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1 Introduction

In the context of regression analysis we usually think of the variables are being quantitative—monetary
magnitudes, years of experience, the percentage of people having some characteristic of interest, and so
on. Sometimes, however, we want to bring qualitative variables into play. For example, after allowing for
differences attributable to experience and education level, does gender, or marital status, make a difference
to people’s pay? Does race make a difference to pay, or to the chance of becoming unemployed? Did the
coming of NAFTA1 make a significant difference to the trade patterns of the USA? In all of these cases
the variable we’re interested in is qualitative or categorical; it can be given a numerical coding of some
sort but in itself it is non-numerical.

Such variables can be brought within the scope of regression analysis using the method of dummy
variables. This method is quite general, but let’s start with the simplest case, where the qualitative
variable in question is a binary variable, having only two possible values (male versus female, pre-NAFTA
versus post-NAFTA).

The standard approach is to code the binary variable with the values 0 and 1. For instance we might
make a gender dummy variable with the value 1 for males in our sample and 0 for females, or make a
NAFTA dummy variable by assigning a 0 in years prior to NAFTA and a 1 in years when NAFTA was
in force.

2 Gender and salary

Consider the gender example. Suppose we have data on a sample of men and women, giving their years
of work experience and their salaries. We’d expect salary to increase with experience, but we’d like to
know whether, controlling for experience, gender makes any difference to pay. Let yi denote individual
i’s salary and xi denote his or her years of experience. Let Di (our gender dummy) be 1 for all men
in the sample and 0 for the women. (We could assign the 0s and 1s the other way round; it makes no
substantive difference, we just have to remember which way round it is when we come to interpret the
results.) Now we estimate (say, using OLS) the model

yi = α+ βxi + γDi + εi (1)

In effect, we’re getting “two regressions for the price of one”. Think about the men in the sample.
Since they all have a value of 1 for Di, equation (1) becomes

yi = α+ βxi + γ · 1 + εi

= α+ βxi + γ + εi

= (α+ γ) + βxi + εi

1The North American Free Trade Agreement, which came into force in 1994.
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Since the women all have Di = 0, their version of the equation is

yi = α+ βxi + γ · 0 + εi

= α+ βxi + εi

Thus the male and female variants of our model have different intercepts, α + γ for the men and just α
for the women.

Suppose we conjecture that men might be paid more, after allowing for experience. If this is true,
we’d expect it to show up in the form of a positive value of our estimate for the parameter γ. We can
test the idea that gender makes a difference by testing the null hypothesis H0 : γ = 0. If our estimate of
γ is positive and statistically significant we reject the null and conclude that men are paid more.

We could, of course, simply calculate the mean salary of the men in the sample and the mean for
women and compare them (perhaps doing a t-test for the difference of two means). But that would
not accomplish the same as the above approach, since it would not control for years of experience. It
could be that male salaries are higher on average, but the men also have more experience on average,
and the difference in salary by gender is entirely explained by difference in experience levels. By running
a regression including both experience and a gender dummy variable we can distinguish this possibility
from the possibility that, over and above any effects of differential experience levels, there is a systematic
difference by gender.

Here’s output from a regression of this sort run in gretl, using data7-2 from among the Ramanathan
practice files. Actually, rather than experience I’m using EDUC (years of education beyond 8th grade
when hired) as the control variable. As you can see, in this instance men were paid more, controlling for
education level. The GENDER coefficient is positive and significant; it appears that men were paid about
$550 more than women with the same educational level.

OLS estimates using the 49 observations 1–49
Dependent variable: WAGE

Variable Coefficient Std. Error t-statistic p-value

const 856.231 227.835 3.7581 0.000481
EDUC 108.061 32.439 3.3312 0.001712
GENDER 549.072 152.732 3.5950 0.000788

Mean of dep. var. 1820.204 S.D. of dep. variable 648.268
ESS 13077037 Std Err of Resid. (σ̂) 533.182
R2 0.351 R̄2 0.323

3 Extending the idea

There are two main ways in which the basic idea of dummy variables can be extended:

• Allowing for qualitative variables with more than two values.

• Allowing for difference in slope, as well as difference of intercept, across qualitative categories.

An example of the first sort of extension might be “race”. Suppose we have information that places
people in one of four categories, White, Black, Hispanic and Other, and we want to make use of this
along with quantitative information in a regression analysis.

The rule is that to code k categories we need k − 1 dummy variables, so in this case we need three
“race dummies”. We have to choose one of the categories as the “control”; members of this group will
be assigned a 0 on all the dummy variables. Beyond that, we need to arrange for each category to be
given a unique pattern of 0s and 1s on the set of dummy variables. One way of doing this is shown in
the following table, which defines the three variables R1, R2 and R3.
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R1 R2 R3
White 0 0 0
Black 1 0 0
Hispanic 0 1 0
Other 0 0 1

You might ask, Why do we need all those variables? Why can’t we just define one race dummy,
and assign (say) values of 0 for Whites, 1 for Blacks, 2 for Hispanics and 3 for Others? Unfortunately
this will not do what we want. Consider a slightly simpler variant—a three-way comparison of Whites,
Blacks and Hispanics, where we define one variable R with values of 0, 1 and 2 for Whites, Blacks and
Hispanics respectively. Using the same reasoning as given above in relation to model (1) we’d have (for
given quantitative variables x and y):

Overall: yi = α+ βxi + γRi + εi

White: yi = α+ βxi + γ · 0 + εi
yi = α+ βxi + +εi

Black: yi = α+ βxi + γ · 1 + εi
yi = (α+ γ) + βxi + +εi

Hispanic: yi = α+ βxi + γ · 2 + εi
yi = (α+ 2γ) + βxi + +εi

We’re allowing for three different intercepts OK, but we’re constraining the result: we’re insisting that
whatever the difference in intercept between Whites and Blacks (namely γ), the difference in intercept
between Whites and Hispanics is exactly twice as big (2γ). But there’s no reason to expect this pattern.
In general, we want to allow the intercepts for the three (or more) groups to differ arbitrarily—and that
requires the use of k − 1 dummy variables.

Let’s see what happens if we define two dummies, R1 and R2, to cover the three “race” categories as
shown below:

R1 R2
White 0 0
Black 1 0
Hispanic 0 1

The general model is
yi = α+ βxi + γR1i + δR2i + εi

and it breaks out as follows for the three groups:

White: yi = α+ βxi + γ · 0 + δ · 0 + εi
yi = α+ βxi + εi

Black: yi = α+ βxi + γ · 1 + δ · 0 + εi
yi = (α+ γ) + βxi + εi

Hispanic: yi = α+ βxi + γ · 0 + δ · 1 + εi
yi = (α+ δ) + βxi + εi

Thus we have three independent intercepts, α, α+ γ, and α+ δ. The null hypothesis “race makes no
difference” translates to H0 : γ = δ = 0, which can be tested using an F -test.
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4 Translating codings

Suppose we have a qualitative variable that is coded as 0, 1, 2 and so on (as is the case with a lot of
data available from government sources such as the Census Bureau). We saw above that we can’t use
such a coding as is, for the purposes of regression analysis; we’ll have to convert the information into an
appropriate set of 0/1 dummy variables first.

You could do this using formulas in a spreadsheet, but it’s easier to do it in gretl. Suppose you have
a variable in the current dataset called RACE, which is coded 0, 1, 2, 3 and so on, and you want to create
a set of dummy variables to represent the different RACE categories. There are two possibilities here: (1)
you want a full set of dummies (with just one omitted category, as discussed above), or (2) you want to
“collapse” the categorization to eliminate some unnecessary detail.

To get the full set of dummies (that is, k−1 of them), use the dummify function. This takes the name
of the original variable as its argument and returns a list—that is, a named object that stands in for the
names of several variables. Here’s an example:

list RACEDUMS = dummify(RACE)
ols WAGE const EDUC RACEDUMS

Note a few things about this:

• We use the keyword list to specify that we want a list object.

• We’re naming this list RACEDUMS.

• By default, the omitted category will be the one with the smallest value in the original coding.2

• We can then use RACEDUMS in the ols command as shorthand for including all the newly created
dummies (which will be called DRACE 1, DRACE 2 and so on).

If you want to collapse the original coding you have to create the dummy variables manually. Suppose
RACE originally had, say, 8 categories but you want to boil this down to white, black and “other”. And
let’s say “other” should be the omitted category. First you must take note of the original code numbers
for white and black: let’s say these are 1 and 2 respectively. Then you could do:

series white = (RACE==1)
series black = (RACE==2)
ols WAGE const EDUC white black

The expressions (RACE==1) and (RACE==2) are Boolean (logical) expressions. That is, (RACE==1)
gives a result of 1 when the condition evaluates as true, i.e. where RACE does equal 1, and 0 when the
condition is false, i.e. for any other values of RACE. And similarly for (RACE==2).

For another example, consider the categorization of educational attainment offered in the Current
Population Survey.

00 .Children
31 .Less than 1st grade
32 .1st, 2nd, 3rd, or 4th grade
33 .5th or 6th grade
34 .7th and 8th grade
35 .9th grade
36 .10th grade
37 .11th grade
38 .12th grade no diploma

2You can adjust this if you wish: see the entry for dummify in the gretl Function Reference.
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39 .High school graduate
40 .Some college but no degree
41 .Associates degree-occup./vocational
42 .Associates degree-academic program
43 .Bachelors degree(BA,AB,BS)
44 .Masters degree(MA,MS,MEng,MEd,MSW,MBA)
45 .Prof. school degree (MD,DDS,DVM,LLB,JD)
46 .Doctorate degree(PhD,EdD)

Suppose we want to make out of this a three-way classification, the categories being “no High school
diploma”, “High school diploma but no Bachelors Degree”, and “Bachelors degree or higher”. If the
variable shown above is called AHGA, then in gretl we could define two dummy variables thus:

series E1 = (AHGA>38) && (AHGA<43)
series E2 = AHGA > 42

The “&&” (logical AND) in the first formula means that E1 will get value 1 only if both conditions,
(AHGA>38) and (AHGA<43), are satisfied, corresponding to “High school diploma but no Bachelors De-
gree”, while the definition of E2 corresponds to “Bachelors degree or higher”. Those without a High
school diploma are the omitted category, with 0s for both E1 and E2.

5 Allowing for differing slopes

The regression models above allow the intercept of the regression to differ across qualitative categories.
In all cases so far, however, we have imposed a common slope, β, with respect to the (quantitative)
independent variable x. We might want to allow the slope to differ too. For example, it might be that
while men and women are both paid more highly if they have more experience or education, the degree
to which experience or education brings higher pay may differ for men and women. Note that this is a
different point from simply saying that men and women at the same level of education or experience are
paid differently.

To allow for this sort of thing we can define an interaction term, by multiplying a dummy variable
into x. Let’s go back to equation (1) but add a new variable S such that Si = Dixi. The model then
becomes

yi = α+ βxi + γDi + δSi + εi (2)

which breaks out for men and women as:

Men: yi = α+ βxi + γ · 1 + δxi · 1 + εi
yi = α+ βxi + γ + δxi + εi
yi = (α+ γ) + (β + δ)xi + εi

Women: yi = α+ βxi + γ · 0 + δxi · 0 + εi
yi = α+ βxi + εi

This now allows for different slopes (β + δ for men, just β for women) as well as different intercepts.
To test whether gender makes any difference (either to the intercept or the slope) we would use an F -test
on H0 : γ = δ = 0.
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