
RETURN ON
INVESTMENT MODELS
FOR STATIC ANALYSIS TOOLS
KHALED EL EMAM

January 2003.

This report was sponsored by Klocwork Inc., http://www.klocwork.com/

Copyright © 2002-2003 Klocwork. All rights reserved.

- 2 -

Table of Contents
1 INTRODUCTION .. 3

1.1 CONCEPTS ... 3
1.2 PROJECT COSTS... 7
1.3 THE PAYOFF FROM COST REDUCTIONS ... 9
1.4 REDUCING REWORK COSTS... 10

1.4.1 Automatic Detection of Defects .. 14
1.4.2 Risk Management ... 14
1.4.3 Efficient Changes.. 15
1.4.4 Epilogue.. 15

2 CALCULATING RETURN ON INVESTMENT.. 16
2.1 EXAMPLE 1: AUTOMATED DEFECT DETECTION .. 16
2.2 EXAMPLE 2: IMPROVING MAINTENANCE EFFICIENCY... 19
2.3 EXAMPLE 3: RISK ASSESSMENT .. 20
2.4 EXAMPLE 4: HIGHER REUSE.. 23
2.5 PAYBACK PERIOD.. 23

3 CONCLUSIONS... 27

4 APPENDIX A: DEFINITIONS... 28

5 APPENDIX B: A METHODOLOGY FOR RISK MANAGEMENT USING METRICS........... 29

6 APPENDIX C: ROI MODELS FOR STATIC ANALYSIS ... 32
6.1 DEFINITIONS.. 32

6.1.1 Total Project Cost... 32
6.1.2 Defect Detection Costs ... 33
6.1.3 Defect Counts ... 34
6.1.4 Defect Detection Effort ... 35
6.1.5 Return on Investment Definitions ... 35

6.2 THE ROI MODEL... 38
6.2.1 Overall Model... 38
6.2.2 Defaults... 40
6.2.3 Illustration .. 41

6.3 EXAMPLE INSTANTIATIONS ... 42
6.3.1 Automated Defect Detection Model .. 42
6.3.2 Improved Maintenance Efficiency Model ... 43
6.3.3 Risk Assessment Model ... 44
6.3.4 Higher Reuse Model ... 45
6.3.5 Multiple Models.. 46

6.4 ASSUMPTIONS AND LIMITATIONS.. 46
6.5 INTERPRETING THE ROI VALUES .. 47

7 APPENDIX D: LITERATURE REVIEW ... 47
7.1 EFFECTIVENESS OF DEFECT DETECTION ACTIVITIES... 48
7.2 AVERAGE EFFORT PER DEFECT ... 50

8 AUTHOR BIOGRAPHY... 52

9 REFERENCES ... 53

- 3 -

1 Introduction
A recent study [33] published by the U.S. Department of Commerce
estimates that the economic consequences of inadequate software
quality management practices, namely testing, amount to more than $59
billion per year. This is an astounding number at a national level and
represents a nontrivial fraction of the GDP of the United States. For a
single software organization, estimates of rework (fixing defects and
bugs in software) can be as high as 80% of total development project
costs [35]. Any, even modest, improvements to the quality of software
can have significant financial impacts on individual organizations and on
the overall economy.

This report discusses in depth the economic impacts of static analysis as
one potential set of techniques to address quality deficiencies. Static
analysis1 is a set of tools and techniques for analyzing source code and
software designs. The outcome of a static analysis could be:

• Metrics that quantitatively characterize the structure of the
software

• Visual representations of the structure of the software (e.g., a
graph showing which modules communicate with each other)

• A list of potential defects in the software

The information that is gained from such a static analysis can be very
valuable for project managers and quality managers. The outputs of
static analysis can be used to guide actions that result in:

• A reduction in software project costs (i.e., an increase in
productivity)

• The delivery of higher quality software

• Reducing time to market (i.e., shorter delivery schedules)

The report will describe how static analysis can be used to achieve these
results, and how to calculate the Return-On-Investment (ROI) from using
static analysis tools and techniques. Examples are used to illustrate the
use of the models. The ROI models can be customized to suite the
particular life cycle of a project and their payback horizons. Our analysis
and examples illustrate that a combination of static analysis technologies
can save projects as much as 35-40% of their costs under rather modest
assumptions by eliminating rework.

1.1 Concepts
As a starting point, we will define more precisely what is meant by static
analysis tools and techniques. A static analysis involves the automated
evaluation of a system’s source code or design without actually
executing it2. It is applicable to both functional software as well as object-

1 There are other types of analyses that can be performed on a software system. One of these being a dynamic analysis.
Whereas a static analysis does not require the software to be executed to produce results, a dynamic anlaysis requires
the software to be executed and then information is extracted from the execution trace. We are only focused on static
analysis.
2 A design an be executed through a simulation, for example, the simulation of a state transition diagram or a state chart.

- 4 -

oriented software. The specific types of evaluations that are of interest
to us are the following:

• Metrics are collected from the code or design. These metrics
quantitatively characterize the size of the system, the coupling
among the system’s components, inheritance relationships
among classes in an object-oriented system, and cohesion within
functions and classes.

• Potential defects in the code are identified. For example, the use
of uninitialized variables or NULL pointers, functions returning
references to local objects, array bound violations, and incorrect
memory deallocation are all likely to lead to a failure in the
software. A static analysis tool builds abstract models of the
software and its behavior, and uses that to identify potential
defects.

• Static analysis tools can provide powerful visualization
capabilities. For large systems, the visualization can give a
concise picture of which parts of the system communicate with
eachother, where the bottlenecks are, which parts are more
complex than others. In addition, visualization tools allow
programmers and designers to see which parts of a system are
likely to be affected by a change in the code, and therefore can
be helpful for impact analysis.

Figure 1 shows the sequence of mechanisms that would lead to concrete
benefits from the use of static analysis.

Static analysis tools provide information to project managers, quality
managers, architects, and programmers. It is up to them to take actions
based on the information provided. Below are the types of actions that
can be taken:

• Automatic detection of defects. Once a static analysis tool has
identified all of the potential defects in a system, programmers
and architects then fix these defects. The major advantage of the
static analysis tools is that they save the programmers and
architects time by finding the defects for them: a considerable
amount of effort is typically spent during maintenance and testing
just tracing from symptoms to the actual defects. Compared to
other defect detection techniques, automatic detection is a large
saving.

• Risk management. The metrics collected during static analysis
can be used to identify the highest risk modules or components
in a system. Most defects in software are found in a small
percentage of the system’s modules. If these high-risk modules
are identified early then preventative actions can be taken by the
project. An example of a preventative action is to inspect those
high risk modules. A more detailed exposition of a risk
management approach is presented in the appendix.

• Efficient changes. Static analysis results can also help reduce
code change costs when fixing defects. A considerable amount
of effort is spent looking for the defects to fix when a failure is
discovered. This is called isolation effort. A software failure can
occur during testing or operation. A visualization tool can help
programmers see which modules are connected to each other,

- 5 -

and this can assist in navigating the software to where the defect
is. In addition to reducing isolation effort, a visualization tool can
help a programmer avoid bad fixes. These are code fixes that
introduce new defects. Bad fixes are typically due to the
programmer not realizing the module that has been changed is
being used by another module. When one module is changed
the other module breaks because now their behaviors are not
compatible. Visualization tools can be very powerful for doing an
impact analysis to identify the impact of a change.

• Discovery of structured code. The structure of long-lived
systems usually deteriorates over time. This deterioration is due
to all of the piecemeal changes that are made to the system
throughout its lifetime. These changes may be to fix defects or to
add new functionality. Badly structured systems are very
expensive to maintain (each change takes a long time), and also
have a higher risk of defects. At some point the organization may
wish to rewrite the system to improve its structure. However,
rather than rewriting the whole system it would be prudent to
salvage parts of the existing system that are well structured. A
visualization tool can assist the architects in identifying parts of
the legacy system that can be reused in the new system Such
reuse can reduce the overall cost of the new development.

There are also cases where an existing system needs to be
customized for multiple new clients. A visualization tool can
identify the parts of that system that can be reused easily for
each of these customizations. To the extent that the
customizations can maximize reuse, their development costs can
be a fraction of what it would have cost to develop the
functionality anew.

- 6 -

Use of static analysis
tools and techniques

Actions taken by
project

Increased
Reuse

Higher
Quality

Less
Rework

Higher Development
Productivity

Lower Project
Costs

Reduced
Schedules

Figure 1: Illustration of the sequence of mechanisms that will lead to reductions in cost and

schedule from a static analysis.

Depending on the actions that the project will take based on the static
analysis results, the consequence would be either that there is increased
reuse during development, the delivery of high quality software, or both.
Increased reuse will lead to higher productivity. Higher quality will lead to
lower rework.

- 7 -

It is not untypical that 50% or more of a project’s cost can be rework.
Rework means fixing defects. If the quality of the software is higher then
less effort will be spent on rework since fewer defects need to be fixed.

Higher development productivity and lower rework result in reduced
overall software project costs. And, lower total costs mean less effort by
the project staff, which translates into a reduction in overall project
schedule.

The above paragraphs have outlined the chain of causal events that
would lead to reduced cost and schedule for a software project that uses
static analysis. Of course, the specific benefits will depend on which
actions are taken by the project. For instance, if the organization does
not do nor does it plan on doing inspections, then there will be limited, if
any, benefits from the use metrics and risk assessment techniques.

1.2 Project Costs
To quantify the benefits of static analysis, it is informative to get an
understanding of software project costs.

construction
costs

Rework
costs

Rework
costs

fixed &
overhead

costs

defect detection
costs

general
availability

retirement

100% of project cost
Figure 2: A breakdown of software project costs.

Figure 2 shows a typical breakdown of software projects costs. Every
project has a fixed and overhead costs. These include things like rent,
furniture, and electricity bills. Construction costs consist of the effort
associated with the actual software development activities, such as
requirements analysis, design and coding. Defect detection costs are the
effort to look for defects introduced during construction. Defect detection
includes activities such as inspections (peer reviews), testing, and root
cause analysis. Rework costs are all costs to fix defects. There are
rework costs pre-release (before general availability), and rework costs
post-release. Pre-release rework is due to fixing defects found during
inspections and testing, as well as other defect detection activities before
the product is released. Post-release rework is due to fixing defects that

- 8 -

were detected largely by customers. Although, a minority of defects will
be found through internal testing even after a product is released. After a
product is released, further effort is spent adding new features and
porting the application. This breakdown covers the total life cycle of a
software product.

Rework costs can be further itemized as follows:

• The effort to recreate the problem. This is relevant mostly for
problems reported by users, where it can take some effort to first
find out what the user did and the user’s configuration, and then
additional effort to set up a similar configuration to recreate the
reported problem and confirm its existence.

• Trace from observed failure to the defect. This is relevant for
problems reported by customers and failures observed during
testing. It could take some time to trace from the symptoms that
are observed to the actual defects in the code that need to be
fixed. This tracing may be manual or can be aided by debuggers.

• Implement a fix. The fix for a particular failure may involve
making changes to multiple modules or components. It may
involve a redesign of part of the system which is no tlocalized.

• After the fix is made test cases have to be written to test for that
particular failure. The test case is to ensure that the fix is correct,
and the test cases go into the regression test suite. The
regression test suite ensures that the problem does not occur
again inadvertently due to future changes.

• The regression test suite is then rerun. Retesting may involve the
setup of special hardware or databases, and can be quite
expensive.

• Once the fix has passed regression testing, the change usually
has to be documented.

• The fix, alone or perhaps along with other fixes, are packaged
into an emergency release, a service release or a full release
and shipped to the appropriate customers. If the product has not
been released yet, then special packaging costs for the fix will
not be incurred.

The first two bullets constitute what is known as isolation effort when
making a change.

Static analysis can lower project costs, as depicted in Figure 1, in one of
two ways:

• Reductions in the construction costs and new feature costs. This
can be achieved through increased reuse instigated by static
analysis.

• Reductions in rework costs. Rework costs can be reduced in a
number of ways. Given the scope of this issue, it will be covered
in detail below (see Section 1.4).

The following table provides a mapping between the actions described
above and the types of cost reduction that would be expected from that
action.

- 9 -

 More Reuse Less Rework

Automatic detection of defects X

Risk management X

Efficient changes X

Discovery of structured code X

1.3 The Payoff from Cost Reductions
In this subsection we will present, at a conceptual level, how the payoff
from cost reductions comes about. First, let us consider the payoff from
reuse.

In Figure 3 we can see the breakdown of project costs without reuse and
the breakdown after reuse. It is expected that construction costs will
decrease. There will be an investment in the reuse effort itself. This
involves the effort to identify the code that should be reused, the
licensing costs of tools that are required to do so, and effort that may be
required to wrap and document interfaces. However, given that code is
being reused from scratch, the overall savings in construction result in an
overall reduction of project cost (i.e., overall project cost savings).

construction
costs

Rework
costs

Rework
costs

fixed &
overhead

costs

defect detection
costs

Rework
costs

Rework
costs

{

investment in
reuse

overall project
savings

before reuse

after reuse

Figure 3: Illustration of the payoff from increased reuse.

Figure 4 illustrates the payoff from techniques that reduce rework. Here
there is an initial investment in defect detection. Therefore defect
detection costs go up. Rework costs before and after release go down
considerably. Hence the pre- and post-release project cost would be
smaller than for the initial project.

- 10 -

construction
costs

Rework
costs

Rework
costs

fixed &
overhead

costs

defect detection
costs

{

investment in
rework reduction

overall project
savings

first project

second project construction
costs

Figure 4: Illustration of the payoff from better defect detection techniques.

When we evaluate ROI we essentially look at the tradeoff between the
amount that is invested versus the project savings.

1.4 Reducing Rework Costs
Rework, as the name suggests, involves doing work again. It describes
fixing defects in software projects. The cost of rework rises as one
moves into later phases of a project. Figure 5 illustrates this rise in the
cost of fixing defects. The figure assumes that the software had a design
defect. The cost of fixing the design defect during design is relatively low.
If the defect escapes into coding, then the costs escalate. If the defect
slips further into testing and later into release, and is found by the
customer, the correction costs can be considerable. Therefore, it is much
cheaper to find and correct defects as early as possible when their costs
are relatively low.

There are many examples in the literature of the increasing costs of
finding defects later in the life cycle. Khoshgoftaar [24] cites a case in a
telecommunications company where the cost of a post-release defect is
200 times larger than finding and fixing the defect pre-release. Another
telecommunications system project costs a post-release fix as high as
880 times more expensive than when done earlier in a project [3].
Further data from other domains show cost increases per defect greater
than 100 times from before to after release [35] for severe defects.

- 11 -

Point of Design
Defect Discovery

D
ef

ec
t D

et
ec

tio
n

an
d

C
or

re
ct

io
n

C
os

t

Des
ign Cod

e
Te

st

Cus
tom

er

Figure 5: The increasing costs of fixing a design defect.

- 12 -

Figure 6: The defect detection life cycle. Although there is only one testing phase shown, in practice there are many types of testing and testing is
performed over multiple phases.

- 13 -

To find defect as early as possible in the project, various defect detection
activities are employed. Figure 6 shows an example of a defect detection
life cycle. Here, both design and code defects are used to detect defects.
Detecting defects during inspections is much cheaper than detecting
them in testing or for them to be detected by the customer.

Defects in the requirements, architecture and design documents enter
the design inspection process. Effort is spent during the design
inspection to find and fix these defects. Some of the fixes will be bad and
will introduce more defects. The Bad Fix Ratio tells us how many of the
fixes that are made will introduce another defect. For example, if this is
50% then half of the fixes will not be done properly and will introduce
another defect.

A design inspection will not capture all defects, so there will be escapes.
The number of requirements and design defects detected during the
inspection will depend on how well the inspection process is optimized.
Escapes occur because there are certain types of defects that a design
inspection is not really capable of detecting, and even for those defects
that are targeted by the inspection, the inspection process rarely
achieves 100% perfection. An escaped design defect can propagate into
more than one coding defect. This is captured by the Propagation
Ratio. Usually this is due to an incorrect assumption that is made at the
design stage that leads to many instances of defects in the
implementation, for example, assumptions about the capabilities of an
external component.

Further defects will be added to the software during coding. Also, reused
code either from third parties as a component or from an earlier release
or project, will also have defects in it.

Code inspections behave, at the abstract, in a manner that is similar to
design inspections. After code inspections the escapes go through
testing. Note that there is no propagation ratio for code defects and no
new defects are introduced after testing except due to bad fixes.

Testing identifies failures that are documented as PRs (Problem
Reports). Programmers then trace from the PRs to defects and fix these.
Testing may introduce defects due to bad fixes. Defects that escape
testing go into the field where customers discover them. Customers
report failures that are documented as PRs, and these then make their
way to the development organization for fixing.

One of major drivers for pre-release defect detection effectiveness (i.e.,
how well these activities can find defects) is effort spent on defect
detection. The more effort spent on defect detection the more defects will
be found. The relationship is illustrated in Figure 7. The rate at which
defects are found tends to plateau because most easy defects are found
early and the harder defects remain. Harder defects require more effort
to find. In the case of inspections, inspector fatigue results in defect
detection slowing down after a certain period of time (around 2 hours of
time per inspector).

The implication is that there is a trade-off between spending large
amounts of effort detecting defects and having defects escape to the
customer. For some applications there is actually no trade-off, for
instance, for safety critical systems whatever effort is required to
eliminate detected field defects will be spent. But for most projects this is
a business decision. Similarly, if any of the defect detection activities is

- 14 -

skipped, then the escapes will increase and the number of defects
making it to the field will also increase.

Escapes from testing go to the customer. Post-release defects originate
primarily from PRs from external customers. External customer PRs are
driven largely by usage. But also, there are sometimes internal
customers who generate PRs, and testing of changes and fixes also
identify defects.

Effort Spent on Defect Detection

C
um

ul
at

iv
e

 D
is

co
ve

re
d

D
ef

ec
ts

Figure 7: Relationship between effort spent on pre-release defect detection activities and defects
found.

Now let us consider how the various actions we mentioned above will
influence the rework costs.

1.4.1 Automatic Detection of Defects
When defects are automatically detected through static analysis, then
this plays the same role as a design and code inspection. The
inspections also are intended to statically detect defects. However,
running a tool to detect this is less labor intensive and less costly. Once
a defect is detected, then it is fixed.

Compared to the inspections in Figure 6, automatic defect detection
essentially eliminates the defect detection costs. Therefore, the benefits
of automatic defect detection can be looked at in two ways:

• Benefits compared to not having any inspections.

• Benefits compared to having design and code inspections.

1.4.2 Risk Management
Instead of inspecting all of the code and design models, risk assessment
techniques would allow the project to inspect only the high risk modules
or components. In practice, it is very difficult to inspect all of the code.
Imagine if you were developing a 200,000 LOC system and had run
inspections with each inspection covering 200 LOC. Then we are talking
about almost 1000 inspections during a project. This number of
inspections would take a considerable amount of time and effort to

- 15 -

complete, and with today’s release cycles would likely be impossible to
accomplish. Most contemporary inspection implementations have a
meeting, and typically a meeting with three or five busy engineers can
only be scheduled a few weeks later. Imagine hundreds of meetings with
each incurring a delay of a few weeks before they can be held. Votta
provides a good discussion of this issue [37].

The benefit of risk management is then that it allows focused or targeted
design and code inspections. This benefit can be evaluated in
comparison with:

• The benefits of inspecting everything rather than focusing on the
high risk modules.

• Not performing any inspections.

1.4.3 Efficient Changes
Static analysis can reduce the isolation effort when making changes to
fix defects. As noted above, isolation effort can be nontrivial when fixing
testing and post-release defects. Another benefit of static analysis is that
it can reduce the bad fix ratio when making changes. The bad fix ratio
ensures that even if all known defects are fixed, we will not end up with a
defect-free product because the fixes introduced more defects. If bad
fixes are reduced then the total number of defects that have to be fixed
goes down. This has a direct impact on rework costs.

1.4.4 Epilogue
One important consideration when talking about rework costs is whether
we are considering pre-release rework costs or both pre- and post-
release rework costs. The benefits of practices such as inspections and
static analysis really become evident when post-release costs are taken
into account. The reason why post-release costs should be taken into
account is that these costs have a direct impact on time-to-profit.
Figure 8 illustrates the difference between time-to-market and time-to-
profit. The costs after a product is released determine the point at which
a product makes a profit. Therefore, good practices, such as inspections
and static analysis, during development can reduce post-release costs
and shorten the time-to-profit.

This point will be illustrated further through some of our case studies and
examples.

- 16 -

time

cu
m

ul
at

iv
e

co
st

pro
jec

t s
tar

t

pro
jec

t e
nd

time to market

time to profit

development
& support

revenue

fewer defects
found in the
field

Figure 8: Example illustrating the difference between time-to-market and time-to-profit.

2 Calculating Return on Investment
This section presents a number of examples of calculating ROI based on
the models that are articulated in the appendix. For each ROI model we
have to make some assumptions about the defect detection life cycle.
These assumptions will be stated for each of the models below.

2.1 Example 1: Automated Defect Detection
We assume a project that performs only testing before release.
Therefore some defects are detected during testing and the remaining
defects are found by customers. The ROI model was formulated as
shown below (this model takes advantage of default values):

()()()
ˆ0.55ˆ 0.5

ˆˆ ˆ6 1 0.9
Auto

Auto
Test Customer Test

ROI p
p p

ε
ε

 
 ′= × −
 ′+ − × 

The following are the input variables required and the values for our
example:

- 17 -

Notation Meaning Value

ˆ Autop′ The effectiveness of automatic detection of
defects, taking into account bad fixes.

0.05

ˆAutoε The effort to find and correct a defect during
automatic detection

1 hr

ˆCustomerε The effort to find and correct a defect during post-
release

50 hrs

ˆTestp The effectiveness of testing. 0.5

C Total project cost $1 million

The above data assume that automatic detection will find only 5% of the
defects that are in the modules that are analyzed (a rather modest
assumption). The result is as follows:

Notation Meaning Value

ROI ROI expressed as project savings 2.4%

Savings The effort to find and correct a defect during post-
release

$24,000

The values would be different if we did not use the defaults for the
effectiveness and costs of testing.

Let us look at a number of scenarios. If the effectiveness of automatic
detection increases, the savings (percentage) would be as shown in
Figure 9. The figure shows that at the maximum potential benefit of 20%
effectiveness, the highest savings that one could expect under default
values is around 9.5% cost savings from the project ($95,000). This is
quite a large saving. Whether automatic detection can achieve as high
as a 20% effectiveness is an open question, however, but it does
illustrate potential.

- 18 -

0.02 0.04 0.06 0.08 0.10 0.12 0.14 0.16 0.18 0.20 0.22
Proportion of defects found

2

3

4

5

6

7

8

9

10

C
os

t S
av

in
gs

 (%
)

Figure 9: Graph showing the cost savings as a percentage as the effectiveness of automatic
defect detection increases from a minimum of 0.05 to 0.2. This means that the static analysis

finds from 5% to 20% of all the defects in the code.

An interesting observation can be made from Figure 10: at the values
used in the table above, it is very unlikely that the cost savings will
exceed 2.5% if the effectiveness of automatic defect detection is at 5%
(using the default values) as post-release costs rise. This means that the
benefit from automatic detection is applicable for projects with smaller
post-release costs and that projects with high post-release costs should
consider additional strategies to maximize savings. The reason is that
automatic defect detection has a low effectiveness. Therefore its benefits
will always be limited because as the cost of post-release defects
increase, savings from the limited effectiveness will always be a small
proportion of overall post-release costs.

We could not identify reliable data on the effectiveness of automatic
detection tools. This is partially because the effectiveness will depend on
the types of rules that are used to identify defects, and hence one could
expect wide variation. The value that is used in this example should
therefore be considered cautiously.

- 19 -

20 40 60 80 100 120 140 160
Cost of finding and fixing a defect post-release

2.34

2.36

2.38

2.40

2.42

2.44

2.46

2.48

C
os

t S
av

in
gs

 (%
)

Figure 10: Graph showing the cost savings as a percentage as the cost of a post-release defect

increases from 30 hours to 150 hours.

2.2 Example 2: Improving Maintenance Efficiency
We assume a project that performs only testing before release.
Therefore some defects are detected during testing and the remaining
defects are found by customers. The ROI model for maintenance
efficiency was formulated as shown below (this model takes advantage
of default values):

() ()()()()
() ()()()2

ˆˆ ˆ6 1 0.9
1 0.5

ˆˆ ˆ6 1 0.9
Test Customer Test

Test Customer Test

p p g
ROI

p p

ε

ε

 ′× + × − × ×
 = − ×
 ′× + × − ×
 

The following are the input variables required and the values for our
example:

Notation Meaning Value
g The increase in good fixes during maintenance. 1.1

ˆCustomerε The effort to find and correct a defect during post-
release

50 hrs

ˆTestp The effectiveness of testing. 0.5

C Total project cost $1 million

The above data assume that there will be a ten percent reduction in bad
fixes during maintenance with the help of a visualization and navigation
tool. The result is as follows:

- 20 -

Notation Meaning Value

ROI ROI expressed as project savings 3.69%

Savings The effort to find and correct a defect during post-
release

$36,900

The values would be different if we did not use the defaults for the
effectiveness and costs of testing. The plot in Figure 11 illustrates the
potential savings even as the post-release costs per defect reach as high
as 500 hours per defect. In general, we see that the savings tend to
plateau at around 4 percent. Of course, this model only uses the default
values for the remaining parameters, but it does clearly illustrate a
plateau effect.

0 100 200 300 400 500 600
Cost of a post-release defect (p-h)

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

4.0

4.5

C
os

t S
av

in
gs

 (%
)

Figure 11: Graph showing the percentage cost savings from improvements due to reductions in

bad fixes during testing and maintenance.

2.3 Example 3: Risk Assessment
We assume a project that performs only testing before release.
Therefore some defects are detected during testing and the remaining
defects are found by customers. Using the risk assessment methodology
described earlier, code inspections are introduced. However, rather than
inspecting all of the code, only the highest risk modules of the system
are inspected. The ROI model for risk assessment was formulated as
shown below (this model takes advantage of default values):

- 21 -

()
()()

ˆˆ ˆ4.86 0.9 0.81 1.5
ˆˆ ˆ2 6 1 0.9

Code Inspection Test Customer Test

Test Test Customer Test

p p
ROI

p p
λ ε

α ε

 ′+ − −
= ×  ′× + − 

The following are the input variables required and the values for our
example:

Notation Meaning Value

Code Inspection

Test

λ
α

The proportion of defects in the modules that
were chosen for inspection.

0.6

ˆCustomerε The effort to find and correct a defect during
post-release

50 hrs

ˆTestp The effectiveness of testing. 0.5

C Total project cost $1 million

The above data assume that the risk assessment approach has
identified the high-risk modules with 60% of the total defects, and that
only these would go for inspection. There is considerable evidence
showing that a large percentage of defects reside in a small proportion of
the modules across a wide variety of systems [12, 22, 29, 31], however
the exact percentages do vary. In the telecommunications sector, for
example, it has been noted that only 10% of modules changed from one
release to another contributed to post-release defects on one system;
that 80% of the defects came from 20% of the modules based on data
from Nortel switches, and that 20% of the modules contain about 40% to
80% of the defects at Alcatel [35]. During the development of the
Rational Rose tool, it was found that 77% of source code defects were in
subsystems that account for only 21% of the code [38]. During the
development of the DOS operating system at IBM it was found that 21%
of the modules that had more than one defect accounted for 78% of the
total defects [19]. In another IBM operating system, it was noted that
47% of the post-release defects were associated with only 4% of the
modules [30]. The 60% default errs on the conservative side of the
published examples. The result is as follows:

Notation Meaning Value

ROI ROI expressed as project savings 25.26%

Savings The effort to find and correct a defect during post-
release

$252,590

Figure 12 attempts to provide a more general overview of the benefits.
The cost savings can be quite dramatic even under most risk
assessment results.

An interesting observation can be made from Figure 13 in that up to 50%
of the total project costs can be saved if the post-release costs go higher
under the assumption that risk assessment techniques recommend the
highest-risk modules for inspection.

- 22 -

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0
Proportion of defects in inspected modules

0

5

10

15

20

25

30

35

40

C
os

t S
av

in
gs

 (%
)

Figure 12: Plot showing the cost savings as the proportion of defects in the inspected modules
increases. For example, if say 50% of the defects are in the inspected modules then more than

20% of the project costs would be saved.

0 20 40 60 80 100 120 140 160
Cost of a post-release defect (p-h)

20

21

22

23

24

25

26

27

C
os

t S
av

in
gs

 ($
)

Figure 13: The cost savings vs. the post-release costs per defect increase. Here we assume that
risk assessment techniques will result in modules containing 60% of the defects being inspected.

- 23 -

It should be noted that if the risk assessment results are used to drive
design inspections, the savings can be even larger.

2.4 Example 4: Higher Reuse
We assume that a system is being re-architected, and that a visualization
tool is being used to identify well structured parts of the system with
coherent functionality that can be reused. The ROI model for reuse was
formulated as shown below (this model takes advantage of default
values):

0.8RLOCROI
TLOC C

κ  = × −    

The following are the input variables required and the values for our
example:

Notation Meaning Value

RLOC
TLOC

The proportion of the system that is reused. 0.1

C
κ

The proportion of total development budget spent
on discovering code that should be reused.

0.05

C Total project cost $1 million

The above data assume that only 10% of the system (by code) will be
reused, and to identify this 10%, 5% of the total budget is spent. The
result is as follows:

Notation Meaning Value

ROI ROI expressed as project savings 3%

Savings The effort to find and correct a defect during post-
release

$30,000

The benefits of reuse technology will depend strongly on the amount of
reuse that can be achieved. For example, if a new system is a
customization of en existing one, then a majority of the previous system
can be reused. One can also conceive of situations where visualization
tools can help identify modules that should not be reused and developed
from scratch.

2.5 Payback Period
When calculating ROI, it is important to understand how long the
payback period is going to be. In this section we will explain the
relationship between payback period and the ROI models that we have
presented.

Conceptually, the relationships among payback, time, and a project’s
lifetime are shown in Figure 14. Payback is defined in terms of realizing
the savings that are calculated according to our ROI models. Some of
these savings would be realized before a product is released, and some
would be realized only post-release. All the savings will be realized at the

- 24 -

end of the payback period, which can be at product release or any period
afterwards.

For static analysis techniques that improve reuse, the payback period, as
defined in the models here, ends at product release. This is illustrated in
Figure 15.

pe
rc

en
ta

ge
 o

f s
av

in
gs

 re
al

iz
ed

100%

time

project
start

product
release

end of
payback
period

Figure 14: The relationship between payback in terms of savings and the passing of time as this
relates to the lifetime of a software project. This pisture applies to static analysis techniques that

reduce rework.

- 25 -

pe
rc

en
ta

ge
 o

f s
av

in
gs

 re
al

iz
ed

100%

time

project
start

product
release

end of
payback
period

Figure 15: The relationship between payback in terms of savings and the passing of time as this
relates to the lifetime of a software project. This pisture applies to static analysis techniques that
increase reuse.

The end of the payback period is defined implicitly in the ROI models.
There are three parameters that determine the payback period:

• The total cost of the project. If we define a project with say a 6
month post-release period, then this will have a lower overall
cost than a project with a 12 month post-release period.
Therefore, the total project cost that is used to convert the
percentage savings to a dollar value reflects the project duration.

• The assumption is made implicitly in these models that the post-
release activity will find all of the defects that escape.
Therefore, the effectiveness of the post-release defect detection
activity is taken to be one. This would be the case if the post-
release period continued indefinitely. However, in practice, the
post-release period will be limited, and would vary depending on
how long the payback period is defined.

The relationship between usage of a software product and defect
discovery is shown in Figure 16. The effectiveness of the post-
release defect detection activity will depend on how long a
product is in the field. If the payback period only includes say the
first month after release, then the effectiveness of post-release
defect detection will be small comparted to a an accounting of six
months of post-release time.

- 26 -

Total Usage

C
um

ul
at

iv
e

 D
is

co
ve

re
d

D
ef

ec
ts

Figure 16: The relationship between defect discovery and the amount of usage that a product
receives. Usage is determined by time (how long a product is in the field), and the number of

users and installations.

The following new calculations explicitly consider the
effectiveness of post-release activities. This is defined as:
ˆCustomerp′ . First is the automated defect detection model:

() ()()
3 4 5

2
ˆˆ 1

ˆ ˆˆ ˆ ˆ1 1
Auto

Auto
Test Test Customer Customer Test

C C CROI p
Cp p p

ε
β ε ε

  + +′= × − ×  ′ ′ ′− + − 

Second is a new version of the maintenance efficiency model:

() ()()()
() ()()

3 4 5
2

ˆ ˆˆ ˆ ˆ1
1

ˆ ˆˆ ˆ ˆ1
Test Test Customer Customer Test

Test Test Customer Customer Test

p p g p g C C CROI
Cp p p

ε ε

ε ε

 ′ ′ ′× + × × − × + + = − ×
′ ′ ′ × + × − 

The final model is for risk assessment:

() ()()
()

3 4 5
2

ˆ ˆ ˆˆ ˆ ˆ1 1 1
ˆ ˆˆ ˆ ˆ1

Code Inspection Test Test Customer Customer Test Code Inspection

Test Test Test Customer Customer Test

p p p C C CROI
p p p C

λ ε β ε β ε
α ε ε

′ ′ ′ ′ − + − − − + +
= × ×  ′ ′ ′+ − 

The reuse model is not affected by this because its scope is
limited to development.

• The final factor that defines the payback period is the cost of
finding and fixing a defect post-release. However, it is
reasonable to assume that this will not change dramatically over

- 27 -

time after a product is released, and thus can be considered to
be invariant.3

The logic for determining the effectiveness of post-release activities at
various points in time (i.e., for different payback periods) can be
illustrated through an example. Let’s say that, based on historical data,
the lifetime of a product is five years, and that 80% of the post-release
defects are found in the first year after release. If we want the payback
period to be product development plus one year post-release, then the
effectiveness of post-release activities is 0.8 rather than 1. We would
then use the new equations above to compute ROI with the value of
ˆCustomerp′ included.

3 Conclusions
This report formulated in detail a number of Return-on-Investment
models for different static analysis techniques. The models were
instantiated and illustrated for each of the techniques. Default values
based on an extensive literature review were used to demonstrate how
the models can be used to make the business case for static analysis.

A series of basic conclusions become evident from this exposition:

• It is possible to formulate strongly justifiable ROI models for
static analysis techniques.

• The ROI from static analysis techniques that support risk
assessment can have a dramatic impact on project costs, with
savings as high as 25% of project costs under modest
assumptions.

• Combining multiple static analysis approaches on a single
project can reduce overall project costs by up to 40% under
rather modest assumptions.

• The ROI from techniques that automatically detect defects and
that reduce bad fixes are modest. However, for large projects a
few percentage points savings can still be a large amount of
money, and therefore these should not be dismissed.

• The ROI from static analysis techniques that can help identify
reusable code are also modest, but may be worthwhile under
some circumstances (e.g., the code to be reused is modular but
very complex).

In summary, the biggest benefit can be gained from focused risk
assessment techniques. These use metrics to find the highest risk
modules in a system and inspection effort is targeted at these modules.
For most large systems, inspecting all of the code is not a realistic
option. Risk assessment provides a pragmatic solution to this with
significant rewards.

Automatic defect detection and reductions in the cost of changes can
also shave additional percentage points off software projects, and should
be seriously considered for large projects.

3 After release, costs are expected to be high due to rediscoveries. This results in many duplicate problem reports being
opened by customers. However, rediscoveries, if they can be detected before they make it to the development
organization, will not influence find and fix costs.

- 28 -

The benefits of static analysis for reuse will depend strongly on how
much of a system can be reused. But, there is certainly the potential for
large savings there as well.

4 Appendix A: Definitions
The following are definitions of terms that and explanations of concepts
that are used throughout this report.

A failure is an incorrect result produced by the software. It may be
incorrect according to a requirement specification, a design, or because
it does not meet customer expectations. A failure may be functional (i.e.,
the software does not implement a feature properly) or a failure in
performance (e.g., the software is too slow). Failures can only occur in
executable software.4

A failure is caused by one or more faults or defects. We use these two
terms interchangeably throughout.

Of course, a failure may be caused by multiple faults, not just one.
However, a fault does not guarantee that a failure will occur. For
instance, some faults are never discovered. Some faults are minor and
never result in a visible failure (e.g., efficiency or problems with the tenth
most significant digit). Some faults never manifest themselves because
that part of the code is never executed (e.g., code that deals with a very
rare condition).

Some failure occur but are not observed. For example, on some aircraft
there are multiple computers running in parallel with each one having
independently produced software. A failure may occur in one of the
computers, but this does not result in an overall system failure because
the other computers produce the correct result.

A fault is an incorrect step, process, or data in the software. When say a
programmer fixes a piece of software, s/he is fixing defects. We cannot
really count the true number of defects in the software because some
defects may never be discovered. We can only count discovered defects.
Therefore, to count defects we usually count the number of fixes.

An error is a human action that causes a defect to be inserted in the
software. A single error may lead to many defects being inserted in the
software. Understanding errors is important because if the frequency of a
certain type of error can be reduced then the number of defects
prevented can be substantial.

Once software is released, either to customers internal or external to the
organization, then Problem Reports (PR) may be opened. A PR is a
description of a failure. Different organizations will use alternative
terminology, but almost all software organizations will have a problem
reporting process. A problem report reflects a single instance of a
perceived failure. This means that a problem report may not necessarily
be a true failure. If there are many customers, then there may be many
problem reports describing the same failure.

A rediscovery is when a someone identifies a problem report, failure, or
defect that has already been discovered before. For instance, assume

4 For some types of systems, a simulation environment may exist to simulate various parts of the design. In such a case
you may have a failure in the design.

- 29 -

that a customer report results in creating a problem report. If another
customer finds the same problem then this is a rediscovery. Similarly, if a
tester detects a failure that has already been detected by another tester,
then this is a rediscovery. Rediscoveries are expensive because effort is
spent in making the rediscovery and in deciding that the incident is a
rediscovery. For example, for problem reports a nontrivial amount of the
support organization's effort is spent matching problem reports to
determine if a new problem report is similar to a previous one.

When a defect is fixed, the fix itself may introduce one or more new
defects. This is called a bad fix. Depending on the schedule pressure,
the code structure, and the quality of the existing test suite, bad fixes
may actually be a major problem by themselves.

Module Defect Problem
Report Failure

1
n

n 1
n n

Figure 17: Basic Entity-Relationship model showing the relationship between failures, defects,
and modules.

In many organizations whenever a failure is observed (through testing or
from a customer) a Problem Report (PR) is opened. It is useful to
distinguish between a failure and a failure instance. Consider the
relationships in Figure 17. This shows that each failure instance may be
associated with only a single PR, but that a PR can be associated with
multiple failure instances. Multiple failure instances may be the same
failure, but detected by multiple users, and hence they would all be
matched to a single PR. For example, if the program cannot open files
with long file names. This is a problem that may be experienced by
multiple users and so there will be multiple failure instances. A single
problem report would be opened for all of these failure instances
explaining that the program cannot save files with long names. This
single PR may have many rediscoveries associated with it.

A defect occurs in a single module, and each module may have multiple
defects. A PR can be associated with multiple defects, possibly in the
same module or across multiple modules.

5 Appendix B: A Methodology for Risk Management Using
Metrics

Static metrics collected during a software project can be used to identify
high-risk modules or components. This section describes a methodology
that employs metrics to identify such high-risk modules.

An illustration of this methodology is given in Figure 18. The first step is
to collect the static metrics from an earlier release. These metrics are
then used as the basis for risk assessment in current and future
releases.

- 30 -

Figure 18: Overview of the risk assessment methodology.

To perform risk assessment using metrics it is necessary to build a risk
model. Figure 18 illustrates where the risk model fits into the risk
assessment process. A risk model is a statistical model that can be used
to predict the probability that a module will have a post-release defect.
As shown in the figure, one typically uses historical data to build such a
model. The historical data may come from a previous release of the
same product or even from another similar product within the same
organization. The size, previous defects (say testing defects), and

- 31 -

coupling metrics are collected from that earlier release, as well as data
on the incidence of post-release defects (say within the first 6-12 months
after release). Once this data is collected a risk model can be built.

A risk model is typically statistical model relating the metrics to the
probability of a defect. Although many different statistical modeling
techniques can be used, we have always obtained good results with a
technique called logistic regression, which is well suited to this kind of
modeling problem.

The risk model can then be used to predict the probability of a post-
release defect for the current and subsequent releases. In the example
in Figure 18 we assume that the risk model is built from release n and we
want to identify the high-risk modules for release n+1. Once the risk
model is built from the release n data, the same metrics are collected
from release n+1. The release n+1 data excludes post-release defects
because we do not know that (if we did we would not need a risk model).
The new data is entered into the risk model which then comes out with
the predicted probability.

The probability is a number between 0 and 1. The modules are then
ranked by their predicted probability of a post-release defect, as shown
in Figure 18. The top x% are considered the highest risk modules.

The risk assessment approach so far does not take into account the
business importance of the modules. Some modules perform critical
functions for the software. If these modules have a defect then the whole
system will not function as expected. Even if the probability of a defect
for these critical modules is relatively small, it is still important to pay
attention to them. Similarly, some modules may have a high probability
of a post-release defect but they perform very auxiliary functions. So if
we have to make a choice, the low criticality modules would not be given
much attention.

Criticality is a business decision. In our practice we usually use a 1 to 10
scale to assign criticality to the modules. For large systems this is not
plausible. So use cases or requirements scenarios are assigned
criticality values. Use cases are frequently used to describe "features" or
a coherent set of functionality that the software is expected to perform.
Some of these use cases have a very high business value. The project
team would assign criticality values to the use cases on the 1 to 10
scale. Modules that implement highly critical scenarios are then
considered to be very critical. So we essentially trace from the business
requirements to the modules, see which modules implement the use
case, and assign the module the same criticality as the use case. Since
a single module may implement many use cases, some summary
measure such as the average criticality may be used for each module.
This process is much easier if a design tool is used to document use
cases.

Multiplying the probability of a post-release defect with the criticality for
each module gives the risk exposure. This is a summary measure that
can be used to rank modules. The big advantage of risk exposure is that
it captures the quality of the module as well as its business value.
Ranking by risk exposure is illustrated in Figure 18.

The top x% of the modules are then the high-risk modules. Depending
on the scenario you are in, these modules are then inspected, or tested
first.

- 32 -

One example of where this was applied is a project that was being
developed in Java and used UML design models. The project manager
wanted to start design inspections but he did not have the resources to
inspect everything. So a risk model was developed from a previous
release and was used to identify the high-risk classes for the current
release. The warranty cost savings for this strategy were calculated as
shown in Figure 19. Here we see that if the highest-risk 20% of the
classes were inspected, the warranty cost savings would be around
42%. This means that the warranty costs would be reduced by 42% of
what they would have been had no inspections been conducted.

Most Faulty x%

C
os

t S
av

in
gs

0.1 0.2 0.3 0.4 0.5

0.
30

0.
35

0.
40

Figure 19: Warranty cost savings as the number of classes inspected rises.

The above methodology works whether one is using object-oriented
techniques or structured techniques. It also works well irrespective of the
size of the project.

6 Appendix C: ROI Models for Static Analysis
This appendix describes the details of the ROI models that we use for
calculating ROI, as well as justifications for the choices made. We
consider ROI for a whole project, taking into account pre- and post-
release costs.

6.1 Definitions
6.1.1 Total Project Cost

Following our earlier breakdown of project costs, we define the individual
costs for a project as follows:

- 33 -

Cost Item Notation

Fixed & Overhead Costs
1C

Construction Costs
2C

Defect Detection Costs
3C

Pre-release Rework Costs
4C

Post-release Rework Costs
5C

New Feature Costs
6C

Total Life Cycle Costs
1 2 3 4 5 6C C C C C C C= + + + + +

All costs, except the fixed and overhead costs, are really made up of
effort (i.e., labor costs).

6.1.2 Defect Detection Costs
To formulate ROI properly, it is also necessary that we breakdown the
costs of defect detection activities. The following is the notation that we
will use to define the individual effort items for each instance of a defect
detection activity. For example, if we are talking about inspections, then
this is the effort for a single inspection.

A project will have multiple instances of a defect detection activity. For
instance, a project will have many code inspections. We use I to denote
a specific instance of the inspection.

Effort Definition Notation

Effort to find a defect
1,iE

Effort to isolate a defect
2,iE

Effort to fix a defect
3,iE

Effort to finalize a defect (retesting, documentation, and
packaging) 4,iE

Effort to find and fix a defect
, 1, 2, 3, 4,f i i i i iE E E E E= + + +

For specific defect detection activities, some of the above effort values
may be zero or very small. For instance, during a code inspection the
isolation effort would be close to zero since the inspection itself identifies
the exact location of the defect.

It is also necessary to consider the isolation effort separately when
considering defect detection effort. Let us say that out of the total
correction effort, ,f iE , a certain proportion is isolation effort. We will

denote this proportion as θ . Therefore, we can say that isolation effort is
given by:

- 34 -

2, ,i f iE Eθ= ×

The effort that Is not spent on isolation is given by ,(1) f iEθ− × . This will
become handy later on.

6.1.3 Defect Counts
An important definition when evaluating reduction in rework is of the
number of defects that exist in a document (e.g., a design or source
code) prior to any defect detection activity:

{ }, x is a defect that exists in thedocument prior todefect detectionf i xα =

This applies to a specific instance of a defect detection activity: instance
i. The total number of defects is therefore given by the size of this set:

,f iα .

The actual defect detection activity will also find a certain number of
defects. This is defined as:

{ }, x is a defect that was found in thedocument during defect detectionf i xλ =

This applies to a specific instance of a defect detection activity: instance
i . The total number of defects found is therefore given by the size of this
set: ,f iλ .

Two important measures that characterize the defect detection activity
need to be defined. The first is the effectiveness of defect detection. For
a single instance of a defect detection activity (instance i) this is given
by:

,
,

,

f i
f i

f i

p
λ

α
=

This gives the effectiveness for a single instance. Effectiveness is really
the fraction of defects in the document that were found. An effectiveness
of 0.5 means that half of the defects in the document were found during
defect detection. For example, it would give the effectiveness of a single
individual code inspection.

For all of the defect detection activities on a project (across all
instances), we take the average:

,

,

ˆ f i
f

f i

p
λ

α

 
 =
 
 

Therefore, where f = “code inspections”, then ˆcode inspectionsp is the
average effectiveness of all code inspections on the project.

- 35 -

6.1.4 Defect Detection Effort
The second important measure is the effort it takes to find and fix a
defect:

,
,

,

f i
f i

f i

E
ε

λ
=

This gives the effort per defect for a single instance i of the defect
detection activity. For example, if the value is 2 hours for a given code
inspection, then this means that it took two hours, on average, to find
and fix a single defect during the code inspection.

For all of the defect detection activities on a project, we take the average:

,

,

ˆ f i
f

f i

E
ε

λ

 
 =
 
 

Therefore, where f = “code inspections”, then ˆcode inspectionsε is the average
(find and fix) effort per defect of all code inspections on the project.

The above formulations do not take into account the possibility that some
of the fixes are bad fixes. We therefore have to account for the bad fix
ratio, β . Let’s say if β is 0.1, this means that 1 in 10 fixes are bad. The
proportion of correct fixes is given by 1 β− . Now we have the following
for effectiveness:

(),

,

ˆ 1f i
f

f i

p
λ

β
α

 
′  = −

 
 

And for the cost per defect we have:

,

,

1ˆ
1

f i
f

f i

E
ε

βλ

  ′  =    −  

This is effort per defect corrected for bad fixes. The more bad fixes the
higher the effort per defect, on average.

6.1.5 Return on Investment Definitions
There are a number of different models that can be used to evaluate ROI
for static analysis. We will explore two of them. The first is the most
common ROI model. We will show that this model is not appropriate
because it does not accurately account for the benefits of investments in
software projects. We subsequently present the second model which we
aregue is much more appropriate. The models here are presented at a
rather conceptual level. Later in this appendix we will formulate the
chosen ROI model precisely.

- 36 -

Investment
Project Cost

Savings

Cost
Initial CostCost After Investment

Figure 20: Definitions of ROI concepts.

Consider the diagram in Figure 20. The lower bar shows the cost of a
software project. The top bar shows the cost of an investment in the
project. The investment could be the use of static analysis techniques,
for example.

After the investment in the project, the project cost goes down. So now
the shaded area is the new project cost. The savings are marked in the
figure. The question is whether that investment was worth the savings ?

The most common ROI model, and that has been used more often than
not in software engineering, is shown below:

1
Costs Saved Cost ConsumedROI

Cost Consumed
−

=

This ROI model gives how much the savings gained from the project
were compared to the initial investment. Let us look at a couple of
examples to show how this model works.

Investment
Project Cost

Savings

Cost
1000900

10

Figure 21: Example of investment A.

- 37 -

Investment
Project Cost

Savings

Cost
1000400

60

Figure 22: Example of investment B.

Let us assume that we have a software project that costs 1000 units.
This is the total cost for the project, including 2 years of maintenance. In
Figure 21 we have an example of a specific investment. The investment
was of 10 units. The investment was in some techniques to improve the
processes and quality of the product. The benefits gained were a
reduction of the total project cost to 900 units. According to the traditional
ROI model, the ROI for this investment is:

1
100 10 9

10
ROI −

= =

Now consider the second project in Figure 22. If you perform the same
calculations for project B you will see that the ROI for project B is also 9.
However, the savings for project B were dramatic: 4 times more savings
than for project A. But the ROI is exactly the same. By most accounts,
one would much prefer to have a project B and the ROI should reflect
that.

Therefore, we do not use the traditional ROI calculations. Rather, we
formulate an alternative model that is based on Kusumoto’s work [26].
The model is given as follows:

2
Costs Saved Cost ConsumedROI

Original Cost
−

=

This ROI model tracks the benefits of investments very well. It is
interpreted as the overall project savings from the investment (i.e., how
much money is saved during the project from the investment). For
project A the ROI is then calculated as:

2
100 10 0.09

1000
ROI −

= =

This means that in project A, the investment only saved 9% of overall
project cost. Now for project B we have:

- 38 -

2
600 60 0.54

1000
ROI −

= =

Therefore, project B had a savings of 54% from its original cost.

To make this concrete, if the original project cost was $1 million. Then
after investment B of $60,000, the project would cost $600,000, a
$400,000 reduction.

Kusumoto’s basic model has been expanded and used to evaluate the
benefits of various software engineering technologies, such as
inspections and risk assessment [6, 7, 15]. In essence, this model has
received acceptance in the software engineering sceintific community as
a valid way to evaluate ROI.

6.2 The ROI Model
Below we start putting the whole ROI model together with all the
appropriate parameterizations to account for the benefits of static
analysis.

6.2.1 Overall Model
Reduced rework is due to defect detection activities. These can be
inspections, testing, and static analysis. We assume that there are n
consecutive defect detection activities, for example, design inspections,
code inspections, testing, and post-release. These will be numbered
sequentially from 1 to n .

Another factor that needs to be accounted for is reuse. We consider
reuse in the same manner: as a saving.

The savings would be given by:

()
()2 3 4 5

2

2

ˆˆ
1

n

t t t S S
t

n

j j
j

p
C C C RLOCROI RCR

C TLOC C

θ γ ε λ
κ

ϕ χ

=

=

  ′× × − ×   + +     = × + × − −      × 
 

∑

∑

where:

()

() ()

1
1

1
2

1 , 2

ˆ1 1 , 2
t

t
k

k

t

p t

λ β
γ

λ β
−

=

 × − =
=  ′× − × − >


∏

and:

()

1
1

1
2

ˆ , 2

ˆ ˆ1 , 2

j
j

j
j k

k

p j

p p j

α
χ

α
−

=

 × =
=  ′ ′× × − >


∏

and:

- 39 -

ˆ ,

ˆ ,

t

t

t

t n

t n

ε
θ

ε

≠=  ′ =

Which accounts for the fact that the last phase, phase n , will have a
higher cost because it finds all defects and must account for bad fixes
within that (i.e., the bad fixes do not introduce defects that are passed on
to the next phase). And similarly:

ˆ ,

ˆ ,

j

j
j

j n

j n

ε
ϕ

ε

≠=  ′ =

The ROI model has two terms. The first concerns the ROI from reducing
rework costs. The second term concerns productivity benefits from
reuse.

To complete the model, the following definitions are also required:

Notation Meaning

RLOC Lines of code that will be reused

RCR Relative Cost of Reuse

TLOC Total size of the system

These definition cover the second term related to reuse. In practice, all

that is needed is
RLOC
TLOC

 ratio, which is the proportion of the total

system that would be reused.

The ()ˆS Sε λ′ × term reflects the effort spent on the static analysis to

reduce rework effort. For example, if the static analysis was the
automated detection of defects, then this term is the effort to fix the
defects that were found.

The RCR value captures the notion that reuse is cheaper than
development from scratch. It quantifies the relative cost of reuse
compared to development. RCR is typically used when evaluating the
benefits of software reuse [32].

The κ value is the cost of doing the static analysis for reuse. It is

expressed as
C
κ

, which means we can express it as a proportion of the

total project budget.

If a particular investment does not result in reuse benefits, then the
second term would be zero since RLOC would be zero and κ would
also be zero.

The outcome of this ROI model is a proportion of the original cost of the
project (without static analysis) that would be saved if static analysis

- 40 -

techniques were used. For example, if the 2ROI value was 0.2, this
means that 20% of the project cost is saved. If the project cost was
estimated at $1 million, then the savings would be $200,000.

6.2.2 Defaults
Although the ROI model may seem overwhelming initially, it is actually
straightforward to use. The model does not require information that
would not normally be available to a project manager.

One initial set of simplifications are the defaults. Below we present a
series of defaults that can be used.

Since ROI is comparing the project without static analysis to the project
with static analysis, we will talk about the No Static Analysis project
(NSA) and the Static Analysis (SA) project for short.

The first default is for the expression:

3 4 5C C C
C

+ +

This actually is the proportion of total development effort that is rework. It
is well documented that over half, and in some instances approaching
90%, of total project effort is spent on testing (for a wide variety of
application domains) [4, 18, 21]. A large proportion of this testing effort is
spent on fixing defects that have been discovered. It is safe to assume
that in most NSA projects this is around 0.5 since rework related
activities typically account for about half of a project’s budget. One
published report notes that 44% of total development project costs is
rework [40]. Other data shows ranges of rework from 20% to as high as
80% [35].5 If we add to this the post-release costs, then 50% of total
costs being devoted to rework is a rather conservative value.

Another default concerns the effectiveness of inspections. A
comprehensive literature review (this is presented in the appendix in
Section 7) has found that the average effectiveness of design and code
inspections is 0.57 (i.e., inspections tend to find, on average, 57% of the
defects in the artifacts that are inspected). Thus, the value for:

,

,

ˆ 0.57f i
design inspection

f i

p
λ

α

 
 = =
 
 

and :

,

,

ˆ 0.57f i
code inspection

f i

p
λ

α

 
 = =
 
 

We use as the default for β the value 0.1 (i.e., about 1 in ten fixes
introduce new defects). Fagan [11] notes that 1 in six fixes in an
inspection introduces another defect. This number is likely larger for
testing and post-release since only symptoms are observed during these

5 The higher percentage being more typical in less mature (in the sense of teh CMM for Software) organizations.

- 41 -

stages of a project. We err on the conservative side by choosing a value
of 1 in ten fixes.

Again, based on a comprehensive review of published industrial data
(this is presented in the appendix in Section 7), we estimate that the
average effort to find and correct a defect during inspections is:

Effort per Defect Value

,

,

ˆ f i
f code inspection

f i

E
ε

λ=

 
 =
 
 

 1.5 hours

,

,

ˆ f i
f design inspection

f i

E
ε

λ=

 
 =
 
 

 1.5 hours

,

,

ˆ f i
f testing

f i

E
ε

λ=

 
 =
 
 

 6 hours

The RCR value indicates how much reuse costs as a proportion of new
development cost. This value is estimated to be around 0.2. This means
that reuse costs only 20% of new development costs, on average. This
value is obtained from [32].

6.2.3 Illustration
To help provide some context for this ROI model, we will look at some
examples.

Activity Number

Testing 1

Warranty / Customer 2

Let us consider a project that has two phases where defects are
detected: testing and post-release. We will denote these as phases 1
and 2. The phase numbers are used as indices in our model.

The cost of defect detection for this project is given by:

() ()()ˆ ˆˆ ˆ1

actual cost of testing

Test Test Test Customer Test Test

actual warranty cost

p pε α ε α′ ′× × + × × −
644474448

1444442444443

where Testα is the total number of defects that enter into testing. We
multiply this by the average cost of testing per defect and the
effectiveness of testing. This gives us the total testing cost.

- 42 -

For warranty costs, we first determine how many defects will escape
from testing. This is the ()ˆ1 Testp′− value. We multiply this by the
average cost of defect detection and correction per defect post-release.
We assume that after a product is released we will find the remaining
detectable defects. Hence, the effectiveness of post-release is one (i.e.,
all detectable defects will be found eventually).

Now let us consider the situation whereby we add code inspections to
this project. We wish to evaluate the savings that could potentially be
gained from introducing this new technique. We can define the project as
follows:

Activity Number

Inspections 1

Testing 2

Warranty / Customer 3

The ROI for introducing inspections in a testing only life cycle is given by:

()() () ()() ()ˆ ˆ ˆˆ ˆ1 1 1

cost savingsintesting frominspections cost savingsin warranty frominspections cost of

Test Test Inspection Customer Inspection Test Inspection Inspectionp pε λ β ε λ β ε λ′ ′ ′× × × − + × × − × − − ×
6444447444448 64444444744444448

() ()()

3 4 5

ˆ ˆˆ ˆ1

inspections

Test Test Test Customer Test Test

actual cost of testing and warranty without inspections

proportionof project
devoted torework

p p

C C C
C

ε α ε α′ ′× × + × × −

+ +
×

644474448

144444444424444444443

6447448

At the top we see the two elements of savings minus the cost of doing
the actual inspections. The denominator of the first term is the actual
cost of the project.

6.3 Example Instantiations
Depending on the type of static analysis performed and the nature of the
development process, the ROI model can be instantiated differently. In
this subsection we will look at specific instantiations.

6.3.1 Automated Defect Detection Model
The model presented below is useful when we want to evaluate the
benefits of automated detection of defects using static analysis, for
example, by identifying potential logic problems.

For the sake of this model, we will assume that the development process
only has testing and post-release as the main defect detection activities.
There are no code nor design inspections.

- 43 -

Automated defect detection will be implemented before testing. Defects
that are detected that way are corrected.

The ROI model in this case is then given by:

() ()()
3 4 5

2
ˆˆ 1

ˆ ˆˆ ˆ1 1
Auto

Auto
Test Test Customer Test

C C CROI p
Cp p

ε
β ε ε

  + +′= × − ×  ′ ′− + − 

where:

Notation Meaning

ˆ Autop′ The effectiveness of automatic detection of defects,
taking into account bad fixes.

Autoε The effort to find and correct a defect during automatic
detection

Testε The effort to find and correct a defect during testing

Customerε The effort to find and correct a defect during post-
release

ˆTestp′ The effectiveness of testing, taking into account bad
fixes. This can be given as (using default values):

()ˆ ˆ1 0.9Test Testp pβ× − = ×

ˆTestp The effectiveness of testing, without taking into
account bad fixes.

If we include some of our defaults, then we have a simplified model as
follows:

()()()2

ˆ0.55ˆ 0.5
ˆˆ ˆ6 1 0.9

Auto
Auto

Test Customer Test

ROI p
p p

ε
ε

 
 ′= × −
 ′+ − × 

6.3.2 Improved Maintenance Efficiency Model
This model assumes that static analysis will be used to perform an
impact analysis during changes to fix defects. The static analysis allows
a programmer to visualize the relationships among modules in a system
to see what would be affected by a change. This information can reduce
the inadvertent introduction of defects when making a change.

We will assume that the project has testing and post-release as the two
main activities for defect detection. Improvements in impact analysis will
result in a reduction in the number of bad fixes. Therefore, changes in
testing and post-release will have fewer bad fixes.

The logic of this model is that the cost of fixes does not change by this
type of static analysis technique. However, the effectiveness of testing
and post-release changes does increase. For instance, the effectiveness
of testing changes from:

- 44 -

ˆTestp′

to

ˆTestp g′ ×

where g is the increase in effectiveness due to a reduction in bad fixes.

We define the good fix ratio as ()1 β− , which is the proportion of fixes
that do not introduce defects. The g indicates how much this increases
using the impact analysis capabilities. For instance, if g is 1.1, this
means that the proportion of good fixes increases by 10%. The
proportion of good fixes after using static analysis is thus given by:

()1 gβ−

where:

() () ()
()

1 , 1 1
1

1 , 1 1
g g

g
g

β β
β

β
− − ≤− =  − >

Based on our default value for value of β , this imposes a pragmatic
maximum value or ceiling on g of 1.1.

The model itself is formulated as:

cost of not using visualization - cost of using visualization
cost of not using visualization

The final model then is expressed as:

() ()()()
() ()()

3 4 5
2

ˆ ˆˆ ˆ1
1

ˆ ˆˆ ˆ1
Test Test Customer Test

Test Test Customer Test

p p g C C CROI
Cp p

ε ε

ε ε

 ′ ′× + × − × + + = − ×
′ ′ × + × − 

If we wish to instantiate this model with default values, we get:

() ()()()()
() ()()()2

ˆˆ ˆ6 1 0.9
1 0.5

ˆˆ ˆ6 1 0.9
Test Customer Test

Test Customer Test

p p g
ROI

p p

ε

ε

 ′× + × − × ×
 = − ×
 ′× + × − ×
 

6.3.3 Risk Assessment Model
This model assumes that the organization will only inspect the highest
risk modules. We assume that the initial process consists of a testing
phase and post-release. Code inspections will be added for the highest
risk modules. The ROI model is then:

- 45 -

() ()()
()

3 4 5
2

ˆ ˆ ˆˆ ˆ1 1 1
ˆ ˆˆ ˆ1

Code Inspection Test Test Customer Test Code Inspection

Test Test Test Customer Test

p p C C CROI
p p C

λ ε β ε β ε
α ε ε

′ ′ ′ − + − − − + +
= × ×  ′ ′+ − 

The first term is essentially the proportion of defects that are in modules
that are inspected. These would be the high-risk modules. Determining
the can be based on a logistic function, such as that shown in Figure 23.

X

0.0

0.2

0.4

0.6

0.8

1.0

1.2

Y

Figure 23: An example of a logistic function. The x-axis would be in standard deviation units in
terms of some metrics, and the y-axis is the proportion of defects found. This s-shaped curve

models the relationship between metrics and the occurrence of defects.

If we wish to instantiate this model with default values, we get:

()
()()2

ˆˆ ˆ4.86 0.9 0.81 1.5
ˆˆ ˆ2 6 1 0.9

Code Inspection Test Customer Test

Test Test Customer Test

p p
ROI

p p
λ ε

α ε

 ′+ − −
= ×  ′× + − 

6.3.4 Higher Reuse Model
The higher reuse model is based directly on the ROI model as follows:

()2 1RLOCROI RCR
TLOC C

κ  = × − −    

If we wish to instantiate this model with default values, we get:

- 46 -

2 0.8RLOCROI
TLOC C

κ  = × −    

6.3.5 Multiple Models
It is possible to account for multiple types of static analyses. For the
types of analyses that reduce rework effort, in principle the savings can
just be added because all model instantiations that we derived have the
same denominator. The savings from reuse can also be added. For
example, if the savings from automated detection of defects and risk
assessment were 5% and 10%, then the total cost savings to the project
from combining these two would be 15%.

However, there is likely to be an overlap in savings between the
automatic defect detection techniques and the risk assessment
techniques. If both of these are applied on the same project, then they
have to applied sequentially. For example, an automated defect
detection tool is applied followed by focused inspections. Some of the
defects that would have been discovered by inspections would have
been discovered by the tool. Therefore, inspections would not
necessarily have the same ROI as when they are used without
automated detection. The simple sum of the ROI values from both will
therefore be exaggerated. To overcome this deficiency one would have
to know how many defects that are found through automated detection
would have been found through an inspection. If the assumption is made
that automated detection is just a more efficient way of finding the same
defects as inspections, then a simple modification of the ROI model to
put these two techniques in sequence would give the correct ROI.

6.4 Assumptions and Limitations
The above ROI models make a number of assumptions. While we
endeavoured to ensure that the models are as accurate as possible,
some assumptions were inevitable. These may be relaxed in future
revisions of the model.

It should be noted that all of the assumptions that we have made are
conservative. This means that they would result in a smaller estimate of
ROI rather than inflating it. Therefore, if a business case is attractive
under the current models, they would certainly be attractive when the
assumptions are relaxed.

The first assumption concerns the rework impacts of reuse. There is
evidence that reused code tends to be of higher quality than new code.
This is due to the code being used in multiple projects, and hence
receives more scrutiny (e.g., during inspections) and testing than new
code. The impact on ROI of that is a reduction in rework costs from
reuse. We did not account for a reduction in rework costs from reuse.
The assumption we make is that reuse would only increase the
productivity of the construction part of project costs. Should rework costs
be accounted for then the benefits of technologies that improve reuse
would be higher.

Poulin [32] also considers another benefit of reuse: Service Cost
Avoidance. This is the potential saving from not having to maintain
reused code. It is common that there is a different organization, group, or
project that is maintaining a reuse library. To the extent that a project that

- 47 -

reuses some of this code does not get involved in maintenance, then
these maintenance costs are saved. In our context we are looking at
reuse during a re-architecting phase. Therefore, the project that reuses
parts of the system would still have to maintain the reused code.
Consequently, we cannot really account for service cost reductions in our
context.

6.5 Interpreting the ROI Values
In this section we will explain how to interpret and use the ROI values
that are calculated.

First, it must be recognized that the ROI calculations, cost savings, and
project costs as presented in these spreadsheets are estimates.
Inevitably, there is some uncertainty in these estimates. The uncertainty
stems from the variables that are not accounted for in the models (there
are many other factors that influence project costs, but it is not possible
to account for all of these since the model would then be unusable).
Another source of uncertainty are the input values themselves. These
values are typically averages calculated from historical data; to the
extent that the future differs from the past these values will have some
error.

Another important point to note is that the calculated ROI values are for a
single project. A software organization will have multiple on-going and
new projects. The total benefit of implementing static techniques to the
organization can be calculated by generalizing the results to the
organization. For example, if the ROI for a single project is say a 15%
saving. Assuming that the input values are the same for other projects in
the organization, then we can generalize to the whole organization and
estimate that if static analysis is implemented on all projects in the
organization, the overall savings would be 15%. If the software budget
for all the projects is say $20 million, then that would translate into an
estimated saving of $3 million. Note that this is not an annual saving,
but a saving in total project budgets that may span multiple years (i.e.,
for the duration of the projects).

This saving does not account for the cost of acquiring any tools and the
cost of training nor consulting. These costs have to be deducted from the
savings. If you are implementing static analysis on a single project, then
these costs would have to be deducted from the single project savings. If
you are implementing static analysis in the whole organization, then
these costs will be spread across multiple projects. In such a case, these
costs would be deducted from the organizational savings (the calculation
of which is described above).

For example, let’s say that acquiring an enterprise license for a tool costs
$10,000 and that consulting fees are $10,000 for implementing some
static analysis technology across the whole organization. Taking our
organizational example from above, the net savings would then be
$2,980,000 rather than $3 million.

7 Appendix D: Literature Review
The following review of the literature is used to determine the default
values for our various ROI models. The default values are the average
from published articles.

- 48 -

The following criteria were used to deem an article appropriate for
inclusion in this average:

• There should be a clear indication that the published data are
based on actual projects rather than being mere opinions or a
rehashing of someone else’s numbers. There are many opinion
articles that were excluded.

• It should be clear what is being measured. For instance, if we
are looking at inspections, then it should be clear that
inspections actually took place and the data pertain to the
inspections.

• The unit of observation should be clear. For example, for
inspection data it should be stated whether the data pertain to all
inspections performed on a project or to a single inspection.

The exceptions to the above criteria were review articles that already
summarized evidence. In such a case quality judgement on the review
methodology was performed to decide whether the data from the review
should be included.

7.1 Effectiveness of Defect Detection Activities
In the following, the articles that give data on effectiveness are
discussed.

Fagan [10] presents data from a development project at Aetna Life and
Casualty, Hartford, Connecticut, USA. An application program of eight
modules (4439 noncommentary source statements) was written in Cobol
by two programmers. Design and code inspections were introduced into
the development process, the number of inspection participants ranged
between three and five. After 6 months of actual usage, 46 defects had
been detected during development and usage of the program. Fagan
reports that 38 defects had been detected by design and code
inspections together, yielding a defect detection effectiveness for
inspections of 82%. The remaining 8 defects had been found during unit
test and preparation for acceptance test.

In another article, Fagan [11] publishes data from a project at IBM
Respond, United Kingdom. A program of 6271 LOC in PL/1 was
developed by 7 programmers. Over the life cycle of the product, 93% of
all defects were detected by inspections. He also mentions two projects
of the Standard Bank of South Africa (143 KLOC) and American Express
(13 KLOC of system code), each with a defect detection effectiveness for
inspections of over 50% without using trained inspection moderators.

Weller [39] presents data from a project at Bull HN Information Systems
which replaced inefficient C code for a control microprocessor with Forth.
After system test had been completed, code inspection effectiveness
was around 70%.

Grady and van Slack [16] report on experiences from achieving
widespread inspection use at HP. In one of the company’s divisions
inspections (focusing on code) typically found 60 to 70% of the defects.

Shirey [34] states that defect detection effectiveness of inspections is
typically reported to range from 60 to 70%.

Barnard and Price [2] cite several references and report a defect
detection effectiveness for code inspections varying from 30 to 75%. In

- 49 -

their environment at AT&T Bell Laboratories, the authors achieved a
defect detection effectiveness for code inspections of more than 70%.

McGibbon [27] presents data from Cardiac Pacemakers Inc. where
inspections are used to improve the quality of life critical software. They
observed that inspections removed 70 to 90% of all faults detected
during development.

Collofello and Woodfield [8] evaluated reliability-assurance techniques in
a case study - a large real-time software project that consisted of about
700,000 lines of code developed by over 400 developers. The project
was performed over several years recording quality-assurance data for
design, coding, and testing. The respective defect detection
effectiveness are reported to be 54% for design inspections, 64% for
code inspections, and 38% for testing. Although the authors state that
testing efforts are normally identifiable as unit testing, integration testing,
and acceptance testing, they do not provide more detail on the testing
procedures in the project under examination.

Kitchenham et al. [25] report on experience at ICL, where 57.7% of
defects were found by software inspections. The total proportion of
development effort devoted to inspections was only 6%.

Gilb and Graham [14] include experience data from various sources in
their discussion of the benefits and costs of inspections. IBM Rochester
Labs publish values of 60% for source code inspections, 80% for
inspections of pseudocode, and 88% for inspections of module and
interface specifications.

Grady [17] performs a cost/benefit analysis for different techniques,
among them design and code inspections. He states that the average
percentage of defects found for design inspections is 55%, and 60% for
code inspections.

Jones [20] discusses defect-removal effectiveness in the context of
evaluating current practices in US industry. He gives approximate ranges
and averages of defect detection effectiveness for various activities.

Franz and Shih [13] present data from code inspection of a sales and
inventory tracking systems project at HP. This was a batch system
written in COBOL. Their data indicate that inspections had 19%
effectiveness for defects that could also be found during testing.

Meyer [28] performed an experiment to compare program testing to code
walkthroughs and inspections. The subjects were 59 highly experienced
data processing professionals testing and inspecting a PL/I program.
Myers reports an average effectiveness value of 0.38 for inspections.

To summarize this data, we assume that effectiveness follows a
triangular distribution. A triangular distribution has a maximum value, a
minimum value, and a most likely value [9]. When little is known about
the actual distribution of a variable, it is common to adopt a triangular
distribution [36].

The maximum value for the effectiveness of design inspections is
reported in [14] from IBM Rochester Labs. This was 0.84 (average for
two types of design document). The minimal value was reported by
Jones as 0.25 for informal design reviews [20]. The most likely value is
the mid-point of the data from [8] and the industry mean reported in [20],
which is 0.57.

- 50 -

For the minimum value of code inspection effectiveness, only the data
from [13] is used (0.19). The maximum value of 0.7 was obtained in [39].
For the most likely value, the data from [8, 14, 16, 20, 28] was used to
produce an average, which was 0.57.

7.2 Average Effort per Defect
In this section, the data on the average effort per defect for various
defect detection techniques (design inspections, code inspections,
testing) is summarized.

Ackerman et al. [1] present data on different projects as a sample of
values from the literature and from private reports. As the inspection
process is described in the article as a six-step process including rework
and follow-up, the data should mirror the cost of finding and fixing
defects.

The development group for a small warehouse-inventory system used
inspections on detailed design and code. For detailed design, they
reported 3.6 hours of individual preparation per thousand lines, 3.6 hours
of meeting time per thousand lines, 1.0 hours per defect found, and 4.8
hours per major defect found (major defects are those that will affect
execution). For code, the results were 7.9 hours of preparation per
thousand lines, 4.4 hours of meetings per thousand lines, and 1.2 hours
per defect found.

A major government-systems developer reported the following results
from inspection of more than 562,000 lines of detailed design and
249,000 lines of code: For detailed design, 5.76 hours of individual
preparation per thousand lines, 4.54 hours of meetings per thousand
lines, and 0.58 hours per defect found. For code, 4.91 hours of individual
preparation per thousand lines, 3.32 hours of meetings per thousand
lines, and 0.67 hours per defect found.

Two quality engineers from a major government-systems contractor
reported 3 to 5 staff-hours per major defect detected by inspections
showing a surprising consistency over different applications and
programming languages.

A banking computer-services firm found that it took 4.5 hours to eliminate
a defect by unit testing compared to 2.2 hours by inspection (probably
code inspections).

An operating-system development organization for a large mainframe
manufacturer reported that the average effort involved in finding a design
defect by inspections is 1.4 staff-hours compared to 8.5 staff-hours of
effort to find a defect by testing.

Weller [39] reports data from a project that performed a conversion of
1200 lines of C code to Fortran for several timing-critical routines. While
testing the rewritten code, it took 6 hours per failure. It was known from a
pilot project in the organization that they had been finding defects in
inspections at a cost of 1.43 hours per defect. Thus, the team stopped
testing and inspected the rewritten code detecting defects at a cost of
less than 1 hour per defect.

McGibbon [27] discussed software inspections and their return on
investment as one of four categories of software process improvements.
For modeling the effects of inspections, he uses a sample project of an
estimated size of 39.967 LOC. It is assumed that if the cost to fix a defect

- 51 -

during design is 1X, then fixing design defects during test is 10X and in
post-release is 100X. Thus, the rework effort per defect for different
phases is assumed to be 2.5 staff hours per defect for design
inspections, 2.5 staff hours for code inspections, 25 staff hours for
testing, and 250 staff hours for maintenance (customer-detected
defects).

Collofello and Woodfield [8] discuss a model for evaluating the efficiency
of defect detection. In order to conduct a quantitative analysis, they
needed to estimate some factors for which they had not enough data.
They performed a survey among many of the 400 members of a large
real-time software project who were asked to estimate the effort needed
to detect and correct a defect for different techniques. The results were
7.5 hours for a design error, 6.3 hours for a code error, both detected by
inspections, 11.6 hours for an error found during testing, and 13.5 hours
for an error discovered in the field.

Kitchenham et al. [25] report on experience at ICL where the cost of
finding a defect in design inspections was 1.58 hours.

Gilb and Graham [14] include experience data from various sources in
their discussion of the benefits and costs of inspections. A senior
software engineer describes how software inspections started at
Applicon. In the first year, 9 code inspections and 39 document
inspections (other documents than code) were conducted and an
average effort of 0.8 hours was spent to find and fix a major problem.
After the second year, a total of 63 code inspections and 100 document
inspections had been conducted and the average effort to find and fix a
major problem was 0.9 hours.

Bourgeois [5] reports experience from a large maintenance program
within Lockheed Martin Western Development Labs (LMWDL) where
software inspections replaced structured walk-throughs in a number of
projects. The analyzed program is staffed by more than 75 engineers
who maintain and enhance over 2 million lines of code. The average
effort for 23 conducted software inspections (6 participants) was 1.3
staff-hours per defect found and 2.7 staff-hours per defect found and
fixed. Bourgeois also presents data from Jet Propulsion Laboratory
which is used as an industry standard. There, the average effort for 171
software inspections (5 participants) was 1.1 staff-hours per defect found
and 1.4 to 1.8 staff-hours per defect found and fixed.

Franz and Shih’s data [13] indicate that the average effort per defect for
code inspections was 1 hour and for testing was 6 hours.

In presenting the results of analyzing inspections data at JPL, Kelly et al.
[23] report that it takes up to 17 hours to fix defects during formal testing,
based on a project at JPL. They also report approximately 1.75 hours to
find and fix defects during design inspections, and approximately 1.46
hours during code inspections.

Following the same logic as for effectiveness, we compute the average
values of effort per defect for the various defect detection activities.

Considering the average effort per defect for design inspections,
Ackerman et al. [1] provide the maximum value of 2.9 hours on average
per defect for different design documents on a project. The same article
also provides the minimum value obtained from another project. The
most likely value was the average of another project in [1], and [23, 25].
This was 1.58 hours.

- 52 -

Considering the average effort per defect for code inspections, the
maximum value for code inspections of 2.7 hours per defect was
reported in [5]. The minimal value was reported in []. The most likely
value was the mean of values reported in [1, 13, 23, 39], which was 1.46
hours.

Finally, for the average effort per defect for testing, the maximum value
of 17 was obtained from Kelly et al. based on a project at JPL [23]. The
minimum of 4.5 was obtained from Ackerman et al. [1]. The most likely
value was the mean for projects reported in [13, 39], and was computed
as 6 hours.

8 Author Biography
Khaled El Emam holds a number of positions in research and industry.
He is VP of Technology for TrialStat Corporation, which develops IT
solutions for clinical trials, and a Senior Research Officer at the National
Research Council of Canada where he is the technical lead of the
Software Quality Laboratory. In another capacity, Khaled supports
software organizations with their quality improvement initiatives through
training and consulting services. He is also a senior consultant with the
Cutter Consortium.

Khaled is co-editor of ISO's project to develop an international standard
defining the software measurement process (ISO/IEC 15939), and is
leading the software engineering process area in the IEEE's project to
define the Software Engineering Body of Knowledge. He has also co-
edited two books on the software process, both published by the IEEE
CS Press; and he is an adjunct professor at both the School of Computer
Science at McGill University and the Department of Computer Science at
the University of Quebec at Montreal. Currently, Khaled is a resident
affiliate at the Software Engineering Institute in Pittsburgh. In addition, he
is the current vice-president of the Ottawa Software Quality Association,
a professional NFP organization that promotes quality practices in
software organizations through seminars and certification. He is on the
editorial boards of IEEE Transactions on Software Engineering and the
Empirical Software Engineering Journal.

One of his recent assignments was with the project developing the on-
board flight software for the Space Shuttle, where he is working with the
QA team to develop new techniques to optimize the outcomes of
software inspections. This work has results in a substantial improvement
in the project's ability to target their defect detection efforts on the
modules most likely to contain faults. He has also developed and
applied a risk management methodology that helps managers focus on
the high risk areas of their systems and allocate resources efficiently.
The ROI from the application of the methodology varies from a 20% to
over 40% saving in warranty costs for delivered applications. Another
aspect of the methodology allows cost estimation and budgeting very
early in a project when information is minimal. This has been
demonstrated to have an accuracy as high as +/- 9% deviation from
actual costs. It also allows project managers to identify the elements in
their projects that have the biggest influence on costs, and estimate the
probability of meeting fixed budgets.

Previously, Khaled was the International Trials Coordinator for the
SPICE Trials, where he was leading the empirical evaluation of the

- 53 -

emerging process assessment International Standard, ISO/IEC 15504,
world-wide. This was a large effort to collect data and evaluate process
assessments. He was the head of the Quantitative Methods Group at the
Fraunhofer Institute for Experimental Software Engineering in Germany;
a research scientist at the Centre de recherche informatique de Montreal
(CRIM) in Canada; a researcher in the software engineering laboratory at
McGill University; and worked in a number of research and development
projects for organizations such as Toshiba International Company and
Honeywell Control Systems in the UK, and Yokogawa Electric in Japan.
Over the last ten years he has managed over half a dozen software
development projects.

He has received a number of awards from ISO, IEEE, the DoD, and in
2002 has been ranked second world-wide in a evaluation of Systems
and Software Scholars performed annually by the Journal of Systems
and Software (the evaluationm identifies the top 15 scholars in the
world).

Khaled El Emam obtained his Ph.D. from the Department of Electrical
and Electronics Engineering, King's College, the University of London
(UK) in 1994.

9 References
[1] A. F. Ackerman, L. S. Buchwald, and F. H. Lewski, "Software

Inspections: An Effective Verification Process". In IEEE Software,
vol. 6, No. 3, pp. 31-36, 1989.

[2] J. Barnard and A. Price, "Managing Code Inspection Information".
In IEEE Software, vol. 11, pp. 59-69, 1994.

[3] W. Baziuk, "BNR/Nortel Path to Improve Product Quality,
Reliability, and Customer Satisfaction". In Sixth International
Symposium on Software Reliability Engineering (ISSRE95), 1995.

[4] B. Beizer, Software Testing Techniques: International Thomson
Computer Press, 1990.

[5] K. Bourgeois, "Process Insights from a Large-Scale Software
Inspection Data Analysis". In Crosstalk: The Journal of Defense
Software Engineering, vol. 9, no. 10, pp. 17-23, 1996.

[6] L. Briand, K. El-Emam, O. Laitenberger, and T. Fussbroich, "Using
Simulation to Build Inspection Efficiency Benchmarks for
Development Projects". In Proceedings of the 20th International
Conference on Software Engineering, pp. 340-349, 1998.

[7] L. C. Briand, B. Freimut, and F. Vollei, "Assessing the Cost-
Effectiveness of Inspections by Combining Project Data and Expert
Opinion". In Technical Report-International Software Engineering
Research Network ISERN-99-14, 1999.

[8] J. Collofello and S. Woodfield, "Evaluating the Effectiveness of
Reliability-Assurance Techniques". In Journal of Systems and
Software, pp. 191-195, 1989.

- 54 -

[9] M. Evans, N. hastings, and B. Peacock, Statistical Distributions:
John Wiley & Sons, 1993.

[10] M. Fagan, "Design and Code Inspections to Reduce Errors in
Program Development". In IBM Systems, vol. 15, no. 3, pp. 182-
211, 1976.

[11] M. Fagan, "Advances in Software Inspections". In IEEE
Transactions on Software Engineering, vol. 12, no. 7, pp. 744-751,
1986.

[12] N. Fenton and N. Ohlsson, "Quantitative Analysis of Faults and
Failures in a Complex Software System". In IEEE Transactions on
Software Engineering, vol. 26, no. 8, pp. 797 -814, 2000.

[13] L. Franz and J. Shih, "Estimating the Value of Inspections and
Early Testing for Software Projects". In Hewlett-Packard Journal,
pp. 60-67, December 1994.

[14] T. Gilb and D. Graham, Software Inspection: Addison-Wesley
Publishing Company, 1993.

[15] D. Glasberg, K. El Emam, W. Melo, and N. Madhavji, "Validating
Object-oriented Design Metrics on a Commercial Java Application,"
Technical Report, National research Council of Canada, NRC/ERB-
1080 2000.

[16] R. Grady and T. V. Slack, "Key Lessons in Achieveing Widespread
Inspection Use". In IEEE Software, vol. 11, no. 4, pp. 46-57, 1994.

[17] R. B. Grady, Practical Software Metrics for Project Management
and Process Improvement: Englewood Cliffs, NJ, Prentice-Hall,
1992.

[18] B. Hailpern and P. Santhanam, "Software Debugiing, Testing, and
Verification". In IBM Systems Journal, vol. 41, no. 1, 2002.

[19] W. Humphrey, Managing the Software Process: Addison Wesley,
1989.

[20] C. Jones, "Software Defect Removal Efficiency". In IEEE
Computer, vol. 29, no. 4, pp. 94-95, 1991.

[21] C. Jones, Software Assessments, Benchmarks, and Best
Practices: Addison-Wesley, 2000.

[22] M. Kaaniche and K. Kanoun, "Reliability of a Commercial
Telecommunications System". In Proceedings of the International
Symposium on Software Reliability Engineering, pp. 207-212,
1996.

[23] J. C. Kelly, , J. S. Sheriff, and J. Hops, "An Analysis of Defect
Densities Found During Software Inspections". In Journal of
Systems Software, vol. 17, pp. 111-117, 1992.

- 55 -

[24] T. Khoshgoftaar, E. Allen, W. Jones, and J. Hudepohl, "Return on
Investment of Software Quality Predictions". In Proceedings of the
IEEE Workshop on Application-Specific Software Engineering
Technology, pp. 145 -150, 1998.

[25] B. Kitchenham, A. Kitchenham, and J. Fellows, "The Effects of
Inspections on Software Quality and Productivity". In ICL Technical
Journal, vol. 5, no. 1, pp. 112-122, 1986.

[26] S. Kusumoto, "Quantitative Evaluation of Software Reviews and
Testing Processes," PhD Thesis Thesis, Osaka University 1993.

[27] T. McGibbon, "A Business Case for Software Process
Improvement," Technical Report, A DACS State-of-the-Art Report
(www.dacs.com/techs/roi.soar/soar.html) 1996.

[28] G. Meyer, "A Controlled Experiment in Program Testing and Code
Walkthroughs/Inspections". In Communications of the ACM, vol.
21, no. 9, pp. 760-768, 1978.

[29] K.-H. Moller and D. Paulish, "An Empirical Investigation of Software
Fault Distribution". In Proceedings of the First International
Software Metrics Symposium, pp. 82-90, 1993.

[30] G. Myers, The Art of Software Testing: John Wiley & Sons, 1979.

[31] N. Ohlsson and H. Alberg, "Predicting Fault-Prone Software
Modules in Telephone Switches". In IEEE Transactions on
Software Engineering, vol. 22, no. 12, pp. 886-894, 1996.

[32] J. Poulin, Measuring Software Reuse: Principles, Practices, and
Economic Models: Addison-Wesley, 1997.

[33] RTI, "The Economic Impacts of Inadequate Infrastructure for
Software Testing," Technical Report, National Institute of
Standards and Technology 2002.

[34] G. Shirey, "How Inspections Fail". In Proceedings of the Ninth
International Conference on Testing Computer Software, pp. 151-
159, 1992.

[35] F. Shull, V. Basili, B. Boehm, A. W. Brown, P. Costa, M. Lindvall,
D. Port, I. Rus, R. Tesoriero, and M. Zelkowitz, "What We Have
Learned About Fighting Defects". In Proceedings of the Eighth
IEEE Symposium on SOftware Metrics, 2002.

[36] D. Vose, Quantitative Risk Analysis: A Guide to Monte Carlo
Simulation Modeling: John Wiley & Sons, 1996.

[37] L. Votta, "Does Every Inspection Need a Meeting ?". In ACM
Software Engineering Notes, vol. 18, no. 5, pp. 107-114, 1993.

[38] J. Walsh, "Preliminary Defect Data from the Iterative Development
of a Large C++ Program". In Proceedings of OOPSLA, pp. 178-
183, 1992.

- 56 -

[39] E. F. Weller, "Lessons from Three Years of Inspection Data". In
IEEE Software, vol. 10, no. 5, pp. 38-45, 1993.

[40] D. Wheeler, B. Brykczynski, and R. Meeson, "An Introduction to
Software Inspections," in Software Inspection: An Industry Best
Practice, D. Wheeler, B. Brykczynski, and R. Meeson (eds.): IEEE
Computer Society Press, 1996.

