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ABSTRACT 
We have developed a method, disequilibrium pattern analysis, for examining the disequilibrium 

distribution of the entire array of two locus multiallelic haplotypes in a population. It is shown that a 
selected haplotype will produce a distinct pattern of linkage disequilibrium values for all generations 
while the selection is acting. This pattern will also presumably be maintained for many generations 
after the selection event, until the disequilibrium pattern is eventually broken down by genetic drift 
and recombination. Related haplotypes, sharing an allele with a selected haplotype, assume a value of 
linkage disequilibrium proportional to the frequency of the unshared allele and have a single negative 
value of the normalized linkage disequilibrium. The analysis assumes zero linkage disequilibrium for 
all allelic combinations initially. The same basic results continue to apply if the selection involves a 
new mutant, the occurrence of which creates linkage disequilibrium for some haplotypes. The 
disequilibrium pattern predicted under selection is robust with respect to the influence of migration 
and random genetic drift. This method is applicable to population data having linked polymorphic 
loci including that determined from protein or DNA sequencing. 

HE linkage disequilibrium of haplotypes (chro- T mosome or gametic types) formed from tightly 
linked loci may indicate the nature of past evolution- 
ary events, particularly selection events, acting on the 
genome. Unlike genotypic ratios, which assume 
Hardy-Weinberg proportions in one generation in 
random mating populations, disequilibrium present in 
haplotypes is retained over generations and its decay 
over time is a function of recombination between loci. 
Tightly linked polymorphic loci will retain evidence 
of distorted haplotypic frequencies for many genera- 
tions. Thus, the patterns and extent of linkage dise- 
quilibrium potentially provide more information for 
differentiating selection from other evolutionary 
events than does examination of single locus genetic 
variation. 

In this paper we describe a method, disequilibrium 
pattern analysis, for examining the disequilibrium dis- 
tribution of the entire array of haplotypes in a poly- 
morphic two locus system. This method identifies the 
constraints on the disequilibrium values that a haplo- 
type can assume, and the distribution of the entire 
array of haplotypes in the disequilibrium space. It is 
shown that selection leads to specific quantifiable dis- 
equilibrium patterns that are robust with respect to 
the influence of migration and random genetic drift. 

Our impetus for developing this methodology was 
to study the population genetics and evolutionary 
history of the major histocompatibility complex in 
humans (HLA). The HLA system contains a number 
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of closely linked and highly polymorphic loci, which 
have strong linkage disequilibrium. There exists an 
extensive amount of data on the genetic variation for 
HLA genes in different populations (for example, see 
the Histocompatibility Testing volumes for 1972, 1980 
and 1984, DAUSSET and COLOMBANI 1973; TERASAKI 
1980 and ALBERT, BAUR and MAYR 1984). 

In this paper we discuss the theoretical aspects of 
disequilibrium pattern analysis for detecting evolu- 
tionary forces acting on a population. The companion 
paper (KLITZ and THOMSON 1987) applies disequilib- 
rium pattern analysis to HLA A and B locus data from 
a large Danish study (HANSEN et a l .  1979). 

RESULTS 

Defining the disequilibrium space: The linkage 
disequilibrium parameter D, is defined as 

where xg is the observed frequency of the haplotype 
A& PA, is the frequency of the allele A, and 98, that of 
B,, so that the linkage disequilibrium is the difference 
between the observed haplotype frequency xtl and 
pA,qBJ, the haplotype frequency expected if the alleles 
are associated at random. The  disequilibrium values 
of the haplotypes of a population are constrained by 
the relationships 

r 5 
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where r is the number of alleles at the A locus, and s 
the number of alleles at the B locus. 

This constraint is most simply illustrated in the case 
of a two locus, two allele (AI, A2 and B1, B2) model, 
where the four haplotype frequencies can be ex- 
pressed as 

f(A1B1) = P A 1 q B I  + D, f ( A d 2 )  = P A 2 q B ,  + D (34  

&Ai&) = P A l q B 2  - D ,  (3b) 
Note that P A l  + P A p  = 1 etc., and D is the measure of 
linkage disequilibrium (= f(AlBlNA2Bz) - f(A182)- 
f(A2BI)). If the alleles A I  and B1 occur together in the 
haplotype AIBl  more often than expected under ran- 
dom association, that is, D > 0, then the haplotype 
A2B2 is also in the positive disequilibrium space. Al- 
though the frequency of the haplotype A2B2 will be 
different from that of the haplotype A I B I ,  unless  PA^ 
= q B 1  = 0.5, the constraints given in (2), and illustrated 
in (3a), imply that these two haplotypes will have an 
equal value of linkage disequilibrium. The positive 
disequilibria are balanced in the negative space by the 
two haplotypes AIB2 and A2B1, which each share one 
allele in common with the haplotypes in the positive 
space. This well-known representation, given in equa- 
tions (3a) and (3b), can be easily extended to the two 
locus multi-allelic case. 

Considering two locus multi-allelic cases we have 
shown that when selection has favored a particular 
haplotype, each of the haplotypes of the entire popu- 
lation can be assigned to one of three classes which 
reflect the dynamics of inter-locus association under 
selection: (1) favored haplotypes, which have strong 
positive disequilibrium values, (2) related haplotypes 
having negative values, which share just one allele 
with the favored haplotypes and (3) unrelated haplo- 
types having weaker positive disequilibria, which share 
no alleles with the favored haplotypes. (The selection 
on a haplotype may be due to a hitchhiking event, or 
to selection specifically on the allelic combination of 
the haplo type.) 

The maximum value that the linkage disequilibrium 
D can take is a function of the allele frequencies. A 
normalized or standardized disequilibrium value, de- 
noted D’, which ranges in value from -1 to +1, is 
defined as (LEWONTIN 1964) 

f ( A 8 1 )  = P A 2 q B ,  - D. 

Dl; = DgIDmax ( 4 4  
where 

Dmax = p,(l - q,) when D > 0 and p ,  5 q, 

= (1 - PJq, when D > 0 and p ,  2 q, 

= P,q, when D < 0 and p ,  + q, CE 1 

= (1 - P,)(l - q,) when D < 0 and 

(4b) 

(4c) 

(4d) 

( 4 4  
P c + q J r  1. 

When there are multiple alleles with fairly even fre- 
quencies, such as with HLA data, this last condition, 
that is, p ,  + q, 2 1, rarely holds (BAUR and GRANGE 
1983). 

Effect of selection on the disequilibrium space: 
Theoretical results have been obtained for determin- 
istic models in which the haplotype AIBl increases in 
frequency due to selection (see APPENDIX). The results 
apply whether the haplotype AIBl  increases in fre- 
quency via a hitchhiking event (THOMSON 1977) or 
via selection for this haplotype. We consider the case 
where all linkage disequilibrium values are initially 
zero, as well as the case where one of the alleles A1 or 
B1 of the selected haplotype is a new mutant. We have 
used iterations of various selection models to evaluate 
the effect of recombination, and the results we now 
list apply in all cases. 

If initially there is no linkage disequilibrium (i.e. 
disequilibrium between the alleles at our two loci of 
interest equals zero), then some simple relationships 
for the linkage disequilibrium values which result 
from the selection event can be given (see APPENDIX). 
These basic results hold in every generation while the 
selection is operating. 

1. The positive disequilibrium of the haplotype 
AIB1,  which increases in frequency as a result of the 
hitchhiking event, and the unrelated haplotypes A$,, 
i = 2, . . . , r , j  = 2, . . . , s, will be exactly balanced by 
the negative disequilibrium values of the related hap- 
lotypes A&, i = 2 ,  . . . , r and A&, j  = 2, . . . , s. 

2. Further, the negative disequilibria of the A,BI 
haplotypes, i = 2, . . . , r will be proportional to the A, 
allele frequency, while the normalized disequilibrium 
values for all these haplotypes will be equal when P A ,  

3. Similarly, for the AlB, haplotypes, j = 2, . . . , s, 
the linkage disequilibria will be proportional to the B, 
allele frequency, and the normalized disequilibria val- 
ues will be equal for all these haplotypes, when p A l  + 
P E ,  5 1. In most cases this differs from the constant 
normalized disequilibrium value for the A31 haplo- 
types. 
4. The normalized disequilibrium value of the AIBl  

haplotype will equal the larger in absolute value of 
the normalized A,B, and AlB, disequilibrium values. 

5. The positive disequilibria of the unrelated hap- 
lotypes A$, (i = 2, . . . , r , j  = 2, . . . , s) are proportional 
to the A, and E, frequencies, but the normalized dise- 
quilibrium values will often not be equal, depending 
on the allele frequencies. 

These features are illustrated in Figures 1 and 2, 
which give plots of the linkage disequilibria, and nor- 
malized linkage disequilibria values, respectively, 
from the iterations of a selection model. The model 
considers three alleles at the A locus, and four alleles 
at the B locus, giving 12 haplotypes in the population. 
The vertical axis is P A , q B I ,  the expected frequency of 

+ P S I  5 1. 
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FIGURE 1.-Results of a deterministic two-locus selection model having three and four alleles at each locus, showing the linkage 

disequilibrium, D, of the twelve haplotypes during directional selection (selection coefficient 0.5) favoring the AIBl haplotype. The initial 
generation is in linkage equilibrium (all haplotypes at D = 0). The trajectory of one haplotype from each class is shown through 25 
generations. The location of each haplotype at generation eight is indicated. The initial frequencies for the alleles AI, A2 and A3 are 0.03, 
0.37 and 0.60, respectively, and for the alleles E l ,  Ep,  BS and B4 are 0.10, 0.20,0.30 and 0.40. 

the haplotype if there is no linkage disequilibrium. 
This choice of axis allows easy discrimination between 
haplotypes with low and high frequency alleles, and 
permits easy identification of the proportionality of 
the negative linkage disequilibrium values with the 
frequency of the unshared allele. The model is strictly 
deterministic in that the effects of drift are not consid- 
ered. Selection favors one haplotype, A I B I ,  and we 
consider directional selection with a selection coeffi- 
cient of 0.5 applied to all genotypes lacking the fa- 
vored haplotype. A large selection coefficient was 
chosen in order to observe rapid movement of h a p  
lotypes in the disequilibrium space: the results are not 
qualitatively different when other selection values are 
used. Initial allele frequencies were chosen to differ, 
the initial disequilibrium values of all haplotypes were 
zero, and recombination was zero. The favored hap- 
lotype was started at a low frequency. 

The increase and then decrease in the value of the 
linkage disequilibrium D for the AIBl  haplotype with 
time (Figure 1) relates to the fact that the maximum 
value that D can take is a function of the allele fre- 
quencies. Note that the normalized linkage disequilib- 
rium D’ increases over time (Figure 2). 

The linkage disequilibria of each of the classes of 
related haplotypes, that is (A1B2, A I B ~ ,  and AlB4) and 
(A2BI and AsBl) ,  respectively, form a line in the neg- 

ative space passing through the point D = 0, pq  = 0 
in the D space (Figure 1) and each set of related 
haplotypes assumes a single D value (Figure 2). Un- 
related haplotypes (A2B2, A2B3, A2B4 and A&, A&, 
A3B4) fall on a line in the D space but form more 
complicated alignments in the D’ space because the 
value of D,,, varies with the relative allele frequencies 
(see APPENDIX). 

These results are also illustrated in case A of Table 
1 where the frequencies of five alleles at the A locus 
and four alleles at the B locus, and the normalized 
linkage disequilibria (D’) of all the pairwise combina- 
tions of alleles, are given at generations 0 and 50. All 
initial disequilibrium values are zero, the selection 
coefficient of the A I B l  haplotype is 0.1 , and we assume 
no recombination. At generation 50 the related hap- 
lotypes have DC ( j  = 2 ,  . . . , 4) values which are all 
equal to -0.334, and Di; (i = 2, . . . , 5 )  values which 
are all equal to -0.905. The normalized disequilib- 
rium of the AIBI haplotype has a value of 0.905 which 
equals the larger in absolute value of the normalized 
disequilibria of the related haplotypes. The positive 
disequilibria of the AiBj haplotypes (i = 2, . . . , 5 ;  j = 
2, . . . , 4) assume a number of different normalized 
values, depending on the relative frequencies of the 
constituent alleles. 

As detailed in the APPENDIX, when one of the alleles 
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FIGURE 2.-Deterministic selection model identical to that in Figure 1, plotted against standardized linkage disequilibrium D'. The 

location of haplotypes at the 8th and 16th generations is indicated, with the trajectories over 25 generations shown for the selected haplotype, 
one from each of the related classes of haplotypes and one from each of the unselected classes. 

A ,  or B , ,  say R I ,  is a new mutant and forms the 
haplotype AIBl from the haplotype A1B2,  and the 
haplotype AIRl is selected, the same basic results out- 
lined above continue to apply, if we assume zero 
linkage disequilibrium before the new mutant arose. 
One exception to the general results .is that for the 
related haplotype bearing the allele from which the 
new mutant arose, Die(n) will be larger in absolute 
value than the value of Dij (n)  ( j  = 3, . . . , s), where n 
is the number of generations since the new mutation 
arose (and hence since selection has been operating), 
{see cases B,  C and D in Table 1). The occurrence of 
the new mutant creates nonzero linkage disequilib- 
rium for a number of other haplotypes (see equations 
(1-1 5a)-(I-l se), and cases B, C and D of Table 1). One 
point of specific interest is that the D:, (i = 2, . . . , r )  
values will all equal - 1 initially, and will maintain this 
value if recombination is zero (see case B of Table I). 

'The case of nonzero recombination has been con- 
sidered by computer iteration of various deterministic 
selection models (see APPENDIX and Table 1). The 
results obtained for the case of zero recombination all 
continue to apply with recombination. Two examples 
where BI is  a new mutant forming the haplotype A$, 
from the haplotype A&, with recombination R = 
0.01 and selection coefficient 0.10 for the haplotype 
AIBl are given in Table 1. In case C,  the alleles A I  and 

B2 are both relatively rare, while in case D ,  A ,  is 
common and B2 is rare (case D i s  the same as case B, 
except for the recombination values). With nonzero 
recombination the L):,(i = 2, . . . , r)  values decay from 
their initial value of -1. (Note that for a hitchhiking 
event to be important in influencing allele frequencies 
and linkage disequilibrium values we require that the 
selection intensity exceed the recombination fraction 
(s > R )  (THOMSON 1977; ASMUSSEN and CLEGG 1981; 
ASMUSSEN 1986), and a similar constraint probably 
obtains for direct selection.) 

When one haplotype is favored, as in our model, a 
total of T + s - 2 related haplotypes (haplotypes having 
an allele in common with the selected haplotype) move 
into the negative space, while the remainder ( r  - 1)(s 
- 1) of haplotypes, that i s ,  all those haplotypes unre- 
lated to the selected haplotype, move into the positive 
space. If selection is operating on X haplotypes con- 
currently, and these haplotypes do not share any 
alleles, we expect X(r  i- s) - 2(1 + 2 -t . . , + K) 
haplotypes in the negative linkage disequilibrium 
space, and the remainder in the positive space. We 
define the observed number of haplotypes in the 
negative linkage disequilibrium space by M ,  and if b 
= r + s - 1, then we obtain the quadratic K = (b +- 
-)/2. The distribution of linkage disequilib- 
rium values in the positive and negative spaces can 
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Allele frequencies and normalized linkage disequilibria 

Case A Case B Case C Case D 

Generation 0 50 0 50 0 50 0 50 

0.5 
0.1 
0.15 
0.2 
0.05 
0.05 
0.15 
0.3 
0.5 

0 
0 
0 
0 

0 
0 
0 
0 
0 
0 
0 

0 
0 
0 

0 
0 
0 

0.75 
0.05 
0.07 
0.10 
0.02 
0.53 
0.07 
0.15 
0.25 

0.905 
-0.334 
-0.334 
-0.334 

-0.905 
-0.905 
-0.905 
-0.905 

0.081 
0.177 
0.334 

0.08 1 
0.177 
0.334 

0.1 11 
0.177 
0.334 

Allele frequencies 
0.5 0.55 
0.1 0.09 
0.15 0.13 
0.2 0.18 
0.05 0.05 
0.001 0.10 
0.049 0.04 
0.15 0.14 
0.3 0.27 
0.5 0.45 

Normalized disequilibria (D’) 

0.05 
0.1 
0.15 
0.2 
0.5 
0.001 
0.049 
0.15 
0.3 
0.5 

1 
-0.02 

0 
0 
0 

-1 
-1 
-1 
-1 

0.002 
0 
0 
0 
0.004 
0 
0 
0 
0.005 
0 
0 
0 
0.001 
0 
0 
0 

1 
-0.105 
-0.087 
-0.087 
-0.087 
-1 
-1 
-1 
-1 

0.013 
0.016 
0.039 
0.087 
0.02 
0.016 
0.039 
0.087 
0.028 
0.023 
0.039 
0.087 
0.006 
0.016 
0.039 
0.087 

1 

0 
0 
0 

-1 
-1 
-1 
-1 

0.002 
0 
0 
0 
0.004 
0 
0 
0 
0.005 
0 
0 
0 
0.02 
0 
0 
0 

-0.388 

0.12 
0.09 
0.14 
0.19 
0.46 
0.07 
0.05 
0.14 
0.28 
0.46 

0.885 
-0.608 
-0.507 
-0.507 
-0.507 
-0.885 
-0.885 
-0.885 
-0.885 

0.008 
0.01 1 
0.026 
0.058 
0.013 
0.01 1 
0.026 
0.058 
0.018 
0.015 
0.026 
0.058 
0.070 
0.058 
0.058 
0.058 

0.5 
0.1 
0.15 
0.2 
0.05 
0.001 
0.049 
0.15 
0.3 
0.5 

1 
-0.02 

0 
0 
0 

-1 
-1 
-1 
-1 

0.002 
0 
0 
0 
0.004 
0 
0 
0 
0.005 
0 
0 
0 
0.001 
0 
0 
0 

0.54 
0.09 
0.14 
0.18 
0.05 
0.08 
0.04 
0.14 
0.28 
0.46 

0.888 
-0.078 
-0.067 
-0.067 
-0.067 
-0.888 
-0.888 
-0.888 
-0.888 

0.009 
0.013 
0.030 
0.067 
0.015 
0.013 
0.030 
0.067 
0.02 1 
0.018 
0.030 
0.067 
0.004 
0.013 
0.030 
0.067 

Allele frequencies and normalized linkage disequilibria (D’) are presented at generations 0 and 50 with selection coefficient 0.1 (dominant 
directional selection) for the AIBl  haplotype under four contrasting conditions: Case A, all initial disequilibrium values zero and no 
recombination (R = 0); Case B, BI is a new mutant on haplotype AlBt which arose from haplotype AlBs with AI common and B2 rare, R = 0; 
Case C, BI is a new mutant on haplotype AlB1 which arose from haplotype AlBz and A I  and B2 are relatively rare, R = 0.01; Case D, as for 
Case B with R = 0.01. Related haplotypesare bracketed. 

thus give an indication of the minimum number of 
selection events which are acting, or have acted, on 
the system. 

Neutrality: When mutation creates a new allele at 
a locus in a population, a new and unique haplotype 
is formed. This new haplotype will have the maximum 
positive D’ value, 1.0, all related haplotypes with the 
new mutant allele will be absent and so have D ’ values 
of - 1 .O, while the linkage disequilibrium of the other 
related haplotypes with the non-mutant allele will be 
unaltered from their original value, except for the 
haplotype from which the new mutant derives (see 
equations (1-15a)-(I-l5e) in APPENDIX). If the new 
haplotype persists in the population and increases in 
frequency, recombination will generate new related 

haplotypes in numbers proportional to the frequencies 
of the alleles at the unmutated locus. It is possible to 
imagine that genetic drift and mutation alone can 
produce the same pattern in the disequilibrium space 
as the selection models described above. Initially, the 
related haplotypes which have the new mutant allele 
have disequilibrium values which are maximized and 
proportional to the frequency of the unshared allele, 
and identical normalized disequilibrium values, equal- 
ing - 1. Is the pattern generated by a selection event 
mimicked as recombination and genetic drift operate 
to reduce the disequilibrium values from their maxi- 
mum? 

The simulation technique of HUDSON (1 983) has 
been employed to examine the disequilibrium pat- 
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terns generated in a two locus neutrality model. We 
generated data samples of size 10,000 for 4Nc values 
of 0, 1, 10, 25, 50, 75, 100, 160 and 500, where N is 
the effective population size and c is the amount of 
recombination between loci. (The rarer alleles were 
combined into one allele class to mimic the undefined 
“blank” alleles found in HLA data.) We chose 0 = 
4Np,  where is the mutation rate, so as to generate 
samples with large numbers of alleles, close to the 13 
alleles at one locus and 21 at the other as seen for the 
HLA data analyzed in the companion paper KLITZ 
and THOMSON (1 987).) Once the normalized disequi- 
librium values move away from the D‘ = -1 region 
the pattern generated by a selection event is not 
mimicked. A very wide range of normalized linkage 
disequilibrium values was observed and the approxi- 
mate constancy of normalized linkage disequilibrium 
values of each set of related haplotypes in the negative 
disequilibrium space, as predicted by the selection 
model, is not found in the neutrality case once recom- 
bination starts to reduce the initial D’ = -1 values. 

At this stage we have no objective method for 
determining if a population sample fits the selection 
pattern or not. The patterns we have described as 
indicative of selection were arrived at by considering 
a completely deterministic model. Sampling variance 
will always cause some deviations from the determin- 
istic predictions. At this exploratory phase of data 
analysis we have erred on the conservative side and 
make no statement about data sets which are neither 
very close to nor very far from the selection predic- 
tions. We are currently investigating various ap- 
proaches to statistical testing. 

Migration or continuous admixture: If sizeable 
differences in allele frequencies exist between two 
populations, then large amounts of linkage disequilib- 
rium can be generated by migration or admixture (see 
for example, NEI and LI 1973, FELDMAN and CHRIS- 
TIANSEN 1975, THOMSON, BODMER and BODMER 
1976). However, except in a very limited set of cases, 
the pattern of disequilibrium that will be generated 
by migration or  admixture is very different from the 
specific pattern predicted in the case of selection. This 
is demonstrated theoretically by considering the stan- 
dard static model of migration where two populations 
are mixed in proportions m and 1 - m, and the case 
of continuous admixture of the two populations, and 
then by computer iteration of general migration 
models. 

Consider a two locus, multiallelic model and let the 
frequency of the allele A, at the first locus be p ,  in 
population 1, and P, in population 2, for i = 1, . . . , 
r .  Similarly, let the frequency of the allele B, at the 
second locus be q, in population 1, and Q J  in popula- 
tion 2, f o r j  = 1, . . . , s. In the static mixed population 
the linkage disequilibrium D,J between the alleles A, 
and EJ is given by 

D, = mDf f (1 - m)D; 

+ m(l - m> (P, - ‘Z)( qJ - Q J )  ( 5 4  
i =  1, . . . ,  r;  j =  1, . . . ,  s, 

where 0; and D ;  denote the linkage disequilibria in 
the two populations considered separately (see CAV- 
ALLI-SFORZA and BODMER 197 1, page 69). If there is 
no linkage disequilibrium in each population initially, 
that is Di = D: = 0, then 

(5b) Dij = m(l  - m)(pi - Pz)( 91 - QI) 

i =  1,  . . . ,  r;  j =  1, . . . ,  s, 

so that, D, # 0 even if DE: = D;  = 0, provided the 
allele frequencies in the two populations are different. 

Take the case of admixture of say population 2 into 
population 1 (THOMSON, BODMER and BODMER 1976), 
where a proportion a of matings each generation 
involve an individual from population 1 with an indi- 
vidual from population 2, with the progeny entering 
population 1. If the disequilibria in the two popula- 
tions are initially zero, then, at generation n the dise- 
quilibria in the admixed population are given by 

i =  1, . . . ,  r;  j =  1 , . . . ,  s 
where 

and R is the recombination fraction between the A 
and B loci. 

The only case of migration or admixture which can 
mimic the selection pattern with say the haplotype 
AIBl having high positive linkage disequilibrium and 
all related haplotypes at both loci having negative 
disequilibria proportional to the frequency of the 
unshared allele is the very restrictive situation where 
alleles A1 and BI are both more frequent in population 
1 than population 2, or vice versa, and all other alleles 
are rarer in population 1 than population 2,  or vice 
versa. We assume that there is no linkage disequilib- 
rium between any pairs of alleles in each population 
initially. In the static mixed population, and in the 
continuously admixed population for this example, 
alleles A1 and B1 will be in positive linkage disequilib- 
rium, while all combinations of A I  with non B,  alleles, 
and B,  with non A ,  alleles, will be in the negative 
linkage disequilibrium space. The frequencies of the 
Bl alleles in the mixed (or admixed) population are 
given by 
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where m, = m in the static migration model and m, = 
[ 1 - (a/2)]" in the admixture model. The haplotypes 
in the negative disequilibrium space, say for example 
A 1  with all non-B1 alleles, will only have linkage dise- 
quilibrium values proportional to the Bj, j = 2 ,  . . . , 
s, frequency in the mixed population (the selection 
expectation) if 

-B(fl1 - Pl)(qj - Q j )  = P[m,qj + (1 - mn)Q13, 

j = 2 ,  . . . ,  s ,  

where B = m(l  - m) in the static migration model, 
and B = A in the admixture model and /3 > 0, that is 
if 

- ( q j  - Q j )  = Y[mnqj + (1  - mn)Qj] j = 2, . . . , S, 
where y = P/B(fll - P I )  > 0, that is, only under the 
very stringent condition that for a l l j  = 2 ,  . . . , s 

Thus, the situation where the selection pattern will 
be mimicked by migration occurs only under the most 
unlikely situation of a strict proportionality of the 
non-AI, non-BI alleles in the two populations, and also 
that both A l  and B 1  are more frequent in one popu- 
lation than the other, and that all the other alleles in 
that population are all rarer. A simple case of this type 
would be if the haplotype A I B l  is fixed in one of the 
populations. We have shown by computer iteration 
that this same exact result applies for continual migra- 
tion occuring each generation between two popula- 
tions. In general, the patterns of linkage disequilib- 
rium generated by migration will differ greatly from 
the selection expectations. 

DISCUSSION AND SUMMARY 

Disequilibrium pattern analysis is a general method 
useful for revealing the evolutionary dynamics of 
tightly linked highly polymorphic loci in natural pop- 
ulations. Recent selection events can be identified 
from the pattern of the array of two-locus haplotypes 
in the disequilibrium space subdivided on the basis of 
all haplotypes sharing one allele. The pattern of hap- 
lotypes generated by a selection event is distinct from 
those produced by migration or random genetic drift. 
The analysis assumes zero linkage disequilibrium ini- 
tially for all haplotypes, before the onset of the selec- 
tion event. The distinct pattern of linkage disequilib- 
rium values generated by a selection event holds for 
all generations while the selection is acting. This pat- 
tern will also presumably be maintained for many 
generations after the selection event, until the dise- 
quilibrium pattern is broken down by recombination 
and genetic drift. The same basic results continue to 
apply if the selection involves a new mutant, if we 

assume zero linkage disequilibrium before the new 
mutant arose. 

In particular, the following criteria are used to 
reveal selection, and specifically to identify those two- 
locus haplotypes showing the effect of selection, and 
thereby differentiated from other haplotypes in the 
population: (i) the magnitude of the expected fre- 
quency and D values of those haplotypes having posi- 
tive disequilibrium values, (ii) the presence ofjust one 
or  a few haplotypes in the positive disequilibrium 
space when we plot the linkage disequilibrium for all 
haplotypes containing a given allele, and (iii) related 
haplotypes sharing an allele with a selected haplotype 
assume a value of linkage disequilibrium, D ,  propor- 
tional to the frequency of the unshared allele and have 
a common negative value of D ' .  

In addition, the distribution of the number of hap- 
lotypes having positive and negative disequilibrium 
values can be used to predict the minimum number 
of recent haplotypic or hitchhiking selection events 
occurring in a region. The  less common of the two 
alleles in a selected two locus haplotype will have 
arisen more recently. This conclusion is substantiated 
by the presence of fewer haplotypes with positive D 
values in the graph of the linkage disequilibrium val- 
ues for all the haplotypes with the rarer allele. The 
disequilibrium pattern based on the rare allele will be 
the most sensitive in revealing the selective event, as 
the pattern based on the more common allele will also 
carry evidence of its previous history. 

Disequilibrium pattern analysis is particularly per- 
tinent to the analysis of data from multigene families, 
marker trait associations and restriction fragment 
length polymorphism data. The  close linkage of a 
number of loci in the HLA region, and the high level 
of polymorphism exhibited by many of these loci make 
it ideally suited for the study of evolutionary forces 
by disequilibrium pattern analysis. The companion 
paper (KLITZ and THOMSON 1987) analyzes a large 
sample of two-locus HLA data in this fashion. 
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APPENDIX 
For generality and realism we consider a hitchhiking model, 

where selection is considered not to be acting directly on the alleles 
A, ( i  = 1, . . . , r) and BJ (j = 1, . . . , s) of the A and B loci, but on a 
third linked locus where a new selected mutant F has arisen on an 
AIBl bearing haplotype. We denote the frequency of the AlBl 
haplotype which carries F by yl and the frequencies of all the other 
haplotypesA,BJ ( i  = 1, . . . , r; j = 1, . . . , s), which carry the alternate 
allele f by xy, with yll  + E:=, xg = 1. We denote the allele 
frequency of A I  by p ~ ~ ,  off by pf ,  etc. At this stage we assume zero 
recombination. (Note that the results we obtain below also apply if 
selection is acting directly on the haplotype AIBI). 

The selection acting is assumed to be heterozygote advantage 
(although the results obtained below apply equally to directional or 
frequency dependent selection), with the following fitness values, 

If haplotype frequencies in the next generation are denoted by 
primes ('), then 

(I-2a) 

(i = 1, . . . , r; j = 1, . . . , s), where 

ui = 1 - SyL - t ( l  - yI1)2. 

From (1-2b), we can write 

x; 1 - t(l - y l l )  - -  - 
Xy W 

and using (1-2a) and (I-2c), this can be written as 

(I-2c) 

If haplotype frequencies at generation n are denoted by yl ] (n)  
and x,,(n), then it follows from (1-3) that 

x& 1 - y11(n) - p&) 
XJO) - 1 - Y I l ( 0 )  P/(O)' 

(i = 1, . . . , r; j = 1, . . . , s). Also, from (I-4), 

(1-5) 

(i = 2, .  . . , r ; j  = 2, . . . , s). 

generation n by D,(n), and from equation ( I ) ,  
We define the linkage disequilibrium between alleles A, and E, at 

= %dn) - pA,(n)pB,(n)  (1-6) 

(z = 1, . . . , r; j = 1, . . . , s; except i = j = 1). We denote the change 
in allele frequencies by 

sA,(n) = P A L n )  - p A , ( o )  (I-7a) 

and 

= P E A n )  - p B J ( 0 ) .  (I-7b) 

Using (1-4) and (1-5) in (1-6) we obtain 

DIJjn) = - p.41(n)pii,(n) 

( j  = 2, . . . , s). 
Similarly 

(I-8b) 

( i  = 2, . . . , r). 
Using equation (2), and (I-sa) and (I-8b) gives, 

and 

(I-9c) 

(I-9d) 

( 2  = 2 , .  . . , r ; j  = 2, . . . , s). 
If the disequilibrium between A I  and B1 at the start of the 

selection event is zero, or positive, then D I  ~ ( n )  will always be positive, 
similarly for all the De(n) (i = 2, . . . , r ; j  = 2, . . . , s) terms, since 
aAI(n) and as,(.) are positive, and 6A,(n) (i = 2, . . . , r) and &,(n) ( j  = 
2, . . . , s) are negative. The disequilibrium terms for the haplotypes 
containing only one of the alleles, A1 or E l ,  of the related haplotypes, 
that is Dl,(n)(i = 2, . . . , s), and &(n)(i = 2, . . . , r) will all similarly 
be negative. 

Case (a). All initial disequilibrium values are zero: The nega- 
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tive disequilibria of the related haplotypes AI with the 4 ’ s  (J # 1) 
are all proportional to the present B, frequency, if the initial 
disequilibrium values are zero, that is, D,(O) = 0, f o r j  = 2, . . . , s 
(from I-Sa), 

Di,(n) = -fl~~(n)&+,(n). (I-loa) 

Similarly, the negative disequilibria of the related haplotypes BI 
with the A,’s (t # 1) are all proportional to the present A, frequency, 
if the initial disequilibrium values are zero, that is, D,l(O) = 0, for i 
= 2, . . . , r (from I-Sb), 

D,l(n) = -fA,(n)&i~(n). (I-lob) 

For polymorphic loci where PA, + PE, 5 1 (j = 2, . . . , s) (BAUR 
and GRANGE 1983) as is usually the case, for the negative D, values 
Dl,(max) = PA,& (see equations (4d)-(4e)), and similarly for the 
negative D,l value, D,l(max) = Thus if the initial disequilib- 
rium values are zero, the normalized disequilibrium values D i,(n) 
and Dil(n) are 

0’ = 2, . . . , s), and 

(1-1 la) 

(1-1 lb) 

(i = 2, . . . , r). The expected DIj(n) values are equal for all j = 2, 
. , . , s, and similarly the Dh(n) values each have the same expectation 
for i = 2, . . . , r .  (These results for D;j(n) and Dh(n) do not hold if 
P A ,  + P E j  > 1 or P A i  + PEI > 1, respectively.) 

If Dll(0) = 0 and P A ,  < $ E , ,  then 

while if PA, > PE,,  then 

(I-12a) 

(I-12b) 

The positive disequilibria of the unrelated haplotypes A, and B,(i 
= 2, . . . , r, j = 2, . . . , s) are proportional to the A, and B, 
frequencies, if the initial disequilibria values are zero (from (I-9c) 
and (I-9d)), 

D d n )  = - P B , W & )  (I-13a) 

= -P~dn)a~~(n) (I-13b) 

If PA, PE,, then 

and if PA, > #BJ, then 

(I- 1 4a) 

(I- 14b) 

The normalized disequilibrium values for haplotypes with a partic- 
ular allele A, with all alleles B,, j = 2, . . . , s, will not usually be 
equal, depending on the relative allele frequencies. Note that for 
highly polymorphic systems such as HLA, with a fairly even distri- 
bution of allele frequencies, DG(n) will be considerably less in value 
than oil(%), since 6 ~ , ( n )  will be larger than - S B , ( ~ ) ,  and pAl(n) will 
be smaller than 1 - #E,@) (see (I-12a) and (I-14a) for example). 

Case (b). The case where B1 is a new mutant: We now consider 
the case where we suppose that B1 is a newly arisen mutant which 
forms the haplotype AIBl from the haplotype AI&, and that the 
haplotype AlBl is selected. The occurrence of the new mutant 
creates linkage disequilibrium. For comparison with the results 

abbve, we assume that before the new mutant arises all pairwise 
disequilibrium values are zero. The linkage disequilibrium values 
created by the occurrence of the new mutant are as follows: 

(I-15a) 

(I-15e) 

and all other linkage disequilibrium values zero (hence all the 
normalized values). 

The D,l(n), i = 2, . . . , r,  values still stay proportional to the 
current A, allele frequencies, with 

D,l(n) = -PAdn)fiBl(n),  (1-16) 

and this should be compared with (I-lob). In this case D,’l(n) = -1, 
as recombination is assumed zero. Iterations of deterministic selec- 
tion models with recombination, show that the linkage disequilib- 
rium and normalized values with recombination yield the same 
general results obtained above for the case of no recombination. 
That is, the D,l(n) values are proportional to the A, allele frequencies 
and the D,’l(n) values are all equal. 

For the AtB, haplotypes, excluding A&, that is j = 3, . . . , s, the 
initial linkage disequilibrium values are all zero (hence also the 
normalized values) and all the results obtained above for the pro- 
portionality of the disequilibrium values and equality of the nor- 
malized values for the case of zero initial disequilibrium continue 
to apply. The haplotype AlB2 from which the mutant arose, will 
show a different pattern, as the initial disequilibrium (and normal- 
ized disequilibrium) are nonzero. If the frequencies of A I  and B2 
are reasonably large relative to the frequency of the new mutant B I  
(so that D;2(0) is small) the DI&) and D;&) values will not deviate 
greatly from the case when all the initial disequilibrium values are 
zero. However, if the new mutant arises on a relatively rare haplo- 
type, then D;z(O) will be a large negative value, and the values of 
DI2(n) and Die(%) may deviate considerably from the patterns of 
Dl,(n) and D;,(n), especially in the initial generations of selection. 

Case (c). The effects of recombination: The general equations 
to determine haplotype frequencies in the next generation (x;), 
given haplotype frequencies in this generation ( x ~ ) ,  fitness parame- 
ters wvkl for individuals of genotype X+U, (i, k = 1, . . . , r; j ,  1 = 1, 
. . . , s) and recombination R between the A and B loci are 

where 
, S I . #  

5 = W,jUxy%i. (I-17b) 
,-I ,-I &-I 1-1 

If we consider dominant directional selection on the haplotype AlBl 

(fitness 1 + s compared to fitness of 1 for other haplotypes), then 
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= xii(1 + S) - R [(I + SXII) D11 Gx; = xs[l + s(1 - R)XII] - RD,, i = 2 ,  . . . , r;  
(I-18a) (I-18d) 

j = 2, . . . , s, + -  AI) - ~ B I ) ]  

$xiJ = X i J [ l  + ~ ( l  - R)XII] - R(DI, - S X I I ~ , ) ,  where 
(I- 18b) 

j = 2 ,  ..., s, w = 1 + 2 S X l I  - sx:,. (1-1 8e) 

Iteration of deterministic selection models with recombination 
shows that all the results obtained above still apply. 

(1-1 sC) Gx:~ = x,l[l + ~ ( l  - R ) x I ~ ]  - R(Dzi - SXII~A,) ,  

i =  2, ..., r ,  


