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1 Introduction 
A recent study [33] published by the U.S. Department of Commerce 
estimates that the economic consequences of inadequate software 
quality management practices, namely testing, amount to more than $59 
billion per year. This is an astounding number at a national level and 
represents a nontrivial fraction of the GDP of the United States. For a 
single software organization, estimates of rework (fixing defects and 
bugs in software) can be as high as 80% of total development project 
costs [35]. Any, even modest, improvements to the quality of software 
can have significant financial impacts on individual organizations and on 
the overall economy. 

This report discusses in depth the economic impacts of static analysis as 
one potential set of techniques to address quality deficiencies. Static 
analysis1 is a set of tools and techniques for analyzing source code and 
software designs. The outcome of a static analysis could be: 

• Metrics that quantitatively characterize the structure of the 
software 

• Visual representations of the structure of the software (e.g., a 
graph showing which modules communicate with each other) 

• A list of potential defects in the software 

The information that is gained from such a static analysis can be very 
valuable for project managers and quality managers. The outputs of 
static analysis can be used to guide actions that result in: 

• A reduction in software project costs (i.e., an increase in 
productivity) 

• The delivery of higher quality software 

• Reducing time to market (i.e., shorter delivery schedules) 

The report will describe how static analysis can be used to achieve these 
results, and how to calculate the Return-On-Investment (ROI) from using 
static analysis tools and techniques. Examples are used to illustrate the 
use of the models. The ROI models can be customized to suite the 
particular life cycle of a project and their payback horizons. Our analysis 
and examples illustrate that a combination of static analysis technologies 
can save projects as much as 35-40% of their costs under rather modest 
assumptions by eliminating rework. 

1.1 Concepts 
As a starting point, we will define more precisely what is meant by static 
analysis tools and techniques. A static analysis involves the automated 
evaluation of a system’s source code or design without actually 
executing it2. It is applicable to both functional software as well as object-

                                                           
1 There are other types of analyses that can be performed on a software system. One of these being a dynamic analysis. 
Whereas a static analysis does not require the software to be executed to produce results, a dynamic anlaysis requires 
the software to be executed and then information is extracted from the execution trace. We are only focused on static 
analysis. 
2 A design an be executed through a simulation, for example, the simulation of a state transition diagram or a state chart. 
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oriented software. The specific types of evaluations that are of interest 
to us are the following: 

• Metrics are collected from the code or design. These metrics 
quantitatively characterize the size of the system, the coupling 
among the system’s components, inheritance relationships 
among classes in an object-oriented system, and cohesion within 
functions and classes. 

• Potential defects in the code are identified. For example, the use 
of uninitialized variables or NULL pointers, functions returning 
references to local objects, array bound violations, and incorrect 
memory deallocation are all likely to lead to a failure in the 
software. A static analysis tool builds abstract models of the 
software and its behavior, and uses that to identify potential 
defects. 

• Static analysis tools can provide powerful visualization 
capabilities. For large systems, the visualization can give a 
concise picture of which parts of the system communicate with 
eachother, where the bottlenecks are, which parts are more 
complex than others. In addition, visualization tools allow 
programmers and designers to see which parts of a system are 
likely to be affected by a change in the code, and therefore can 
be helpful for impact analysis. 

Figure 1 shows the sequence of mechanisms that would lead to concrete 
benefits from the use of static analysis.  

Static analysis tools provide information to project managers, quality 
managers, architects, and programmers. It is up to them to take actions 
based on the information provided. Below are the types of actions that 
can be taken: 

• Automatic detection of defects. Once a static analysis tool has 
identified all of the potential defects in a system, programmers 
and architects then fix these defects. The major advantage of the 
static analysis tools is that they save the programmers and 
architects time by finding the defects for them: a considerable 
amount of effort is typically spent during maintenance and testing 
just tracing from symptoms to the actual defects. Compared to 
other defect detection techniques, automatic detection is a large 
saving. 

• Risk management. The metrics collected during static analysis 
can be used to identify the highest risk modules or components 
in a system. Most defects in software are found in a small 
percentage of the system’s modules. If these high-risk modules 
are identified early then preventative actions can be taken by the 
project. An example of a preventative action is to inspect those 
high risk modules. A more detailed exposition of a risk 
management approach is presented in the appendix. 

• Efficient changes. Static analysis results can also help reduce 
code change costs when fixing defects. A considerable amount 
of effort is spent looking for the defects to fix when a failure is 
discovered. This is called isolation effort. A software failure can 
occur during testing or operation. A visualization tool can help 
programmers see which modules are connected to each other, 
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and this can assist in navigating the software to where the defect 
is. In addition to reducing isolation effort, a visualization tool can 
help a programmer avoid bad fixes. These are code fixes that 
introduce new defects. Bad fixes are typically due to the 
programmer not realizing the module that has been changed is 
being used by another module. When one module is changed 
the other module breaks because now their behaviors are not 
compatible. Visualization tools can be very powerful for doing an 
impact analysis to identify the impact of a change. 

• Discovery of structured code. The structure of long-lived 
systems usually deteriorates over time. This deterioration is due 
to all of the piecemeal changes that are made to the system 
throughout its lifetime. These changes may be to fix defects or to 
add new functionality. Badly structured systems are very 
expensive to maintain (each change takes a long time), and also 
have a higher risk of defects. At some point the organization may 
wish to rewrite the system to improve its structure. However, 
rather than rewriting the whole system it would be prudent to 
salvage parts of the existing system that are well structured. A 
visualization tool can assist the architects in identifying parts of 
the legacy system that can be reused in the new system Such 
reuse can reduce the overall cost of the new development. 

There are also cases where an existing system needs to be 
customized for multiple new clients. A visualization tool can 
identify the parts of that system that can be reused easily for 
each of these customizations. To the extent that the 
customizations can maximize reuse, their development costs can 
be a fraction of what it would have cost to develop the 
functionality anew. 
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Figure 1: Illustration of the sequence of mechanisms that will lead to reductions in cost and 

schedule from a static analysis. 

Depending on the actions that the project will take based on the static 
analysis results, the consequence would be either that there is increased 
reuse during development, the delivery of high quality software, or both. 
Increased reuse will lead to higher productivity. Higher quality will lead to 
lower rework.  
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It is not untypical that 50% or more of a project’s cost can be rework. 
Rework means fixing defects. If the quality of the software is higher then 
less effort will be spent on rework since fewer defects need to be fixed. 

Higher development productivity and lower rework result in reduced 
overall software project costs. And, lower total costs mean less effort by 
the project staff, which translates into a reduction in overall project 
schedule. 

The above paragraphs have outlined the chain of causal events that 
would lead to reduced cost and schedule for a software project that uses 
static analysis. Of course, the specific benefits will depend on which 
actions are taken by the project. For instance, if the organization does 
not do nor does it plan on doing inspections, then there will be limited, if 
any, benefits from the use metrics and risk assessment techniques. 

1.2 Project Costs 
To quantify the benefits of static analysis, it is informative to get an 
understanding of software project costs. 

 

construction
costs

Rework
costs

Rework
costs

fixed &
overhead

costs

defect detection
costs

general
availability

retirement

100% of project cost  
Figure 2: A breakdown of software project costs. 

Figure 2 shows a typical breakdown of software projects costs. Every 
project has a fixed and overhead costs. These include things like rent, 
furniture, and electricity bills. Construction costs consist of the effort 
associated with the actual software development activities, such as 
requirements analysis, design and coding. Defect detection costs are the 
effort to look for defects introduced during construction. Defect detection 
includes activities such as inspections (peer reviews), testing, and root 
cause analysis. Rework costs are all costs to fix defects. There are 
rework costs pre-release (before general availability), and rework costs 
post-release. Pre-release rework is due to fixing defects found during 
inspections and testing, as well as other defect detection activities before 
the product is released. Post-release rework is due to fixing defects that 
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were detected largely by customers. Although, a minority of defects will 
be found through internal testing even after a product is released. After a 
product is released, further effort is spent adding new features and 
porting the application. This breakdown covers the total life cycle of a 
software product. 

Rework costs can be further itemized as follows: 

• The effort to recreate the problem. This is relevant mostly for 
problems reported by users, where it can take some effort to first 
find out what the user did and the user’s configuration, and then 
additional effort to set up a similar configuration to recreate the 
reported problem and confirm its existence. 

• Trace from observed failure to the defect. This is relevant for 
problems reported by customers and failures observed during 
testing. It could take some time to trace from the symptoms that 
are observed to the actual defects in the code that need to be 
fixed. This tracing may be manual or can be aided by debuggers. 

• Implement a fix. The fix for a particular failure may involve 
making changes to multiple modules or components. It may 
involve a redesign of part of the system which is no tlocalized. 

• After the fix is made test cases have to be written to test for that 
particular failure. The test case is to ensure that the fix is correct, 
and the test cases go into the regression test suite. The 
regression test suite ensures that the problem does not occur 
again inadvertently due to future changes. 

• The regression test suite is then rerun. Retesting may involve the 
setup of special hardware or databases, and can be quite 
expensive. 

• Once the fix has passed regression testing, the change usually 
has to be documented. 

• The fix, alone or perhaps along with other fixes, are packaged 
into an emergency release, a service release or a full release 
and shipped to the appropriate customers. If the product has not 
been released yet, then special packaging costs for the fix will 
not be incurred. 

The first two bullets constitute what is known as isolation effort when 
making a change. 

Static analysis can lower project costs, as depicted in Figure 1, in one of 
two ways: 

• Reductions in the construction costs and new feature costs. This 
can be achieved through increased reuse instigated by static 
analysis. 

• Reductions in rework costs. Rework costs can be reduced in a 
number of ways. Given the scope of this issue, it will be covered 
in detail below (see Section 1.4). 

The following table provides a mapping between the actions described 
above and the types of cost reduction that would be expected from that 
action. 

 



- 9 - 

 More Reuse Less Rework 

Automatic detection of defects  X 

Risk management  X 

Efficient changes  X 

Discovery of structured code X  

1.3 The Payoff from Cost Reductions 
In this subsection we will present, at a conceptual level, how the payoff 
from cost reductions comes about. First, let us consider the payoff from 
reuse. 

In Figure 3 we can see the breakdown of project costs without reuse and 
the breakdown after reuse. It is expected that construction costs will 
decrease. There will be an investment in the reuse effort itself. This 
involves the effort to identify the code that should be reused, the 
licensing costs of tools that are required to do so, and effort that may be 
required to wrap and document interfaces. However, given that code is 
being reused from scratch, the overall savings in construction result in an 
overall reduction of project cost (i.e., overall project cost savings). 
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Figure 3: Illustration of the payoff from increased reuse. 

Figure 4 illustrates the payoff from techniques that reduce rework. Here 
there is an initial investment in defect detection. Therefore defect 
detection costs go up. Rework costs before and after release go down 
considerably. Hence the pre- and post-release project cost would be 
smaller than for the initial project. 
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Figure 4: Illustration of the payoff from better defect detection techniques. 

When we evaluate ROI we essentially look at the tradeoff between the 
amount that is invested versus the project savings.  

1.4 Reducing Rework Costs 
Rework, as the name suggests, involves doing work again. It describes 
fixing defects in software projects. The cost of rework rises as one 
moves into later phases of a project. Figure 5 illustrates this rise in the 
cost of fixing defects. The figure assumes that the software had a design 
defect. The cost of fixing the design defect during design is relatively low. 
If the defect escapes into coding, then the costs escalate. If the defect 
slips further into testing and later into release, and is found by the 
customer, the correction costs can be considerable. Therefore, it is much 
cheaper to find and correct defects as early as possible when their costs 
are relatively low. 

There are many examples in the literature of the increasing costs of 
finding defects later in the life cycle. Khoshgoftaar [24] cites a case in a 
telecommunications company where the cost of a post-release defect is 
200 times larger than finding and fixing the defect pre-release. Another 
telecommunications system project costs a post-release fix as high as 
880 times more expensive than when done earlier in a project [3]. 
Further data from other domains show cost increases per defect greater 
than 100 times from before to after release [35] for severe defects. 
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Figure 5: The increasing costs of fixing a design defect. 
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Figure 6: The defect detection life cycle. Although there is only one testing phase shown, in practice there are many types of testing and testing is 
performed over multiple phases. 
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To find defect as early as possible in the project, various defect detection 
activities are employed. Figure 6 shows an example of a defect detection 
life cycle. Here, both design and code defects are used to detect defects. 
Detecting defects during inspections is much cheaper than detecting 
them in testing or for them to be detected by the customer. 

Defects in the requirements, architecture and design documents enter 
the design inspection process. Effort is spent during the design 
inspection to find and fix these defects. Some of the fixes will be bad and 
will introduce more defects. The Bad Fix Ratio tells us how many of the 
fixes that are made will introduce another defect. For example, if this is 
50% then half of the fixes will not be done properly and will introduce 
another defect. 

A design inspection will not capture all defects, so there will be escapes. 
The number of requirements and design defects detected during the 
inspection will depend on how well the inspection process is optimized. 
Escapes occur because there are certain types of defects that a design 
inspection is not really capable of detecting, and even for those defects 
that are targeted by the inspection, the inspection process rarely 
achieves 100% perfection. An escaped design defect can propagate into 
more than one coding defect. This is captured by the Propagation 
Ratio. Usually this is due to an incorrect assumption that is made at the 
design stage that leads to many instances of defects in the 
implementation, for example, assumptions about the capabilities of an 
external component. 

Further defects will be added to the software during coding. Also, reused 
code either from third parties as a component or from an earlier release 
or project, will also have defects in it. 

Code inspections behave, at the abstract, in a manner that is similar to 
design inspections. After code inspections the escapes go through 
testing. Note that there is no propagation ratio for code defects and no 
new defects are introduced after testing except due to bad fixes. 

Testing identifies failures that are documented as PRs (Problem 
Reports). Programmers then trace from the PRs to defects and fix these. 
Testing may introduce defects due to bad fixes. Defects that escape 
testing go into the field where customers discover them. Customers 
report failures that are documented as PRs, and these then make their 
way to the development organization for fixing. 

One of major drivers for pre-release defect detection effectiveness (i.e., 
how well these activities can find defects) is effort spent on defect 
detection. The more effort spent on defect detection the more defects will 
be found. The relationship is illustrated in Figure 7. The rate at which 
defects are found tends to plateau because most easy defects are found 
early and the harder defects remain. Harder defects require more effort 
to find. In the case of inspections, inspector fatigue results in defect 
detection slowing down after a certain period of time (around 2 hours of 
time per inspector). 

The implication is that there is a trade-off between spending large 
amounts of effort detecting defects and having defects escape to the 
customer. For some applications there is actually no trade-off, for 
instance, for safety critical systems whatever effort is required to 
eliminate detected field defects will be spent. But for most projects this is 
a business decision. Similarly, if any of the defect detection activities is 
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skipped, then the escapes will increase and the number of defects 
making it to the field will also increase. 

Escapes from testing go to the customer. Post-release defects originate 
primarily from PRs from external customers. External customer PRs are 
driven largely by usage. But also, there are sometimes internal 
customers who generate PRs, and testing of changes and fixes also 
identify defects. 
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Figure 7: Relationship between effort spent on pre-release defect detection activities and defects 
found. 

Now let us consider how the various actions we mentioned above will 
influence the rework costs. 

1.4.1 Automatic Detection of Defects 
When defects are automatically detected through static analysis, then 
this plays the same role as a design and code inspection. The 
inspections also are intended to statically detect defects. However, 
running a tool to detect this is less labor intensive and less costly. Once 
a defect is detected, then it is fixed. 

Compared to the inspections in Figure 6, automatic defect detection 
essentially eliminates the defect detection costs. Therefore, the benefits 
of automatic defect detection can be looked at in two ways: 

• Benefits compared to not having any inspections. 

• Benefits compared to having design and code inspections. 

1.4.2 Risk Management 
Instead of inspecting all of the code and design models, risk assessment 
techniques would allow the project to inspect only the high risk modules 
or components. In practice, it is very difficult to inspect all of the code. 
Imagine if you were developing a 200,000 LOC system and had run 
inspections with each inspection covering 200 LOC. Then we are talking 
about almost 1000 inspections during a project. This number of 
inspections would take a considerable amount of time and effort to 
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complete, and with today’s release cycles would likely be impossible to 
accomplish. Most contemporary inspection implementations have a 
meeting, and typically a meeting with three or five busy engineers can 
only be scheduled a few weeks later. Imagine hundreds of meetings with 
each incurring a delay of a few weeks before they can be held. Votta 
provides a good discussion of this issue [37]. 

The benefit of risk management is then that it allows focused or targeted 
design and code inspections. This benefit can be evaluated in 
comparison with: 

• The benefits of inspecting everything rather than focusing on the 
high risk modules. 

• Not performing any inspections. 

1.4.3 Efficient Changes 
Static analysis can reduce the isolation effort when making changes to 
fix defects. As noted above, isolation effort can be nontrivial when fixing 
testing and post-release defects. Another benefit of static analysis is that 
it can reduce the bad fix ratio when making changes. The bad fix ratio 
ensures that even if all known defects are fixed, we will not end up with a 
defect-free product because the fixes introduced more defects. If bad 
fixes are reduced then the total number of defects that have to be fixed 
goes down. This has a direct impact on rework costs. 

1.4.4 Epilogue 
One important consideration when talking about rework costs is whether 
we are considering pre-release rework costs or both pre- and post-
release rework costs. The benefits of practices such as inspections and 
static analysis really become evident when post-release costs are taken 
into account. The reason why post-release costs should be taken into 
account is that these costs have a direct impact on time-to-profit. 
Figure 8 illustrates the difference between time-to-market and time-to-
profit. The costs after a product is released determine the point at which 
a product makes a profit. Therefore, good practices, such as inspections 
and static analysis, during development can reduce post-release costs 
and shorten the time-to-profit. 

This point will be illustrated further through some of our case studies and 
examples. 
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Figure 8: Example illustrating the difference between time-to-market and time-to-profit. 

2 Calculating Return on Investment 
This section presents a number of examples of calculating ROI based on 
the models that are articulated in the appendix. For each ROI model we 
have to make some assumptions about the defect detection life cycle. 
These assumptions will be stated for each of the models below. 

2.1 Example 1: Automated Defect Detection 
We assume a project that performs only testing before release. 
Therefore some defects are detected during testing and the remaining 
defects are found by customers. The ROI model was formulated as 
shown below (this model takes advantage of default values): 

( )( )( )
ˆ0.55ˆ 0.5

ˆˆ ˆ6 1 0.9
Auto

Auto
Test Customer Test

ROI p
p p

ε
ε

 
 ′= × −
 ′+ − × 

 

 

The following are the input variables required and the values for our 
example: 
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Notation Meaning Value 

ˆ Autop′  The effectiveness of automatic detection of 
defects, taking into account bad fixes. 

0.05 

ˆAutoε  The effort to find and correct a defect during 
automatic detection 

1 hr 

ˆCustomerε  The effort to find and correct a defect during post-
release 

50 hrs 

ˆTestp  The effectiveness of testing. 0.5 

C Total project cost $1 million 

The above data assume that automatic detection will find only 5% of the 
defects that are in the modules that are analyzed (a rather modest 
assumption). The result is as follows: 

 

Notation Meaning Value 

ROI  ROI expressed as project savings 2.4% 

Savings The effort to find and correct a defect during post-
release 

$24,000 

The values would be different if we did not use the defaults for the 
effectiveness and costs of testing. 

Let us look at a number of scenarios. If the effectiveness of automatic 
detection increases, the savings (percentage) would be as shown in 
Figure 9. The figure shows that at the maximum potential benefit of 20% 
effectiveness, the highest savings that one could expect under default 
values is around 9.5% cost savings from the project ($95,000). This is 
quite a large saving. Whether automatic detection can achieve as high 
as a 20% effectiveness is an open question, however, but it does 
illustrate potential. 
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Figure 9: Graph showing the cost savings as a percentage as the effectiveness of automatic 
defect detection increases from a minimum of 0.05 to 0.2. This means that the static analysis 

finds from 5% to 20% of all the defects in the code. 

An interesting observation can be made from Figure 10: at the values 
used in the table above, it is very unlikely that the cost savings will 
exceed 2.5% if the effectiveness of automatic defect detection is at 5% 
(using the default values) as post-release costs rise. This means that the 
benefit from automatic detection is applicable for projects with smaller 
post-release costs and that projects with high post-release costs should 
consider additional strategies to maximize savings. The reason is that 
automatic defect detection has a low effectiveness. Therefore its benefits 
will always be limited because as the cost of post-release defects 
increase, savings from the limited effectiveness will always be a small 
proportion of overall post-release costs. 

We could not identify reliable data on the effectiveness of automatic 
detection tools. This is partially because the effectiveness will depend on 
the types of rules that are used to identify defects, and hence one could 
expect wide variation. The value that is used in this example should 
therefore be considered cautiously. 
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Figure 10: Graph showing the cost savings as a percentage as the cost of a post-release defect 

increases from 30 hours to 150 hours. 

2.2 Example 2: Improving Maintenance Efficiency 
We assume a project that performs only testing before release. 
Therefore some defects are detected during testing and the remaining 
defects are found by customers. The ROI model for maintenance 
efficiency was formulated as shown below (this model takes advantage 
of default values): 

( ) ( )( )( )( )
( ) ( )( )( )2

ˆˆ ˆ6 1 0.9
1 0.5

ˆˆ ˆ6 1 0.9
Test Customer Test

Test Customer Test

p p g
ROI

p p

ε

ε

 ′× + × − × ×
 = − ×
 ′× + × − ×
 

 

 

The following are the input variables required and the values for our 
example: 

 

Notation Meaning Value 
g  The increase in good fixes during maintenance. 1.1 

ˆCustomerε  The effort to find and correct a defect during post-
release 

50 hrs 

ˆTestp  The effectiveness of testing. 0.5 

C Total project cost $1 million 

The above data assume that there will be a ten percent reduction in bad 
fixes during maintenance with the help of a visualization and navigation 
tool. The result is as follows: 
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Notation Meaning Value 

ROI  ROI expressed as project savings 3.69% 

Savings The effort to find and correct a defect during post-
release 

$36,900 

The values would be different if we did not use the defaults for the 
effectiveness and costs of testing. The plot in Figure 11 illustrates the 
potential savings even as the post-release costs per defect reach as high 
as 500 hours per defect. In general, we see that the savings tend to 
plateau at around 4 percent. Of course, this model only uses the default 
values for the remaining parameters, but it does clearly illustrate a 
plateau effect. 
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Figure 11: Graph showing the percentage cost savings from improvements due to reductions in 

bad fixes during testing and maintenance. 

2.3 Example 3: Risk Assessment 
We assume a project that performs only testing before release. 
Therefore some defects are detected during testing and the remaining 
defects are found by customers. Using the risk assessment methodology 
described earlier, code inspections are introduced. However, rather than 
inspecting all of the code, only the highest risk modules of the system 
are inspected. The ROI model for risk assessment was formulated as 
shown below (this model takes advantage of default values): 
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( )
( )( )

ˆˆ ˆ4.86 0.9 0.81 1.5
ˆˆ ˆ2 6 1 0.9

Code Inspection Test Customer Test

Test Test Customer Test

p p
ROI

p p
λ ε

α ε

 ′+ − −
= ×  ′× + − 

 

The following are the input variables required and the values for our 
example: 

 

Notation Meaning Value 

Code Inspection

Test

λ
α

 
The proportion of defects in the modules that 
were chosen for inspection. 

0.6 

ˆCustomerε  The effort to find and correct a defect during 
post-release 

50 hrs 

ˆTestp  The effectiveness of testing. 0.5 

C Total project cost $1 million 

The above data assume that the risk assessment approach has 
identified the high-risk modules with 60% of the total defects, and that 
only these would go for inspection. There is considerable evidence 
showing that a large percentage of defects reside in a small proportion of 
the modules across a wide variety of systems [12, 22, 29, 31], however 
the exact percentages do vary. In the telecommunications sector, for 
example, it has been noted that only 10% of modules changed from one 
release to another contributed to post-release defects on one system; 
that 80% of the defects came from 20% of the modules based on data 
from Nortel switches, and that 20% of the modules contain about 40% to 
80% of the defects at Alcatel [35]. During the development of the 
Rational Rose tool, it was found that 77% of source code defects were in 
subsystems that account for only 21% of the code [38]. During the 
development of the DOS operating system at IBM it was found that 21% 
of the modules that had more than one defect accounted for 78% of the 
total defects [19]. In another IBM operating system, it was noted that 
47% of the post-release defects were associated with only 4% of the 
modules [30]. The 60% default errs on the conservative side of the 
published examples. The result is as follows: 

 

Notation Meaning Value 

ROI  ROI expressed as project savings 25.26% 

Savings The effort to find and correct a defect during post-
release 

$252,590 

Figure 12 attempts to provide a more general overview of the benefits. 
The cost savings can be quite dramatic even under most risk 
assessment results. 

An interesting observation can be made from Figure 13 in that up to 50% 
of the total project costs can be saved if the post-release costs go higher 
under the assumption that risk assessment techniques recommend the 
highest-risk modules for inspection. 
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Figure 12: Plot showing the cost savings as the proportion of defects in the inspected modules 
increases. For example, if say 50% of the defects are in the inspected modules then more than 

20% of the project costs would be saved. 

 

0 20 40 60 80 100 120 140 160
Cost of a post-release defect (p-h)

20

21

22

23

24

25

26

27

C
os

t S
av

in
gs

 ($
)

 
Figure 13: The cost savings vs. the post-release costs per defect increase. Here we assume that 
risk assessment techniques will result in modules containing 60% of the defects being inspected. 
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It should be noted that if the risk assessment results are used to drive 
design inspections, the savings can be even larger. 

2.4 Example 4: Higher Reuse 
We assume that a system is being re-architected, and that a visualization 
tool is being used to identify well structured parts of the system with 
coherent functionality that can be reused. The ROI model for reuse was 
formulated as shown below (this model takes advantage of default 
values): 

0.8RLOCROI
TLOC C

κ  = × −    
 

The following are the input variables required and the values for our 
example: 

 

Notation Meaning Value 

RLOC
TLOC

 
The proportion of the system that is reused. 0.1 

C
κ

 
The proportion of total development budget spent 
on discovering code that should be reused. 

0.05 

C Total project cost $1 million 

The above data assume that only 10% of the system (by code) will be 
reused, and to identify this 10%, 5% of the total budget is spent. The 
result is as follows: 

 

Notation Meaning Value 

ROI  ROI expressed as project savings 3% 

Savings The effort to find and correct a defect during post-
release 

$30,000 

The benefits of reuse technology will depend strongly on the amount of 
reuse that can be achieved. For example, if a new system is a 
customization of en existing one, then a majority of the previous system 
can be reused. One can also conceive of situations where visualization 
tools can help identify modules that should not be reused and developed 
from scratch. 

2.5 Payback Period 
When calculating ROI, it is important to understand how long the 
payback period is going to be. In this section we will explain the 
relationship between payback period and the ROI models that we have 
presented. 

Conceptually, the relationships among payback, time, and a project’s 
lifetime are shown in Figure 14. Payback is defined in terms of realizing 
the savings that are calculated according to our ROI models. Some of 
these savings would be realized before a product is released, and some 
would be realized only post-release. All the savings will be realized at the 
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end of the payback period, which can be at product release or any period 
afterwards. 

For static analysis techniques that improve reuse, the payback period, as 
defined in the models here, ends at product release. This is illustrated in 
Figure 15. 
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Figure 14: The relationship between payback in terms of savings and the passing of time as this 
relates to the lifetime of a software project. This pisture applies to static analysis techniques that 

reduce rework. 
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Figure 15: The relationship between payback in terms of savings and the passing of time as this 
relates to the lifetime of a software project. This pisture applies to static analysis techniques that 
increase reuse. 

 

The end of the payback period is defined implicitly in the ROI models. 
There are three parameters that determine the payback period: 

• The total cost of the project. If we define a project with say a 6 
month post-release period, then this will have a lower overall 
cost than a project with a 12 month post-release period. 
Therefore, the total project cost that is used to convert the 
percentage savings to a dollar value reflects the project duration. 

• The assumption is made implicitly in these models that the post-
release activity will find all of the defects that escape. 
Therefore, the effectiveness of the post-release defect detection 
activity is taken to be one. This would be the case if the post-
release period continued indefinitely. However, in practice, the 
post-release period will be limited, and would vary depending on 
how long the payback period is defined. 

The relationship between usage of a software product and defect 
discovery is shown in Figure 16. The effectiveness of the post-
release defect detection activity will depend on how long a 
product is in the field. If the payback period only includes say the 
first month after release, then the effectiveness of post-release 
defect detection will be small comparted to a an accounting of six 
months of post-release time. 
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Figure 16: The relationship between defect discovery and the amount of usage that a product 
receives. Usage is determined by time (how long a product is in the field), and the number of 

users and installations. 

The following new calculations explicitly consider the 
effectiveness of post-release activities. This is defined as: 
ˆCustomerp′ . First is the automated defect detection model: 

( ) ( )( )
3 4 5

2
ˆˆ 1

ˆ ˆˆ ˆ ˆ1 1
Auto

Auto
Test Test Customer Customer Test

C C CROI p
Cp p p

ε
β ε ε

  + +′= × − ×  ′ ′ ′− + − 
 

 

Second is a new version of the maintenance efficiency model: 

( ) ( )( )( )
( ) ( )( )

3 4 5
2

ˆ ˆˆ ˆ ˆ1
1

ˆ ˆˆ ˆ ˆ1
Test Test Customer Customer Test

Test Test Customer Customer Test

p p g p g C C CROI
Cp p p

ε ε

ε ε

 ′ ′ ′× + × × − × + + = − ×
′ ′ ′ × + × − 

 

 

The final model is for risk assessment: 

( ) ( )( )
( )

3 4 5
2

ˆ ˆ ˆˆ ˆ ˆ1 1 1
ˆ ˆˆ ˆ ˆ1

Code Inspection Test Test Customer Customer Test Code Inspection

Test Test Test Customer Customer Test

p p p C C CROI
p p p C

λ ε β ε β ε
α ε ε

′ ′ ′ ′ − + − − − + +
= × ×  ′ ′ ′+ − 

The reuse model is not affected by this because its scope is 
limited to development. 

• The final factor that defines the payback period is the cost of 
finding and fixing a defect post-release. However, it is 
reasonable to assume that this will not change dramatically over 



- 27 - 

time after a product is released, and thus can be considered to 
be invariant.3 

The logic for determining the effectiveness of post-release activities at 
various points in time (i.e., for different payback periods) can be 
illustrated through an example. Let’s say that, based on historical data, 
the lifetime of a product is five years, and that 80% of the post-release 
defects are found in the first year after release. If we want the payback 
period to be product development plus one year post-release, then the 
effectiveness of post-release activities is 0.8 rather than 1. We would 
then use the new equations above to compute ROI with the value of 
ˆCustomerp′  included. 

3 Conclusions 
This report formulated in detail a number of Return-on-Investment 
models for different static analysis techniques. The models were 
instantiated and illustrated for each of the techniques. Default values 
based on an extensive literature review were used to demonstrate how 
the models can be used to make the business case for static analysis. 

A series of basic conclusions become evident from this exposition: 

• It is possible to formulate strongly justifiable ROI models for 
static analysis techniques. 

• The ROI from static analysis techniques that support risk 
assessment can have a dramatic impact on project costs, with 
savings as high as 25% of project costs under modest 
assumptions. 

• Combining multiple static analysis approaches on a single 
project can reduce overall project costs by up to 40% under 
rather modest assumptions. 

• The ROI from techniques that automatically detect defects and 
that reduce bad fixes are modest. However, for large projects a 
few percentage points savings can still be a large amount of 
money, and therefore these should not be dismissed. 

• The ROI from static analysis techniques that can help identify 
reusable code are also modest, but may be worthwhile under 
some circumstances (e.g., the code to be reused is modular but 
very complex). 

In summary, the biggest benefit can be gained from focused risk 
assessment techniques. These use metrics to find the highest risk 
modules in a system and inspection effort is targeted at these modules. 
For most large systems, inspecting all of the code is not a realistic 
option. Risk assessment provides a pragmatic solution to this with 
significant rewards. 

Automatic defect detection and reductions in the cost of changes can 
also shave additional percentage points off software projects, and should 
be seriously considered for large projects. 

                                                           
3 After release, costs are expected to be high due to rediscoveries. This results in many duplicate problem reports being 
opened by customers. However, rediscoveries, if they can be detected before they make it to the development 
organization, will not influence find and fix costs. 
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The benefits of static analysis for reuse will depend strongly on how 
much of a system can be reused. But, there is certainly the potential for 
large savings there as well. 

4 Appendix A: Definitions 
The following are definitions of terms that and explanations of concepts 
that are used throughout this report.  

A failure is an incorrect result produced by the software. It may be 
incorrect according to a requirement specification, a design, or because 
it does not meet customer expectations. A failure may be functional (i.e., 
the software does not implement a feature properly) or a failure in 
performance (e.g., the software is too slow). Failures can only occur in 
executable software.4 

A failure is caused by one or more faults or defects. We use these two 
terms interchangeably throughout. 

Of course, a failure may be caused by multiple faults, not just one. 
However, a fault does not guarantee that a failure will occur. For 
instance, some faults are never discovered. Some faults are minor and 
never result in a visible failure (e.g., efficiency or problems with the tenth 
most significant digit). Some faults never manifest themselves because 
that part of the code is never executed (e.g., code that deals with a very 
rare condition).  

Some failure occur but are not observed. For example, on some aircraft 
there are multiple computers running in parallel with each one having 
independently produced software. A failure may occur in one of the 
computers, but this does not result in an overall system failure because 
the other computers produce the correct result. 

A fault is an incorrect step, process, or data in the software. When say a 
programmer fixes a piece of software, s/he is fixing defects. We cannot 
really count the true number of defects in the software because some 
defects may never be discovered. We can only count discovered defects. 
Therefore, to count defects we usually count the number of fixes. 

An error is a human action that causes a defect to be inserted in the 
software. A single error may lead to many defects being inserted in the 
software. Understanding errors is important because if the frequency of a 
certain type of error can be reduced then the number of defects 
prevented can be substantial. 

Once software is released, either to customers internal or external to the 
organization, then Problem Reports (PR) may be opened. A PR is a 
description of a failure. Different organizations will use alternative 
terminology, but almost all software organizations will have a problem 
reporting process. A problem report reflects a single instance of a 
perceived failure. This means that a problem report may not necessarily 
be a true failure. If there are many customers, then there may be many 
problem reports describing the same failure. 

A rediscovery is when a someone identifies a problem report, failure, or 
defect that has already been discovered before. For instance, assume 

                                                           
4 For some types of systems, a simulation environment may exist to simulate various parts of the design. In such a case 
you may have a failure in the design. 
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that a customer report results in creating a problem report. If another 
customer finds the same problem then this is a rediscovery. Similarly, if a 
tester detects a failure that has already been detected by another tester, 
then this is a rediscovery. Rediscoveries are expensive because effort is 
spent in making the rediscovery and in deciding that the incident is a 
rediscovery. For example, for problem reports a nontrivial amount of the 
support organization's effort is spent matching problem reports to 
determine if a new problem report is similar to a previous one. 

When a defect is fixed, the fix itself may introduce one or more new 
defects. This is called a bad fix. Depending on the schedule pressure, 
the code structure, and the quality of the existing test suite, bad fixes 
may actually be a major problem by themselves. 
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Report Failure

1
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n 1
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Figure 17: Basic Entity-Relationship model showing the relationship between failures, defects, 
and modules. 

In many organizations whenever a failure is observed (through testing or 
from a customer) a Problem Report (PR) is opened.  It is useful to 
distinguish between a failure and a failure instance. Consider the 
relationships in Figure 17.  This shows that each failure instance may be 
associated with only a single PR, but that a PR can be associated with 
multiple failure instances.  Multiple failure instances may be the same 
failure, but detected by multiple users, and hence they would all be 
matched to a single PR. For example, if the program cannot open files 
with long file names. This is a problem that may be experienced by 
multiple users and so there will be multiple failure instances. A single 
problem report would be opened for all of these failure instances 
explaining that the program cannot save files with long names. This 
single PR may have many rediscoveries associated with it. 

A defect occurs in a single module, and each module may have multiple 
defects. A PR can be associated with multiple defects, possibly in the 
same module or across multiple modules. 

5 Appendix B: A Methodology for Risk Management Using 
Metrics 

Static metrics collected during a software project can be used to identify 
high-risk modules or components. This section describes a methodology 
that employs metrics to identify such high-risk modules.  

An illustration of this methodology is given in Figure 18. The first step is 
to collect the static metrics from an earlier release. These metrics are 
then used as the basis for risk assessment in current and future 
releases. 
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Figure 18: Overview of the risk assessment methodology. 

To perform risk assessment using metrics it is necessary to build a risk 
model. Figure 18 illustrates where the risk model fits into the risk 
assessment process. A risk model is a statistical model that can be used 
to predict the probability that a module will have a post-release defect. 
As shown in the figure, one typically uses historical data to build such a 
model. The historical data may come from a previous release of the 
same product or even from another similar product within the same 
organization. The size, previous defects (say testing defects), and 
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coupling metrics are collected from that earlier release, as well as data 
on the incidence of post-release defects (say within the first 6-12 months 
after release). Once this data is collected a risk model can be built.  

A risk model is typically statistical model relating the metrics to the 
probability of a defect. Although many different statistical modeling 
techniques can be used, we have always obtained good results with a 
technique called logistic regression, which is well suited to this kind of 
modeling problem. 

The risk model can then be used to predict the probability of a post-
release defect for the current and subsequent releases. In the example 
in Figure 18 we assume that the risk model is built from release n and we 
want to identify the high-risk modules for release n+1. Once the risk 
model is built from the release n data, the same metrics are collected 
from release n+1. The release n+1 data excludes post-release defects 
because we do not know that (if we did we would not need a risk model). 
The new data is entered into the risk model which then comes out with 
the predicted probability. 

The probability is a number between 0 and 1. The modules are then 
ranked by their predicted probability of a post-release defect, as shown 
in Figure 18. The top x% are considered the highest risk modules. 

The risk assessment approach so far does not take into account the 
business importance of the modules. Some modules perform critical 
functions for the software. If these modules have a defect then the whole 
system will not function as expected. Even if the probability of a defect 
for these critical modules is relatively small, it is still important to pay 
attention to them. Similarly, some modules may have a high probability 
of a post-release defect but they perform very auxiliary functions. So if 
we have to make a choice, the low criticality modules would not be given 
much attention. 

Criticality is a business decision. In our practice we usually use a 1 to 10 
scale to assign criticality to the modules. For large systems this is not 
plausible. So use cases or requirements scenarios are assigned 
criticality values. Use cases are frequently used to describe "features" or 
a coherent set of functionality that the software is expected to perform. 
Some of these use cases have a very high business value. The project 
team would assign criticality values to the use cases on the 1 to 10 
scale. Modules that implement highly critical scenarios are then 
considered to be very critical. So we essentially trace from the business 
requirements to the modules, see which modules implement the use 
case, and assign the module the same criticality as the use case. Since 
a single module may implement many use cases, some summary 
measure such as the average criticality may be used for each module. 
This process is much easier if a design tool is used to document use 
cases. 

Multiplying the probability of a post-release defect with the criticality for 
each module gives the risk exposure. This is a summary measure that 
can be used to rank modules. The big advantage of risk exposure is that 
it captures the quality of the module as well as its business value. 
Ranking by risk exposure is illustrated in Figure 18. 

The top x% of the modules are then the high-risk modules. Depending 
on the scenario you are in, these modules are then inspected, or tested 
first. 
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One example of where this was applied is a project that was being 
developed in Java and used UML design models. The project manager 
wanted to start design inspections but he did not have the resources to 
inspect everything. So a risk model was developed from a previous 
release and was used to identify the high-risk classes for the current 
release. The warranty cost savings for this strategy were calculated as 
shown in Figure 19. Here we see that if the highest-risk 20% of the 
classes were inspected, the warranty cost savings would be around 
42%. This means that the warranty costs would be reduced by 42% of 
what they would have been had no inspections been conducted. 
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Figure 19: Warranty cost savings as the number of classes inspected rises. 

 

The above methodology works whether one is using object-oriented 
techniques or structured techniques. It also works well irrespective of the 
size of the project. 

6 Appendix C: ROI Models for Static Analysis 
This appendix describes the details of the ROI models that we use for 
calculating ROI, as well as justifications for the choices made. We 
consider ROI for a whole project, taking into account pre- and post-
release costs. 

6.1 Definitions 
6.1.1 Total Project Cost 

Following our earlier breakdown of project costs, we define the individual 
costs for a project as follows: 
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Cost Item Notation 

Fixed & Overhead Costs 
1C  

Construction Costs 
2C  

Defect Detection Costs 
3C  

Pre-release Rework Costs 
4C  

Post-release Rework Costs 
5C  

New Feature Costs 
6C  

Total Life Cycle Costs 
1 2 3 4 5 6C C C C C C C= + + + + +  

All costs, except the fixed and overhead costs, are really made up of 
effort (i.e., labor costs). 

6.1.2 Defect Detection Costs 
To formulate ROI properly, it is also necessary that we breakdown the 
costs of defect detection activities. The following is the notation that we 
will use to define the individual effort items for each instance of a defect 
detection activity. For example, if we are talking about inspections, then 
this is the effort for a single inspection. 

A project will have multiple instances of a defect detection activity. For 
instance, a project will have many code inspections. We use I to denote 
a specific instance of the inspection. 

 

Effort Definition Notation 

Effort to find a defect 
1,iE  

Effort to isolate a defect 
2,iE  

Effort to fix a defect 
3,iE  

Effort to finalize a defect (retesting, documentation, and 
packaging) 4,iE  

Effort to find and fix a defect 
, 1, 2, 3, 4,f i i i i iE E E E E= + + +  

For specific defect detection activities, some of the above effort values 
may be zero or very small. For instance, during a code inspection the 
isolation effort would be close to zero since the inspection itself identifies 
the exact location of the defect. 

It is also necessary to consider the isolation effort separately when 
considering defect detection effort. Let us say that out of the total 
correction effort, ,f iE , a certain proportion is isolation effort. We will 

denote this proportion as θ . Therefore, we can say that isolation effort is 
given by: 
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2, ,i f iE Eθ= ×  
 

The effort that Is not spent on isolation is given by ,(1 ) f iEθ− × . This will 
become handy later on. 

6.1.3 Defect Counts 
An important definition when evaluating reduction in rework is of the 
number of defects that exist in a document (e.g., a design or source 
code) prior to any defect detection activity: 

{ }, x is a defect that exists in thedocument prior todefect detectionf i xα =  
 

This applies to a specific instance of a defect detection activity: instance 
i. The total number of defects is therefore given by the size of this set: 

,f iα . 

The actual defect detection activity will also find a certain number of 
defects. This is defined as: 

{ }, x is a defect that was found in thedocument during defect detectionf i xλ =  
 

This applies to a specific instance of a defect detection activity: instance 
i . The total number of defects found is therefore given by the size of this 
set: ,f iλ . 

Two important measures that characterize the defect detection activity 
need to be defined. The first is the effectiveness of defect detection. For 
a single instance of a defect detection activity (instance i ) this is given 
by: 

,
,

,

f i
f i

f i

p
λ

α
=  

 

This gives the effectiveness for a single instance. Effectiveness is really 
the fraction of defects in the document that were found. An effectiveness 
of 0.5 means that half of the defects in the document were found during 
defect detection. For example, it would give the effectiveness of a single 
individual code inspection.  

For all of the defect detection activities on a project (across all 
instances), we take the average: 

,

,

ˆ f i
f

f i

p
λ

α

 
 =
 
 

 

 

Therefore, where f = “code inspections”, then ˆcode inspectionsp  is the 
average effectiveness of all code inspections on the project. 
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6.1.4 Defect Detection Effort 
The second important measure is the effort it takes to find and fix a 
defect: 

,
,

,

f i
f i

f i

E
ε

λ
=  

 

This gives the effort per defect for a single instance i of the defect 
detection activity. For example, if the value is 2 hours for a given code 
inspection, then this means that it took two hours, on average, to find 
and fix a single defect during the code inspection. 

For all of the defect detection activities on a project, we take the average: 

,

,

ˆ f i
f

f i

E
ε

λ

 
 =
 
 

 

 

Therefore, where f = “code inspections”, then ˆcode inspectionsε  is the average 
(find and fix) effort per defect of all code inspections on the project. 

The above formulations do not take into account the possibility that some 
of the fixes are bad fixes. We therefore have to account for the bad fix 
ratio, β . Let’s say if β  is 0.1, this means that 1 in 10 fixes are bad. The 
proportion of correct fixes is given by 1 β− . Now we have the following 
for effectiveness: 

( ),

,

ˆ 1f i
f

f i

p
λ

β
α

 
′  = −

 
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And for the cost per defect we have: 

,

,

1ˆ
1

f i
f

f i

E
ε

βλ

  ′  =    −  
 

 

This is effort per defect corrected for bad fixes. The more bad fixes the 
higher the effort per defect, on average. 

6.1.5 Return on Investment Definitions 
There are a number of different models that can be used to evaluate ROI 
for static analysis. We will explore two of them. The first is the most 
common ROI model. We will show that this model is not appropriate 
because it does not accurately account for the benefits of investments in 
software projects. We subsequently present the second model which we 
aregue is much more appropriate. The models here are presented at a 
rather conceptual level. Later in this appendix we will formulate the 
chosen ROI model precisely. 
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Investment
Project Cost

Savings

Cost
Initial CostCost After Investment  

Figure 20: Definitions of ROI concepts. 

Consider the diagram in Figure 20. The lower bar shows the cost of a 
software project. The top bar shows the cost of an investment in the 
project. The investment could be the use of static analysis techniques, 
for example. 

After the investment in the project, the project cost goes down. So now 
the shaded area is the new project cost. The savings are marked in the 
figure. The question is whether that investment was worth the savings ? 

The most common ROI model, and that has been used more often than 
not in software engineering, is shown below: 

1
Costs Saved Cost ConsumedROI

Cost Consumed
−

=  
 

This ROI model gives how much the savings gained from the project 
were compared to the initial investment. Let us look at a couple of 
examples to show how this model works. 

Investment
Project Cost

Savings

Cost
1000900

10

 
Figure 21: Example of investment A. 
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Investment
Project Cost

Savings

Cost
1000400

60

 
Figure 22: Example of investment B. 

 

Let us assume that we have a software project that costs 1000 units. 
This is the total cost for the project, including 2 years of maintenance. In 
Figure 21 we have an example of a specific investment. The investment 
was of 10 units. The investment was in some techniques to improve the 
processes and quality of the product. The benefits gained were a 
reduction of the total project cost to 900 units. According to the traditional 
ROI model, the ROI for this investment is: 

1
100 10 9

10
ROI −

= =  
 

Now consider the second project in Figure 22. If you perform the same 
calculations for project B you will see that the ROI for project B is also 9. 
However, the savings for project B were dramatic: 4 times more savings 
than for project A. But the ROI is exactly the same. By most accounts, 
one would much prefer to have a project B and the ROI should reflect 
that. 

Therefore, we do not use the traditional ROI calculations. Rather, we 
formulate an alternative model that is based on Kusumoto’s work [26]. 
The model is given as follows: 

2
Costs Saved Cost ConsumedROI

Original Cost
−

=  
 

This ROI model tracks the benefits of investments very well. It is 
interpreted as the overall project savings from the investment (i.e., how 
much money is saved during the project from the investment). For 
project A the ROI is then calculated as: 

2
100 10 0.09

1000
ROI −

= =  
 

This means that in project A, the investment only saved 9% of overall 
project cost. Now for project B we have: 



- 38 - 

2
600 60 0.54

1000
ROI −

= =  
 

Therefore, project B had a savings of 54% from its original cost. 

To make this concrete, if the original project cost was $1 million. Then 
after investment B of $60,000, the project would cost $600,000, a 
$400,000 reduction. 

Kusumoto’s basic model has been expanded and used to evaluate the 
benefits of various software engineering technologies, such as 
inspections and risk assessment [6, 7, 15]. In essence, this model has 
received acceptance in the software engineering sceintific community as 
a valid way to evaluate ROI. 

6.2 The ROI Model 
Below we start putting the whole ROI model together with all the 
appropriate parameterizations to account for the benefits of static 
analysis. 

6.2.1 Overall Model 
Reduced rework is due to defect detection activities. These can be 
inspections, testing, and static analysis. We assume that there are n  
consecutive defect detection activities, for example, design inspections, 
code inspections, testing, and post-release. These will be numbered 
sequentially from 1 to n . 

Another factor that needs to be accounted for is reuse. We consider 
reuse in the same manner: as a saving. 

The savings would be given by: 

( )
( )2 3 4 5

2

2
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j j
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and: 
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ε
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ε

≠=  ′ =
 

Which accounts for the fact that the last phase, phase n , will have a 
higher cost because it finds all defects and must account for bad fixes 
within that (i.e., the bad fixes do not introduce defects that are passed on 
to the next phase). And similarly: 

ˆ ,

ˆ ,

j

j
j

j n

j n

ε
ϕ

ε

≠=  ′ =
 

The ROI model has two terms. The first concerns the ROI from reducing 
rework costs. The second term concerns productivity benefits from 
reuse.  

To complete the model, the following definitions are also required: 

 

Notation Meaning 

RLOC  Lines of code that will be reused 

RCR  Relative Cost of Reuse 

TLOC  Total size of the system 

 

These definition cover the second term related to reuse. In practice, all 

that is needed is 
RLOC
TLOC

 ratio, which is the proportion of the total 

system that would be reused. 

The ( )ˆS Sε λ′ ×  term reflects the effort spent on the static analysis to 

reduce rework effort. For example, if the static analysis was the 
automated detection of defects, then this term is the effort to fix the 
defects that were found. 

The RCR  value captures the notion that reuse is cheaper than 
development from scratch. It quantifies the relative cost of reuse 
compared to development. RCR  is typically used when evaluating the 
benefits of software reuse [32]. 

The κ  value is the cost of doing the static analysis for reuse. It is 

expressed as 
C
κ

, which means we can express it as a proportion of the 

total project budget. 

If a particular investment does not result in reuse benefits, then the 
second term would be zero since RLOC  would be zero and κ  would 
also be zero. 

The outcome of this ROI model is a proportion of the original cost of the 
project (without static analysis) that would be saved if static analysis 
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techniques were used. For example, if the 2ROI  value was 0.2, this 
means that 20% of the project cost is saved. If the project cost was 
estimated at $1 million, then the savings would be $200,000. 

6.2.2 Defaults 
Although the ROI model may seem overwhelming initially, it is actually 
straightforward to use. The model does not require information that 
would not normally be available to a project manager. 

One initial set of simplifications are the defaults. Below we present a 
series of defaults that can be used. 

Since ROI is comparing the project without static analysis to the project 
with static analysis, we will talk about the No Static Analysis project 
(NSA) and the Static Analysis (SA) project for short. 

The first default is for the expression: 

3 4 5C C C
C

+ +
 

This actually is the proportion of total development effort that is rework. It 
is well documented that over half, and in some instances approaching 
90%, of total project effort is spent on testing (for a wide variety of 
application domains) [4, 18, 21]. A large proportion of this testing effort is 
spent on fixing defects that have been discovered. It is safe to assume 
that in most NSA projects this is around 0.5 since rework related 
activities typically account for about half of a project’s budget. One 
published report notes that 44% of total development project costs is 
rework [40]. Other data shows ranges of rework from 20% to as high as 
80% [35].5 If we add to this the post-release costs, then 50% of total 
costs being devoted to rework is a rather conservative value. 

Another default concerns the effectiveness of inspections. A 
comprehensive literature review (this is presented in the appendix in 
Section 7) has found that the average effectiveness of design and code 
inspections is 0.57 (i.e., inspections tend to find, on average, 57% of the 
defects in the artifacts that are inspected). Thus, the value for: 

,

,

ˆ 0.57f i
design inspection

f i

p
λ

α

 
 = =
 
 

 

 

and : 

,

,

ˆ 0.57f i
code inspection

f i

p
λ

α

 
 = =
 
 

 

 

We use as the default for β  the value 0.1 (i.e., about 1 in ten fixes 
introduce new defects). Fagan [11] notes that 1 in six fixes in an 
inspection introduces another defect. This number is likely larger for 
testing and post-release since only symptoms are observed during these 

                                                           
5 The higher percentage being more typical in less mature (in the sense of teh CMM for Software) organizations. 
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stages of a project. We err on the conservative side by choosing a value 
of 1 in ten fixes. 

Again, based on a comprehensive review of published industrial data 
(this is presented in the appendix in Section 7), we estimate that the 
average effort to find and correct a defect during inspections is: 

 

Effort per Defect Value 

,

,

ˆ f i
f code inspection

f i

E
ε

λ=

 
 =
 
 

 1.5 hours 

,

,

ˆ f i
f design inspection

f i

E
ε

λ=

 
 =
 
 

 1.5 hours 

,

,

ˆ f i
f testing

f i

E
ε

λ=

 
 =
 
 

 6 hours 

The RCR  value indicates how much reuse costs as a proportion of new 
development cost. This value is estimated to be around 0.2. This means 
that reuse costs only 20% of new development costs, on average. This 
value is obtained from [32]. 

6.2.3 Illustration 
To help provide some context for this ROI model, we will look at some 
examples. 

 

Activity Number 

Testing 1 

Warranty / Customer 2 

 

Let us consider a project that has two phases where defects are 
detected: testing and post-release. We will denote these as phases 1 
and 2. The phase numbers are used as indices in our model. 

The cost of defect detection for this project is given by: 

( ) ( )( )ˆ ˆˆ ˆ1

actual cost of testing

Test Test Test Customer Test Test

actual warranty cost

p pε α ε α′ ′× × + × × −
644474448

1444442444443
 

 

where Testα  is the total number of defects that enter into testing. We 
multiply this by the average cost of testing per defect and the 
effectiveness of testing. This gives us the total testing cost. 
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For warranty costs, we first determine how many defects will escape 
from testing. This is the ( )ˆ1 Testp′−  value. We multiply this by the 
average cost of defect detection and correction per defect post-release. 
We assume that after a product is released we will find the remaining 
detectable defects. Hence, the effectiveness of post-release is one (i.e., 
all detectable defects will be found eventually). 

Now let us consider the situation whereby we add code inspections to 
this project. We wish to evaluate the savings that could potentially be 
gained from introducing this new technique. We can define the project as 
follows: 

 

Activity Number 

Inspections 1 

Testing 2 

Warranty / Customer 3 

 

The ROI for introducing inspections in a testing only life cycle is given by: 

 

( )( ) ( ) ( )( ) ( )ˆ ˆ ˆˆ ˆ1 1 1

cost savingsintesting frominspections cost savingsin warranty frominspections cost of

Test Test Inspection Customer Inspection Test Inspection Inspectionp pε λ β ε λ β ε λ′ ′ ′× × × − + × × − × − − ×
6444447444448 64444444744444448

( ) ( )( )

3 4 5

ˆ ˆˆ ˆ1

inspections

Test Test Test Customer Test Test

actual cost of testing and warranty without inspections

proportionof project
devoted torework

p p

C C C
C

ε α ε α′ ′× × + × × −

+ +
×

644474448

144444444424444444443

6447448

 

At the top we see the two elements of savings minus the cost of doing 
the actual inspections. The denominator of the first term is the actual 
cost of the project. 

6.3 Example Instantiations 
Depending on the type of static analysis performed and the nature of the 
development process, the ROI model can be instantiated differently. In 
this subsection we will look at specific instantiations. 

6.3.1 Automated Defect Detection Model 
The model presented below is useful when we want to evaluate the 
benefits of automated detection of defects using static analysis, for 
example, by identifying potential logic problems. 

For the sake of this model, we will assume that the development process 
only has testing and post-release as the main defect detection activities. 
There are no code nor design inspections.  
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Automated defect detection will be implemented before testing. Defects 
that are detected that way are corrected. 

The ROI model in this case is then given by: 

( ) ( )( )
3 4 5

2
ˆˆ 1

ˆ ˆˆ ˆ1 1
Auto

Auto
Test Test Customer Test

C C CROI p
Cp p

ε
β ε ε

  + +′= × − ×  ′ ′− + − 
 

 

where: 

 

Notation Meaning 

ˆ Autop′  The effectiveness of automatic detection of defects, 
taking into account bad fixes. 

Autoε  The effort to find and correct a defect during automatic 
detection 

Testε  The effort to find and correct a defect during testing 

Customerε  The effort to find and correct a defect during post-
release 

ˆTestp′  The effectiveness of testing, taking into account bad 
fixes. This can be given as (using default values): 

( )ˆ ˆ1 0.9Test Testp pβ× − = ×  

ˆTestp  The effectiveness of testing, without taking into 
account bad fixes. 

If we include some of our defaults, then we have a simplified model as 
follows: 

( )( )( )2

ˆ0.55ˆ 0.5
ˆˆ ˆ6 1 0.9

Auto
Auto

Test Customer Test

ROI p
p p

ε
ε

 
 ′= × −
 ′+ − × 

 

 

6.3.2 Improved Maintenance Efficiency Model 
This model assumes that static analysis will be used to perform an 
impact analysis during changes to fix defects. The static analysis allows 
a programmer to visualize the relationships among modules in a system 
to see what would be affected by a change. This information can reduce 
the inadvertent introduction of defects when making a change. 

We will assume that the project has testing and post-release as the two 
main activities for defect detection. Improvements in impact analysis will 
result in a reduction in the number of bad fixes. Therefore, changes in 
testing and post-release will have fewer bad fixes. 

The logic of this model is that the cost of fixes does not change by this 
type of static analysis technique. However, the effectiveness of testing 
and post-release changes does increase. For instance, the effectiveness 
of testing changes from: 
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ˆTestp′  
 

to 

ˆTestp g′ ×  
 

where g  is the increase in effectiveness due to a reduction in bad fixes. 

We define the good fix ratio as ( )1 β− , which is the proportion of fixes 
that do not introduce defects. The g  indicates how much this increases 
using the impact analysis capabilities. For instance, if g  is 1.1, this 
means that the proportion of good fixes increases by 10%. The 
proportion of good fixes after using static analysis is thus given by: 

( )1 gβ−  
 

where: 

( ) ( ) ( )
( )

1 , 1 1
1

1 , 1 1
g g

g
g

β β
β

β
− − ≤− =  − >

 

 

Based on our default value for value of β , this imposes a pragmatic 
maximum value or ceiling on g  of 1.1. 

The model itself is formulated as: 

cost of not using visualization - cost of using visualization
cost of not using visualization

 
 

The final model then is expressed as: 

( ) ( )( )( )
( ) ( )( )

3 4 5
2

ˆ ˆˆ ˆ1
1

ˆ ˆˆ ˆ1
Test Test Customer Test

Test Test Customer Test

p p g C C CROI
Cp p

ε ε

ε ε

 ′ ′× + × − × + + = − ×
′ ′ × + × − 

 

 

If we wish to instantiate this model with default values, we get: 

( ) ( )( )( )( )
( ) ( )( )( )2

ˆˆ ˆ6 1 0.9
1 0.5

ˆˆ ˆ6 1 0.9
Test Customer Test

Test Customer Test

p p g
ROI

p p

ε

ε

 ′× + × − × ×
 = − ×
 ′× + × − ×
 

 

 

6.3.3 Risk Assessment Model 
This model assumes that the organization will only inspect the highest 
risk modules. We assume that the initial process consists of a testing 
phase and post-release. Code inspections will be added for the highest 
risk modules. The ROI model is then: 
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( ) ( )( )
( )

3 4 5
2

ˆ ˆ ˆˆ ˆ1 1 1
ˆ ˆˆ ˆ1

Code Inspection Test Test Customer Test Code Inspection

Test Test Test Customer Test

p p C C CROI
p p C

λ ε β ε β ε
α ε ε

′ ′ ′ − + − − − + +
= × ×  ′ ′+ − 

 

The first term is essentially the proportion of defects that are in modules 
that are inspected. These would be the high-risk modules. Determining 
the can be based on a logistic function, such as that shown in Figure 23.
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Figure 23: An example of a logistic function. The x-axis would be in standard deviation units in 
terms of some metrics, and the y-axis is the proportion of defects found. This s-shaped curve 

models the relationship between metrics and the occurrence of defects.
 

If we wish to instantiate this model with default values, we get: 

( )
( )( )2

ˆˆ ˆ4.86 0.9 0.81 1.5
ˆˆ ˆ2 6 1 0.9

Code Inspection Test Customer Test

Test Test Customer Test

p p
ROI

p p
λ ε

α ε

 ′+ − −
= ×  ′× + − 

 

6.3.4 Higher Reuse Model 
The higher reuse model is based directly on the ROI model as follows: 

( )2 1RLOCROI RCR
TLOC C

κ  = × − −    
 

If we wish to instantiate this model with default values, we get: 
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2 0.8RLOCROI
TLOC C

κ  = × −    
 

6.3.5 Multiple Models 
It is possible to account for multiple types of static analyses. For the 
types of analyses that reduce rework effort, in principle the savings can 
just be added because all model instantiations that we derived have the 
same denominator. The savings from reuse can also be added. For 
example, if the savings from automated detection of defects and risk 
assessment were 5% and 10%, then the total cost savings to the project 
from combining these two would be 15%. 

However, there is likely to be an overlap in savings between the 
automatic defect detection techniques and the risk assessment 
techniques. If both of these are applied on the same project, then they 
have to applied sequentially. For example, an automated defect 
detection tool is applied followed by focused inspections. Some of the 
defects that would have been discovered by inspections would have 
been discovered by the tool. Therefore, inspections would not 
necessarily have the same ROI as when they are used without 
automated detection. The simple sum of the ROI values from both will 
therefore be exaggerated. To overcome this deficiency one would have 
to know how many defects that are found through automated detection 
would have been found through an inspection. If the assumption is made 
that automated detection is just a more efficient way of finding the same 
defects as inspections, then a simple modification of the ROI model to 
put these two techniques in sequence would give the correct ROI. 

6.4 Assumptions and Limitations 
The above ROI models make a number of assumptions. While we 
endeavoured to ensure that the models are as accurate as possible, 
some assumptions were inevitable. These may be relaxed in future 
revisions of the model. 

It should be noted that all of the assumptions that we have made are 
conservative. This means that they would result in a smaller estimate of 
ROI rather than inflating it. Therefore, if a business case is attractive 
under the current models, they would certainly be attractive when the 
assumptions are relaxed. 

The first assumption concerns the rework impacts of reuse. There is 
evidence that reused code tends to be of higher quality than new code. 
This is due to the code being used in multiple projects, and hence 
receives more scrutiny (e.g., during inspections) and testing than new 
code. The impact on ROI of that is a reduction in rework costs from 
reuse. We did not account for a reduction in rework costs from reuse. 
The assumption we make is that reuse would only increase the 
productivity of the construction part of project costs. Should rework costs 
be accounted for then the benefits of technologies that improve reuse 
would be higher. 

Poulin [32] also considers another benefit of reuse: Service Cost 
Avoidance. This is the potential saving from not having to maintain 
reused code. It is common that there is a different organization, group, or 
project that is maintaining a reuse library. To the extent that a project that 
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reuses some of this code does not get involved in maintenance, then 
these maintenance costs are saved. In our context we are looking at 
reuse during a re-architecting phase. Therefore, the project that reuses 
parts of the system would still have to maintain the reused code. 
Consequently, we cannot really account for service cost reductions in our 
context. 

6.5 Interpreting the ROI Values 
In this section we will explain how to interpret and use the ROI values 
that are calculated.  

First, it must be recognized that the ROI calculations, cost savings, and 
project costs as presented in these spreadsheets are estimates. 
Inevitably, there is some uncertainty in these estimates. The uncertainty 
stems from the variables that are not accounted for in the models (there 
are many other factors that influence project costs, but it is not possible 
to account for all of these since the model would then be unusable). 
Another source of uncertainty are the input values themselves. These 
values are typically averages calculated from historical data; to the 
extent that the future differs from the past these values will have some 
error. 

Another important point to note is that the calculated ROI values are for a 
single project. A software organization will have multiple on-going and 
new projects. The total benefit of implementing static techniques to the 
organization can be calculated by generalizing the results to the 
organization. For example, if the ROI for a single project is say a 15% 
saving. Assuming that the input values are the same for other projects in 
the organization, then we can generalize to the whole organization and 
estimate that if static analysis is implemented on all projects in the 
organization, the overall savings would be 15%. If the software budget 
for all the projects is say $20 million, then that would translate into an 
estimated saving of $3 million. Note that this is not an annual saving, 
but a saving in total project budgets that may span multiple years (i.e., 
for the duration of the projects). 

This saving does not account for the cost of acquiring any tools and the 
cost of training nor consulting. These costs have to be deducted from the 
savings. If you are implementing static analysis on a single project, then 
these costs would have to be deducted from the single project savings. If 
you are implementing static analysis in the whole organization, then 
these costs will be spread across multiple projects. In such a case, these 
costs would be deducted from the organizational savings (the calculation 
of which is described above). 

For example, let’s say that acquiring an enterprise license for a tool costs 
$10,000 and that consulting fees are $10,000 for implementing some 
static analysis technology across the whole organization. Taking our 
organizational example from above, the net savings would then be 
$2,980,000 rather than $3 million. 

7 Appendix D: Literature Review 
The following review of the literature is used to determine the default 
values for our various ROI models. The default values are the average 
from published articles. 
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The following criteria were used to deem an article appropriate for 
inclusion in this average: 

• There should be a clear indication that the published data are 
based on actual projects rather than being mere opinions or a 
rehashing of someone else’s numbers. There are many opinion 
articles that were excluded. 

• It should be clear what is being measured. For instance, if we 
are looking at inspections, then it should be clear that 
inspections actually took place and the data pertain to the 
inspections. 

• The unit of observation should be clear. For example, for 
inspection data it should be stated whether the data pertain to all 
inspections performed on a project or to a single inspection. 

The exceptions to the above criteria were review articles that already 
summarized evidence. In such a case quality judgement on the review 
methodology was performed to decide whether the data from the review 
should be included. 

7.1 Effectiveness of Defect Detection Activities 
In the following, the articles that give data on effectiveness are 
discussed. 

Fagan [10] presents data from a development project at Aetna Life and 
Casualty, Hartford, Connecticut, USA. An application program of eight 
modules (4439 noncommentary source statements) was written in Cobol 
by two programmers. Design and code inspections were introduced into 
the development process, the number of inspection participants ranged 
between three and five. After 6 months of actual usage, 46 defects had 
been detected during development and usage of the program. Fagan 
reports that 38 defects had been detected by design and code 
inspections together, yielding a defect detection effectiveness for 
inspections of 82%. The remaining 8 defects had been found during unit 
test and preparation for acceptance test. 

In another article, Fagan [11] publishes data from a project at IBM 
Respond, United Kingdom. A program of 6271 LOC in PL/1 was 
developed by 7 programmers. Over the life cycle of the product, 93% of 
all defects were detected by inspections. He also mentions two projects 
of the Standard Bank of South Africa (143 KLOC) and American Express 
(13 KLOC of system code), each with a defect detection effectiveness for 
inspections of over 50% without using trained inspection moderators. 

Weller [39] presents data from a project at Bull HN Information Systems 
which replaced inefficient C code for a control microprocessor with Forth. 
After system test had been completed, code inspection effectiveness 
was around 70%. 

Grady and van Slack [16] report on experiences from achieving 
widespread inspection use at HP. In one of the company’s divisions 
inspections (focusing on code) typically found 60 to 70% of the defects. 

Shirey [34] states that defect detection effectiveness of inspections is 
typically reported to range from 60 to 70%. 

Barnard and Price [2] cite several references and report a defect 
detection effectiveness for code inspections varying from 30 to 75%. In 
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their environment at AT&T Bell Laboratories, the authors achieved a 
defect detection effectiveness for code inspections of more than 70%. 

McGibbon [27] presents data from Cardiac Pacemakers Inc. where 
inspections are used to improve the quality of life critical software. They 
observed that inspections removed 70 to 90% of all faults detected 
during development. 

Collofello and Woodfield [8] evaluated reliability-assurance techniques in 
a case study - a large real-time software project that consisted of about 
700,000 lines of code developed by over 400 developers. The project 
was performed over several years recording quality-assurance data for 
design, coding, and testing. The respective defect detection 
effectiveness are reported to be 54% for design inspections, 64% for 
code inspections, and 38% for testing. Although the authors state that 
testing efforts are normally identifiable as unit testing, integration testing, 
and acceptance testing, they do not provide more detail on the testing 
procedures in the project under examination. 

Kitchenham et al. [25] report on experience at ICL, where 57.7% of 
defects were found by software inspections. The total proportion of 
development effort devoted to inspections was only 6%. 

Gilb and Graham [14] include experience data from various sources in 
their discussion of the benefits and costs of inspections. IBM Rochester 
Labs publish values of 60% for source code inspections, 80% for 
inspections of pseudocode, and 88% for inspections of module and 
interface specifications. 

Grady [17] performs a cost/benefit analysis for different techniques, 
among them design and code inspections. He states that the average 
percentage of defects found for design inspections is 55%, and 60% for 
code inspections. 

Jones [20] discusses defect-removal effectiveness in the context of 
evaluating current practices in US industry. He gives approximate ranges 
and averages of defect detection effectiveness for various activities. 

Franz and Shih [13] present data from code inspection of a sales and 
inventory tracking systems project at HP. This was a batch system 
written in COBOL. Their data indicate that inspections had 19% 
effectiveness for defects that could also be found during testing. 

Meyer [28] performed an experiment to compare program testing to code 
walkthroughs and inspections. The subjects were 59 highly experienced 
data processing professionals testing and inspecting a PL/I program. 
Myers reports an average effectiveness value of 0.38 for inspections. 

To summarize this data, we assume that effectiveness follows a 
triangular distribution. A triangular distribution has a maximum value, a 
minimum value, and a most likely value [9]. When little is known about 
the actual distribution of a variable, it is common to adopt a triangular 
distribution [36].  

The maximum value for the effectiveness of design inspections is 
reported in [14] from IBM Rochester Labs. This was 0.84 (average for 
two types of design document). The minimal value was reported by 
Jones as 0.25 for informal design reviews [20]. The most likely value is 
the mid-point of the data from [8] and the industry mean reported in [20], 
which is 0.57. 
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For the minimum value of code inspection effectiveness, only the data 
from [13] is used (0.19). The maximum value of 0.7 was obtained in [39]. 
For the most likely value, the data from [8, 14, 16, 20, 28] was used to 
produce an average, which was 0.57. 

7.2 Average Effort per Defect 
In this section, the data on the average effort per defect for various 
defect detection techniques (design inspections, code inspections, 
testing) is summarized. 

Ackerman et al. [1] present data on different projects as a sample of 
values from the literature and from private reports. As the inspection 
process is described in the article as a six-step process including rework 
and follow-up, the data should mirror the cost of finding and fixing 
defects. 

The development group for a small warehouse-inventory system used 
inspections on detailed design and code. For detailed design, they 
reported 3.6 hours of individual preparation per thousand lines, 3.6 hours 
of meeting time per thousand lines, 1.0 hours per defect found, and 4.8 
hours per major defect found (major defects are those that will affect 
execution). For code, the results were 7.9 hours of preparation per 
thousand lines, 4.4 hours of meetings per thousand lines, and 1.2 hours 
per defect found. 

A major government-systems developer reported the following results 
from inspection of more than 562,000 lines of detailed design and 
249,000 lines of code: For detailed design, 5.76 hours of individual 
preparation per thousand lines, 4.54 hours of meetings per thousand 
lines, and 0.58 hours per defect found. For code, 4.91 hours of individual 
preparation per thousand lines, 3.32 hours of meetings per thousand 
lines, and 0.67 hours per defect found. 

Two quality engineers from a major government-systems contractor 
reported 3 to 5 staff-hours per major defect detected by inspections 
showing a surprising consistency over different applications and 
programming languages. 

A banking computer-services firm found that it took 4.5 hours to eliminate 
a defect by unit testing compared to 2.2 hours by inspection (probably 
code inspections). 

An operating-system development organization for a large mainframe 
manufacturer reported that the average effort involved in finding a design 
defect by inspections is 1.4 staff-hours compared to 8.5 staff-hours of 
effort to find a defect by testing. 

Weller [39] reports data from a project that performed a conversion of 
1200 lines of C code to Fortran for several timing-critical routines. While 
testing the rewritten code, it took 6 hours per failure. It was known from a 
pilot project in the organization that they had been finding defects in 
inspections at a cost of 1.43 hours per defect. Thus, the team stopped 
testing and inspected the rewritten code detecting defects at a cost of 
less than 1 hour per defect. 

McGibbon [27] discussed software inspections and their return on 
investment as one of four categories of software process improvements. 
For modeling the effects of inspections, he uses a sample project of an 
estimated size of 39.967 LOC. It is assumed that if the cost to fix a defect 
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during design is 1X, then fixing design defects during test is 10X and in 
post-release is 100X. Thus, the rework effort per defect for different 
phases is assumed to be 2.5 staff hours per defect for design 
inspections, 2.5 staff hours for code inspections, 25 staff hours for 
testing, and 250 staff hours for maintenance (customer-detected 
defects). 

Collofello and Woodfield [8] discuss a model for evaluating the efficiency 
of defect detection. In order to conduct a quantitative analysis, they 
needed to estimate some factors for which they had not enough data. 
They performed a survey among many of the 400 members of a large 
real-time software project who were asked to estimate the effort needed 
to detect and correct a defect for different techniques. The results were 
7.5 hours for a design error, 6.3 hours for a code error, both detected by 
inspections, 11.6 hours for an error found during testing, and 13.5 hours 
for an error discovered in the field. 

Kitchenham et al. [25] report on experience at ICL where the cost of 
finding a defect in design inspections was 1.58 hours. 

Gilb and Graham [14] include experience data from various sources in 
their discussion of the benefits and costs of inspections. A senior 
software engineer describes how software inspections started at 
Applicon. In the first year, 9 code inspections and 39 document 
inspections (other documents than code) were conducted and an 
average effort of 0.8 hours was spent to find and fix a major problem. 
After the second year, a total of 63 code inspections and 100 document 
inspections had been conducted and the average effort to find and fix a 
major problem was 0.9 hours. 

Bourgeois [5] reports experience from a large maintenance program 
within Lockheed Martin Western Development Labs (LMWDL) where 
software inspections replaced structured walk-throughs in a number of 
projects. The analyzed program is staffed by more than 75 engineers 
who maintain and enhance over 2 million lines of code. The average 
effort for 23 conducted software inspections (6 participants) was 1.3 
staff-hours per defect found and 2.7 staff-hours per defect found and 
fixed. Bourgeois also presents data from Jet Propulsion Laboratory 
which is used as an industry standard. There, the average effort for 171 
software inspections (5 participants) was 1.1 staff-hours per defect found 
and 1.4 to 1.8 staff-hours per defect found and fixed. 

Franz and Shih’s data [13] indicate that the average effort per defect for 
code inspections was 1 hour and for testing was 6 hours. 

In presenting the results of analyzing inspections data at JPL, Kelly et al. 
[23] report that it takes up to 17 hours to fix defects during formal testing, 
based on a project at JPL. They also report approximately 1.75 hours to 
find and fix defects during design inspections, and approximately 1.46 
hours during code inspections. 

Following the same logic as for effectiveness, we compute the average 
values of effort per defect for the various defect detection activities. 

Considering the average effort per defect for design inspections, 
Ackerman et al. [1] provide the maximum value of 2.9 hours on average 
per defect for different design documents on a project. The same article 
also provides the minimum value obtained from another project. The 
most likely value was the average of another project in [1], and [23, 25]. 
This was 1.58 hours. 
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Considering the average effort per defect for code inspections, the 
maximum value for code inspections of 2.7 hours per defect was 
reported in [5]. The minimal value was reported in []. The most likely 
value was the mean of values reported in [1, 13, 23, 39], which was 1.46 
hours. 

Finally, for the average effort per defect for testing, the maximum value 
of 17 was obtained from Kelly et al. based on a project at JPL [23]. The 
minimum of 4.5 was obtained from Ackerman et al. [1]. The most likely 
value was the mean for projects reported in [13, 39], and was computed 
as 6 hours. 
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