A Model-Based Framework for
Security Configuration Analysis

Eunsuk Kang and Daniel Jackson
Computer Science and Artificial Intelligence Laboratory
Massachusetts Institute of Technology
Cambridge, MA USA
{eskang, dnj}@mit.edu

Abstract—Misconfiguration is one of the common causes of
security failures today. Properly configuring a complex system,
however, is a tedious and error-prone process, especially for
users without domain expertise. The system may contain multiple
components that must be configured independently, but interact
with each other in subtle ways, leading to undesirable behaviors.

This paper describes a framework for modeling and analyzing
security properties of computer systems with complex configura-
tion structures. A key idea behind our approach is a method
for specifying modular descriptions of individual component
configuration and composing them for global analysis. We applied
our framework to construct a configuration analysis tool for the
Apache web server, and demonstrated that our approach can
be used to detect security vulnerabilities in the configuration of
real-world web sites.

I. INTRODUCTION

Misconfiguration is one of the common causes of security
failures today [1]. An increasing number of systems, such as
web servers, social networks, databases, and cloud computing
infrastructures require complex configuration tasks by the user.
Properly configuring a system, however, is a tedious and
error-prone task, especially for users without expertise in the
problem domain. A configuration language can be complex
and poorly documented, and understanding the effects of
configuration on the system requires considerable effort on
the user’s part. Furthermore, a complex system typically con-
tains multiple, heterogeneous components, each with its own
configuration language. These components interact with each
other in subtle ways; even after configuring all components,
the user must still reason about their interactions to ensure that
the overall system behaves the way the user intended.

We propose a framework for modeling and analyzing
security properties of systems with complex configuration
structures. A key idea behind our approach is a method for
specifying and composing two different types of description:
(1) a high-level system model that describes component inter-
actions, and (2) descriptions of individual component behav-
iors, which are determined by the underlying configuration
logic. By composing these specifications, the framework can
be used to reason about the overall system behavior, and detect
misconfigurations that would normally be considered harmless
if the components were analyzed only in isolation.

Our framework provides separation of concerns among three
distinct tasks that are, in practice, performed often by a single

person in an ad hoc manner: (1) collection and representation
of domain knowledge (best carried out by a domain expert),
(2) specification of security properties (an end user), and (3)
analysis (a test engineer). Once the expert constructs formal
models of a system, they can be used by multiple users without
understanding the details of the underlying models.

As a case study, we used our framework to construct a
configuration analysis tool for the Apache HTTP Server [2].
We ran an experiment where we applied the tool to analyze the
configuration of existing web sites. We were able to identify
a number of security vulnerabilities in the sites, including
inadvertent exposure of sensitive data. The outcome from our
case study has prompted the owners of the sites to fix their
configurations and eliminate the vulnerabilities.

In summary, the contributions of this paper include:

o A framework for building a security analysis tool for
systems with complex configuration structures,

o A specification method for composing descriptions of
individual component configuration with a high-level
system interaction model,

o A method for encoding our specifications in Alloy [3],
and checking a concrete configuration against a security
property using the Alloy Analyzer, and

e A case study applying our framework to analyze the
configuration of web sites on an Apache web server.

The rest of the paper is organized as follows. We begin
by describing challenges to analyzing systems with complex
configuration structures (Section II). After outlining the major
elements of our framework (Section III), we describe our
proposed specification method (Section IV), an encoding in
Alloy (Section V), and a technique for checking configurations
against security properties (Section VI). We describe a case
study on the Apache web server (Section VII) and related
work (Section VIII). We conclude with a discussion of our
approach (Section IX).

II. MOTIVATION

A. Example: Securing a Web Site on Apache

The Apache HTTP Server [2] is a popular web server
program used to host millions of sites around the world. Its
popularity is in part thanks to the flexibility of its configuration
engine; with a wide range of available options, Apache can be

Mallory's
Alice Script
i request(private execute
(Client) S quest(p) (mallorsSoript (Process)
Ss. Web)
“““ Sever [4— 7 \\ read(private)
=~ —w| (Process) R 7"~~~ _ \¥
/ \ R
Mallory request read(private) File esources
(Client) (malloryScript) System
w—~
Fig. 1. An example diagram illustrating a potential security vulnerabilit

in a web server system. Boxes represent modules, and circles represent data.
A solid arrow from one module to another indicates interaction through an
operation, and a dotted arrow represents data flow between two modules.
Dotted arrows in bold correspond to a series of data flow that allows Mallory
to access Alice’s private resources.

configured to meet the needs of many server-side applications.
On the other hand, properly configuring Apache is a notori-
ously challenging task, as hinted by numerous online articles
and books on this topic alone [4], [5].

Consider a university computing environment that provides
personal accounts and various software services to the mem-
bers of the institute (e.g., students, faculty, or staff). Each user
can set up a personal web site by placing web-related files
into a designated directory (usually named public_html). Fig.1
illustrates high-level interactions between the components in
the system. The file system stores a set of resources, some
of which will be served by the web server. An OS process
(e.g., an application or a script), running under a certain OS
user’s credentials, accesses these resources by performing read
operations on the file system. A client sends a request to the
web server by providing a URI for a resource. The web server,
if it deems the request to be valid, retrieves the resource from
the file system and returns it to the client.

Alice is teaching a course in introductory computer science,
and creates a web site to publish course-related materials
(www.mit.edu/alice/cs101). She wants to be able to share
some of the sensitive materials (such as assignment grades)
only with her teaching assistants. By default, Apache grants
all browser requests, so Alice must configure the web site
properly to ensure that the sensitive files can be accessed
only by her TAs and herself. To achieve this, Alice decides
to use a password authentication mechanism in Apache. She
places the sensitive files in directory cs/01/materials/private,
and configures the directory with a password that she gives
out to her TAs. Given this setting, the web server grants a
browser request to any file under directory private only when
the correct password is provided along with the request.

Mallory, a student in Alice’s course, browses the course
web site out of curiosity and discovers that directory private
is password-protected. Despite not knowing the password, he
manages to access all files in the directory by exploiting the
fact that the web server is configured to host multiple sites. The
exploit is as follows: He first logs onto his university account
and creates a simple script that executes file system commands
to list and read the contents of directory /users/alice/pub-

lic_html/cs101/materials/private. Normally, if he executes this
script on his account, the commands would fail, because OS
user mallory does not have sufficient permissions to access the
files that are owned by user alice (given that she has correctly
set up her file permissions). Instead, Mallory places the script
under his public_html and executes the script on the web server
by sending a browser request for the script. The script now
runs under the credentials of the web server (typically user
www in UNIX); since www has permissions to access any files
that it serves, Mallory’s script also gains the ability to access
Alice’s web files, including those under directory private.

This exploit, a form of privilege escalation, is an example of
a security failure that arises from interactions between multiple
components. Although Alice believes that she has properly
configured her site, she fails to consider potential interactions
between the web server, a script, and the file system, which
together lead to a violation of her security intent.

B. Challenges

Given this example, we outline some of the challenges that
arise when reasoning about the security of a system with
complex, multi-component configurations:

a) System-Wide Reasoning: Many security failures orig-
inate not within a single component, but from unexpected
interactions among multiple components. In addition to en-
suring that each component is configured properly, we must
analyze their combined behaviors. This task requires domain
knowledge about the configuration of each component as well
as interactions among components. Most users do not have
this knowledge and face challenges during configuration.

b) Modularity in Composition: As a component evolves
over time, its behaviors and the underlying configuration
language may also change. An ad hoc approach to building a
configuration analysis tool can result in a maintenance burden,
since a change in a configuration language may cause changes
to the entire tool. Furthermore, parts of the configuration may
need to be pluggable; for example, the Apache web server can
be deployed on multiple operating systems with different types
of file systems. Thus, we must be able to support modular
composition of multiple component configuration descriptions.

c) Automation: Manually reasoning about interactions
between components is a tedious and error-prone process. In
addition, some of the information about the system may be
unknown. For example, a part of the configuration might be
unspecified or inaccessible; it is difficult to pre-determine the
set of input values from the environment (e.g., malicious client
requests) that could lead to a security failure. Thus, we must be
able to perform an analysis to detect potential security failures,
given only partial information about the system.

III. OVERVIEW OF THE PROPOSED FRAMEWORK

Fig.2 contains a high-level overview of our proposed frame-
work for security configuration analysis. Two different kinds
of users interact with our framework: domain experts and end
users. A domain expert has extensive knowledge about (1)
the high-level system structure and components interactions,

&

v
“ Domain
Expert
Knowledge
Encoding
g System| System = Partial
5 P Info | ¢ | Info Partial Instance v
L / > Extractor ——— Instance
; | Generator
N 1) \.» Component :: Configuration :
v Security ! Interactions :: Logic :
Security Property /
Property| i 1 - Modeling Environment
» User | Analysis Assertion
> L Interface §Violation Engine
Feedback

End User

Fig. 2. Overview of our framework for security configuration analysis. Boxes
with solid edges represent generic parts of the framework, and dotted boxes
represent domain-specific parts that the expert builds for a problem domain.

and (2) the underlying configuration logic and its effects on
the security of each component. The expert(s) encodes this
knowledge in formal domain models.

Our end user, who may be a developer, a system integrator,
or an ordinary computer user, faces the task of configuring
a system to conform to some high-level intents about the
security of data. Note that the user does not interact directly
with the existing domain knowledge; one of the goals of the
framework is to shield the user from the underlying details of
the system. The user interacts with the system only through an
user interface, which can be used to specify his or her intents
as a security property. The interface then communicates to
the extractor, which gathers system information that is neces-
sary for analyzing the property, such as current configuration
parameters and relevant data.

The partial instance generator takes the concrete system
information, as well as the user-specified property, and encodes
them as part of the domain model. The underlying analysis
engine then checks the following assertion: Does the system,
as currently configured, satisfy the user’s desired property? If
it determines that the system violates the property, it produces
a violation as a counterexample illustrating a potential security
attack on the system and displays it to the user.

IV. SPECIFICATION METHOD

The main requirement of our framework is to enable
reasoning about the overall security of a system, given the
configurations of individual components. To achieve this, we
integrate the following types of descriptions: (1) a high-
level model of component interactions, and (2) the effects
of configuration on the behavior of a component. The key
idea is to model each component as an access control module
that restricts how other modules may access data through an
interface that it exports, and specify its access control behavior
as a function of its configuration. In this section, we use a first-
order relational logic as an underlying formalism, and refer to
the Apache web server from Section II as a running example.

A. System Structure and Component Interactions

In our formulation, a system .S consists of sets of modules
M and data elements D. Modules interact with each other

by performing operations O. Each module exports a set of
operations (represented by relation exports C M x O) to be
invoked by another module that it interacts with (interacts C
M x M). Each operation is performed on a data element, and
can be used to transfer the data from one module to another.
We use relation invokes C M x O x D to represent instances
of operations, where (m, 0, d) € invokes if and only if module
m successfully invokes operation o on data d. In other words,
if m never invokes o, or attempts to perform o on d but fails,
then tuple (m, o, d) is excluded from invokes. A module can
invoke only the operations that are exported by modules that
it interacts with.

Each module accesses a set of data (accesses C M x D).
A module m can access a piece of data only if m is the owner
of the data (owns C M x D), or m receives the data from
another module by invoking an operation.

Example Recall the Apache web server example from
Section II. The system consists of the following modules: the
web server, the file system, clients, and scripts. The file system
owns a set of resources (Resource C D), some subset of
which are to be served by the web server to its clients. A client
sends a request for a resource r € Resource to the server by
invoking operation request € O on r. Given a request, the
server locates file f that corresponds to r and accesses its
content through the file system’s read operation on f. After
the server successfully retrieves f, it delivers its content back
to the client. An implication of our description is that a client
can access a resource only by invoking operation request;
formally, the following constraint is imposed on the system:

Ve € Client,r € Resource:

(¢,r) € accesses = (c,request,r) € invokes

Similar constraints are imposed on other components to estab-
lish data flow throughout the entire system.

B. Access Control Model

We augment the system description with an access control
model that describes how each module restricts access to the
data that it owns or received from another module.

Each module can control an operation o € O that it exports,
by restricting the set of other modules that may invoke o or
data that may be provided as an argument to o. We represent
this by assigning an access control list to every module. Let
relation acl,,, € M x O x D represent the access control list
for module m;, where (mas,0,d) € acl,,, if and only if my
is allowed to invoke operation o on data d. An access control
list restricts relation invokes in the following way:

VYmyi,mo € M,0 € O,d € D-
(mq,0) € exports A (mz,0,d) € invokes —>

(ma2,0,d) € acly,

In other words, mo can successfully invoke an operation on
my only if m; allows it.

C. Configuration Logic

The access control behavior of a module may not be fixed,
and vary depending on how the module is currently configured.
We model configurable behaviors by assigning each module a
function that determines the content of its access control list,
given a particular configuration.

Let C represent a set of configuration objects. A configura-
tion object is an entity that represents a particular set of con-
figuration values (e.g., a set of file permissions or an Apache
configuration file). Then, config,, : C — P(M x O x D) for
module m is a configuration function that accepts a configu-
ration object and computes a relation that corresponds to the
access control list of that module (i.e. acl,,). In other words,
this function is a partial specification that describes the security
policy of the module; it specifies the effects of configuration
on the access control behavior of the module. A configuration
function is declaratively specified using constraints, instead of
explicitly listing all of the tuples in an ACL.

Example Defining a configuration function requires an
expert’s knowledge about how different parameters affect the
behavior of a module. Returning to our running example, let
us first consider the configuration of the file system. Assuming
that it is a standard UNIX-based file system, it uses file
permission bits (e.g. rwx bits) to determine whether a certain
user is allowed to invoke an operation on a particular file.
Then, a configuration object for the file system is a list
of permission bits for all files. The configuration function
configys for the file system is straightforward to define. Let
FileOp C O be the set of file operations, Proc C M the
set of OS processes, and File C D the set of files. Then,
the tuple (p,o, f) € Proc x FileOp x File is a member of
configss(ps) for some list of permissions ps € C' if and only
if ps lists the OS credential of process p as belonging to the
group of users with the permission to invoke o on f.

The configuration function for the web server is more
complex to define. Instead of being a flat list of parameters, a
configuration object for Apache is a tree-based structure with
two different types of parameters: global parameters, which
apply to every resource in the server, and local parameters,
which apply only to resources within a particular directory. To
add to the complexity, these parameters may interact with each
other in subtle ways (such as overriding). This gap between
the high-level model of the server’s behavior and the low-
level configuration parameters is one of the factors that make
Apache difficult to configure.

D. Security Property

Our framework allows an end user to specify a security
property that restricts the set of modules in the system that
should be able to access a particular set of data. Formally, a
property is a formula that evaluates to true if and only if every
module m that accesses a certain data set D’ C D satisfies a
particular predicate cond:

Vm € M,d € D' - (m,d) € accesses => cond(m,d)

Predicate cond describes conditions that m must satisfy in
order to be granted access to d. The definition of cond
is domain-specific; the expert may construct different cond
predicates to be used by the user to specify his or her intent.
The problem of checking whether the system in a partic-
ular configuration ¢s = {¢m,, Cmg, - Cm,, } (for k modules)
satisfies a property p can be formally stated as follows:

(Vm € M - acly, = configm(cm)) = p

That is, if every module in the system behaves as configured,
then the property must hold true.

Example In the Apache web server, a desirable property
might be defined as follows:

Ve € Client,r € Resource:
(c,7) € accesses = —(ip(c) € blacklist(r))

where ip(c) represents the IP address of a client, and
blacklist(r) the list of IP addresses that are blacklisted for
resource r. This property requires that every module that
accesses a private resource is not blacklisted.

V. ENCODING IN ALLOY

Alloy is a modeling language based on first-order relational
logic with transitive closure [3]. Alloy is suitable for encod-
ing our proposed specifications because: (1) its underlying
relational logic is expressive enough to model the types of
complex structures that arise in our specifications, (2) it has
built-in constructs, such as signatures and subtypes, that are
useful for building modular descriptions of configurations, and
(3) it supports automated analysis for checking assertions and
consistency of models. However, our approach does not pre-
scribe the use of a particular formalism, and other languages
that satisfy the above three criteria may be suitable.

A. Achieving Modular Specifications

Fig.3 shows snippets from an Alloy encoding of the spec-
ifications for Apache. The model in Fig.3(a) declares the
basic domain-independent constructs for specifications that we
introduced in Section IV. A domain expert will further extend
this model with problem-specific models. The Alloy keyword
sig (short for signature) declares a set of elements, and a
signature field introduces a relation whose leftmost column is
indexed on the signature. For example, in Fig.3(a), sig Module
declares a set of modules, and exports introduces a binary
relation of type Module x Op. An abstract signature cannot
be instantiated, and must be extended by other signatures.

Alloy supports model reuse by allowing a set of statements
to be packaged inside a module (not to be confused with
signature Module, which represents system components) and
imported from other Alloy modules. When Alloy module al
imports a2, it can refer to all of the declarations and constraints
in a2. Fig.3(b) shows declarations for the model of a generic
web server system, which imports Base. The keyword extend
defines a subtyping relationship between two signatures; for
instance, Process, FileSystem, and Client are declared as
disjoint subtypes of Module. The field runsAs denotes a

O 00NN B W —

— O 00NN AW —

—_ =

module Base
/x Domain—independent constructs */
abstract sig Module {

interacts : set Module,

exports : set Op,

invokes : Op —> Data,

accesses : set Data,

owns : set Data,

acl : ACL,

config : ConfigObj —> lone ACL

}
abstract sig Data {}
abstract sig Op {}
abstract sig ConfigObj {}
abstract sig ACL {
tuples : Module —> Op —> Data

}

(a) Basic definitions for system modules and configuration.

module GenericWebServerSystem
import Base

abstract sig User {}

abstract sig Process extends Module { runsAs : User }

abstract sig WebServer, Script extends Process {}

abstract sig FileSystem extends Module {}

abstract sig Addr {}

abstract sig Client extends Module { addr : Addr }

/% Component—specific configuration objects */

abstract sig ServerConfig, FsysConfig, ScriptConfig extends
ConfigObj {}

/% Server operation x/

abstract sig ServerOp extends Op {}

sig Req extends ServerOp {}

/+ Web server resources */

abstract sig Resources extends Data {}

abstract sig File extends Resources {}

abstract sig Dir extends Resource { contains : set Resource }

(b) A model of a generic web server system.

Fig. 3.

process’s user credential (line 5), and is inherited by both
WebServer and Script. Beside the signature declarations, the
model also contains constraints that describe the relationships
between modules (interacts, exports, etc.)!.

The subytping mechanism in Alloy, along with its import
system, is useful for achieving modularity in specifications.
For instance, we may augment a generic description of a file
system with a model of a standard UNIX-based file system,
which specifies how the UNIX file permissions determine its
ACL; we can independently construct a model of a different
kind of file system (for example, NTFS), in a separate Alloy
module, with its own permission language. This allows us to
add models of additional component configurations without
having to modify the existing collection of models, as long
as the overall structure of the system remains the same.
Furthermore, given models of different component variants,
the configuration tool can select which models to import for
analysis, depending on the environment on which the tool is
running.

Due to limited space, we omit these constraints and other details. The full
version of the Alloy models is available at:
http://people.csail.mit.edu/eskang/apache/models

1 module ApacheWebServer
2 import GenericWebServerSystem
3
4 one sig ApacheServer extends WebServer {}
5 sig ApacheConfig extends ServerConfig {
6 global : GlobalSettings, /4 global settings */
7 local : Dir —> lone LocalSettings /4 local settings */
8}
9
10 abstract sig Settings { directives : set Directive }
11 sig GlobalSettings, LocalSettings extends Settings {}
12 abstract sig Directive {}
13 sig DirectoryDirective extends Directive {
14 target : Dir,
15 directives : set Directive
16 }
17 sig Allow, Deny extends Directive { addrs : set Addr }
18
19/ Definition of the configuration function for Apache x/
20 fact ApacheConfigDefn {
21 all cobj : ApacheConfig |
22 let acl = ApacheServer.config[cobyj] |
23 all c : Client, g : Req, r : Resource |
24 ¢ —>q —> rin acl implies
25 validReq|[cobj, ¢, q, r]
26
27 /x True iff request "q” is considered valid by the server x/
28 pred validReq[cobj : ApacheConfig, ¢ : Client, q : Req, r : Resource] {
29 let ds = relevantDirectives[cobj, r] |
30 checkAllowDeny[c, allow[ds], deny[ds]]
31 checkDirectoryListing[c, index[ds]]
32 checkAuthentication[c, auth[ds]]
33 ... /x other constraints x/
34
35 /4 True iff client "c” is allowed by the server =/
36 pred checkAllowDeny[c : Client, allow : Allow, deny : Deny] {
37 c.addr in allow.addrs or
38 c.addr not in deny.addrs
39 }

(c) A model of an Apache web server.

Snippets from the Alloy encoding of the Apache web server.

B. Specifying a Configuration Function

The declarative nature of Alloy is suitable for specifying
a configuration function as a set of constraints on an ACL.
Fig.3(c) shows a part of the model for the Apache web server.
Understanding Apache configuration is a complex task partly
due to its distributed nature. Instead of relying on a single,
global configuration file (usually named httpd.conf), each
directory in the web server can be given its own configuration
(-htaccess); to model these, we introduce GlobalSettings and
LocalSettings (line 11), each containing a set of configuration
parameters called directives. Apache provides a large number
of directives, some of which impact the security behavior of
the web server. For example, the user can use a Deny directive
to specify a set of client addresses that should not be allowed to
access a resource. Some of the directives can be nested within
another; a Directory directive allows the user to specify a set
of directives that should apply only to the resources under a
specific directory target (line 14).

Recall that a configuration function takes a configuration
object, and computes a set of tuples that represent entries in
an ACL. In our Alloy encoding, each module is assigned a
signature field config that represents the configuration function

(Fig.3(a), line 10). One way to define the function is by using
an Alloy fact to declaratively specify the relation between an
input configuration object and its corresponding output ACL.
For example, fact ApacheConfgDefn defines the configuration
function for Apache in the following way (line 20): If a
tuple (c, g, r) belongs to the ACL resulting from a particular
configuration object cobj, then the tuple must satisfy the set of
conditions in validReq. Predicate validReq itself is complex,
and decomposed into a set of helper predicates. Let relevantDi-
rectives be a function that examines the configuration structure
and extracts the set of directives that directly affect resource 7.
Predicate checkAllowDeny evaluates to true if and only if client
c belongs to the Allow list for resource r, or does not belong
to the Deny list. The client must satisfy additional predicates
in validReq in order to be granted access to the resource.

The configuration function for a file system or a script can
be defined similarly as a part of a separate Alloy module.

C. Specifying a Property

We express a security property as a predicate that is param-
eterized with user-specified input. For example, the following
property states that only the clients who are not on blacklist
bl are allowed to access a set of private resources privateRs:

pred noBlacklistAccess [privateRs : set Resource, bl : set Addr] {

all c : Client, r : privateRs |
r in c.accesses implies r.addr not in bl }

An Alloy assertion is used to express a desired property about
the model. Let us first introduce a predicate applyConfig,
which constrains the behavior of a module with respect to
a particular configuration:

pred applyConfig[m : Module, ¢ : ConfigObj] { m.acl = m.config[c] }

We then write the following assertion, stating that if the system
is configured as specified by the user, the property must hold:
assert ConfigSatisfiesBlacklistProperty {
/% MyApacheConfig, MyPermissions, MyPrivateResources, and
MyBlacklist are user—provided parameters x/
applyConfig[ApacheWebServer, MyApacheConfig] and
applyConfig[UNIXFileSystem, MyPermissions]
implies
noBlacklistAccess[MyPrivateResources, MyBlacklist] }
The next section describes how we encode the user’s configu-
rations and property parameters as a partial instance in Alloy.

VI. ANALYSIS

We are interested in the following analysis problem: Does
the system, as currently configured, satisfy a given property?
Before the analysis, we first perform a set of pre-processing
steps, where we extract the current configuration settings and
concrete data from the system and encode them as a partial
instance in the Alloy model. We additionally apply an abstrac-
tion technique to reduce the size of the analysis problem. The
analysis engine then explores all possible interactions between
modules and attempts to find a potential scenario in which the
system violates the property. When the analysis completes, we
display the outcome of the analysis as feedback to the user.

A. Background on the Alloy Analyzer

The Alloy Analyzer is a built-in analysis engine for Al-
loy [3]. The analyzer itself relies on Kodkod [6], a SAT-
based constraint solver for first-order relational logic. Given a
problem, the Alloy Analyzer translates the input Alloy model
into a set of relational constraints in Kodkod, which, in turn,
translates them into a SAT problem. If a satisfying instance
is found, the Alloy Analyzer maps it back to an instance in
the original Alloy model, where elements of the signatures
are bound to concrete atoms in a way that satisfies all of the
relational constraints in the model.

Given an assertion P and a set of constraints C' over
relations R that describe the system, the Alloy Analyzer
attempts to find a satisfying instance to formula C A—P. Since
our property takes the form:

Vm € M,d € D" - (m,d) € accesses = cond(m,d)
when logically negated, it becomes:
Im € M,d € D' - (m,d) € accesses A ~cond(m, d)

A satistying instance to C' A =P contains witnesses to the
quantified variables m and d, as well as bindings of tuples
in all relations, including acl, invokes, and accesses, which
together represent a particular snapshot of the system. This
instance forms a counterexample that demonstrates an inap-
propriate access of data d by module m.

Our analysis problem involves checking a concrete system
configuration, acting over a concrete set of data, against a
particular property. Thus, our analysis differs from a typical
constraint solving problem in that some of the variables have
fixed values. More generally, a partial solution to a constraint
solving problem is called a partial instance [6]. Kodkod, given
a partial instance, attempts to reduce the size of the input
constraint set (and consequently, the size of the resulting SAT
formula) by partially evaluating the logical expressions.

Before the analysis in Alloy, the partial instance generator
from Fig.2 perform pre-processing steps to combine concrete
information from the user’s system with the abstract Alloy
model. The result of the pre-processing is a new Alloy model
where parts of the original model have been concretized with
the known information about the system.

B. Encoding Concrete Information as a Partial Instance

Consider the example from Section II. Alice’s desired
property states that only clients with her password can access
resources under the directory ¢s101/materials/private. The
analysis problem is to check whether the system satisfies this
property, given the current site configurations. Suppose that
directory private has the structure shown in Fig.4; it contains
a file and a directory, which in turn contains three additional
files. We can encode this part of the file system topology as
a partial instance by extending the original, abstract model as
follows?:

’In Alloy, one sig declares a single concrete atom of a signature, and +
represents an union operator.

grades.xls

mallory.zip steve.zip

bob.zip ’

Fig. 4. A sample file system structure corresponding to Alice’s course site.
Circles represent directories, and boxes files; edges represent a directory-to-
child relation.

/% Partial instance representing structure cs101/materials/private x/
one sig private, submissions extends Dir {}
one sig grades_xls, bob_zip, mallory_zip, steve_zip extends File {}
fact FileSystemTopology {
private.contains = submissions + grades_xls
submissions.contains = bob_zip + mallory_zip + steve_zip }

Concrete configuration objects for the Apache server and the
file permissions can also be encoded in the similar fashion.

Certain types of information about the system may not
be known or obtainable. Examples include inputs from the
environment (e.g. a malicious client’s request that exploits a
weak configuration) or part of system configuration that is
missing or inaccessible. The analyzer will exhaustively explore
all possible assignments to these unknown parts of the model,
in order to generate a counterexample that demonstrates a
potential violation of a property.

C. Finitization

Alloy’s first-order logic is undecidable, and so in order to
produce a SAT instance, the Alloy Analyzer bounds the size
of each signature in the universe, as specified by the user. The
set of objects that we encode as a partial instance provides
bounds for some of the signatures in the model. For example,
we know that there are four different elements of type File in
the model from Fig.4. For other signatures that are not fully
specified, such as Client or Req, the user must provide an upper
bound for each of them. Due to this finitization, our analysis
is bounded; if the analyzer fails to find a property violation,
there might still exist a violation that involves a large number
of objects beyond the given bounds. The user may increment
the bounds and re-run the analysis to gain further confidence.

D. Domain-Specific Abstraction

The size of SAT problem that Kodkod generates depends on
the number of data objects in the system that is being analyzed.
In some cases, we can leverage domain-specific knowledge to
eliminate objects that are irrelevant to a property and reduce
the size of the partial instance that we encode in Alloy.

Our abstraction is based on the following observations. First,
recognizing that a property is a constraint over access to a
particular set of data, we can prune away the remaining data
elements as being irrelevant to the analysis. For example,

Alice’s property concerns only those resources under directory
private; thus, the resources including public and its children
in Fig.4 can be excluded from the partial instance.

We can also observe that some of the data objects in
the system may be considered equivalent with respect to
their accessibility under a particular configuration. Based on
this observation, we can apply a technique called symmetry
breaking to reduce the number of objects to be analyzed [7].
For example, let us assume that all of the three files in
submissions have the same UNIX file permissions and Apache
directives that affect their behavior. If we find a violation that
involves an inappropriate access to bob.zip, we can substitute
any one of the other files for bob.zip and still expect the
same violation to occur. Similarly, if the analysis fails to
detect a violation involving bob.zip, we may expect that no
violations exists that involves one of the other files. Then,
before partial instance generation, instead of creating a File
object for every file under submissions, we may pick bob.zip
as a sole representative for the equivalent set of files.

Formally, given an original system S with data elements
D, let o : P(D) — P(D) be an abstraction function, and
S’ an abstract system with data D’ = «(D). Function « is
sound with respect to a property P if and only if, for any
module configuration, S’ satisfies P only when S satisfies
P. In general, automatically constructing a sound abstraction
function for Alloy’s first-order logic is undecidable. However,
the abstraction function and its soundness condition can be
expressed and checked in Alloy [3, p.222], or proved using
a theorem prover; once this has been done, the abstraction

function can be reused for the same problem domain?.

VII. CASE STUDY: APACHE WEB SERVER SECURITY

In this section, we present a case study where we used
our framework to analyze the security of a real-world system
with complex configuration structures. We have implemented
the Apache Configuration Analyzer, a tool that automatically
detects potential security vulnerabilities in the configuration
of a web site that is hosted by the Apache HTTP server. We
applied our tool to web sites hosted on Apache at the Computer
Science and Artificial Intelligence Laboratory (CSAIL) at
MIT, and identified vulnerabilities in several of them, all
leading to inadvertent exposure of sensitive data to the web.
We have notified the network administrators and the owners
of these web sites about the security issues, resulting in
configuration fixes and a major revamp in one of the sites.

The Apache Configuration Analyzer is freely available for
download at http://people.csail.mit.edu/eskang/apache.

A. Implementation

The Apache Configuration Analyzer has the same high-
level architecture as shown in Fig.2. The first step in the
implementation was building formal models of the system
components and configuration logic in Alloy. The primary

3Due to limited space, the full definition of an abstraction function that we
used for our Apache case study is available at:
http://people.csail.mit.edu/eskang/apache/models/absfun

designer of the tool (the first author) had a good understanding
of both Alloy and Apache, and spent 12 weeks building
and validating the models; the size of the current version is
approximately 2100 lines of Alloy in total. Even though the
models took significant effort to build, the cost is amortized,
since the tool can be used by multiple Apache users.

In one of the Alloy modules, we defined a set of desirable
security properties about a web site. The front-end interface
of the tool presents these properties to the user, who provides
parameters to one or more properties to be analyzed. The
following list shows 6 properties that the tool currently offers;
items within the brackets represent parameters to properties:

e Pl(blacklist, rset): Clients on blacklist
should never be able to access resources rset.

e P2(whitelist, rset): Only clients on whitelist
can access resources rset.

e P3(dir): A client should never be able to access the
listing of directory dir and all its sub-directories.

e P4(rset): A client should never be able to access
resources besides rset.

e P5(p, rset): Only clients with password p can access
resources rset.

e P6(ca, rset): Only clients with a valid certificate issued
by certificate authority ca can access resources rset.

For example, if the user wishes to check an instantiation of
property P1, the user must provide a list of IP addresses or
hostnames for blacklist, and a path to a directory whose
children correspond to rset.

Once the user fully specifies a property, the interface passes
it along to the extractor, which: (1) extracts settings from both
global and local configuration files, and (2) determines the
type of the underlying file system and executes appropriate
OS commands to extract the permissions on relevant files.
The extractor also applies an abstraction function to the
web site objects (files and directories) and derives a smaller
set of objects that are relevant for the property. Then, the
partial instance generator builds an Alloy partial instance that
encodes the concrete information along with an assertion for
checking the property. When the Alloy Analyzer completes its
analysis, the user interface displays the outcome (including a
counterexample, if any) to the user®.

The user interface, extractor, and partial instance generator
were written in around 4000 lines of Python.

B. Experiment

To demonstrate that the Apache Configuration Analyzer can
be used to find security vulnerabilities in the configuration
of realistic web sites, we performed an experiment where
we applied the tool to analyze sites that are hosted by the
Apache web server at CSAIL. In particular, we selected web
sites that contained sensitive information, such as course-
related materials, faculty-student reviews, and private research

4The tool also has an ability to automatically generate a recommended
configuration fix (if it exists) for a property violation. The discussion of the
mechanism for fix generation is beyond the scope of this paper.

repositories. Before performing the experiment, we received
permissions from the lab’s network administrators to access
the server configuration and the content of the sites.

For each site, we specified the parameters to the above
properties based on the security requirements of the site,
and ran our tool to check whether the site configuration
satisfied the properties. We checked only those properties
that were relevant to each web site. For example, one of the
sites contains a sub-directory called private that requires
the client to own a valid MIT certificate for access; thus,
we specified an instance of P6 with parameter values MIT
certificate for ca and private for rset. In total, we
analyzed 10 websites and 24 properties. For the analysis in
the Alloy Analyzer, we used a bound of 5 for every signature,
except those that were specified in the partial instance.

C. Results

When we initially ran our experiment, our tool found the
same type of violation as we described in Section II in all
of the sites, due to a weakness in the global configuration
that allows any CSAIL user to execute a script as www Uuser.
Unfortunately, the users do not have a way to eliminate this
vulnerability by modifying their .htaccess. In order to detect
vulnerabilities that can be fixed by the users, we modified the
global configuration file to disallow this exploit, and re-ran
our experiment on the sites.

The results from our final experiment are shown in Table 1.
Due to the sensitive nature of data that these web sites store,
we do not show their names or URLSs, and instead use numeric
labels to refer to them (first column of the table). In most
cases, we were able to abstract away a significant portion
of the original objects, because (1) the property’s parameter
specifying resources to be protected often included only a
subset of the site’s objects, and (2) most files were equivalent
with respect to configuration parameters that affected their
behaviors (i.e. file permissions and Apache directives).

All of the analysis runs completed under 6 minutes. The
analysis times were strongly correlated with the number of
objects in the partial instance. Kodkod spends a significant
portion of the translation time on evaluating the input relational
expressions using the partial instance before converting them
into a Boolean formula; thus, with an increase in the size of the
partial instance, we observed an increase in translation time.

In total, the tool detected 9 violations (out of 24 properties
analyzed) in 5 of the web sites that we analyzed. For every
property violation found, the tool generated a counterexample
with a potential client request that led to the violation. Since
this request referred to a particular resource, we could replay
the same request inside a browser, and observe the response
from the server. We used this method to confirm that every
counterexample that the tool detected was indeed a true vul-
nerability that could be exploited. We categorize the detected
violations into three distinct kinds, based on the characteristics
of the underlying misconfiguration:

Directory Listing Exposure The simplest form of miscon-
figuration that we found (Sites 1, 2, 4, and 10) was a failure

Site | Property | # Obj. # Obj. Extraction | Translation | Solving Total Violation
Original | Reduced | Time (s) Time (s) Time (s) Time (s) Found
1 P3 954 58 8.721 56.996 2.006 67.723 Yes
P4 954 89 12.129 270.01 31.486 313.625 Yes
9 P3 272 27 2.717 3.437 0.224 6.378 Yes
P4 272 33 2.904 8.869 2.181 13.954 No
3 P3 88 21 1.412 1.895 0.690 3.997 No
P6 88 21 1412 1.970 0.782 4.164 No
P3 895 60 5.304 82.274 2.582 90.16 Yes
4 P4 895 76 5.463 172.799 5.750 184.012 Yes
P6 895 44 2.947 28.452 2.128 33.527 Yes
5 P3 55 17 1.32 1.112 0.361 2.793 No
P6 55 17 1.32 1.255 0.463 3.038 No
P3 192 11 0.452 1.741 0.228 2421 No
6 P4 192 39 4.605 18.624 1.821 25.050 Yes
P6 192 11 0.452 0.362 0.153 0.967 No
P3 364 35 9.068 11.652 3.010 23.730 No
7 P4 364 40 8.522 19.931 4.868 33.321 No
P5 364 35 9.068 11.592 3.241 23.901 No
3 P3 64 38 1.973 18.162 5.124 25.259 No
P5 64 38 1.973 17.912 4.750 24.635 No
9 P1 338 27 1.958 18.070 1.807 21.835 No
P3 338 82 9.073 211.899 6.695 227.667 No
10 P3 163 35 2.238 12.376 1.491 16.105 Yes
P4 163 74 4.8465 177.124 17.597 199.568 Yes
P6 163 31 1.668 7.189 2.685 11.542 No
TABLE I

RESULTS FROM THE ANALYSIS OF THE CSAIL WEB SITES. THE 3RD COLUMN CONTAINS THE ORIGINAL NUMBER OF OBJECTS IN THE SITE, AND THE
4TH COLUMN THE REDUCED NUMBER AFTER ABSTRACTION. THE FOLLOWING THREE COLUMNS CONTAIN: THE RUNNING TIME OF THE EXTRACTOR,
THE TIME TO TRANSLATE AN ALLOY ASSERTION INTO SAT, AND THE RUNNING TIME OF THE SAT SOLVER (MINISAT 1.14 [8]), RESPECTIVELY.

to protect the content listing of a directory either by putting a
default index file (e.g.,index.html) or disabling directory listing
altogether using .htaccess. Sometimes a directory listing can
reveal names of sensitive files; in Site 1, we were able to
access a file that contained a list of user names and hashes of
their passwords.

Weak Permissions In Sites 1, 4, 6, and 10, we found
files that were located outside the web document root
(i.e.public_html) but had their permissions as readable by the
www user. These sites are susceptible to an exploit called
directory traversal, which attempts to access resources outside
the web root through simple manipulation of URLs. Exploiting
the weak permission was simpler in one of the sites (Site 4);
it had a symbolic link that was pointing directly to a www-
readable directory outside the web root, and .hfaccess was
missing a directive that would have disabled symbolic links.

Misconfigured Authentication Site 4, a course site, had a
set of private directories, protected with an MIT certificate,
that were intended to be used by students to submit their
assignments. The .htaccess file for one of the directories had an
error, allowing anyone to access the files under the directory.

We have notified the network administrators and the site
owners of the issues that we found, along with recommended
fixes. Three of the site owners have applied the fixes; one of
the sites is being rebuilt from scratch for improved security.

VIII. RELATED WORK

There is a large body of literature on automated configura-
tion. We focus our discussion on works that address security
aspects of configuration.

Margrave [9], [10] is a framework for specifying and
analyzing policies. Like our framework, Margrave uses a
first-order logic for policy representation, and Kodkod for
analysis. However, Margrave is designed to assist users with
the task of policy authoring, and provide an interface for them
to interact directly with policy rules, which determine how
input parameters map to desired effects on the system. In
comparison, our system is designed to aid end users, who
may not have a good understanding of configuration rules; in
particular, our intention is to explicitly shield the user from
the complexity of the rules by hiding them.

A number of other recent works use automated techniques,
such as constraint solving or model checking, to analyze
access control policies [11], [12], [13]. Similar to Margrave,
these systems are used to reason about properties of a set of
policies, and do not deal with arbitrary system configurations.

MulVal [14] is a framework that combines a variety of
information such as vulnerability reports, policies, component
interactions, and analyzes a network configuration for vulner-
abilities. MulVal uses Datalog as the language for modeling
domain knowledge. Datalog is less expressive than Alloy, and
lacks quantifiers and subtyping features, which are useful for
modeling complex configuration structures.

Our work was strongly influenced by Guttman and his
colleagues’ work on rigorous automated security manage-
ment [15]. This approach involves an expert constructing
formal models of various system components, and allowing
a user without domain expertise to specify and check a
high-level security goal. Ramakrishnan and Sekar use model

checking to analyze models of operating systems and detect
potential vulnerabilities in configuration [16]. Their analysis is
purely abstract, and does not check a particular configuration.

Two previous works use models to analyze the Apache
configuration [17], [18]. Both involve building a formal model
of the web server and using a constraint checker to analyze a
concrete configuration. These approaches differ from ours in
that: (1) instead of allowing the user to specify a property, they
check the configuration against a fixed list of recommended
settings, and (2) they do not model other parts of the system,
such as the file system, clients, and scripts, and thus, can-
not detect violations that arise from component interactions.
Nikto [19] is a penetration testing tool that attempts to find
flaws in Apache by sending a large number of server requests,
but it does not look at the actual configuration for analysis.

Bonatti and his colleagues developed an approach for com-
posing access control policies over multiple, heterogeneous
components [20]. Their work is at the level of policy language
design; it focuses on building complex policies out of smaller,
independent sets of policies by using composition operators,
without explicitly modeling interactions between components.

Feature models in software product lines [21] is an active
area of research, with recent advances in techniques for
validating and fixing feature configurations [22], [23], [24].
A feature model emphasizes dependencies between different
features of a system. Our approach, in comparison, focuses
on interactions between modules through operations and their
impact on the access control behavior of the system.

Engage is a framework for managing application configu-
rations and dependencies between them [25]. Similar to our
approach, they use a high-level modeling language to describe
interactions between different components, and a SAT solver
to solve a set of configuration constraints. Their framework is
used for generating installation plans. Kikuchi and Tsuchiya
use Alloy to model constraints over system components and
synthesize a valid deployment configuration [26]. Similarly,
Narain proposes an approach to performing network config-
uration using Alloy [27]. These two works address security
issues only tangentially.

IX. CONCLUSION

We proposed a framework for modeling and analyzing se-
curity properties of systems with complex configuration struc-
tures that arise from interactions between multiple, heteroge-
neous components. We demonstrated how our specification
method can be used to compose descriptions of component
configurations with the overall system model, and how these
specifications can be encoded and analyzed using Alloy. We
also showed that our framework can be used to detect security
vulnerabilities in the configuration of a real-world system.

Our specification method is based on modeling access
control behaviors, and not suitable for modeling other types of
security requirements, such availability and information flow.
However, we believe that our framework is capable of address-
ing an important class of security configuration tasks. We have
successfully applied our framework to model and analyze other

types of configuration problems, including privacy settings on
a social network and secure router configuration.

In this paper, we focused on security vulnerabilities that
arise from configurations. However, there are other aspects of
the system that are just as critical to establishing its security.
For example, the owner of a web site should complement the
Apache Configuration Analyzer with other types of tools, such
as static analysis or testing, to detect vulnerabilities in the
web application code as well as the site configuration. In our
research vision, this project is a step towards a generic frame-
work for combining results from different types of analyses
and reasoning about the overall security of the system.

REFERENCES

[1] Open Web Application Security Project, “OWASP Top Ten Project,”
http://www.owasp.org/index.php/, 2012.

[2] Apache Foundation Software,
http://httpd.apache.org/, 2012.

[3] D. Jackson, Software Abstractions: Logic, language, and analysis. MIT
Press, 2006.

[4] I Ristic, Apache security - the complete guide to securing your Apache
web server. O’Reilly, 2005.

[5] R. Barnett, Preventing web attacks with Apache. Addison-Wesley, 2006.

[6] E. Torlak and D. Jackson, “Kodkod: A relational model finder,” in
TACAS, 2007, pp. 632-647.

[7]1 1. Shlyakhter, “Generating effective symmetry-breaking predicates for
search problems,” Electronic Notes in Discrete Mathematics, vol. 9, pp.
19-35, 2001.

[8] N. En and N. Srensson, “The minisat page,” http://minisat.se, 2012.

[9]1 K. Fisler, S. Krishnamurthi, L. A. Meyerovich, and M. C. Tschantz,

“Verification and change-impact analysis of access-control policies,” in

ICSE, 2005, pp. 196-205.

T. Nelson, C. Barratt, D. Dougherty, K. Fisler, and S. Krishnamurthi,

“The margrave tool for firewall analysis,” in USENIX LISA, 2010, pp.

1-8.

K. Jayaraman, V. Ganesh, M. V. Tripunitara, M. C. Rinard, and S. J.

Chapin, “Automatic error finding in access-control policies,” in CCS,

2011, pp. 163-174.

J. Hwang, T. Xie, V. C. Hu, and M. Altunay, “Acpt: A tool for modeling

and verifying access control policies,” in POLICY, 2010, pp. 40-43.

M. 1. Gofman, R. Luo, A. C. Solomon, Y. Zhang, P. Yang, and S. D.

Stoller, “Rbac-pat: A policy analysis tool for role based access control,”

in TACAS, 2009, pp. 46—49.

X. Ou, S. Govindavajhala, and A. Appel, “Mulval: A logic-based

network security analyzer,” in USENIX Security Symposium, 2005, pp.

8-8.

J. D. Guttman and A. L. Herzog, “Rigorous automated network security

management,” Int. J. Inf. Sec., vol. 4, no. 1-2, pp. 29-48, 2005.

C. R. Ramakrishnan and R. C. Sekar, “Model-based analysis of config-

uration vulnerabilities,” Journal of Computer Security, vol. 10, no. 1/2,

pp. 189-209, 2002.

C. Sinz, A. Khosravizadeh, W. Kiichlin, and V. Mihajlovski, “Verifying

cim models of apache web-server configurations,” in QSIC, 2003, pp.

290-297.

D. Glasner and V. C. Sreedhar, “Configuration reasoning and ontology

for web,” in IEEE SCC, 2007, pp. 387-394.

C. Sullo and D. Lodge, “Nikto2,” http://cirt.net/nikto2/, 2012.

P. A. Bonatti, S. C. Vimercati, and P. Samarati, “A modular approach

to composing access control policies,” in CCS, 2000, pp. 164-173.

K. Kang, S. Cohen, J. Hess, W. Novak, and A. Peterson, “Feature-

oriented domain analysis (foda) feasibility study,” CMU, Tech. Rep.,

1990.

Y. Xiong, A. Hubaux, S. She, and K. Czarnecki, “Generating range fixes

for software configuration,” in /CSE, 2012, pp. 58-68.

M. Cordy, A. Classen, G. Perrouin, P-Y. Schobbens, P. Heymans,

and A. Legay, “Simulation-based abstractions for software product-line

model checking,” in ICSE, 2012, pp. 672-682.

J. White, B. Dougherty, D. C. Schmidt, and D. Benavides, “Automated

reasoning for multi-step feature model configuration problems,” in

SPLC, 2009, pp. 11-20.

“Apache HTTP Server,”

(10]

(1]

[12]

[13]

(14]

[15]
[16]
(17]
(18]
[19]
[20]

[21]

[22]

[23]

[24]

[25] J. Fischer, R. Majumdar, and S. Esmaeilsabzali, “Engage: a deployment
management system,” in PLDI, 2012, pp. 263-274.

[26] S. Kikuchi and S. Tsuchiya, “Configuration procedure synthesis for
complex systems using model finder,” in /ICECCS, 2010, pp. 95-104.

[27] S. Narain, “Network configuration management via model finding,” in
LISA, 2005, pp. 155-168.

