  it is also normally 

distributed as 

   0 0| 0 1 0 |ˆ ˆ~ ,y x y xN x PV    . 

So if  2  is known, then the distribution of 

 0
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is (0,1).N   So  the 100(1- )%  prediction interval is obtained as 
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which gives the prediction interval for 0( / )E y x  as 

0 0

2 2
2 20 0

| /2 | /2

( ) ( )1 1
ˆ ˆ, .y x y x

xx xx

x x x x
z z

n s n s    
            
     

 

 

When  2  is unknown, it is replaced by 2ˆ MSE   and in this case the sampling distribution of  

 0| 0

2
0

ˆ ( | )

( )1

y x

xx

E y x

x x
MSE

n s

 

 
 

 

 

is t -distribution with ( 2)n  degrees of freedom, i.e., 2nt  . 
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The 100(1- )% prediction interval in this  case is 

 0| 0
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, 22
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ˆ ( | )
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which gives the prediction interval as 
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2 2
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| /2, 2 | /2, 2

( ) ( )1 1
ˆ ˆ,y x n y x n

xx xx

x x x x
t MSE t MSE
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. 

Note that the width of prediction interval  0( | )E y x  is a function of  0x .  The interval width is minimum for  

0x x  and widens as 0x x  increases. This is expected also as the best estimates of  y  to be made at x -

values lie near the center of the data and the precision of estimation to deteriorate as we move to the  

boundary of the x -space. 

 

Case 2: Prediction of actual value 

If  0x  is the value of the explanatory variable, then the actual value predictor for y  is  

 0 0 1 0ŷ b b x  . 

The true value of y  in the prediction period is given by 0 0 1 0 0y x      where 0  indicates the value that 

would be drawn from the distribution  of random error in the prediction period. Note that the form of 

predictor is the same as  of average value predictor but its predictive  error and other properties are different. 

This is the dual nature of predictor. 

 

Predictive bias:  

The predictive error of  0ŷ  is given by 

 0 0 0 1 0 0 1 0 0

0 0 1 1 0

ˆ ( )

( ) ( ) .

y y b b x x

b b x

  
  

     
    

 

Thus, we find that 

 0 0 0 0 1 1 0 0ˆ( ) ( ) ( ) ( )

0 0 0 0

E y y E b E b x E       
   

 

which implies that 0ŷ  is an unbiased  predictor of  0y . 
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Predictive variance 

Because the future observation 0y  is independent of  0ŷ , the predictive variance of  0ŷ  is 

2
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2 2
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Estimate of predictive variance 

The estimate of predictive variance can be obtained by replacing 2  by its estimate 2ˆ MSE   as 

 2
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Prediction interval: 

If  2  is known,  then the distribution of 
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is (0,1).N  So  the 100(1- )% prediction interval is obtained as  
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which gives the prediction interval for 0y  as 
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When  2  is unknown, then  
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follows a t -distribution with ( 2)n   degrees of freedom. The 100(1- )%  prediction interval for  0ŷ  in this 

case is obtained as 

 


0 0
/2, 2 /2, 2

0

ˆ
1

ˆ( )
n n

y y
P t t

PV y
   

      
 
 

 

which gives the prediction interval 
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. 

The prediction interval is of minimum width at 0x x  and widens as  0x x  increases. 

 

The prediction interval for  0ŷ  is wider than the prediction interval for 
0/ˆ y x  because the prediction interval 

for   0ŷ   depends on both the error from the fitted model as well as the error associated with the future 

observations. 

 

Reverse regression method  

The reverse (or inverse) regression approach minimizes the sum of squares of horizontal distances between 

the observed data points and the line in the following scatter diagram to obtain the estimates of regression 

parameters. 
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    Reverse regression 



Regression Analysis  |  Chapter 2  | Simple Linear Regression Analysis |  Shalabh, IIT Kanpur 
 32 32 32 

The reverse regression has been advocated in the analysis of gender (or race) discrimination in salaries. For 

example, if y denotes salary and x denotes qualifications and we are interested in determining if there is a 

gender discrimination in salaries, we can ask: 

“Whether men and women with the same qualifications (value of x) are getting the same salaries 

(value of y). This question is answered by the direct regression.” 

 

Alternatively, we can ask: 

“Whether men and women with the same salaries (value of y) have the same qualifications (value of 

x). This question is answered by the reverse regression, i.e., regression of x on y.” 

 

The regression equation in case of reverse regression can be written as  

* *
0 1    ( 1, 2,..., )i i ix y i n       

where i ’s are the associated random error components and satisfy the assumptions as in the case of  usual 

simple linear regression model.  The reverse regression estimates  
0 1

* *
1

ˆ ˆof and ofOR R     for the model  

are obtained by interchanging the x and  y in the direct regression estimators of 0 1and  . The estimates are 

obtained as  

 1
ˆ ˆ

OR Rx y    

and  

 1̂
yy

R
xy

s

s
   

for 0 1and   respectively.  The residual sum of squares in this case is 

2
* .
res

xy
xx

yy

s
SS s

s
   

Note that  

2
2

1 1
ˆ xy

R xy
xx yy

s
b r

s s
    

where 1b is the direct regression estimator of   slope parameter and xyr  is the correlation coefficient between x 

and y. Hence if 2
xyr  is close to 1, the two regression lines will be close to each other.  

 

An important application of reverse regression method is in solving the calibration problem. 
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Orthogonal regression method (or major axis regression method)  

The direct and reverse regression methods of estimation assume that the errors in the observations are either 

in x -direction or y -direction. In other words, the errors can be either in dependent variable or independent 

variable. There can be situations  when uncertainties are involved in dependent and independent  variables 

both. In such situations, the orthogonal regression is more appropriate. In order to take care of errors in both 

the directions, the least  squares principle in orthogonal regression minimizes the squared perpendicular 

distance between the observed data points and the line in the following scatter diagram to obtain the 

estimates of regression coefficients. This is also known as major axis regression method. The estimates 

obtained are  called as orthogonal regression estimates or major axis regression estimates of regression 

coefficients. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

If we assume that the regression line to be fitted is 0 1i iY X   , then it is expected that all  the 

observations ( , ), 1, 2,...,i ix y i n  lie on this line.  But these points deviate from the line and in such a case, 

the  squared perpendicular distance of observed data ( , )  ( 1, 2,..., )i ix y i n  from the line is given by  

 2 2 2( ) ( )i i i i id X x Y y     

where  ( , )i iX Y  denotes the thi  pair of observation without any error which lie on the line. 

 

(xi, yi)

(Xi, Yi)

0 1Y X    

yi
 

xi

    Orthogonal or major axis regression 
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The objective is to minimize  the sum of squared perpendicular distances given by 2

1

n

i
i

d

  to obtain the 

estimates of  0  and  1 . The observations   ( , )  ( 1, 2,..., )i ix y i n  are expected to lie on the line 

 0 1i iY X   , 

so let 

 0 1 0.i i iE Y X    
 

The regression coefficients are obtained by minimizing  2

1

n

i
i

d

  under the constraints 'iE s  using the 

Lagrangian’s multiplier method. The  Lagrangian function is 

 2
0

1 1

2
n n

i i i
i i

L d E
 

    

where 1,..., n   are the Lagrangian multipliers.  The set of equations  are obtained by setting 

 0 0 0 0

0 1

0, 0, 0 and 0 ( 1, 2,..., ).
i i

L L L L
i n

X Y  
   

    
   

 

Thus we find 

 

0
1

0

0

10

0

11

( ) 0

( ) 0

0

0.

i i i
i

i i i
i

n

i
i

n

i i
i

L
X x

X

L
Y y

Y

L

L
X

 














   




   




 




 







 

Since 

 1

,
i i i

i i i

X x

Y y

 


 

 
 

so substituting these values is i , we obtain 

 
0 1 1

0 1
2

1

    ( ) ( ) 0

.
1

i i i i i

i i
i

E y x

x y

    
 



     

 
 


 

Also using this i  in the equation 
1

0
n

i
i




 , we get 
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0 1
1

2
1

( )
0

1

n

i i
i

x y 




 





 

and  using 1
1

( ) 0 and 0
n

i i i i i
i

X x X  


    ,  we get 

 1
1

( ) 0.
n

i i i
i

x  


   

Substituting i  in this equation, we get   

2
20 1

1 1 0 1
2 2 2

1

( )
( )

0.                     (1)
(1 ) (1 )

n

i i i i
i i i

i

x x y x
x y

 
  

 


 
 

 
 


 

Using i  in the equation  and using  the equation 
1

0
n

i
i




 , we solve 

0 1
1

2
1

( )
0.

1

n

i i
i

x y 




 





   

 The solution provides  an orthogonal regression estimate of  0  as 

 0 1
ˆ ˆ

OR ORy x    

where  1̂OR   is an orthogonal regression estimate of  1.  

 

 

Now, substituting 0OR  in equation (1),  we get 

 

   

2
2 2

1 1 1 1 1 1
1 1

2
2

1 1 1 1
1 1

2 2
1 1 1 1

1

             (1 ) 0

or

             (1 ) ( ) ( ) ( ) 0

or

             (1 ) ( )( ) ( ) 0

n n

i i i i i i i
i i

n n

i i i i i
i i

n

i i i i i
i

yx xx x x y y x x y

x y y x x y y x x

u x v u v u

     

   

   

 

 



          

         

      

 

 


1

where ,

.

n

i

i i

i i

u x x

v y y
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1 1

2 2 2
1 1

1

2
1 1

Since  0, so 

             ( ) 0

or

             ( ) 0.

n n

i i
i i

n

i i i i i i
i

xy xx yy xy

u u

u v u v u v

s s s s

 

 

 



 

     

   

 

  

 

Solving this  quadratic equation provides  the orthogonal regression estimate of  1  as 

    2 2

1

( ) 4
ˆ

2
xyyy xx xy xx yy

OR
xy

s s sign s s s s

s


   
  

where  ( )xysign s  denotes the  sign of  xys  which can be positive or negative . So  

1    if 0
( )

1 if 0.

xy

xy
xy

s
sign s

s

  
.   

 

Notice that this gives two solutions for   1̂OR . We choose the solution which minimizes 2

1

n

i
i

d

 . The other 

solution maximizes 2

1

n

i
i

d

   and is in the direction perpendicular to the   optimal solution. The optimal 

solution can be chosen with the sign of  xys .  
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Reduced major axis regression method: 

The direct, reverse  and orthogonal methods of estimation minimize the errors in a particular direction which 

is usually the distance between the observed data points and the line in the scatter diagram. Alternatively, 

one can consider the area extended by the data  points in certain neighbourhood and instead of distances, the 

area of rectangles defined between corresponding  observed data point and nearest point on the line in the 

following scatter diagram can also be minimized. Such  an approach is more appropriate when the  

uncertainties are present in study and explanatory variables both. This approach is termed as reduced major 

axis regression. 

 

 

 

 

 

 

 

 

 

 

 

 

 

Suppose the regression line is 0 1i iY X    on which all the observed points are expected to lie. Suppose 

the points ( , ), 1, 2,...,i ix y i n  are observed which lie away from the line. The area of rectangle extended 

between the  thi  observed data point and the line  is 

 ( ~ )( ~ ) ( 1, 2,..., )i i i i iA X x Y y i n   

where  ( , )i iX Y  denotes the thi  pair of observation without any error which lie on the line. 

The total area extended by n  data points is  

 
1 1

( ~ )( ~ ).
n n

i i i i i
i i

A X x Y y
 

   

All observed data points ( , ), ( 1, 2,..., )i ix y i n are expected to lie on the line 

 0 1i iY X    

0 1Y X    

(xi  yi) 

(Xi, Yi)

yi
 

xi

Reduced major axis method 



Regression Analysis  |  Chapter 2  | Simple Linear Regression Analysis |  Shalabh, IIT Kanpur 
 38 38 38 

and let 

 *
0 1 0.i i iE Y X      

So now the objective is to minimize the sum of areas  under the constraints  *
iE  to obtain the reduced major 

axis estimates of regression coefficients. Using the Lagrangian multiplies method, the Lagrangian function is 

 

*

1 1

*

1 1

( )( )

n n

R i i i
i i

n n

i i i i i i
i i

L A E

X x Y y E





 

 

 

   

 

 
 

where 1,..., n   are the Lagrangian multipliers.  The set of equations are obtained by setting 

0 1

0, 0, 0, 0 ( 1,2,..., ).R R R R

i i

L L L L
i n

X Y  
   

    
   

 

Thus 

 

1

10

11

( ) 0

( ) 0

0

0.

R
i i i

i

R
i i i

i

n
R

i
i

n
R

i i
i

L
Y y

X

L
X x

Y

L

L
X

 














   




   



 




 







 

Now 

 
1

0 1 1

0 1 1

0 1

1

     

     

     

     ( )

.
2

i i i

i i i

i i i

i i i i

i i
i

X x

Y y

X y

x y

y x


 

   
    

 


 
 
  
   

 
 

 

Substituting  i  in 
1

0
n

i
i




 ,  the reduced major axis regression estimate of  0  is obtained as

 0 1
ˆ ˆ

RM RMy x    

where 1̂RM  is the reduced major axis regression estimate of  1 .  Using ,i i i iX x     and  0
ˆ

RM  in 

1

0
n

i i
i

X


 , we get 
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 1 1 1 1

1 1 1

0.
2 2

n
i i i i

i
i

y y x x y y x x
x

   
 

       
   

  
  

Let  and ,i i i iu x x v y y      then this equation can be re-expressed as 

 1 1 1
1

( )( 2 ) 0.
n

i i i i
i

v u v u x  


     

Using  
1 1

0,
n n

i i
i i

u u
 

    we get 

 2 2 2
1

1 1

0.
n n

i i
i i

v u
 

    

Solving this equation,  the reduced major axis regression estimate of  1  is obtained as 

 1̂ ( ) yy
RM xy

xx

s
sign s

s
   

where 
1 if 0

( )
1 if 0.

xy

xy
xy

s
sign s

s

  
 

We choose the regression estimator which has same sign as of  xys . 

 

Least absolute deviation regression method 

The least squares principle advocates the minimization of sum of squared errors. The idea of squaring the 

errors is useful in place of simple errors because the random errors can be positive as well as  negative. So 

consequently their sum can be  close to zero indicating that there is no error in the model and which can be  

misleading.  Instead  of the sum of random errors, the sum of absolute  random errors can be considered 

which avoids the problem due to positive and negative random errors. 

 

In the method of least squares, the estimates of the parameters 0  and  1  in the model 

0 1 . ( 1, 2,..., )i i iy x i n       are chosen such that the sum of squares of deviations 2

1

n

i
i



  is minimum. In 

the method of least absolute deviation (LAD)  regression, the parameters 0  and 1  are estimated such that  

the sum of absolute deviations 
1

n

i
i



  is minimum. It minimizes the absolute vertical sum of errors as in the 

following scatter diagram: 
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The LAD estimates  0
ˆ

L  and  1̂L   are the estimates of 0  and 1 , respectively which minimize 

 0 1 0 1
1

( , )
n

i i
i

LAD y x   


    

for  the given observations ( , ) ( 1, 2,..., ).i ix y i n  

 

Conceptually, LAD procedure is simpler than OLS procedure because e  (absolute residuals) is a more 

straightforward measure of the size of  the residual than 2e  (squared residuals).  The LAD  regression 

estimates of  0  and 1   are not available in  closed form. Rather they can be obtained numerically based on 

algorithms. Moreover, this creates the problems of non-uniqueness and degeneracy in the estimates. The  

concept of non-uniqueness relates to that more than one best lines pass  through a data point. The degeneracy 

concept describes that the best line  through a data point also passes through more than one other data points.  

The non-uniqueness and degeneracy  concepts are used in algorithms to judge the quality of the estimates. 

The algorithm for finding the estimators generally proceeds in steps. At  each step, the best line is found that 

passes through a given data point.  The best line always passes through another data point, and this data point  

is used in the next step. When there is non-uniqueness,  then there are more  than one best lines.  When there 

is degeneracy, then the best line passes  through more than one other data point. When either of the problem 

is  present, then there is more than one choice for the data point to be used in the next step and the algorithm 

may go around in circles or make a  wrong choice of the LAD regression line.  The exact tests of hypothesis 

and  confidence intervals for the LAD regression estimates can not be derived  analytically.  Instead they are 

derived analogous to the tests of hypothesis  and confidence intervals related to ordinary least squares 

estimates.  

0 1Y X    

(xi, yi)

(Xi, Yi)

yi
 

xi

Least absolute deviation regression 
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Estimation of parameters when X  is stochastic    

In a usual linear regression model, the study variable is supped to be random and explanatory variables are 

assumed to be fixed. In practice, there may be situations in which the explanatory variable also becomes 

random. 

 

Suppose both dependent and independent variables are stochastic in the simple linear regression model 

 0 1y X      

where   is the associated random error component.  The observations ( , ), 1, 2,...,i ix y i n  are assumed to be 

jointly distributed. Then the  statistical inferences  can be drawn in such  cases which are conditional on  X . 

 

Assume the joint distribution of  X  and  y  to be bivariate normal 2 2( , , , , )x y x yN       where x  and  y  

are the means of X  and  2; xy   and  2
y  are the variances of  X  and ;y  and     is the correlation coefficient 

between X  and  y .  Then the conditional distribution of  y  given X x  is  univariate normal conditional 

mean 

 | 0 1( | ) y xE y X x x       

and  conditional variance of y given X x  is 

 2 2 2
|( | ) (1 )y x yVar y X x        

where 

 0 1y x      

and 

 1 .y

x


 


  

When both X  and  y  are stochastic, then the problem of estimation of parameters  can be reformulated as 

follows. Consider a conditional random variable |y X x  having a normal distribution with  mean as 

conditional mean |y x  and variance as conditional  variance 2
|( | ) y xVar y X x   . Obtain n  independently 

distributed observation | , 1, 2,...,i iy x i n  from 2
| |( , )y x y xN    with nonstochastic X . Now the  method of 

maximum  likelihood can be used to estimate the parameters which yields the estimates of  0  and 1  as 

earlier in the case of nonstochastic X  as 

 1b y b x    



Regression Analysis  |  Chapter 2  | Simple Linear Regression Analysis |  Shalabh, IIT Kanpur 
 42 42 42 

and 

 1
xy

xx

s
b

s
  

respectively. 

 

Moreover, the correlation coefficient 

 
( )( )y x

y x

E y X 


 
 

  

can be estimated by the sample correlation coefficient 
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2 2

1 1

1
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ˆ
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n
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Thus  

2 2
1

1

2

1

2

ˆ

ˆ

xx

yy

xy

yy

n

yy i
i

yy

s
b

s

s
b

s

s

s

R





















 

 

which is same as the coefficient of determination.  Thus  2R  has the same expression as in the case when  X  

is fixed.  Thus  2R  again measures the goodness of fitted model even when  X  is stochastic. 


