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We apply the forward-integration Riccati-based feedback controller developed in prior work
to a magnetically actuated spacecraft for the cases of both inertial and nadir pointing.
The spacecraft is assumed to be in low-Earth orbit and actuated by only three orthogonal
electromagnetic actuators. We assume no advance knowledge of the magnetic field, and thus
make no periodicity assumptions, instead relying only on measurements that are available
at the current time. We simulate the spacecraft attitude with actuator saturation, noisy
magnetic measurements, and without rate feedback. The simulations are based on the
International Geomagnetic Reference Field model of the magnetic field.

I. Introduction

Satellites in low-Earth orbit (LEO) can take advantage of the Earth’s magnetic field for attitude con-
trol.1,2 In particular, magnetic actuation is an elegant way to change the total angular momentum of a
spacecraft without using mass ejection, such as thrusters. Consequently, magnetic actuation can reduce or
remove the need for fuel. For small spacecraft, the benefits of magnetic actuation include cost, power, weight,
and spatial efficiency.

The challenging aspect of magnetic actuation is that the torque produced on the spacecraft lies in the
plane that is perpendicular to the local direction of Earth’s geomagnetic field. The spacecraft is thus, at
each moment in time, underactuated. Nevertheless, Earth’s geomagnetic field is sufficiently varying in time
and space that, for orbits not coinciding with Earth’s magnetic equator (when using a nonrotating dipole
model of the geomagnetic field), the spacecraft is fully controllable.3

Magnetic attitude control has been studied,4 and various techniques have been developed for both linear
and nonlinear problem formulations. Periodic approximations of the time-variation of the geomagnetic field
are considered in refs.,5–7 a model predictive controller is developed in ref.,4 and Lyapunov methods are
applied in ref.8

An additional challenge in magnetic actuation, is the fact that the magnitude and direction of the local
geomagnetic field may be uncertain. Although the geomagnetic field is modeled and updated periodically,9

these models have limited accuracy, and forecasts of the geomagnetic field may be erroneous due to unmodeled
effects and unpredictable disturbances.10 Consequently, it is desirable to develop control techniques for
magnetic actuation that rely solely on current, on-board measurements of the geomagnetic field.

To address this need, we apply the forward-integrating Riccati-based (FIR) linear time-varying feedback
controller developed in ref.11 to spacecraft magnetic actuation. FIR control is a technique for stabilizing
linear time-varying systems without the need for knowing the dynamics in advance. As in ref.,5 the controller
uses a linear time-varying model of the dynamics, but makes no periodicity assumptions, which are accurate
only to first order. Since FIR feedback requires knowledge of only the current magnetic field, this approach
obviates the need for advance knowledge of the geomagnetic field and thus does not rely on either geomagnetic
approximations or forecasts. The controller given in ref.8 also has this feature, and similarly works based
on a measurement of the geomagnetic field at the current time.

In the present paper we show through simulation that the FIR controller is robust to realistic error sources,
including the nonlinearities of attitude control that are not captured by the linearized model, actuator
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saturation, and noisy magnetic measurements. Finally, we consider an output feedback configuration, where
angular rate measurements are not available.

The paper is organized as follows. Section II describes the FIR controller. In section III, we present a
model for a spacecraft with three magnetic actuators. In section IV we give simulation results that highlight
the effectiveness of the forward Riccati controller. Finally, in section V we discuss future refinements of our
method.

II. Forward-Integrating Riccati-based (FIR) Control

In ref.,11 we analyzed a Riccati-based controller for stabilizing a class of linear time-varying systems.
Unlike standard, backward-integrating Riccati-based controllers, the approach of ref.11 integrates a Riccati
equation forward in time. As such, the controller does not require advance knowledge of the system dynamics,
and thus is applicable to magnetically actuated spacecraft, where the local magnetic field can be measured
on board but is not known in advance.

The forward-integrating Riccati (FIR) controller acts on the linear system

ẋ(t) = A(t)x(t) +B(t)u(t), (1)

and takes the form

u(t) = −R−12 BT(t)Pf(t)x(t), (2)

where Pf(t) is the solution to the forward-in-time control Riccati differential equation

Ṗf(t) = AT(t)Pf(t) + Pf(t)A(t)− Pf(t)B(t)R−12 BT(t)Pf(t) +R1, (3)

with the initial-time boundary condition Pf(t0) ≥ 0.
In ref.11 it is shown that, if the closed-loop dynamics matrix is symmetric, then the FIR controller is

asymptotically stabilizing. We also showed, using averaging theory, that, in the case of periodically time-
varying systems, and under suitable assumptions, there exists a period below which the dynamics of the
closed-loop system are asymptotically stable. In other words, closed-loop stability is guaranteed for systems
with time-varying dynamics of sufficiently high frequency. Note that tuning the FIR controller is similar to
tuning LQR, namely, by adjusting the relative weighting matrices R1 and R2.

In this paper, we apply the FIR controller (2)-(3) to the spacecraft attitude control problem with magnetic
actuation. The system model is time-varying due to the time-varying nature of the magnetic field that the
spacecraft experiences as it moves through an orbit. The FIR controller enables us to control the spacecraft
without knowing the magnetic field in advance. Even though the spacecraft model may not satisfy the
sufficient conditions of ref.,11 we show through numerical experiments that the controller is stabilizing and
provides good performance.

III. Spacecraft Model, Assumptions, and Control Objectives

As a spacecraft model, we consider a single rigid body controlled by three magnetic torque devices, and
without on-board momentum storage. We assume that a body-fixed frame is defined for the spacecraft,
whose origin is chosen to be the center of mass, and that an inertial frame is specified for determining the
attitude of the spacecraft. The spacecraft equations of motion are given by Euler’s equation and Poisson’s
equation,

Jω̇(t) = Jω(t)× ω(t) + Tm(t), (4)

Ṙ(t) = −ω×(t)R(t), (5)

where ω(t) ∈ R3 is the angular velocity of the spacecraft frame with respect to the inertial frame resolved in
the spacecraft frame, ω×(t) is the cross-product matrix of ω(t), J ∈ R3×3 is the constant, positive-definite
inertia matrix of the spacecraft, that is, the inertia dyadic of the spacecraft relative to the spacecraft center of
mass resolved in the spacecraft frame, and R(t) ∈ R3×3 is the rotation dyadic that transforms the spacecraft
frame into the inertial frame resolved in the spacecraft frame. Therefore, R(t) is the proper orthogonal
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matrix (that is, the rotation matrix) that transforms the components of a vector resolved in the inertial
frame into the components of the same vector resolved in the spacecraft frame.

The vector Tm(t) ∈ R3 represents the torque on the spacecraft generated by the magnetic actuators, and
can be written as12

Tm(t) = u(t)× b(t) = −b×(t)u(t), (6)

where b(t) = [bx(t) by(t) bz(t)]
T is Earth’s geomagnetic field measured in teslas (T) and resolved in the

body frame, and u(t) is the magnetic dipole moment generated by the currents in the magnetic actuators
measured in ampere-square meters (A-m2). For a discussion on generating magnetic dipole moments from
magnetic torquer rods see ref.16

Both inertial-rate and attitude measurements are assumed to be available. Gyro measurements provide
measurements of the angular velocity resolved in the spacecraft frame. Attitude is measured indirectly
using sensors such as magnetometers or star trackers. When attitude measurements are given in terms
of an alternative representation, such as quaternions, Rodrigues’s formula can be used to determine the
corresponding rotation matrix. Attitude estimation on SO(3) is considered in ref.14

The general objective of the attitude control problem is to determine control inputs such that the space-
craft attitude given by R follows a commanded attitude trajectory given by a possibly time-varying contin-
uously differentiable rotation matrix Rd(t). For t ≥ 0, Rd(t) is given by

Ṙd(t) = −ωd(t)×Rd(t), (7)

Rd(0) = Rd0, (8)

where ωd is the desired, possibly time-varying angular velocity. For the case of magnetic attitude control,
we consider both inertial pointing with fixed Rd, and nadir pointing on circular orbits with a time-varying
Rd(t) that corresponds to the local vertical/local horizontal (LVLH) frame.

The error between R(t) and Rd(t) is given in terms of the attitude-error rotation matrix

R̃
4
= RTRd. (9)

A scalar measure of attitude error is given by the rotation angle θ(t) about the eigenaxis needed to rotate
the spacecraft from its attitude R(t) to the desired attitude Rd(t). This angle, called the eigenaxis attitude
error, is given by15

θ(t) = cos−1( 1
2 [tr R̃(t)− 1]). (10)

In order to use the FIR controller (2)-(3), we linearize the equations of motion (4)-(5) about an equilibrium
that, depending on the control objective, corresponds to either inertial pointing or Earth (nadir) pointing.
These linearizations yield the system

ẋ(t) = Ax(t) +B(t)u(t), (11)

where x(t) =
[
ζT(t) δωT(t)

]T
, ζ =

[
φ θ ψ

]T
∈ R3 represents the spacecraft’s 3-2-1 Euler angles

relative to the inertial frame for inertial pointing and relative to the LVLH frame for nadir pointing; δω ∈ R3

is the angular velocity of the spacecraft relative to the inertial frame for inertial pointing and relative to the
LVLH frame for nadir pointing, that is, for the inertial pointing linearization, δω = ω since the equilibrium
point has zero angular velocity, and, for the nadir pointing linearization, δω is a perturbation about the
nominal Earth-pointing angular velocity. Furthermore,

B(t) =

[
0

−J−1b×(t)

]
∈ R6×3,

A = Ainertial for the inertial pointing linearization, and is given by the upper block-triangular matrix

Ainertial =

[
0 I3

0 0

]
∈ R6×6,
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A = Anadir for the nadir pointing linearization, and is given by

Anadir =

[
n×v I3

0 0

]
∈ R6×6,

where nv =
[

0 n 0
]
, and n is the mean motion, that is, the angular rate of the circular orbit.

III.A. Euler Angles from a Rotation Matrix

In order to implement the FIR controller (2)-(3) in a nonlinear simulation (4)-(5), we convert the attitude-
error rotation matrix R̃ into Euler angles. Algorithm 1 is a method to resolve the singularities that arise
from this mapping, and is adapted from ref.17 for the case of 3-2-1 Euler angles.

Algorithm 1 Pseudocode for calculating 3-2-1 Euler
angles from the attitude-error rotation matrix.

if R̃13 6= ±1 then
θ1 = −arcsin(R̃13)

ψ1 = atan2( R̃12

cos(θ1)
, R̃11

cos(θ1)
)

φ1 = atan2( R̃23

cos(θ1)
, R̃33

cos(θ1)
)

# Comment: second set of Euler angles
θ2 = π − θ1
ψ2 = atan2( R̃12

cos(θ2)
, R̃11

cos(θ2)
)

φ2 = atan2( R̃23

cos(θ2)
, R̃33

cos(θ2)
)

else
φ = anything; can set to 0
if R̃13 = −1 then

θ = π
2

ψ = φ+ atan2(R̃32, R̃31)
else

θ = −π2
ψ = −φ+ atan2(−R̃32,−R̃31)

end if
end if

Note that there exist multiple solutions for the sequence of Euler angle rotations that represent a given

attitude orientation. In our simulations we set ζ(t) =
[
φ1 θ1 ψ1

]T
if R̃13(t) 6= ±1; otherwise we set

φ = 0 and proceed according to Algorithm 1.

IV. Numerical Studies

We consider a spacecraft in a 450-km circular orbit above the Earth with an inclination of 87 degrees.
The International Geomagnetic Reference Field (IGRF) model is used to simulate Earth’s geomagnetic field
as a function of orbital position.9 The spacecraft inertia matrix J is given by

J =

 5 −0.1 −0.5

−0.1 2 1

−0.5 1 3.5

 kg-m2, (12)

with principal moments of inertia equal to 1.4947, 3.7997, and 5.2056 kg-m2. We stress that, although the
FIR controller uses a linearized model, all closed-loop simulations are fully nonlinear.
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IV.A. Rest-to-Rest Maneuver

We use the FIR controller (2)-(3) for a rest-to-rest (slew) maneuver, where the objective is to bring the
spacecraft from the initial attitude

R(0) =

 0.097 0.349 −0.932

0.973 −0.230 0.015

−0.209 −0.908 −0.362

 , (13)

which corresponds to the 3-2-1 Euler angles

ζ(0) =
[

0.1 0.2 0.3
]T

rad,

with zero initial angular velocity ω(0) = δω(0) = 0, to rest at the desired final orientation Rd = I3, ζ = 0.
Let the parameters of the FIR controller (2)-(3) be given by R1 = I6, R−12 = 0.0001, and Pf (0) = I6. These
values were tuned to give nominal magnetic dipole moments around 2×10−3 A-m2, which is about an order
of magnitude larger than the residual dipole moment of a typical nanosatellite,13 and a settling time of
around 8 orbits. We test the controller in a nonlinear simulation of (4)-(5).

Figure 1 shows the eigenaxis attitude error, Euler angles, angular velocity, and magnetic dipole moment
for the simulation described above. The spacecraft comes to rest at the commanded attitude within 7 orbits.
The maximum magnetic dipole moment generated is less than 3×10−3 A-m2. This quantity can be further
tuned by modifying the weights R1 and R2.
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(a) Eigenaxis Attitude Error
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(b) Euler Angles
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(c) Angular Velocity
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(d) Magnetic Dipole Moments

Figure 1: Full-state feedback for the rest-to-rest maneuver. (a) Eigenaxis Attitude Error, (b) Euler Angles,
(c) Angular Velocity, (d) Magnetic Dipole Moments. The spacecraft comes to rest at the commanded attitude
within 7 orbits, and the maximum magnetic dipole moment required by the controller is less than 3×10−3

A-m2.
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IV.A.1. Actuator Saturation

We now illustrate actuator-saturation handling. Let umax = 2 × 10−4 A-m2 be the saturation limit on
the magnetic dipole moments, which is about an order of magnitude less than the nominal controller tuning.
If the controller specifies a magnetic dipole moment larger than umax, we apply the saturation as the vector
scaling

usat(t) = umax
u(t)

||u(t)||
. (14)

Figure 2 shows the eigenaxis attitude error, Euler angles, angular velocity, and magnetic dipole moment.
The spacecraft comes to rest at the commanded attitude within 12 orbits. The magnetic dipole moment is
saturated at 2× 10−4 A-m2.
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(d) Magnetic Dipole Moments

Figure 2: Full-state feedback with magnetic dipole moment saturation of 2 × 10−4 A-m2 for the rest-to-
rest maneuver. (a) Eigenaxis Attitude Error (b) Euler Angles, (c) Angular Velocity, (d) Magnetic Dipole
Moments. The spacecraft comes to rest at the commanded attitude within 16 orbits, and the maximum
magnetic dipole moment is less than 2× 10−4 A-m2.

IV.A.2. Noisy Magnetic Field Measurement

We now consider the effects of noisy and biased magnetometer measurements. In the controller (2)-(3),

we replace −b×(t) with − (Rn(α)b(t) +m)
×

, where Rn(α) = eαn
×

is a rotation matrix that rotates the
magnetic field measurement by an angle α around axis n, and m is random additive noise. Let α = 45◦,
let n = [−0.868 0.420 0.266]T, and let m be normally distributed with zero mean and standard deviation
10−5 T, which is roughly one order of magnitude less than the nominal magnetic field strength. For a detailed
discussion on magnetometer bias determination and calibration see ref.18
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Figure 3 shows the eigenaxis attitude error, Euler angles, angular velocity, and magnetic dipole moment.
The spacecraft comes to rest at the commanded attitude within 9 orbits, demonstrating that the controller
is forgiving to large errors in the magnetic-field measurement.
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(d) Magnetic Dipole Moments

Figure 3: Full-state feedback with noisy magnetic field measurements for the rest-to-rest maneuver. The
measurements are off by 45◦ and corrupted by gaussian noise. (a) Eigenaxis Attitude Error (b) Euler Angles,
(c) Angular Velocity, (d) Magnetic Dipole Moments. The spacecraft comes to rest at the commanded attitude
within 9 orbits, and the maximum magnetic dipole moment is less than 3×10−3 A-m2.

IV.A.3. Output Feedback

We now consider the situation where the full-state measurement is not available. In particular, we assume
that we have measurements of only the attitude, that is,

C(t) =
[
I3 0

]
∈ R3×6.

We consider the observer-based dynamic compensator11

˙̂x(t) = A(t)x̂(t) +B(t)u(t) + F (t)
(
y(t)− C(t)x̂(t)

)
, (15)

u(t) = −R−12 BT(t)Pf(t)x̂(t), (16)

where F (t) = Q(t)CT(t)V −12 , and Q(t) is produced using the estimator Riccati equation

Q̇(t) = A(t)Q(t) +Q(t)AT(t)−Q(t)CT(t)V −12 C(t)Q(t) + V1. (17)

We let V1 = I6, and V −12 = 10−14 in order to slow down the convergence of the estimated states so that they
are visible in the simulation. Note that, unlike the standard LQG problem, the entire system of differential
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equations is solved forward-in-time, and therefore (15), (16) can be implemented on a time-varying system
without full-state feedback and without knowing the dynamics A(t), B(t), and C(t) in advance.

Figure 4 shows the eigenaxis attitude error, Euler angles, angular velocity, and magnetic dipole moment.
The estimated states converge to the true state values, and the spacecraft comes to rest at the commanded
attitude within 8 orbits. Note that if the convergence of the estimated states is not slowed down, the
spacecraft comes to rest faster.
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(d) Magnetic Dipole Moments

Figure 4: Output feedback without angular velocity measurements for the rest-to-rest maneuver. (a) Eige-
naxis Attitude Error (b) Euler Angles, solid, and estimates, dashed, (c) Angular Velocity, solid, and estimates,
dashed, (c) Magnetic Dipole Moments. The estimated states converge to the true values, the spacecraft comes
to rest at the commanded attitude within 8 orbits, and the maximum magnetic dipole moment is less than
4×10−3 A-m2.

IV.A.4. Large-Angle Maneuver

We use the FIR controller (2)-(3) for a large slew maneuver, rotating 180 degrees about the x-axis. The
objective is to bring the spacecraft from the initial attitude R(0) = diag(1,−1,−1), which corresponds to
the 3-2-1 Euler angles

ζ(0) =
[
π 0 0

]T
rad,

with zero initial angular velocity, ω(0) = δω(0) = 0, to rest at the desired final orientation, Rd = I3, ζ = 0.
Figure 5 shows the eigenaxis attitude error, Euler angles, angular velocity, and magnetic dipole moment

for the simulation described above. The spacecraft comes to rest at the commanded attitude within 10
orbits. The maximum magnetic dipole moment generated is less than 2×10−2 A-m2.

8 of 12

American Institute of Aeronautics and Astronautics



0 5 10 15
0

0.5

1

1.5

2

2.5

3

3.5

Orbits

E
ig

en
ax

is
 a

tti
tu

de
 e

rr
or

(a) Eigenaxis Attitude Error

0 5 10 15
−0.5

0

0.5

1

1.5

2

2.5

3

3.5

Orbits

E
ul

er
 A

ng
le

s,
 r

ad

(b) Euler Angles

0 5 10 15
−4

−3

−2

−1

0

1

2
x 10

−4

Orbits

A
ng

ul
ar

 v
el

oc
ity

, r
ad

/s
ec
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(d) Magnetic Dipole Moments

Figure 5: Full-state feedback for the large-angle maneuver. (a) Eigenaxis Attitude Error (b) Euler Angles, (c)
Angular Velocity, (d) Magnetic Dipole Moments. The spacecraft comes to rest at the commanded attitude
within 10 orbits, and the maximum magnetic dipole moment is less than 2×10−2 A-m2.

IV.B. Motion-to-Rest Maneuver

We now give the spacecraft the non-zero initial angular velocity

ω(0) = δω(0) =
[

0.025 0.025 −0.03
]T

rad/sec.

The parameters of the FIR controller are as given in the previous section.
Figure 6 shows the eigenaxis attitude error, Euler angles, angular velocity, and magnetic dipole moment

for the motion-to-rest maneuver. The spacecraft now tumbles before the magnetic actuators are able to regu-
late the attitude. Note that, as in the previous simulation, the controller is stabilizing for maneuvers outside
the expected region of validity of the linearized model. The spacecraft comes to rest at the commanded
attitude within 10 orbits. The maximum magnetic dipole moment generated is less than 1.5 A-m2.

Note that the parameters of the controller were tuned for a small rest-to-rest maneuver and are now
being applied to a motion-to-rest maneuver. If the spacecraft cannot generate the requested magnetic dipole
moments, they could either be saturated, or one could retune the weight matrices R1 and R2 for the motion-
to-rest maneuver. Also note that, since Algorithm 1 maps the Euler angles to the range (−π, π), there are
discontinuous jumps in Figure 6b.

IV.C. Rest-to-Spin Maneuver (Nadir Pointing)

We now use the FIR controller (2)-(3) for a rest-to-spin maneuver, where the objective is to bring the
spacecraft from rest, with initial attitude R(0) = I3, which corresponds to the 3-2-1 Euler angles ζ(0) = 0,
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Figure 6: Full-state feedback for the motion-to-rest maneuver. (a) Eigenaxis Attitude Error (b) Euler Angles,
(c) Angular Velocity, (d) Magnetic Dipole Moments. The spacecraft comes to rest at the commanded attitude
within 10 orbits, and the maximum magnetic dipole moment is less than 1.5 A-m2.

and zero initial angular velocity ω(0) = 0, which corresponds to δω(0) =
[

0 n 0
]T

rad/sec, to a nadir

pointing configuration, with

ωd =
[

0 −n 0
]T

rad/sec, (δωd = 0)

where n = 0.0011, and Rd(0) = I3.
We rotate the spacecraft frame so that the inertia matrix J is now given by J = diag(1.4947, 5.2056, 3.7997)

kg-m2. This choice ensures that the spacecraft spins about its major axis as it points at the Earth. Alterna-
tively, we could have specified ωd to align with the spacecraft’s major axis in the original coordinates. Note
that we use A = Anadir.

Figure 7 shows the eigenaxis attitude error, Euler angles, angular velocity, and magnetic dipole moment
for the nadir pointing maneuver. The spacecraft comes to rest at the commanded attitude within 8 orbits.
The maximum magnetic dipole moment generated is less than 0.2 A-m2.

V. Conclusion

The forward-integrating Riccati-based controller was applied to the problem of spacecraft attitude regu-
lation using only magnetic actuation. In this paper we have shown that the FIR controller is stabilizing for
inertially pointing the spacecraft under actuator saturation, noisy magnetic-field measurements, and without
using rate feedback. Additionally, we demonstrated nadir-pointing capabilities by spinning the spacecraft
up from rest. The above results have been demonstrated with simulations on a fully nonlinear model. Fu-
ture work will consider nadir pointing on elliptic orbits, uncertain spacecraft inertia, and mixed actuation
architectures such as magnetic torquers combined with reaction wheels.
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Figure 7: Full-state feedback for the nadir-pointing maneuver. (a) Eigenaxis Attitude Error (b) Euler Angles,
(c) Angular Velocity, (d) Magnetic Dipole Moments. The spacecraft converges to the commanded spin within
8 orbits, and the maximum magnetic dipole moment is less than 0.2 A-m2.

The FIR controller is advantageous for general linear time-varying systems, does not require future
knowledge of model parameters, is tuned similarly to conventional LQR, and has some stability guarantees
presented in ref.11 Future work includes extending the theoretical stability guarantees beyond the results
given in ref.11 We consider the application of orbital stabilization on elliptic orbits using the FIR controller
in ref.19
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