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Linkage

Linkage in a simple genetic cross

In the early 1900’s Bateson and Punnet conducted genetic studies
using sweet peas. They studied two characters: petal color (P
purple dominates p red) and pollen grain shape (L elongated is
dominant to | disc-shaped).

PPLL X ppll

N2
PplLl

Plants in the F, generation were intercrossed: PpLl| X PpLl.
According to Mendel’s second law, “during gamete formation, the
segregation of one gene pair is independent of other gene pairs.”
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The table helps us calculate the expected relative
frequencies of the four types of plants in the F,
generation according to Mendel’s second law.

PL Pl pL pl
PL Purple Purple Purple Purple
Long Long Long Long
Pl Purple Purple Purple Purple
Long disc-shaped Long disc-shaped
L Purple Purple red red
p Long Long Long Long
| Purple Purple red red
p Long disc-shaped Long disc-shaped
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Here are the expected relative frequencies of the four

phenotypes of plants:

disc-
Elongated shaped
Purple 9 3
red 3 1
Here are the observed data:
disc-
Elongated shaped
Purple 284 21
red 21 55

The observed data clearly do not fit what is expected
under the model. The reason is that the loci are linked.




Linkage

Genes are physically arranged in linear strands of DNA and grouped
into chromosomes. When a gamete is formed, chunks of a
chromosome are passed on. Suppose we have two genes, one with
alleles A1 and A2 and another with alleles B1 and B2, that are
physically close on a chromosome. Suppose an individual is
heterozygous at both loci and, furthermore, the phase is as follows:

Al || A2
B1| B2

If the genes are closely linked, a gamete is much more likely to
contain (A1,B1) or (A2,B2) - “non- recombinants.” If there is
recombination, a gamete contains (Al, B2) or (A2,B1), but these two
possibilities are less likely. (In contrast Mendel’s second law says
that all four possibilities are equally likely.)
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In sweet peas the loci controlling petal color and pollen grain shape
are physically close together on the same chromosome. In the F,
generation, the phase of the Ppll plants was:

ARV

\ O\
NN

Both dominant alleles were located on the same chromosome. A
sweet pea was equally likely to pass on a gamete containing P as a
gamete containing p, and equally likely to pass on a gamete
containing L as a gamete containing |. However, two events such as
“pass on P” and “pass on L” were NOT independent because of
linkage. A gamete is much more likely to contain PL or pl than to
contain Pl or pL. A gamete contains Pl or pL only if there is a

recombination event between the two loci when the gamete is
formed.




Genotypes and Haplotypes

Haplotype: A sequence of alleles, or of DNA bases,
that are on the same chromosome and thus were
inherited together.

Depending on the context, haplotypes may or may
not refer to adjacent bases/alleles.

Terminology
Genotype Haplotype
AaBb AB/ab or Ab/aB
“‘phase is unknown” “‘phase is known”
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Recombination Fraction

When two loci follow Mendel’s Second law, recombinants and non-
recombinants are produced with equal frequency. When loci are
physically close to one another on a chromosome, there is a
deviation from this relationship. This deviation is summarized by the
recombination fraction c (sometimes denoted by 0).

¢ = P(recombinant gamete)

When loci are unlinked, c=1/2.

When loci are completely linked, c=0.

For c in between 0 and 1/2, the loci are said to be “linked”
or “in genetic linkage.”




How might we estimate the recombination fraction from data from
Bateson and Punnet’s sweet pea intercross?

P(recombinant gamete)=c

Y2 (1-c) X 2¢c | V2(1-c)
PL Pl pL pl
Purple | Purple | Purple | Purple
1 -
72(1c)| PL Long Long Long Long
Purple Purple
e | P | PuPle dise. | Purple | "
Leng] shaped Lemg) shaped
Purple | Purple red red
1
/2 C pL Long Long Long Long
Purple red
Y (1-c)| pl Pngrrr])Ie disrc):- Lroe: disc-
9 shaped 9 shaped

We can form a likelihood for the data that is a function of the

recombination fraction c. We can find the value of c that maximizes

this likelihood.

P(red, disc-shaped)=1/4 (1-c)?

P(red, long)=(%c)(%c)+(%c)( % (1-c)) +(%c)( % (1-c))

et cetera




Exercise 1
two loci and a human pedigree

AB ab
AB ab

ab AB
ab ab

D000 OO
INR] O [WR][R][R][NR][MR]

Which children are recombinants? Which are non-recombinants?
How could you estimate the recombination fraction for loci A and B?
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In the previous example, we have all the genotypes for
both markers and know the phase for the genotypes. That
is, we know how the alleles are coupled on each
chromosome for the third generation. We could therefore
tell without ambiguity which offspring have a paternal
chromosome that is a recombinant.




Example
simple linkage analysis: phase unknown

Charcot-Marie-Tooth neuropathy (CMT) is a disease with autosomal
dominant inheritance. Consider the following pedigree (Ott J (1999)
Analysis of human genetic linkage, 3rd edition. Johns Hopkins
University Press). Shading represents an individual with CMT and the
ABO blood types are given below each individual. As we know, ABO
blood types are determined by a single gene with three alleles. We
might be interested in estimating the recombination fraction between
the ABO blood type locus and the gene for CMT.

The first thing that we need to do is determine all genotypes with
phase.

Phenotypes
2.1 2.2
0|0
njn O AB
3.1 32
O|A _,( ) 0|0
n|D nin
A O
4.1 142 ‘4.3 4.4
o' 0’0" @
A O O
AlO 0|0 0|0 0|0




In the example we were able to directly count
the number of recombinants in the offspring
generation. This is an idealized situation. Note
that the grandparent generation was necessary
for establishing phase, i.e. a nuclear family
would not have been sufficient to determine
recombinants directly.

Note that we assumed a very specific mode of
inheritance: dominant single allele, fully
penetrant. We also used a single recombination
fraction for males and females.

Suppose we had a set of CMT/ABO families
for which we counted N non-recombinants
and R recombinants. Then we would have a
likelihood of:

L(c) = Pr(data|c) =EN : Rj(l—c)N c*
Under the null hypothesis of no linkage, i.e.
Hy: ¢=0.5:

N R (N+R)
L(c=%)=P(data|c=%)=[ " ]1

R )2




LOD Scores

In linkage analysis it is conventional to use LOD scores.
We get a LOD score by taking log,, of the likelihood ratio

LOD =log,, ( Pr(data | alternat|ve)j

Pr(data|null)

The LOD scores for this example is:

LOD(c)=Nlog(l-c)+Rlogc—(N +R)log [%j
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Linkage Analysis

In linkage analysis on human pedigrees, we find evidence for the
location of a gene for a trait of interest if we find a gene (or marker)
of known location with which it is tightly linked. Linkage analysis on
human pedigrees is based on the kind of analysis we just did.
However, real-life linkage analysis is hugely more complicated
because much more is unknown.

* missing genotypes through the pedigree

* phase may not be able to be determined without ambiguity
* decreased penentrance: P(disease | disease genotype) <1
* Misspecified relationships, e.g. false paternity

* Inbreeding, creating “loops” in the pedigree
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Allelic Association

“The excessive co-occurrence of certain
combinations of alleles in the same gamete
because of tight linkage, or for other reasons, is
known as allelic association”

-Pak Sham, Statistics in Human Genetics 1998,
p. 145

Consider two loci A and B, with alleles A, A,, ... ,A., and

m
B,, B,, ... ,B, occurring at frequencies p,, p,, ... ,p,, and
dy, 9y, --- ,4,in the population. We can consider an
individual’s two haplotypes with respect to these loci, one
of maternal origin and one of paternal origin.

How many possible haplotypes are there? mn

The haplotypes can be denoted
A.B,, AB,, ..., A B, with frequencies hy;, h;,, ..., h

mn*

In a population, if the occurrence of allele A, and the
occurrence of allele B; in a haplotype are independent
events, then, by definition h;=pq;. 124




Example of LD: Lactase gene

* Samples from three populations
— CEU — Eurpean ancestry, living in Utah
— YRI = Yoruban origin from Nigeria
— CHB/JPT — Chinese and Japanese, living in Beijing and

Tokyo

* Lactase gene: a particular mutation appears to
allow the ability to digest milk into adulthood.
The high frequency of the mutation in thought to
be the result of positive selection in Europeans;
the mutation is much less common in non-
pastorialist populations.

CEUV

YRI

CHBPT

136360000 136380000 136400000 136420000 136440000

Figure 27.2 Haplotype structure in a 100-kb region surrounding the Lactase gene on human
chromosome 2 for the four HapMap populations (The International HapMap Consortium, 2005).
CEU = Individuals of European origin from Utah; YRI = Yoruba from Nigeria; CHB/JPT = Han
Chinese from Beijing and Japanese from the Tokyo region (60 unrelated individuals in cach of
CEU and YRI, 90 in CHB/JIPT). The CEU panel is dominated by a single haplotype that extends
over the entire region. Much higher haplotype diversity is found in the other populations (see also
Table 27.1).




Terminology

“independent alleles” h;=pq;
“positively associated alleles” h;>pg;
“negatively associated alleles” h;<pg;
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Exercise 2

allelic associations

Consider two biallelic loci A and B. There are four
possible haplotypes: A,B,, A;B,, A,B;, A,B,.
Suppose that the frequencies of these four
haplotypes in a large population are 0.4, 0.1, 0.2,
and 0.3, respectively. Are there any allelic
associations between these loci? What are they?
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Exercise 2

Allele frequencies:

A, 0.4+0.1=0.5
A, 0.2+0.3=0.5
B,: 0.4+0.2=0.6
B,: 0.1+0.3=0.4

If there were no allelic associations, we should have:
P(AB,)= ( 5)(0.6)=0.3 < 0.4 — positive association
(A Bz) .5)(0.4)=0.2 > 0.1 — negative association

P(A,B,) O 5)( 6)=0.3 > 0.2 — negative association

P(AZBZ) 0.5)(0.4)=0.2 < 0.3 — positive association
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Linkage Disequilibrium (LD)

“The term linkage disequilibrium (LD) is
broadly used to refer to the non-random
sharing (or lack thereof) of combinations of
[genetic] variants. “

-G. McVean, “Linkage Disequilibrium,
Recombination, and Selection” , in
Handbook of Statistical Genetics, Eds.
Balding, Bishop, Cannings)
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Linkage Disequilibrium (LD)

Consider two loci A and B, with alleles A, A,, ...,
A, and B, B,, ..., B,. If there s allelic association
between any pair of alleles in the different loci,
then the loci are said to be in linkage
disequilibrium. Notice that linkage disequilibrium
is a population-level characteristic.

We will discuss three measures of Linkage
Disequilibrium, D, D’, and R2.

Linkage Disequilibrium Coefficient D

For ease of notation, we define D for two biallelic loci with alleles A
and a at locus 1; B and b at locus 2:

Das=P(AB)-P(A)P(B)

Note that D,; = P(aB)-P(a)P(B)
= P(aB)-(1-P(A))P(B)
= P(aB)-P(B)+P(A)P(B)
= P(aB)-P(aB) —-P(AB)+P(A)P(B)
= P(A)P(B) -P(AB)
= Dps
Thus, the magnitude of the coefficient is important, not the sign.
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Linkage Disequilibrium Coefficient D

LD is a property of two loci, not their alleles. Therefore it is
good that the magnitude of D does not depend on the choice of
alleles.

The range of values the linkage disequilibrium coefficient can
take on varies with allele frequencies. Allele frequencies
cannot be negative, and we know, for example, that P(AB)
must be less than both P(A) and P(B). This gives us relations
such as:

(1) 0= pag =paPs + Dag=<pa:Pp
(2) 0= pg =PaPs ~ Dag=Pa:Ps
(3) 0= pap =PaPp — Dag=Pa.Py
(4) 0= pap =PaPy + Dag<Pa,Pp

For example, to derive expression (1):
From the definition: pag=paPg + Dag
Since p,g is a probability, we have 0= p,g
From the rules of probability: pag < pa, Pg

So putting these together we have (1):
0 < Pag=PaPs * Dag = Pa, Ps

For (2)-(4), use relationships D,z = - D3, etc.




Take the first inequality from (1) through (4):

(1) 0= papg + Dpg
(2) 0= p,pg ~ Dag
(3) 0= paPy, ~ Dag
(4) 0= p,pp, + Dpg

¥

(1) = PaPs = Dag
(2) Dag=< PaPs
(3) Dag=< PaPo
(4) = PaPo< Dpg
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Linkage Disequilibrium Coefficient D

The inequalities on the previous slide lead to bounds for D g :

_pApB’_papr DAB < pap|31 pApb
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Normalized LD Coefficient D’

We have just seen that the possible values of D depend on
allele frequencies. This makes D difficult to interpret. For
reporting purposes, the normalized linkage disequilibrium
coefficient D’ is often used.

D, .
ifD,, <0
max(—pP,Pg,—PaPp) AP
DAB =
D, .
. ifD,, >0
MIN( P, Pg: PaPy) AB

Exercise 3

Consider two biallelic loci, A,a and B,b. What is the theoretical range of
the linkage disequilibrium coefficient D5 and its absolute value |D,g| under

the follow scenarios?

(a)P(A)=1/2, P(B)=1/2

All frequencies are 0.5;
-0.25 <D,5<0.25
0<|D,3|<0.25




(b) P(A)=.95, P(B)=.95

-(0.95)(0.95),-(0.05)(0.05) <D, ;<(0.95)(0.05)
-0.9025,-0.0025 <D,;<0.0475
-0.0025 <D,;<0.0475
0 <|D,5|<0.0475

(c) P(A)=.95, P(B)=.05
-(0.95)(0.05) <D,<(0.95)(0.95),(0.05)(0.05)

-0.0475 <D,;<0.0025
0<|D,;|<0.0475
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(d) P(A)=1/2, P(B)=.95
-(0.5) (0.95),(0.5) (0.05)<D,<(0.5) (0.95),(0.5) (0.05)

-0.025<D,,<0.025
0<|D,,|<0.025
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Exercise 4

Under what circumstances might D, reach its theoretical maximum
value? Suppose D,z =P(a)P(B). What does this imply? Why does
this make sense?

D,;=P(AB)-P(A)P(B)

Suppose D,z = P(a)P(B).

Then P(AB)-P(A)P(B)= P(a)P(B)

P(AB)=P(A)P(B)+ P(a)P(B) = P(B)[P(A) + P(a)]=P(B)

This means that the haplotype frequency of AB is equal to the allele
frequency of B. That is, the allele A only occurs when the allele B
occurs at the other locus. This is an extreme case of allelic
dependence, so it makes sense that the coefficient D is at its
maximum.
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Estimating D

Suppose we have a situation where we can consider single
chromosomes to have been sampled from a population of interest.
The data might be arranged in a table such as:

First Locus
B b
Second A Nas Nap Na
Locus
a naB r]ab na
Ng n, N

We would like to estimate D,g from the data. The
maximum likelihood estimate of D,g is

DAB — pAB - ISA f)B
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Estimating D

...where the population frequencies are just estimated by the
sample frequencies. The MLE turns out to be slightly biased. If N
gametes have been sampled, then

A N -1
E(DAB) :T DAB

The variance of this estimate depends on both the true allele
frequencies and the true level of linkage disequilibrium:

Var(B,) =[P4~ P.) s (- o) + (-2P,)(1~2Pg)Dp ~ Die]

Testing for LD with D

Since D,g=0 corresponds to the status of no linkage
disequilibrium, it is sometimes of interest to test the null
hypothesis H,: D,g=0. One way to do this is to use a chi-
square statistic. It is constructed by squaring the
asymptotically normal statistic z:

Dy —E(D,g)

J@ar(f)AB)

after setting D,5=0 in both the expectation and the variance.
The test statistic is compared against a Chi-Square distribution
with one degree of freedom.
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R2

Define a random variable X, to be 1 if the allele at the first
locus is A and 0 if the allele is a.

Define a random variable Xg to be 1 if the allele at the second
locus is B and O if the allele is b.

Then the correlation between these random variables is:
COV(XA* XB) DAB
r — — .
AR SVar(X)Var(Xp)  Fafulats

It is usually more common to consider the square:
: 2
2D
fAfafob 145

r

R2
*Has the same value however the alleles are labeled

Relationship between R? and the power of association studies

*Tests for LD: A natural test statistic to consider is the
contingency table test. Compute a test statistic using the
Observed haplotype fequencies and the Expected frequency if

there were no LD: L
XZ — Z (O'f ) bif)~
ij i

Under the null hypothesis of No LD, the statistic is
asymptotically x? distributed with 1 df. It turns out that

2 22
X =nr". ”




Is LD high or low?

+—=

A —
R2=|D’|=0

B S— N S -
——
R2~0 |D’|=1 R2=|D’|=1

D’ is problematic to interpret with rare alleles.

“perfect LD”
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“Perfect LD”

AB
Ab
aB
ab

98%
0%
0%
2%

D=P(AB)-P(A)P(B)=.98-(.98)(.98)= 0.0196
Maximum value for these allele frequencies:
min(.98 - .02, .02 - .98)= 0.0196

D'=1

R2 = (0.0196)2/[(.98)(.98)(.02)(.02)]=1

(This is sometimes called “perfect LD”: two alleles at two loci have the

same allele frequency and don’t ever “separate”.)
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)

when D’ and R? “disagree’
[ buiote | ey |

AB 90%
Ab 5%
aB 5%
ab 0%

D=P(AB)-P(A)P(B)=.9-(.95)(.95)= -0.0025

Maximum value for these allele frequencies:

max(-.95 - .95, -0.05 - .05)=max(-.9025, -.0025)=-.0025
D’=1

(When D’=1 then at least one haplotype doesn'’t exist in the data.)

R2 = (-0.0025)2/[(.95)(.95)(.05)(.05)]=0.0028
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How are allelic associations generated?

* Genetic drift: In a finite population, the gene pool of
one generation can be regarded as a random sample of
the gene pool of the previous generation. As such,
allele and haplotypes frequencies are subject to
sampling variation — random chance. The smaller the
population is, the larger the effects of genetic drift are.

* Mutation: If a new mutation appears in a population,
alleles at loci linked with the mutant allele will
maintain an association for many generations. The
association lasts longer when linkage is greater (that is,
the recombination fraction is much smaller than % -
very close to 0).




How are allelic associations generated?

*Founder effects: Applies to a population that has grown
rapidly from a small group of ancestors. For example,
the 5,000,000 Finns mostly descended from about 1000
people who lived about 2000 years ago. Such a
population is prone to allelic disequilibrium.

*Selection: When an individual’s genotype influences
his/her reproductive fithess. For example, if two alleles
interact to decrease reproductive fitness, the alleles will
tend to be negatively associated.

Stratification: Some populations consist of two or more
subgroups that, for cultural or other reasons, have
evolved more or less separately. Two loci that are in
linkage equilibrium for each subpopulation may be in
linkage disequilibrium for the larger population.
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Exercise 5
population stratification

Consider a population with three subpopulations.
Consider two biallelic loci, the first with alleles A and a;
the second with alleles B and b.

Aallele B allele AB
N frequency | frequency haplotype
frequency
1000 0.3 0.5 0.15
2000 0.2 0.4 0.08
10000 0.05 0.1 0.005




Exercise 5

Do any of three subpopulations show allelic association?

No.
0.15=0.3x0.5
0.08=0.2x0.4
0.005=0.05x0.1

Exercise 5

Does the larger population show allelic association?

A allele frequency:
[1000(0.3)+2000(0.2)+10000(0.05)]/13000=0.0923
B allele frequency:
[1000(0.5)+2000(0.4)+10000(0.1)]/13000=0.1770

The equilibrium frequency of AB is
(0.0923)(0.1770)=0.0163

AB haplotype frequency:
[1000(0.15)+2000(0.08)+10000(0.005)]/13000=0.0277
Thus they are positively associated in the larger
population.




How are allelic associations maintained?

* selection

* non-random mating (e.g., pop stratification)
* Linkage:

Consider again two loci A and B, with alleles

A, A, .. A, and B, B,, ... ,B, with frequencies

Py, Py - Py @nd qy, 45, ... ,0,in the population. The
haplotypes are A;B,, A;B,, ..., A B, with frequencies

00 RO
17 211t mn»
in generation 0. What is the frequency of haplotype AB,

in the next generation? In the following calculation we
assume random mating in the population.

m-—n’

h; = P(haplotype' = AB;)

= P(haplotype’ = A B, | no recombination)P(no recombination)
+P(haplotype' = A B, | recombination) P (recombination)

= P(haplotype’ = A B, | no recombination)(1-c)

+P(haplotype' = AB; | recombination)c

=hj(L-c)+ pajc

From this we can deduce that the difference in
haplotype frequency between the generations is:

hj —hi =c(pia; —hy)




When will this difference be 0? That is, when are
haplotype frequencies stable?

When c=0 or no LD.
We can also use this expression to characterize the

difference between the true haplotype frequency and
what the haplotype frequency would be under

equilibrium: . 0
hij —Pq; = (1_C)(hij - piqj)
Extending this to the k" generation, we get:

hé—pig; =@-c)*(h - pa;)
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Alternatively we can write:

D = (1-c)Dg

kK _ kO
Dy =(1—-¢)* Dy

The figure on the next slide shows the decline of linkage
disequilibrium in a large, randomly-mating population for
several different values of ¢ (called theta in the figure).




1.0
0.6
08
6.7
0.8
0.5
0.4
0.3
0.2
0.1
0.0

Linkage disequilibrium

Figure 4.1
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Decay of linkage disequilibrium by generation.
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