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ABSTRACT

This thesis develops a model to price the fixed-rate mortgage with default and prepayment

as derivative assets, generally termed the option-pricing approach to mortgage valuation. The

problem is considered in a stochastic environment when the house price follows a log-normal

diffusion process. A highly accurate numerical scheme is presented to solve the partial differ-

ential equation of the value of the mortgage. In order to simplify the method, the interest rate

is considered to be a constant within each month. Further, a discount factor is graded to make

the model more suitable to current economic situation.
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CHAPTER 1. INTRODUCTION

1.1 Types of Mortgage Loans

A mortgage (literally meaning a dead pledge) is a type of financial contract which is a

kind of fixed-income product. It is a legal document by which a real estate asset is pledged as

security for the repayment of a loan; the pledge is cancelled when the debt is paid in full. The

mortgage industry has undergone a massive evolution since the great depression in the 1930s.

Back then the type of mortgage loans given resembled balloon loans in which the principal was

not amortized, or only partially amortized at the maturity date. Since the type of mortgage

loan and the cash flow it carries with it has a significant effect on the overall performance of

a mortgage pool and for that matter the securities embedded with them, we will look at some

very common and widely traded mortgage instruments and how their characteristics affect

their cash flows.

1.1.1 Fixed-Rate, Level-Payment, Fully Amortized Mortgage

The basic idea behind the design of the fixed-rate, level-payment, fully amortized mortgage

is that the borrower pays interest and principal in equal installments over the term of the loan.

Typically payments are done monthly and by the end of the loan term the mortgage is fully

amortized. Each monthly payment for a level payment mortgage is due on the first day of each

month and consists of interest of 1/12 of the fixed annual interest rate times the amount of

outstanding mortgage balance at the beginning of the previous month and a payment of some

fraction of the principal.
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1.1.2 Adjustable-Rate Mortgages

An adjustable rate mortgage (ARM) is a loan in which the mortgage rate is retuned pe-

riodically in accordance with some appropriate chosen reference rate. This instrument was

specifically developed to deal with mismatch between mortgage durations and other liabilities

in a high interest rate environment. ARMs usually start with lower interest rates and are reset

in accordance with some index rate, such as the U.S. Treasury securities. To encourage bor-

rowers to accept ARM rather than fixed rate mortgages, originators generally offer an initial

contract rate that is less than prevailing market mortgage rate. The cash flow for ARMs is

more complicated than that of fixed-rate mortgages’.

1.1.3 Balloon Mortgages

In a balloon mortgage the borrower is given long-term financing by the lender but at specific

future dates the mortgage rate is renegotiated. Many single-family balloon originated today

carry fixed rate and a 30-year amortization schedule. They typically require a balloon payment

of the principal outstanding on the loan at the end of 5 or more years. Balloon mortgages

are attractive to borrowers because they offer mortgages rates that are significantly lower than

generic 30-year mortgages. Nowadays many balloon mortgages contract are actually hybrids

that contain provisions allowing the borrower to take out a new loan from the current lender to

finance the balloon payment with minimum requalification requirements. As has being pointed

out earlier, the growing complexity of lending and borrowing has led to the development

of more complicated mortgage products to basically cater for specific individual needs and

requirements. Most of these products are however prevalent in the secondary mortgage market.

1.2 Mortgage-Backed Securities

Mortgage-backed securities (MBS) are securities backed by a pool (collection) mortgage

loans. In section one we looked at an overview of mortgage loans, which is the raw material for

mortgage-backed securities. While any type of mortgage loans, residential or commercial, can

be used as collateral for a mortgage-backed security, most are backed by residential mortgages.
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Just as the value of any other type of security depends on the cash flow of the underlining asset,

the value of mortgage-backed securities depends on the cash flow of the underlining mortgage

loans. It suffice to say therefore that different types of mortgage loans comes with different

cashflows and hence affect the value of the MBS differently.

1.3 Overview of the Model

The thesis only considers the value of fixed-rate mortgage. A mortgage can be treated as

a derivative security. The value of the mortgage is determined by the underlying house price

and the term structure of interest rates. For simplicity, the paper considers the interest rate

to be fixed for each month. A mortgage is a prime example of a financial product that can be

modeled and then valued using option-pricing theory.

The lender(usually a bank), who issues the contract, would like to know the value of the

future cash flows that will be received as the result of the borrower making the scheduled

monthly payments. However, the borrower may also terminate the contract prior to maturity

by the action of prepayment or default. Prepayment means the borrower has the option to

prepay the remainder of the outstanding balance owed if interest rates are financially favorable;

this is an American call option which spans the whole mortgage. The borrower also has the

option to default on the mortgage when a monthly payment falls due; this amounts to a series

of linked monthly European options.

We maintain the traditional assumptions that capital markets are perfect and operate

costless. Option pricing techniques lead to the value of the mortgage being described as the

solution to a one dimensional partial differential equation (PDE) in backward time, whose ter-

minal and boundary conditions embody the terms of the contract. Since default can rationally

occur only at the time of required payment, both the amortization and default characteristics

of a fixed-rate mortgage by treating it as compound option. When treated as a PDE, the

problem is restarted at monthly intervals, with the previous month’s valuation yielding the

terminal conditions needed to value the subsequent month. However, for prepayment which

can occur at any time and so must be treated as a free boundary condition, the device cannot
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be applied. So Newton Method is used to find the free boundary. In order to comply with the

traditional numerical method, a substitution is applied to the PDE to convert it to a forward

time.

As the mortgage is a contract between two parties, it is assumed that neither would enter

into an agreement unless it was fair at the onset. This means that the value of the mortgage

to the lender at origination (when the contract begins) must be equal to the amount lent to

the borrower. So we have to further impose the condition that the initial value of the contract

matches the value of loan to guarantee that the contract is in equilibrium at origination. Thus,

the entire procedure just described must be repeated for different contract rates, until one is

found that yields a normal rate of return on the loan. This contract rate would be the mortgage

contract rate at origination. However, it may take a few days for the program to run in order

to find a proper contract rate. So this paper will only provide one set of result of the value of

the mortgage with determined (and reasonable) contract rate.

After presenting the model to value the fixed-rate mortgage, I move forward to add a

discount factor to the model to make it more suitable to present economic situation.
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CHAPTER 2. DESCRIPTION OF THE MODEL

2.1 Economic Environment

2.1.1 House Price

The house price H is assumed to follow the standard log-normal diffusion process:

dH = (µ− δ)Hdt + σHHdXH

where

• µ is the instantaneous average rate of house-price appreciation,

• δ is the “dividend-type“ per unit service flow provided by the house,

• σH is the house price volatility,

• XH is the standard Wiener process for the house price.

The house-price appreciation µ is analogous to the drift term for standard stock-price model.

The service flow δ is analogous to a dividend on a stock as the borrower benefits from the

underlying asset (the borrower is allowed to live in the real estate asset during the life of the

mortgage contract). The borrower benefits from the asset, therefore the price must drop by

this amount otherwise arbitrage would occur.

2.1.2 Term Structure

The term structure of interest rates is modeled using the single factor Cox-Ingersoll-Ross

(CIR) mean-reverting square root process, where the spot rate r is driven by:

dr = κ(θ − r)dt + σr

√
rdXr
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where

• κ is the speed of adjustment in the mean reverting process,

• θ is the long-term mean of the short-term interest rate r,

• σr is the interest-rate volatility,

• Xr is the standard Wiener process for the interest rate.

But for simplicity of the numerical scheme, the paper considers the interest rate to be fixed

for each month.

2.1.3 Correlation

The stochastic elements of the house-price H process and the spot interest-rate r process

which involve the standardized Wiener processes, XH for house price and Xr for interest rate

respectively, are correlated according to

dXHdXr = ρdt,

where ρ is the instantaneous correlation coefficient between the two Wiener processes.

2.2 Derivation of the PDE

This section demonstrates a derivation of the asset valuation PDE using standard no ar-

bitrage arguments. The PDE for the valuation of any asset F = F (H, r, t) whose value is a

function only of house price H, interest rate r, and time t, can be found as follows. House

price is described by the standard log-normal diffusion process and stochastic interest rate

follows the single factor Cox-Ingersoll-Ross (CIR) mean-reverting square root process. Using

Ito’s lemma for the two stochastic variables (see Ito, 1951, for the details) on the function

F (H, r, t), it can be shown that,

dF =
∂F

∂t
dt +

∂F

∂H
dH +

∂F

∂r
dr +

1
2
(σ2

HH2 ∂2F

∂H2
+ 2ρσHσrH

√
r

∂2F

∂H∂r
+ σ2

rr
∂2F

∂r2
)dt.
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Now we construct a portfolio Π consisting of long one asset F1(H, r, t) with maturity T1,

short ∆2 of an asset F2(H, r, t) with maturity T2, and short ∆1 of the underlying asset H.

Thus,

Π = F1−∆2F2−∆1H

dΠ = dF1−∆2dF2−∆1dH,

where ∆1 and ∆2 are constants during time dt. The effect of the service flow δ is to cause the

price of the underlying asset H to drop in value by δH over a time dt. Therefore, the portfolio

must change by an amount −δH∆1dt during this time. Thus, the correct change in the value

of the portfolio over a time dt is

dΠ = dF1 −∆2dF2 −∆1(dH + δHdt).

We choose ∆2 = ∂F1\∂r
∂F2\∂r , ∆1 = ∂F1

∂H −∆2
∂F2
∂H . So

dΠ =
∂F1

∂t
dt +

1
2
(σ2

HH2 ∂2F1

∂H2
+ 2ρσHσrH

√
r

∂2F1

∂H∂r
+ σ2

rr
∂2F1

∂r2
)dt− δH

∂F1

∂H
dt

− ∂F1 \ ∂r

∂F2 \ ∂r
(
∂F2

∂t
dt +

1
2
(σ2

HH2 ∂2F2

∂H2
+ 2ρσHσrH

√
r

∂2F2

∂H∂r
+ σ2

rr
∂2F2

∂r2
)dt− δH

∂F2

∂H
dt)

= r(F1 − ∂F1 \ ∂r

∂F2 \ ∂r
F2 − ∂F1

∂H
H +

∂F1 \ ∂r

∂F2 \ ∂r

∂F2

∂H
H)dt.

No arbitrage arguments implies that the return on the portfolio to be rΠdt,since the growth

of the portfolio in a time step dt is equal to the risk-free growth rate of the portfolio, as the

portfolio is now completely deterministic(volatility term is zero). Dividing by dt and separating

the F1 and F2 terms leads to,

1
∂F1 \ ∂r

(
∂F1

∂t
+

1
2
δ2
HH2 ∂2F1

∂H2
+ ρσHσrH

√
r

∂2F1

∂H∂r

1
2
σ2

rr
∂2F1

∂r2
+ (r − δ)H

∂F1

∂H
− rF1)

=
1

∂F2 \ ∂r
(
∂F2

∂t
+

1
2
δ2
HH2 ∂2F2

∂H2
+ ρσHσrH

√
r

∂2F2

∂H∂r

1
2
σ2

rr
∂2F2

∂r2
+ (r − δ)H

∂F2

∂H
− rF2)

Although this is one equation in two unknowns, the left-hand side is a function of T1 but not

of T2 and the right-hand side is a function of T2 but not of T1. The only way for this to be

possible is for both sides to be independent of maturity date. Thus, removing the subscript

from F,

1
∂F \ ∂r

(
∂F

∂t
+

1
2
δ2
HH2 ∂2F

∂H2
+ρσHσrH

√
r

∂2F

∂H∂r
+

1
2
σ2

rr
∂2F

∂r2
+(r− δ)H

∂F

∂H
− rF ) = a(H, r, t),
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is obtained for some function a(H, r, t). It is convenient to write a(H, r, t) = −κ(θ − r) (this

is a standard procedure in the literature, see Kau et al. 2002, 2003), which leads to the asset

valuation PDE for F (H, r, t),

1
2
δ2
HH2 ∂2F

∂H2
+ ρσHσrH

√
r

∂2F

∂H∂r
+

1
2
σ2

rr
∂2F

∂r2
+ κ(θ − r)

∂F

∂r
+ (r − δ)H

∂F

∂H
+

∂F

∂t
− rF = 0.

This PDE will be solved using a backward valuation procedure.It is necessary to start the

process from the known information at maturity, referring to the known cashflows at the final

moment of the contract. In the next section, we will explore the specific PDEs and boundary

conditions of each component of the contract.

2.3 Restrictions of The PDE Derived from the Contract

For this section, a detailed explanation of the model is provided.

2.3.1 Formulae

To formalize the model, we introduce the following notation.

• L: Original loan amount

• c: Fixed yearly contract rate

• num: Term of the loan in months

• i: Payment date in months, 1 ≤ i ≤ num + 1

• τ(i): Calendar time of the ith month, i.e. τ(i) = i/12

• MP : Monthly mortgage payment

• PB(i): Unpaid principal after the ith payment date

• TD(τ): Unpaid principal plus accrued interest for τ(i) < τ ≤ τ(i + 1)

• A(r, τ, i): Value at time τ of the promised mortgage payments from i to num
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• D(i,H, τ, r): Value at time τ of the default option, when the next mortgage payment is

due at time τ(i)

• C(i,H, τ, r): Value at time τ of the prepayment option, when the next mortgage payment

is due at time τ(i)

• V (i,H, τ, r): Value at time τ of the contract, when the next mortgage payment is due at

time τ(i)

2.3.1.1 Value of Monthly Payments

To define the value of each monthly payment MP it is necessary to recognize that future

value of the outstanding debt in the terminal period of the contract must be equal to the

future value of all the payments, when this value is also referred to the terminal moment of

the contract. Consequently,

L(1 +
c

12
)num = MP (1 +

c

12
)num[

1− (1 + c
12)−num

c
12

],

which upon slightly simplifying yields,

L(1 +
c

12
)num = MP [

(1 + c
12)n − 1
c
12

].

So

MP =
L(1 + c

12)num( c
12)

(1 + c
12 − 1)

,

gives the formula for the value of the monthly payments, where L is the amount initially loan

to the borrower, c is the fixed yearly contract rate, and num is the life of the mortgage in

months.

2.3.1.2 Value of the Principal Balance

Immediately after the ith monthly payment has been made, the unpaid principle PB(i) the

borrower still has to repay can be expressed in the following way

PB(i) = {L−MP [
1− (1 + c

12)−i

c
12

]}(1 +
c

12
)i.
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Substitute MP into previous expression yields and then simplifying gives

PB(i) =
L[(1 + c

12)num − (1 + c
12)i]

(1 + c
12)num − 1

,

which is the formula for the value of the outstanding balance PB(i) after the ith monthly

payment has been made.

2.3.1.3 Value of the Unpaid Principal Plus Accrued Interest

The unpaid principal plus accrued interest TD(τ) for τ(i) < τ ≤ τ(i + 1) is

TD(τ) = PB(i)[1 + c(t− τ(i))].

2.3.2 PDE and Terminal Conditions for Value of the Promised Mortgage Pay-

ments

Denote A(r, τ, i) to be the value of the promised mortgage payments from payment date i

to num. Since A is unrelated to H, the PDE for A is

1
2
rσ2

r

∂2A

∂2r
+ κ(θ − r)

∂A

∂r
+

∂A

∂τ
− rA = 0.

Since we look at r to be constant r(i) at ith month, the PDE then becomes a ODE

∂A

∂τ
− r(i)A = 0.

According to the contract, at maturity i.e. when τ = τ(num), the borrower only need to pay

the last monthly payment, so

A(rnum, τ(num), num) = MP.

Given next are the value of all the mortgage components for the other payment dates, namely

at the end of month 1, 2, ..., num − 2, num − 1. The value of the remaining future payments

promised to the lender at these times is,

A(r(i), τ(i), i) = A(ri+1, τ(i), i + 1) + MP,

where 1 ≤ i ≤ num− 1. With the above ODE and boundary conditions we will actually solve

for A analytically in next chapter.
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2.3.3 PDE and Terminal Conditions for Value of the Default Option

The value of at time τ of the default option when the next mortgage payment is due at

τ(i) is denoted as D(r,H, τ, i). It satisfies the PDE we derived in section 2.2. So

1
2
δ2
HH2 ∂2D

∂H2
+ ρσHσrH

√
r

∂2D

∂H∂r
+

1
2
σ2

rr
∂2D

∂r2
+ κ(θ − r)

∂D

∂r
+ (r − δ)H

∂D

∂H
+

∂F

∂t
− rD = 0.

Since again we look at r as constant for each month, above PDE becomes

1
2
δ2
HH2 ∂2D

∂H2
+ (r − δ)H

∂D

∂H
+

∂F

∂t
− rD = 0.

At maturity,

D(τ(num), num) = max{0,MP −H}.

This is because default would be of value in the extreme case where the value of the house H

had fallen to less than the final monthly payment MP .

For earlier payment dates,

D(H, τ(i), i) =





D(H, τ(i), i + 1) if no default,

A(τ(i), i)−H if default.

Note that the value of default in the present, D(τ(i), i), equals the value of future default

D(τ(i), i + 1), when no default currently occurs, while D(τ(i), i) equals A −H when default

does occur. Nonetheless, we cannot simply compare these values to determine whether default

does or does not occur, since we must also consider the value of future prepayment lost upon

default.

2.3.4 PDE and Terminal Conditions for Value of the Prepayment Option

Denote C(r,H, τ, i) to be the value at time τ of the prepayment option when the next

mortgage payment is due at τ(i). It satisfies the PDE we derived in section 2.2. So

1
2
δ2
HH2 ∂2C

∂H2
+ ρσHσrH

√
r

∂2C

∂H∂r
+

1
2
σ2

rr
∂2C

∂r2
+ κ(θ − r)

∂C

∂r
+ (r − δ)H

∂C

∂H
+

∂F

∂t
− rC = 0.

Since again we look at r as constant for each month, above PDE becomes

1
2
δ2
HH2 ∂2C

∂H2
+ (r − δ)H

∂C

∂H
+

∂F

∂t
− rC = 0.
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At maturity,

C(τ(num), num) = 0.

This is because the borrower holds the house and has an obligation to make the final payment

MP , but also has the options to default or prepay. Of course, prepayment could not be of any

value at the maturity of the loan. For earlier payment dates,

C(H, τ(i), i) =





C(H, τ(i), i + 1) if no default

0 if default

2.3.5 PDE and Terminal Conditions for Value of the Mortgage

The value at time τ of the contract V (r,H, τ, i) when the next payment is due at time τ(i)

is

V (r,H, τ, i) = A(r, τ, i)−D(r,H, τ, i)− C(r,H, τ, i).

The borrower may either pay the required monthly amount MP or default. The value of the

mortgage to the lender immediately before the payment at maturity is the minimum of MP

and the house value, i.e.

V (τ(num), num) = min{MP, H}.

For earlier payment dates,

V (τ(i), i) = min{V (τ(i + 1)) + MP, H}.

2.3.6 Boundary Conditions

Here the boundary conditions when H = 0 and H → ∞ is discussed. If the house price

becomes zero, the borrower will default and the mortgage is now worth the same as the house,

and so

V (r, 0, τ) = 0.

Prepayment at this point is worthless, thus

C(r, 0, τ) = 0.
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The option to default is now equal to the value of the remaining payments. Since D = A−C−V ,

then

D(r, 0, τ) = A(r, τ).

As H →∞ the value of the default option tends to zero. Therefore,

lim
H→∞

D(r,H, τ) = 0.

The value of the prepayment option is constant as H tends to infinity, implying

lim
H→∞

∂C

∂H
(r,H, τ) = 0.

Thus

lim
H→∞

V (r,H, τ) = A(r, τ)− lim
H→∞

C(r,H, τ).

2.3.7 Free Boundary Condition

As noted earlier, the option to prepay is American in type, in the sense that prepayment

could occur at any time during the lifetime of the contract. This produces a free boundary

which must be applied in the appropriate position. On one side of the free boundary it is

financially optimal for the borrower to prepay and on the other it is not. The prepayment

boundary condition is obtained by observing that at each moment in time the value of the

mortgage to the lender can be no greater than the value of the total debt TD,

V (r,H, τ) ≤ TD(τ),

otherwise the lender would choose to prepay the mortgage. This occurs when the value of the

mortgage to the lender is equal to the total debt required to be paid by the borrower if the

mortgage was chosen to be prepaid at that time,

V (r,H, τ) ≤ TD(τ).

Clearly, it is important to position the free boundary accurately. In the next chapter the

problem is treated using the Newton method.
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2.3.8 Equilibrium Condition

As mentioned previously, the mortgage contract would not be agreed originally by the two

counter parties unless it was fair. This means that at origination the contract must be in

financial equilibrium, which is the case if the value of the mortgage to the bank is equal to the

amount lent to the borrower. A generalized equilibrium condition for a generic mortgage loan

is as follows

V (τ = 0, c) = (1− fee)L.

The bank’s position in the contracts is V = A−D−C, i.e. the scheduled payments minus the

sum of the value of the borrower’s options to terminate the mortgage (D is the value of the

default option and C is the value of the prepayment option). The borrower’s position is the

amount lent by the bank, which will be some percentage of the initial house value, minus an

arrangement fee (for a UK contract) or the points (for a US loan) charged as a percentage of

the L which is the loan amount. The equilibrium constraint is to avoid contractual arbitrage.

The parameter c is used to balance the equilibrium condition.

The free parameter c can be found using an iterative process following Newton’s method. Let

f(c) be a function of c only and it is given

f(c) = V (τ = 0, c)− (1− fee)L,

which must be zero to satisfy the equilibrium condition. An initial estimate for the value of

c is made, let this estimate to be c0. Then the values of the mortgage components involved

in the equilibrium condition are calculated with the initial estimate c0 used as the value of

the free parameter. Next, a tolerance to which the absolute value of f(c) must be less than is

specified; once f(c) is less than this tolerance the iterative process is terminated. An estimate

is required for the initial increment change in c0; call this increment ∆0. The next potential

equilibrium setting free parameter c is given by c1 = c0 +∆0. Given this information it is then

possible to calculate f(c1) and check if its absolute value is less than tolerance. If the absolute

value of f(c1) and any further f(ci) is greater than the tolerance the new increment for the
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change in c is calculated as follows,

∆i+1 = − ∆if(ci)
f(ci)− f(ci−1)

.
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CHAPTER 3. NUMERICAL METHOD

In this chapter, the PDE is first changed from backward to forward. The initial conditions

are also changed to forward time. Then the Crank-Nicolson method is applied to solve the

PDE under certain initial and boundary conditions numerically. Since the prepayment option

is subjected to a free boundary, we apply Newton method to deal with the problem. At last,

the algorithm and pseudo code is provided.

3.1 Forward PDE and Corresponding Change in the Model

3.1.1 Change in the Notations

In order to simplify the numerical schemes used to approximate the solution to the PDE,

we perform the following change of notations:

t = τ(num)− τ.

Also, at this moment, the interest rate r is set to be fixed for each payment month. Because

of these change, we have to modify the other notations in the model also:

• rk: The interest rate at the kth month, 1 ≤ k ≤ num + 1.

• Tk: Calendar time of the kth payment date from the matueity, i.e. Tk = (k − 1)/12, 1 ≤
k ≤ num. T1 = 0 is the maturity time of the loan.

• PB(k): Unpaid principal after the kth payment date.

• TD(t): Unpaid principal plus accrued interest for Tk ≤ t < Tk+1.

• A(t, k): Value at time t of the promised mortgage payments from k to num + 1.
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• D(H, t, k): Value at time t of the default option, when the next mortgage payment is

due at time Tk.

• C(H, t, k): Value at time t of the prepayment option, when the next mortgage payment

is due at time Tk.

• V (H, t, k): Value at time t of the contract, when the next mortgage payment is due at

time Tk.

The total debt, i.e. the unpaid principal plus accrued interest for Tk ≤ t < Tk+1 becomes:

TD(t) = [1 + c(Tk+1 − t)]PB(num− k).

3.1.2 Changes in the PDE and Terminal Conditions for Value of the Promised

Mortgage Payments

After the change of variable, the valuation PDE for A(t, k), i.e. the value at time t of the

promised mortgage payments from k to num + 1, becomes:

∂A

∂t
+ rkA = 0.

At maturity when t = T1 = 0,

A(T1, 1) = MP.

The terminal conditions at earlier payment dates when t = Tk+1, 1 ≤ k ≤ num for A now

becomes:

A(Tk+1, k + 1) = A(rk, Tk+1, k) + MP.

3.1.3 Changes in the PDE and Terminal Conditions for Value of the Default

Option

The valuation PDE for the value of the default option D(H, t, k) becomes

1
2
δ2
HH2 ∂2D

∂H2
+ (rk − δ)H

∂D

∂H
− ∂F

∂t
− rkD = 0.
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At maturity, when t = T1 = 0,

D(H, T1, 1) = max{0,MP −H}.

For earlier payment dates when t = Tk+1, 1 ≤ k ≤ num,

D(H, Tk+1, k + 1) =





D(H, Tk+1, k) if no default,

A(Tk+1, k + 1)−H if default.

3.1.4 Changes in the PDE and Terminal Conditions for Value of the Prepayment

Option

The valuation PDE for the value of the prepayment option C(H, t, k) at time t when the

next mortgage payment is due at time Tk now becomes

1
2
δ2
HH2 ∂2C

∂H2
+ (rk − δ)H

∂C

∂H
− ∂F

∂t
− rkC = 0.

At maturity, when t = T1 = 0,

C(H, T1, 1) = 0.

For earlier payment dates,

C(H, Tk+1, k + 1) =





C(H, Tk+1, k) if no default,

0 if default.

3.1.5 Changes in the PDE and Terminal Conditions for Value of the Mortgage

The value at time t of the contract V (H, t, k) when the next payment is due at time Tk is

V (H, t, k) = A(t, k)−D(H, t, k)− C(H, t, k).

At maturity,

V (H, T1, 1) = min{MP, H}.

At earlier payment dates,

V (H, Tk+1, k + 1) = min{V (H, Tk+1, k) + MP, H}.
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3.2 Finite Difference Method to Solve the PDEs

In this section, a specific numerical scheme is given to solve the PDEs. I will first present

the storage and

3.2.1 Storage of the Result and Discretion of the Intervals

When the interest rate r is fixed to be rk in the rth month, the domain of D, C and V is

[Hmin,Hmax]× [T1, Tnum+1].

Here Hmin = 0, H1 = 0. H direction is divided into I intervals in the way that for i = 1, ..., I+1

δH =
Hmax −Hmin

I
,

Hi = Hmin + (i− 1)δH

For the t direction, as mentioned before, the payment date Tk for 1 ≤ k ≤ num + 1 is

Tk =
k − 1
12

.

Tnum+1 denotes the origination of the loan. Each interval [Tk, Tk+1] is discretized into N parts.

Denote that

δt =
Tk+1 − Tk

N
,

tkn = Tk + (n− 1)δt,

where 1 ≤ n ≤ N . So in this way,

Tk+1 = tk+1
1 .

when Tk ≤ t < Tk+1, the value of the promised mortgage payments A is stored in a two

dimensional matrix A(n, k). In fact, since A is subject to a ODE, so it can be solve analytically.

The values of the default option D, prepayment option C and the mortgage values V is each

stored in a three dimensional matric F (k, i, n), where F = C, D or V . Again, 1 ≤ i ≤ I is used

to express different values of H. 1 ≤ k ≤ num is used to denote the value in the kth month,

i.e. Tk ≤ t ≤ Tk+1. 1 ≤ n ≤ N is to express time tkn in the kth month.
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3.2.2 Discretization of the PDE and Boundary Conditions

To solve for A,D, C and V , we look at the interval Tk ≤ t < Tk+1. First of all, the equation

for A is
dA

dt
= −rA.

So A = Ce−rt. On the interval [Tk, Tk+1), the initial condition at Tk is determined by prepay-

ment and default decision based on its value at tk−1
N , i.e. A(N, k − 1). So

A(1, k) = CerkTk .

Thus

C = A(1, k)erkTk .

So we have

A(n, k) = A(1, k)e−rk(tkn−Tk).

The other components of the mortgage are subjected to a PDE. So a numerical method is to

be applied to approximate the solutions. In the paper, we choose the Crank-Nicolson method.

In the interval of [Tk, Tk+1), the discretization of the PDE is

Fn+1
i

δt
=

1
2
H2

i σ2
H [

Fn+1
i+1 − 2Fn+1

i + Fn+1
i−1

2(δH)2
+

Fn
i+1 − 2Fn

i + Fn+1
i−1

2(δH)2
]

+ (r − δ)Hi[
Fn+1

i+1 − Fn+1
i−1

4δH
+

Fn
i+1 − Fn

i−1

4δH
]− r

Fn+1
i + Fn

i

2
,

where 2 ≤ i ≤ I, 1 ≤ n ≤ N − 1, Fn
i = F (rk,Hi, t

k
n). For the simplicity of the code, we denote

ai =
δtHi

4δH
[
Hiσ

2
H

δH
− (r − δ)]

bi =
δt

2
[
H2

i σ2
H

δH2
+ r]

ci =
δtHi

4δH
[
Hiσ

2
H

δH
+ (r − δ)],

where 2 ≤ i ≤ I. So the Crank-Nicolson schemes becomes:

aiF
n+1
i−1 + (1 + bi)Fn+1

i − ciF
n+1
i+1 = aiF

n
i−1 + (1− bi)Fn

i + ciF
n
i+1,
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where 2 ≤ i ≤ I, 1 ≤ n ≤ N − 1. Since the values of C, D are known when H = 0 and

H = Hmax, i.e. Fn
1 and Fn

I+1 are known, the first equation in the system becomes:

(1 + b2)Fn+1
2 − c2F

n+1
3 = a2F

n
1 + (1− b2)Fn

2 + c2F
n
3 + a2F

n+1
1 .

The last one becomes

−aIF
n+1
I−1 + (1 + bI)Fn+1

I = aIF
n
I−1 + (1− bI)Fn

I + cIF
n
I+1 + cIF

n+1
I+1 .

By solving the system of equations, we can get the value of F (k, i, n + 1) from previous level

F (k, i, n), where 1 ≤ n ≤ N . However, we still need the value of F (k, i, 1) for 1 ≤ i ≤ I + 1 as

an initial condition. In fact, such value is determined by the terminal conditions for C and D

at payment dates.

3.3 Terminal Conditions at Payment Dates

At each payment dates Tk we have to check whether the borrower will default or not. Based

on his choice, we can then determine the initial value of F at Tk.

In fact, when at T1, we need to check the relation between Hi and MP , 1 ≤ i ≤ I + 1.

When Hi < MP , which means a extreme situation when the house price drops below the

monthly payment before the last payment, a rational borrower will choose to default. So the

value of C, D and V are choose to be value correspond to the default situation at maturity

when t = T1. On the other hand, when Hi > MP , a rational borrow would choose to pay

the last monthly payment. So at this time the value of C, D and V are set to be the value

correspond to the no default condition at maturity.

At previous payment dates Tk when 2 ≤ k ≤ num, the default condition is different.

We have to compare the value of V (k − 1, i, N) + MP with Hi for 1 ≤ i ≤ I + 1. When

Hi < V (k − 1, i, N) + MP , a rational borrower will choose to default. So the value of C, D

and V are choose to be value correspond to the default situation at maturity when t = Tk, i.e.

tk1. On the other hand, when Hi > V (k − 1, i, N) + MP , a rational borrow would choose to
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pay the last monthly payment. So at this time the value of C, D and V are set to be the value

correspond to the no default condition at t = Tk = tk1.

3.4 Newton Method to Find the Free Boundary

As mentioned in chapter 1, it is very important to notice that the prepayment option is

similar the a series of American option which can be exercised any time before maturity. So

the prepayment option is subjected to the free boundary:

V (k, i, n) ≤ TD(tkn),

where 1 ≤ k ≤ num, 1 ≤ i ≤ I + 1, and 1 ≤ n ≤ N . This means that at each time level

tkn, When V (k, i, n) < TD(tkn), a rational borrower will choose not to prepay the loan. So the

values of C, D and V are subjected to the PDE and boundary conditions we listed in previous

sections. However, when V (k, i, n) > TD(tkn), a rational borrow would choose to prepay the

loan. So at this time the value of the mortgage V = C = TD(tkn) and D = 0.

How to find the free boundary is one of the most difficult problem in this model. For pre-

vious literature people tend to use linear complimentary method the find the free boundary.

A main contribution of this paper is to apply Newton Method to tackle the free boundary

problem.

In fact, the general idea of Newton Method is at the time level tkn, we first give a initial

guess of i0. Set F (i) = V (k, i, n)− TD(tkn). n, k are fixed. For 1 ≤ i ≤ i0, we use the PDEs to

solve for C(k, i, n), D(k, i, n) and V (k, i, n) from the previous level. For the i0 < i ≤ I + 1, we

set V (k, i, n) = TD(tkn). Next we find another i1 by the iteration equation

Hi1 = Hi0 −
F (i0)
dFi0

.

Then set i0 = i1. Keep doing this procedure until we find the i0 such that F (i0) = 0. For the

last step, For 1 ≤ i ≤ i0, we use the PDEs to solve for C(k, i, n), D(k, i, n) and V (k, i, n) from
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the previous level. For the i0 < i ≤ I + 1, we set V (k, i, n) = TD(tkn).

3.5 Algorithm

For this section, the algorithm used to solve the model is presented. Four programs are

needed to solve the model. The first program is called mainmbs, which is used to calculate V

at each time level for a given contract rate c. The algorithm for mainmbs is:

1. Fix a initial contract rate c1, and discretize the domain as described before.

2. Input A(n, k) by the solution given previously and TD(n, k), PB(k) by definition for

1 ≤ N and 1 ≤ k ≤ num.

3. Based on default condition, give values to C and D before the last payment, i.e. C(1, i, 1)

and D(1, i, 1) for 1 ≤ i ≤ I + 1.

4. Use the result of (3) and Newton Method to determine the value of C, D and V of the

next level, i.e. C(1, i, 2), D(1, i, 2) and V (1, i, 2).

5. Repeat step (4) N −1 times to solve all C(1, i, n), D(1, i, n) and V (1, i, n) for 2 ≤ n ≤ N

and 1 ≤ i ≤ I + 1.

6. Use the result of step (5), i.e. V (1, i, N) to determine the value of C(2, i, 1), D(2, i, 1)

according to both default and prepayment condition.
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7. Repeat step (4) − (6), find the values of V (k, i, n) for all 1 ≤ k ≤ num, 1 ≤ i ≤ I + 1

and 1 ≤ n ≤ N .

8. Use iteration defined by Newton Method to find the next c, i.e. c2. Iteration stops until

find the proper c such that V (1,H0, num + 1) = (1 − fee)L, which is the equilibrium

condition at origination.

A detailed algorithm for step (4) is also provided:

1. Give an initial guess Hi0 for point that is on the free boundary at the next level.

2. Based on the initial guess, find the value of V at the next level.

3. Use Newton Method to find Hi1 and repeat 2. Iteration stops when the H is found to

satisfy V (H) = TD.
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CHAPTER 4. RESULTS

In this chapter, the result provided by the program is presented in forms of graphs. To save

time, the maturity is set to be one year, i.e num = 12. As mentioned before c = 5.5% is also

fixed. Each month is divided into 20 levels. The result turns out that the prepayment option

is zero at every point. The reason for this is probably that the length of maturity num we

choose is too small. In such a short time the house price may not be able to be large enough

for the borrower to sell the house and prepay the loan.

4.1 Graph of V with Respect to H for Fixed time

In the section, the time is fixed and the relation between the mortgage value V and the

house price H is graphed.

First, before making the last payment, that is to say, when atT1, the graph of V with

respect to H is:

From the graph, V first linear increases with respect to H and then become flat. This is

because at T1, the only option for the borrower is either to default or not. When the house

price is below certain value, the borrower will choose to default so the value of the mortgage

is the same as the house price. This explains the linear part of the graph. However when

the house price exceeds the default point, the value of the mortgage is equal to the monthly

payment, i.e. MP in our notation. This explains the flat part of the graph.

The next graph is when we look at the value of the mortgage when k = 8 and n = 15. This

means we look at the 8rd level of the 5th month before maturity. For each house value H(i),
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Figure 4.1 at T1 H and V

1 ≤ i ≤ 100, we have the following graph:

This graph contains two linear parts at the left side and a flat part. This is because of the

default and prepayment point we find.

4.2 Graph of V with Respect to t for Fixed House Price

In the section, the house price is fixed and the relation between the mortgage value V and

time in a month is graphed.

The first graph is when we look at the value of the mortgage when i = 50 and k = 8. This

means we look at the 8th month before maturity and the house price is fixed to be H(50). For

each house value H(i), 1 ≤ i ≤ 100, we have the following graph:

4.3 Graph of the V with Respect to Both t and H in a Certain Month

In the section, a surface of V with respect to both t and H is graphed for each month. For

instance, the surface at the 9th month is:
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CHAPTER 5. ADDING A DISCOUNT FACTOR TO THE MODEL

To incorporate directly the current economic conditions, the previous model is modified by

”discounting” the value of the mortgage to the lender:

V (H, r, τ ; i) =
[
A(r, τ ; i)−D(H, r, τ ; i)− C(H, r, τ ; i)

] · λ(H, r, τ ; i),

where

0 ≤ λ(H, r, τ ; i) ≤ 1,

and τ(i) denotes the ith payment date in years, 1 ≤ i ≤ Nm.

λ is decomposed into three components:

λ = λcr · λliq · λfin,

where , λfin is tied to the conditions of the economy, λliq is tied to the liquidity of the mortgage

market market, and λcr is tied the quality of the mortgage. These discount factors are defined

on the interval (τ(i− 1), τ(i)], 1 ≤ i ≤ Nm. The above three parts are set in the following way.

5.1 Conditions of the Economy: λfin(τ)

The Index of Leading Economic Indicators (LEI Index) is designed to predict the economy’s

direction. This index is a composite of a select group of economic statistics that are known

to swing up or down well in advance of the rest of the economy. This indicator is released

monthly by The Conference Board, a private business research group. The report is published

three weeks after the end of the reporting month. Revisions to this index are usually minor,

but more significant at other times.

The factor λfin by means of the LEI index is that On the interval (τ(i− 1), τ(i)], let ∆(%LEI)
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denote the reported percent change of LEI index on the month prior to the payment date

τ(i− 1). Then define

λfin(τ ; i) =





1 if ∆(%LEI) is positive,

1− ∆(%LEI)
100 if ∆(%LEI) is negative and |∆(%LEI)| < 1,

0 if ∆(%LEI) is negative and |∆(%LEI)| ≥ 1,

for 1 ≤ i ≤ num.

5.2 Liquidity of the mortgage market market: λliq(τ)

The Housing Market Index (HMI) assesses the current market for new single-family home

sales along with builder expectations of future trends. The HMI is published monthly by the

National Association of Home Builders and Wells Fargo. It is released in the same month it

reports on. Revisions to this index tend to be minor. The HMI has a scale from 0 to 100,

where 0 means that virtually everyone agreed conditions where poor, while 100 indicates that

everyone believed the conditions were good. The index is adjusted for seasonal factors.

The factor λliq by means of the Housing Market Index: On the interval (τ(i − 1), τ(i)], let

(HMI) denote the index reported on the month prior to the payment date τ(i − 1). Then

define

λliq(τ ; i) =
(HMI)
100

,

for 1 ≤ i ≤ num.

5.3 Quality of the mortgage: λcr

The discount factor λcr is chosen to be a constant for the entire life of the loan. The

probability of default is the likelihood that the loan will not be repaid and will fall into default.

It is calculated for each borrower a group of borrowers with similar attributes. The credit score

of the borrower is taken into account when calculating this probability. The simplest approach,

taken by many banks, is to use external ratings agencies. For the credit score, mortgage lenders

usually use the FICO score, which is usually intended to show the likelihood that a borrower
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will default on a loan. The FICO score was developed by th Fair Isaac Corporation. It is

today’s most commonly used scoring system. FICO scores range from 300-850 (higher FICO

scores are better). Lenders buy FICO scores from three national credit reporting agencies (also

called credit bureaus): Equifax, Experian and TransUnion.

At origination (τ = 0) define λcr(0) to be equal to the probability of default of the borrower

as evidenced by his/her credit score. Then, on the interval (τ(i− 1), τ(i)], define

λcr(τ ; i) = λcr(0),

for 1 ≤ i ≤ num.
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APPENDIX

CODE

The code corresponding to the algorithm in chapter 3 is presented as follows:

1. No arbitrage equilibrium condition

c(1) = 0.05; c(2) = 0.1;

toll = 1e− 3; err = toll + 1;nmax = 50; i = 2;

while(i < nmax&&err > toll)

[f(i− 1), V ] = mainmbs(c(i− 1));

[f(i), V ] = mainmbs(c(i));

df(i) = (f(i)− f(i− 1)) \ (c(i)− c(i− 1));

c(i + 1) = c(i)− f(i) \ df(i);

err = abs(c(i + 1)− c(i));

i = i + 1;

end

[f, V ] = mainmbs(c(i));

savevaluesofV.txtV − asci;

2. Main program
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function[f, V ] = mainmbs(c)

%%%%%Inputs:

I = 500;

N = 30;

Hmax = 1000;

num = 300;

deltaH = Hmax \ I;

deltat = 1 \ (12 ∗N);

L = 100;

fee = 0.015;

initial = 11; %%index of H(0)

%%%%%%Payment dates:

T = zeros(num + 1, 1);

T (1) = 0;

fork = 2 : num + 1

T (k) = T (1) + (k − 1) \ 12;

end

%%%%%%%%%Time discretization:

t = zeros(N, num);

fork = 1 : num

forn = 1 : N

t(n, k) = (n− 1) ∗ deltat + T (k);

end

end

%%%%%%Monthly constant interest rates:
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r = zeros(num, 1);

fork = 1 : num

r(k) = 0.002 + k \ 1000;

end

%%%%%%%%%House price discretization:

H = zeros(I, 1);

H(1) = 0;

fori = 2 : I + 1

H(i) = (i− 1) ∗ deltaH;

end

%%%%%%%%Monthly payments:

MP = (L ∗ (1 + c/12)n ∗ (c \ 12)) \ ((1 + c \ 12)n − 1);

%%%%%%%Principal balance:

PB = zeros(num, 1);

fork = 1 : num

PB(k) = L ∗ ((1 + c \ 12)n − (1 + c \ 12)k) \ (1 + c \ 12)n − 1;

end

%%%%%%%%%Promised payments A

A = zeros(N, num);

%Initial condition given for T1 = 0 is different, so for the first month:

A(1, 1) = MP ;

A(2 : N, 1) = A(1, 1) ∗ exp(−r(1) ∗ (t(2 : N, 1)− T (1)));

%Initial conditions given on payment-dates, so for subsequent months:

fork = 2 : num

A(1, k) = A(N, k − 1) + MP ;

A(2 : N, k) = A(1, k) ∗ exp(−r(k) ∗ (t(2 : N, k)− T (k)));

end
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%%%%%%%Total debt TD:

TD = zeros(N, num);

fork = 1 : num

TD(:, k) = (1 + c ∗ (T (k + 1)− t(1 : N, k))) ∗ PB(num− k + 1);

end

% find the H(i) that is smaller than and closest to d(1)−−− dd(1)

%% dd(i) is index

d(1) = MP ;

i = 1;

whileH(i) ≤ d(1)

dd(1) = i;

i = i + 1;

end

%%%%%give initial value based on default condition

C = zeros(num, I + 1, N);

D = zeros(num, I + 1, N);

V = zeros(num, I + 1, N);

fori = 1 : dd(1)

C(1, i, 1) = 0;

D(1, i, 1) = MP −H(i);

V (1, i, 1) = H(i);

end

%%%%%%%not default

fori = dd(1) + 1 : I

C(1, i, 1) = 0;

D(1, i, 1) = MP −H(i);

V (1, i, 1) = H(i);

end
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%check prepayment while get the next level

p = zeros(N, num);

fork = 1 : num

forn = 2 : N

S[p(n, k), C(k, 1 : I + 1, n), D(k, 1 : I + 1, n)]

= newtonmb(C(k, 1 : I + 1, n− 1), D(k, 1 : I + 1, n− 1), TD(n− 1, k),

A(n, k), dd(k),H, deltaH, I, deltat, r(k));

V (k, 1 : I + 1, n) = A(n, k)− C(k, 1 : I + 1, n)−D(k, 1 : I + 1, n);

end

% find the H(i) that is smaller than and closest to V (k, t(N, k)) + MP −−− dd(k + 1)

i = 1;

while(i <= I + 1&&H(i) ≤ V (k, i,N) + MP )

dd(k + 1) = i;

i = i + 1;

end

%default (1−−− > H(dd(k + 1))

fori = 1 : dd(k + 1)

C(k + 1, i, 1) = 0;

D(k + 1, i, 1) = A(1, k + 1);

A(k + 1, i, 1) = A(N, k) + MP ;

V (k + 1, i, 1) = H(i);

end

%not default

fori = dd(k + 1) + 1 : I

C(k + 1, i, 1) = C(k, i,N);

D(k + 1, i, 1) = A(1, k + 1);

A(k + 1, i, 1) = A(N, k) + MP ;

V (k + 1, i, 1) = V (k, i,N) + MP ;

end
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%check prepayment boundary at t(1, k + 1)

[p(1, k + 1), C(k + 1, 1 : I + 1, 1), D(k + 1, 1 : I + 1, 1)]

= newtonmb(C(k, 1 : I + 1, N), D(k, 1 : I + 1, N), TD(N, k),

A(N, k), dd(k + 1),H, deltaH, I, deltat, r(k));

V (k + 1, 1 : I + 1, 1) = A(1, k + 1)− C(k + 1, 1 : I + 1, 1)−D(k + 1, 1 : I + 1, 1);

end

%%%Creates f:

f = V (1, initial, num + 1)− (1− fee) ∗ L;

functionF = MC(C, M, a, b, c, I);
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3. Newton Method

function[p, Cnew,Dnew] = newtonmb(C, D, TD, A, d,H, deltaH, I, deltat, r)

p0 = d− 1;

nit = 0;

nmax = 100;

%Parameters from the house price SDE from Sharp thesis:

sigmaH = 0.05;

delta = 0.075;

%Coefficients from the Crank Nicolson scheme:

a = zeros(I, 1);

b = zeros(I, 1);

c = zeros(I, 1);

fori = 2 : I

a(i) = (H(i) ∗ sigmaH2 \ deltaH − r + delta) ∗ deltat ∗H(i) \ (4 ∗ deltaH);

b(i) = (H(i)2 ∗ sigmaH2/(deltaH2) + r) ∗ deltat \ 2;

c(i) = (H(i) ∗ sigmaH2 \ deltaH + r − delta) ∗ deltat ∗H(i) \ (4 ∗ deltaH);

end

%Lower, central, upper diagonals of the system of equations matrix:

ldiag = −a(3 : I);

mdiag = 1 + b(2 : I);

udiag = −c(2 : I − 1);

%Matrix for the system of equations:

M = diag(ldiag,−1) + diag(mdiag) + diag(udiag, 1);

fori = 1 : I + 1

AA(i) = A;

end

Cnew = zeros(I + 1, 1);

Dnew = zeros(I + 1, 1);

V new = zeros(I + 1, 1);
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% initial guess, p0 is a index, calculate Vnew

Cnew = MC(C, M, a, b, c, I);

Dnew = MD(D, M, a, b, c, I);

V new = AA− Cnew −Dnew;

fori = p0 + 1 : I + 1

V new(i) = TD;

end

%%%define F and dF

fori = 1 : I + 1

F (i) = V new(i)− TD;

end

fori = 1 : I

dF (i) = F (i + 1)− F (i);

end

dF (I + 1) = dF (I);

toll = 1e− 3;

err = toll + 1;

while(nit < nmax&&err > toll)

nit = nit + 1;

if(abs(dF (p0)) < 1e− 6)

disp ’newton method failed’;

else

qnew = H(p0)− F (p0) \ dF (p0);

err = abs(qnew −H(p0));

i = 1;

%from qnew find pnew(index)
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whileH(i) ≤ qnew

pnew = i;

i = i + 1;

end

fori = 1 : pnew;

Cnew = MC(C, M, a, b, c, I);

Dnew = MD(D, M, a, b, c, I);

V new = A− Cnew −Dnew;

end

fori = pnew + 1 : I + 1

V new(i) = TD;

end

%define F and dF

fori = 1 : I + 1

F (i) = V new(i)− TD;

end

fori = 1 : I

dF (i) = F (i + 1)− F (i);

end

dF (I + 1) = dF (I);

p0 = pnew;

end

end

p = p0;
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4. The program to solve the PDE for C.

functionF = MD(D, M, a, b, c, I)

N = 2;

%Initialization of the solution matrix, columns represent time levels.

F = sparse(I + 1, N);

%Boundary Conditions for the first rows of F only:

F (:, 1) = C;

%Initialization of right hand side vector:

G = sparse(I − 1, N − 1);

forn = 1 : N − 1

%Right-hand side vector:

G(1, n) = a(2) ∗ F (1, n) + (1− b(2)) ∗ F (2, n) + c(2) ∗ F (3, n) + a(2) ∗ F (1, n + 1);

%Different last entry, due to the Neumann type boundary condition

G(I − 1, n) = a(I) ∗ F (I − 1, n) + (1− b(I) + c(I)) ∗ F (I, n) + c(I) ∗ F (I + 1, n);

fori = 2 : I − 2

G(i, n) = a(i + 1) ∗ F (i, n) + (1− b(i + 1)) ∗ F (i + 1, n) + c(i + 1) ∗ F (i + 2, n);

end

%Solve the matrix system

F (2 : I, n + 1) = M G(:, n);

end

F = F (:, 2)′;
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5. The program to solve the PDE for D.

functionF = MD(D, M, a, b, c, I)

N = 2;

%Initialization of the solution matrix, columns represent time levels.

F = sparse(I + 1, N);

%Boundary Conditions provide the first and last rows of F:

F (:, 1) = D;

G = sparse(I − 1, N − 1);

forn = 1 : N − 1

%Right-hand side vector:

G(1, n) = a(2) ∗ F (1, n) + (1− b(2)) ∗ F (2, n) + c(2) ∗ F (3, n) + a(2) ∗ F (1, n + 1);

G(I − 1, n) = a(I) ∗ F (I − 1, n) + (1− b(I)) ∗ F (I, n) + c(I) ∗ F (I + 1, n) + c(I) ∗ F (I + 1, n + 1);

fori = 2 : I − 2

G(i, n) = a(i + 1) ∗ F (i, n) + (1− b(i + 1)) ∗ F (i + 1, n) + c(i + 1) ∗ F (i + 2, n);

end

%Solve the matrix system

F (2 : I, n + 1) = M \G(:, n);

end

F = F (:, 2)′;
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