
Lappeenranta University of Technology

School of Business and Management

Degree Program in Computer Science

Niko Liukka

DEVELOPING AUDIT TRAIL FOR

ESTABLISHED ERP SYSTEM

Examiners: Professor Jari Porras

Researcher Ossi Taipale

Supervisors: Professor Jari Porras

ABSTRACT

Lappeenranta University of Technology

School of Business and Management

Degree Program in Computer Science

Niko Liukka

DEVELOPING AUDIT TRAIL FOR ESTABLISHED ERP SYSTEM

Master’s Thesis

2018

77 pages, 6 figures, 11 tables, 3 appendix

Examiners: Professor Jari Porras
Researcher Ossi Taipale

Keywords: Audit trail, software development, ERP, temporal tables

The term audit trail refers to the records which document the activity that has occured in

entity, for example in software application or in business organization. Extensive audit

trails are becoming more important when business is conducted more automatically with

such tools as ERP systems. The goal of this study is to present concrete method for

implementing audit trails in established ERP systems, which have large userbase and wide

range of features. This is done by searching literature for audit trail implementation

methods and comparing them. After this a case study is conducted. In the case study

suitable audit trail implementation method is selected for large scale ERP system with

following requirements: reliability, usability and performance. The chosen method is SQL

temporal tables, which is shown to be the most reliable and ready made solution. In light of

the case study the most important considerations for audit trail functionality development

include: requirement gathering, audit trail format, deployment and monitoring as well as

architecture of the main system. Additionally the audit trail should be designed to be part

of the system early on.

ii

TIIVISTELMÄ

Lappeenrannan teknillinen yliopisto

School of Business and Management

Tietotekniikan koulutusohjelma

Niko Liukka

AUDIT TRAIL:N KEHITTÄMINEN VAKIINTUNEESEEN ERP-
JÄRJESTELMÄÄN

Diplomityö

2018

77 sivua, 6 kuvaa, 11 taulukkoa, 3 liitettä

Työn tarkastajat: Professori Jari Porras
Tutkija Ossi Taipale

Hakusanat: Audit trail, ohjelmistokehitys, ERP, temporal tables
Keywords: Audit trail, software development, ERP, temporal tables

Termillä audit trail tarkoitetaan dokumentteja jotka kuvaavat mitä jonkin kokonaisuuden,

kuten ohjelmiston tai yrityksen, sisällä on tapahtunut. Liiketoiminnan automatisoituminen

esimerkiksi ERP-järjestelmien käytön myötä on tehnyt luotettavasta audit trail:sta entistä

tärkeämmän. Tämän työn tavoitteena on esittää konkreettinen menetelmä, jota voidaan

käyttää audit trail:n toteuttamiseen vakiintuneessa ERP-järjestelmässä, jolla on laaja

käyttäjäkunta ja paljon ominaisuuksia. Aluksi esitellään kirjallisuuskatsaus, jossa etsitään

ja verrataan erilaisia audit trail:n toteutustapoja. Tämän jälkeen suoritetaan tapaustutkimus,

jossa suurelle ERP-järjestelmälle valitaan audit trail:n toteutustapa seuraavien vaatimusten

pohjalta: luotettavuus, käytettävyys ja suorituskyky. Toteutustavaksi on valittu SQL

temporal tables, jonka osoitetaan olevan luotettavin ja käyttökelpoisin ratkaisu.

Tapaustutkimuksen valossa tärkeimpiä huomioitavia asioita audit trail:n kehittämisessä

ovat vaatimusten määrittely, audit trail:n rakenne, käyttöönotto ja valvonta sekä varsinaisen

järjestelmän arkkitehtuuri. Lisäksi audit trail tulisi suunnitella järjestelmän osaksi jo

järjestelmän elinkaaren alkuvaiheessa.

iii

ACKNOWLEDGEMENTS

This study has been made as a master’s thesis in Degree Program in Computer Science at

Lappeenranta University of Technology. I would like to thank my supervisors from both

the university and from the case company for whom this work was done to for their

support and guidance. Furthermore thanks to everyone in the case company who shared

their knowledge and ideas during the development process. Last but not least I would like

to thank my fiancée for her support during this work and through out my studies.

Niko Liukka

Lappeenranta 15.1.2018

iv

1 INTRODUCTION...4

1.1 Goals and delimitations..5

1.2 Research Methodology...6

1.3 Structure of the thesis...7

2 LITERATURE REVIEW..9

2.1 Audit trail..10

2.2 Continuous Auditing..12

2.3 Audit Trail Implementation Methods...14

3 CASE ERP SYSTEM..17

3.1 Current state of the audit trail in the ERP..18

3.2 Audit trail survey in similar ERP systems..19

3.3 Requirements..21

3.4 Comparison of the different methods...23

3.4.1 SQL Server Change Data Capture...24

3.4.2 Database Triggers..25

3.4.3 SQL Server Temporal Tables...27

3.4.4 Implementation in application...28

3.5 Comparison in the context of case ERP system...30

3.5.1 SQL Server Change Data Capture...30

3.5.2 Database Triggers..31

3.5.3 SQL Server Temporal Tables...31

3.5.4 Implementation in application...32

4 IMPLEMENTING THE NEW AUDIT TRAIL..34

4.1 Recording the user information..37

4.2 Altering the foreign keys..38

4.3 Activating the versioning...40

4.4 Clean up process for history data...43

4.5 Deployment and communication...49

5 RESULTS..51

5.1 Reliability...51

5.2 Usability...52

1

5.3 Performance...54

5.3.1 Storage space requirements...55

5.3.2 Performance of the database operations..58

5.4 Overall suitability...61

6 DISCUSSION AND CONCLUSIONS...62

6.1 Limitations and future work...65

REFERENCES...67

APPENDIX 1. SYSTEMATIC LITERATURE REVIEW DATABASES...........................71

APPENDIX 2. RESULTS OF STORAGE SPACE USAGE TESTS...................................72

APPENDIX 3. RESULTS OF EXECUTION TIME TESTS...73

2

LIST OF SYMBOLS AND ABBREVIATIONS

API - Application Programming Interface

CA - Continuous Auditing

CDC - Change Data Capture

CMM - Continuous Management Monitoring

DDL - Data Definition Language

DML - Data Manipulation Language

ERP - Enterprise Resource Planning

ID - Identification

IT - Information technology

KPI - Key Performance Indicator

3

1 INTRODUCTION

“Audit trail” has two somewhat similar definitions which are both relevant in the context

of Enterprise Resource Planning (ERP) systems. In accounting terms it refers to

“documents and records that show the history of a company's financial activities, examined

by someone who is doing an audit” and in information technology (IT) it refers to “a

record of the activity on a computer or computer system”1. In other words the audit trail

means keeping a record of the data which is or has been in a system or in a process as well

as recording all the changes which have occurred in the data. So with complete audit trail it

is possible to take a piece of data and follow the “trail” of changes to find out how the data

has looked in the past. In addition to recording the actual changes it is also principal to

record when and by whom the changes were made. This makes it possible to define who is

accountable for the data. In practice audit trail is important because it makes it possible to

verify that everything within an entity, be it a bookkeeping of the company or a software

application, has gone as intended and that there has been no fraudulent actions.

In accounting the audit trail can mean for example being able to follow where the record in

the ledger has originated. Furthermore even if the record seems to be valid, it is still

beneficial to be able to inspect the whole trail of changes. In the literature there is classical

example where fraudulent employee changes the bank account number from the

information record of the vendor in the ERP system, pays invoice to this incorrect bank

account and lastly changes the bank account back to original. (Singh, Best, Bojilov, &

Blunt, 2014) These kinds of actions can go unnoticed if only the trail of records from

invoice to the ledger is followed. For this reason it is important to have the changes

recorded for every important piece of data, in this example to the vendor bank account

information. The research has shown that keeping this kind of record has been made much

more efficient by the use of software such as ERP systems. On the other hand the

efficiency of software has also created more possibilities for frauds. (Debreceny, Gray, Ng,

1 Cambridge Dictionary. (2017). Retrieved 18 October 2017, from

https://dictionary.cambridge.org/dictionary/english/audit-trail

4

Lee, & Yau, 2005) The use of ERP systems for bookkeeping purposes leads to the situation

where the software audit trail of the ERP system forms the backbone for the accounting

audit trail.

1.1 Goals and delimitations

The goal of this work was to present the necessary steps for developing audit trail

functionality for the large scale ERP system. In order to reach this goal it was necessary to

be able to answer to the following research question:

● How to implement audit trail in the large ERP system which has grown naturally

over the time and what factors need to be considered before, during and after the

implementation in this scenario?

These questions were further broken down to several parts which can be examined with

defined research methodology. Firstly it was necessary to define the term audit trail (Q1)

and the purpose it serves in the context of the ERP systems. The latter question was

approached with case study. The case study consisted of the following steps: gathering the

requirements for the audit trail from the various departments within the case organization

(Q2), analyzing current audit trail of the case ERP system and its shortcomings (Q3),

finding and comparing alternative methods for audit trail (Q4) and selecting the most

suitable method (Q5). Based on this method a proof of concept audit trail was implemented

and its suitability for system wide use was evaluated (Q6). The proof of concept included

both the system for storing the audit trail information as well as functionality for history

data maintenance.

The suitability of the proposed proof of concept was evaluated based on its ability to be

scaled up to include all the information which needs to be audited in the system. This

ability means fulfilling the requirements of reliability, usability and efficiency in

processing time and storage space in a way that it can be deployed to system wide use. The

requirements are described in more detail in the chapter 3.3. The proof of concept had to be

5

implemented in the manner which fulfills software quality requirements of the organization

and is reviewed to be suitable for system wide use by other developers and system

architects.

The system wide deployment of the developed audit trail solution was outside of the scope

of this work because the significant size of the ERP system. Because of the size the system

wide deployment would require excessive time and resources, especially in testing, and

these were not available within the limited time frame of this work. Rather this work

proposes comprehensive proof of concept for solving the problem which can then be later

deployed system wide.

1.2 Research Methodology

Three distinct research methods were used in this work. The main methods were literature

review and case study, which were complemented by small scale survey. Literature review

was used as research method for providing background knowledge about the subject of the

research. The review was conducted in two different parts. The first part was about

gathering background knowledge and defining the most vital concepts for the research,

namely audit trail and continuous auditing thus providing answers to the sub research

question Q1. This clarified the goal of the work and gave initial guideline for choosing the

final implementation method for the audit trail. The second part of the review was

conducted by following the principles of systematic literature review (Kitchenham et al.,

2009). Systematic literature review was performed in order to find and compare possible

solutions for solving the problem of adding audit trail functionality into existing software

system. This answers the sub question Q4.

After researching the literature a case study about audit trail development was performed.

The case study was performed in Finnish software company which develops and maintains

large scale and widely used ERP system, which is referenced in this work as “case ERP

system” or “ERP system”. The case study consisted of development of the proof of concept

audit trail solution. The goal was to use the gathered knowledge and utilize it to create

auditing functionality to existing ERP system. The case study included the requirement

6

gathering, implementation and end result evaluation and thus it answers the sub questions

Q2, Q3, Q5 and Q6. The outcome of the case study was proof of concept which could be

further deployed to the system wide use. By evaluating the development process and the

end result it is possible to define the advantages and disadvantages of the chosen

implementation method as well as the factors which need to be considered at the different

stages of the project. The identified considerations are general and technology-independent

meaning that they can be applied in audit trail implementation processes regardless of the

case specific details.

Lastly a survey was performed by sending limited questionnaire to other companies with

similar ERP products in different markets. The goal was to get insights on how other

similar ERP systems have dealt with the problem of auditing and thus get more input to be

used on decision making when selecting the final implementation method. This gave

further insights on the sub questions Q4 and Q5. The questionnaire was sent to three

organizations and two of them gave their explicit permission to reference their responses in

this thesis. The used research methodology is summarized in table 1.

1.3 Structure of the thesis

The rest of this report is structured as follows. Chapter 2 features literature review which

gives background information about relevant terms and concepts as well as introduces

audit trail implementation methods found in the literature. Chapter 3 describes the case

study setting by introducing the case company and ERP system. Audit trail implementation

methods which were considered in that setting and requirements for the new audit trail are

discussed as well. The proposed solution for implementing the audit trail in the case study

is presented in the chapter 4 and suitability of this solution is discussed in the chapter 5.

Finally the chapter 6 summarizes the findings and gives answers to the research questions

as well as discusses about the limitations of the results and future research directions.

7

Table 1. List of used research methods and their purposes

Research method Purpose of the method

Literature review about audit trail Define audit trail and related concepts.

Literature review about audit trail

implementation methods

Find alternative methods for audit trail

implementation.

Survey about audit trail

implementation methods

Find alternative methods for audit trail

implementation.

Case study

• Requirement gathering

• Method comparison

• Implementation

• Measurement

• Evaluation of the process

• Gather audit trail requirements from real life

case

• Compare the previously found methods

against found requirements

• Create proof of concept audit trail

• Verify the suitability of proof of concept

against the initial requirements

• Draw conclusions about the implementation

process which can be generalized to other

implementation process regardless of the used

technologies

8

2 LITERATURE REVIEW

The literature review was used to gather knowledge and understanding which would then

be used as a basis for the rest of the work. The review presented here will give a definition

for the concept of the audit trail and list several different approaches for implementing it in

software systems. The review was performed in two stages. In the first stage articles were

searched from several sources with keyword combinations “audit trail” AND

“development”, “audit trail” AND “ERP” as well as “continuous auditing” and by finding

more related articles from the references of the found articles. Selected articles had to be

peer reviewed and published in scientific publications. With this approach it was possible

to efficiently gather knowledge about the concept of audit trail and its related concepts.

Secondly a systematic literature review was performed to find concrete implementation

alternatives for the audit trail functionality. The systematic literature review method was

chosen because of its ability to systematically cover broad field of research which could

lead into insightful list of possible solutions including their strengths and weaknesses

(Kitchenham et al., 2009). This was important for deciding if there was an existing solution

or partial solutions for the problem or if the problem needed to be solved from the scratch.

The main difference between systematic literature review and normal review is the use of

review protocol and strategy. The protocol defines how the reviewed literature is found and

strategy describes how the found literature is analyzed. The protocol and strategy, as well

as the review process in which they are used, are documented to make the review more

transparent and objective. (Kitchenham et al., 2009) This documentation can actually be

seen as an audit trail of the review process. In the review literature was searched from

databases listed in the appendix 1 with searchterms: “audit trail” and “audit trails”. The

term had to appear in the abstract of the article. The goal was to identify detailed technical

methods and technologies used for implementing auditing functionality. The searchterms

were broad because preliminary queries revealed that material could not be found with

more accurate search terms, for example with “audit trail development”. Several additional

parameters were used to narrow down the number of the results. Firstly the publication

year had to be 2010 or later. The accepted time period was relatively short but it was

9

decided based on the fact that technologies change quickly. Especially the more detailed

methods are likely to become outdated in few years. Furthermore the selected articles had

to be peer reviewed and available free of charge for the student of Lappeenranta University

of Technology. Also the articles had to be written in English.

2.1 Audit trail

Audit trail has been well known concept for several decades especially in the field of

accounting. In its essence the term audit trail boils down to the logs which describe the

workings of the system. With these logs it becomes possible to audit the system, in other

words to verify that everything has gone as intended. Furthermore it is possible to

reconstruct the state of the system at the certain point in the past based on the audit trail. In

order to be effective the audit trail logs must have well defined format which is machine

readable and not tied to specific platform (Bishop, 1995). In accounting the most important

actions for auditing are the different approvals (e.g. approving an invoice), postings (e.g.

sending a payment) and deletions of all kinds of data (Li, Huang, & Lin, 2007). These

actions are present in most transactions, for example processing of the invoice. For

transactions the audit trail should include information about the existence (e.g. the approval

for invoice exists), wholeness (e.g. invoice contains all the necessary information and each

step of the processing is saved), accuracy (e.g. correct sums in invoice and other related

records), classification, time and inclusion in the balance sheet (Li et al., 2007). On the

other hand in terms of database systems the audit trail should contain: list of events which

altered data; timestamp of the event; reason for the alteration; user who altered data; users

role and location. In order to effectively gather this information the audit trail should be

designed to be part of the database structure from the get go. (Flores & Jhumka, 2017)

Adding this functionality afterwards could be expensive task in terms of time and effort.

The existence of the audit trail is a security question and audit trails are most commonly

used in such fields as accounting and IT (Bishop, 1995). They are also commonly used for

example in research and medicine when the integrity of the data is important for the

security reasons (for example Cruz-Correia et al., 2013). This highlights the main purpose

of the audit trail which is to verify the integrity of the data. The integrity is achieved when

10

https://paperpile.com/c/bc9CuZ/xgxw
https://paperpile.com/c/bc9CuZ/9j3i

it is possible to tell who has created, edited or deleted the data and thus is accountable for

it. With audit trail the persons who have done incorrect actions with data, be it by accident

or by fraudulent operations, can be held liable for their actions. The fraud detection has

become increasingly more important because of the digitalization and automation of

business and other activities. For example there are less and less physical logs about

business transactions when everything is stored digitally. Furthermore the research

suggests that automation increases the volumes of transactions which makes it harder to

detect the few fraudulent operations within the whole mass. In order to prohibit the

increased potential for frauds the digital systems must have proper audit trail functionality

in place. Typical organization loses on average approximately 5% of its annual revenue to

frauds. In 2011 this would have translated to the loss of more than $3.5 trillion worldwide.

(Singh et al., 2014) In comparison Gross Domestic Product of Finland was $0.27 trillion

during the same year 2. The monetary losses are especially significant because in most

cases the victims will not get their assets returned and thus face the possibility of

bankruptcy. For this reason it is important to be able to prevent and detected frauds as

efficiently as possible (Singh et al., 2014). Either way the frauds are always problematic

for the image of the organization which can generate even more monetary losses.

The study of audit trails suggests that frauds are abnormalities in the normal operation of

the organization and thus they can be detected by searching for anomalies in the audit trail.

This process can largely be automated which makes the fraud detection greatly effective.

The suspicious anomalies are numerous and they change from domain to domain, but in

accounting some common anomalies include for example even sums in payments,

duplicate payments, duplicate customers, customers with multiple bank accounts and

repeatedly changing bank account numbers especially for vendors. (Singh et al., 2014)

Classical fraud example is the case where employee changes the bank account number of

vendor from the information system to bank account where he has access to, then pays

2 TradingEconomics. (2017). Finland GDP 1960-2017. Retrieved 2 November 2017, from

tradingeconomics.com/finland/gdp

11

https://paperpile.com/c/bc9CuZ/pyfp
https://paperpile.com/c/bc9CuZ/pyfp
https://paperpile.com/c/bc9CuZ/pyfp

invoice for the vendor (to the wrong account) and then changes the bank account number

back to original. If the vendor information changes are recorded then this kind of activity

can easily be detected.

The research has shown that often the digitalization of the business processes involves the

utilization of the ERP systems which integrates and unifies the core functionalities of the

business. This makes the ERP system the central point of the operations and thus makes it

also natural place for audit trail implementation, since most if not all transactions go

through the system at some point. (Debreceny et al., 2005; Singh et al., 2014) However the

ERP systems have implemented audit trails with varying interest. According to the study

about embedded audit modules in the ERP systems, at the start of the millennium the

reason for not implementing audit trail functionality in ERP systems was the lack of

interest from the customers who felt that audit modules were not worth the effort because

they could only detect frauds that had already happened. (Debreceny et al., 2005) Since

then the attitudes are likely to have changed, however the lack of found audit trail solutions

in the systematic literature review as well as the answers to the questionnaire which was

sent to other ERP developers (chapters 2.3 and 3.2) suggests that even today there is no

critical need for complete audit trail solutions among ERP customers.

2.2 Continuous Auditing

The concept of continuous auditing (CA) is closely related to the audit trail. CA is defined

as an comprehensive electronic audit process which provides the auditor with relative

certainty about the integrity of the accounting information in real time (Rezaee,

Sharbatoghlie, Elam, & McMickle, 2002). CA can utilize the audit trail by analyzing it in

real time or by making decisions based directly on the events in the system. This is

cheaper, more efficient and more timely than traditional auditing (Alles, Kogan, &

Vasarhelyi, 2008; Shin, Lee, & Park, 2013). At present the efficiency of CA is increasingly

more important because the digitalization and automation of business processes increases

the volume of transactions and lessens the human intervention. For this reason the auditing

too has to be automated to keep up with the increasing numbers of transactions. In the

12

https://paperpile.com/c/bc9CuZ/FRfg+NG8B
https://paperpile.com/c/bc9CuZ/FRfg+NG8B
https://paperpile.com/c/bc9CuZ/fcJq
https://paperpile.com/c/bc9CuZ/fcJq

changing environment the CA can be used to provide outwards transparency about the

business, direct attention internally and for legal reasons (Shin et al., 2013).

When CA is used to direct attention internally it is a part of internal control framework.

Internal control is defined as a process managed by the board of the organization. The goal

is to provide reasonable assurance about achievements of objectives and about

effectiveness of the operations. (Chang, Yen, Chang, & Jan, 2014) According to other

definition the CA is also a part of the broader Continuous Management Monitoring

(CMM). CMM is about providing real time statistics and key performance indicators (KPI)

for the company management to make data driven decision about the business. (Alles et

al., 2008) From the technological perspective the collection and utilization of the data is

similar between CA and CMM (Rezaee et al., 2002). Since CMM is implemented to

increase the profits of the company the CA process can often be implemented alongside

with it with the same effort. This makes the adaption of the CA more cost efficient but on

the other hand it can also hinder the independence of the auditors. (Alles et al., 2008)

The rise of the CA has meant that auditor role has changed from reactively discovering

frauds to more proactive detection and even prevention (Shin et al., 2013). This should

make the implementation of the audit modules more desirable even to users who feel that

reactive audit trail analysis is not effective enough. Great example about proactive

monitoring is detecting violation of the segregation of duties. By definition the segregation

of duties means that certain operations in organizations should be divided to different

persons. For example same person should not be able to create or modify customer

information and create or modify invoices for that customer. (Shin et al., 2013) Detection

of these kinds of violations can be automated and when violations are found it is possible

to direct more attention to the persons who have these kinds of privileges within the

organization before they manage to exploit the violations.

13

https://paperpile.com/c/bc9CuZ/FRfg
https://paperpile.com/c/bc9CuZ/fcJq+NG8B
https://paperpile.com/c/bc9CuZ/fcJq+NG8B
https://paperpile.com/c/bc9CuZ/fcJq+NG8B
https://paperpile.com/c/bc9CuZ/fcJq+NG8B
https://paperpile.com/c/bc9CuZ/bvKU
https://paperpile.com/c/bc9CuZ/FRfg

2.3 Audit Trail Implementation Methods

Implementation methods were searched with the systematic literature review with the

research protocol and strategy described at the beginning of this chapter. The initial search

resulted in the list of 175 articles. However because of the broad searchterms, most of the

articles dealt with subjects other than technical development of the audit trail. For this

reason the results were further narrowed down by reviewing the titles and abstracts of the

articles. The goal was to find articles which describe auditing methods from technological

perspective for example by describing algorithms or process flows of auditing functionality

or by discussing technologies which are used for providing auditing functionality. If the

title and abstract of the article did not mention any of these the article was not fully

reviewed. For example many of the articles were concerned with achieving and using the

audit trail from organizational point of view in research and medical institutes. The final

review material included 12 articles which were fully reviewed for the possible solutions

for audit trail development. The reviewed articles are listed in the table 2 and found

solutions are listed in the table 3.

Table 2. The list of fully reviewed articles.

1. Management of a Large Qualitative Data Set: Establishing Trustworthiness of the Data
(White, Oelke, & Friesen, 2012)

2. Improved Security of Audit Trail Logs in Multi-Tenant Cloud Using ABE Schemes (Prakash
& Nalini, 2014)

3. Forensic accounting in the fraud auditing case (Simeunovic, Grubor, & Ristic, 2016)
4. A Risk-Based Approach to Data Integrity (Albon, Davis, & Brooks, 2015)
5. Security and Audit Trail Capabilities of a Facilitated Interface Used to Populate a Database

System with Text and Graphical Data Using Widely Available Software (Beland et al., 2014)
6. Using XBRL Global Ledger to Enhance the Audit Trail and Internal Control
7. Security information in production and operations: a study on audit trails in database

systems (Bizarro & Garcia, 2011)
8. Analysis of the quality of hospital information systems audit trails (Cruz-Correia et al., 2013)
9. 3 Steps to Simplify Audits, Demonstrate Compliance and Manage Risk Across the

Enterprise (Anonymous, 2011)
10. Compliance and Data Access Tracking (Mullins, 2011)
11. Automating Vendor Fraud Detection in Enterprise Systems (Singh, Best, & Mula, 2013)
12. A review and future research directions of secure and trustworthy mobile agent-based e-

marketplace systems (Patel, Qi, & Wills, 2010)

14

https://paperpile.com/c/bc9CuZ/Kt1H
https://paperpile.com/c/bc9CuZ/MIjG
https://paperpile.com/c/bc9CuZ/f0TK
https://paperpile.com/c/bc9CuZ/TBZ3
https://paperpile.com/c/bc9CuZ/ZkXo
https://paperpile.com/c/bc9CuZ/QU7s
https://paperpile.com/c/bc9CuZ/mqbK
https://paperpile.com/c/bc9CuZ/aeyS
https://paperpile.com/c/bc9CuZ/qzI6
https://paperpile.com/c/bc9CuZ/UjoI
https://paperpile.com/c/bc9CuZ/UjoI
https://paperpile.com/c/bc9CuZ/WXyE

Table 3. List of audit trail implementation methods.

Title of the article Audit trail solutions Category

A Risk-Based Approach to Data Integrity (Albon et

al., 2015)

System logs System logs

Using XBRL Global Ledger to Enhance the Audit

Trail and Internal Control (Bizarro & Garcia, 2011)

eXtensible Business Reporting

Language (XBRL)

Other

Security information in production and operations:

a study on audit trails in database systems (Roratto

& Dias, 2014)

Database triggers

Database logs

Database

Database

Compliance and Data Access Tracking (Mullins,

2011)

Database auditing software

Capturing database requests

Database logs

Database/audit module

Database

Database

Automating Vendor Fraud Detection in Enterprise

Systems (Singh et al., 2013)

Embedded Audit Modules

Monitoring and Control Layer

Operating system (logs)

Database (logs)

Audit module

Implementation in application

System logs

Database

A review and future research directions of secure

and trustworthy mobile agent-based e-marketplace

systems (Patel et al., 2010)

Recording and analyzing the

network traffic

Network traffic

Improved Security of Audit Trail Logs in Multi-

Tenant Cloud Using ABE Schemes (Prakash &

Nalini, 2014)

reverse proxy logs Network traffic

Security and Audit Trail Capabilities of a

Facilitated Interface Used to Populate a Database

System with Text and Graphical Data Using Widely

Available Software (Beland et al., 2014)

Domain layer Implementation in application

The solutions are of varying levels of abstraction. Some of them are very detailed, for

example database triggers, while others are broader concepts, for example recording and

analyzing the network traffic. Because of this variation and low number of items it is

impossible to draw concrete conclusions about popularity or suitability of the solutions

from the data. However the found items can easily be categorized into few main groups:

Database (5.5 items), Network traffic (2), System Logs (2), Implementation in application

(2), Audit module (1.5) and Other (1) (note “Database auditing software” is categorized

into both Databases and Audit module, hence the 0.5 items). The higher number of items in

15

https://paperpile.com/c/bc9CuZ/mqbK
https://paperpile.com/c/bc9CuZ/UjoI
https://paperpile.com/c/bc9CuZ/UjoI
https://paperpile.com/c/bc9CuZ/Kt1H
https://paperpile.com/c/bc9CuZ/MIjG
https://paperpile.com/c/bc9CuZ/f0TK
https://paperpile.com/c/bc9CuZ/f0TK
https://paperpile.com/c/bc9CuZ/FDmq
https://paperpile.com/c/bc9CuZ/FDmq
https://paperpile.com/c/bc9CuZ/QU7s
https://paperpile.com/c/bc9CuZ/aeyS
https://paperpile.com/c/bc9CuZ/aeyS

the database category seems relevant for the audit trail development because most of the

modern applications store the data in databases and that data is the subject of the audit trail.

This makes the database seem like natural place for the audit trail functionality as well. On

the other hand the network traffic, system logs, implementation in application and audit

module categories focus on capturing events in the system and deriving the audit trail from

them.

In the context of the case study all of the found solutions were viable in theory. But once

the available time and resources were considered many of them could be discarded. Firstly

the use of XBRL and embedded audit modules could be discarded because XBRL is not

currently supported in the system and its implementation would require great effort which

would not make sense from the business perspective because there is no demand for the

XBRL. Likewise the adaption of third party audit module could be discarded because

developing the functionality in-house was seen economically more desirable.

Furthermore the system logs and analysis of network traffic could be discarded because

they were not accurate enough for solving the problem at hand. The goal was to audit the

business data which is processed within the system and both (operating) system logs and

recording of the network traffic would produce significant amount of data which is

irrelevant for this purpose. The data could be filtered but the remaining solutions, namely

database and implementation in the application would be adjusted by default to only

process the necessary data.

16

3 CASE ERP SYSTEM

The case ERP system is developed by medium-sized Finnish software company. The

system is cloud based meaning that customers use it over the Internet via browser rather

than running it on premises. It is relatively large in terms of its functionality and user base

which comprises of thousands of direct and accounting office customers who generate

hundreds of thousands transactions monthly. The system also has hundreds of integrations

to other software systems. The development of the system is continuous and has been

ongoing for several years. During this time few different software technologies and

frameworks have been used and multiple frameworks are still in use. This fact has to be

kept in mind when implementing system wide functionality such as audit trail so that all

different frameworks and system parts are considered.

There are various types of data processed in the system and the audit trail is most important

for the information associated with financial transactions, for example invoices, vendor

and supplier information, salary data, bank transfers etc. The daily number of these kinds

of transactions is in tens of thousands. The second important set of information for auditing

is the user information, for example personal information of the employees and users as

well as user access information. The retention times for audited data can range from

months to over ten years. The update frequency of the data is impossible to predict

accurately, however generally the audited data changes require action from user and thus

the data is more slowly changing than data which is altered by the system itself. For

example user can in practice do only limited number of actions in certain time whereas the

system could perform thousands of similar actions in the same time if they are automated.

If the actions are performed by user they should be audited because they can be attributed

to the user. On the other hand if the actions are automated the individual actions will not

necessarily require auditing but rather the action of activating the automation should be

audited because it can be attributed to the user.

17

3.1 Current state of the audit trail in the ERP

Currently in the system the audit trail exists for the most important sets of data for example

invoices and bank account information. The backbone of the current solution is formed by

database triggers which are created for necessary tables. These triggers capture and store

all the data manipulation language (DML) events alongside with the old and new values of

the changed data entries. In addition to this audit solution there are also other supporting

solutions. For example some tables which are not supposed to be updated have more

lightweight auditing where only the deleted entries are recorded. In addition to auditing the

data changes there are also extensive logs for recording the requests made through both the

user interface and application programming interface (API). This log can then be used for

tracing who has done and what in the system.

Currently all of the important data changes are recorded and most of the other changes can

be traced through the request log. However the current solution still has quite a few

significant drawbacks. First of all the performance of the trigger based solution is not seen

as good enough for the system wide use. There have been cases where the current audit

solution could not be used because large scale operations would have taken too long to

execute with audit logging and this would have had negative impact on usability and user

experience. The main reason for the poor performance is the way the change history is

stored which is not scalable. Meaning that when the amount of the history data increases

the performance of the functionality decreases comparatively. This is a result of first

introducing the audit log only as an ad hoc solution for limited part of the system from

where it has then grown over the years without re-evaluation of the design. Considering

this the new audit solution should have more thoroughly considered architecture and better

scalability.

In addition to the less than desirable performance, the trigger based solution also has some

issues with usability, maintainability and reliability. Currently there is no user interface for

inspecting the audit data within the ERP system, except in few rare cases. This means that

the inspection of audit data requires effort from the technical support team because the

customers are not able to view the data themselves. In addition to the lack of the interface

18

the querying of history data could take too long to be widely usable by customers.

Furthermore the lack of user interface also means that history data interpretation requires

additional effort from the technical support. When changes have to be tracked from the

data which is not part of the current audit solution the amount of investigative work

increases further and for that reason a wider audit solution is desirable. The amount of

required effort is multiplied when we consider that often the customers will not contact the

technical support directly but rather they deal with customer support or for example

invoicing department. The easy to use interface for inspecting the history data would

decrease the amount of work required for audit data investigation through the company.

With proper interface the users could even be allowed to view the history data themselves

which could decrease the number of support cases where the main question is who has

done and what within the customer’s environment.

The problems with maintainability arise from the fact that currently every audited table

requires specially created trigger which creates maintenance overhead. Also over the years

triggers have been created with varying designs which makes the maintenance work more

challenging. The last issue is about reliability. The current solution handles the updater

information like any other information meaning that in database level the updates are

allowed without explicitly defining the updater. This further means that the updater must

be defined at the application level everywhere where updates are made which creates

possibility for errors. Since there is at least a theoretical possibility of updates occurring

without updater information the functionality could be made more robust.

3.2 Audit trail survey in similar ERP systems

As a part of the case study a questionnaire about audit trail was sent to three other

organizations with similar ERP products. All of them responded but only two gave their

explicit permission to reference their responses in this thesis. The goal of the questionnaire

was to find out if other similar ERP systems had implemented the audit trail and if so what

kind of design are they using. The questions and summarized answers of the questionnaire

are listed in the table 4.

19

Table 4. Questions and summarized answers of the audit trail questionnaire.

Question Summarized answers

Have you implemented audit trail/data

versioning within your system? Are you

keeping record on all the data changes that

happen within the system or just on some

changes?

1. Yes, ad-hoc logging for specific changes.
2. Yes, with possibility to select the stored data by

end customer and administrator.

Describe the current solution for versioning:

- Is it implemented in database (e.g. triggers,

system versioned tables...) or in application

(e.g. in data access layer, within the object-

relational mappings...)?

- Describe the general architecture if possible.

- Are you able to record all the chosen changes

reliably?

1. The change, timestamp and user information are

saved in the data layer of the application.
2. The following information is stored: operation

(update, insert, delete), table name, value and

modified fields. The auditing can be activated for

individual columns. The logging is done in

application level.

Who is using the collected history data?

Customers/support/development etc.

1. Any one who has access to the user who has

made the changes.
2. Customers

What are the biggest advantages and

disadvantages of your solution?

1. -
2. Simple and flexible solution which achieves its

purpose.

Both of the participating organizations had implemented the audit trail to some degree. In

other only the most sensitive pieces of data were versioned with changed values, user

information and timestamps and in other the user could choose which data was included in

the audit trail, but only the fact that data was changed alongside with the timestamp and

user information were recorded. In this implementation the flexibility of choosing which

parts of the system are audited was seen as a great advantage. Both of the organizations

had implemented the auditing logic in the application level which writes the auditing log to

the database. In both cases the auditing data was mainly used by the customers.

20

3.3 Requirements

The discussions with stake holders in the case company and the literature review suggest

that the most important requirement for the audit trail is the ability to reliably proof who

has changed data in the system. In terms of transactions the audit trail should be able to

proof the existence, wholeness and accuracy of the data (Li et al., 2007). In other words the

audit trail should be able to prove the integrity of the data which is a fundamental security

question (Bishop, 1995). In order to be able to account the actions performed within the

system to someone there has to be reliable way of recording the actions as they are

performed. For example by recording all the changes made to the data in the system. In

addition to the actual change the id of the person who changed the data as well as

timestamp of the event should also be recorded (Flores & Jhumka, 2017). These

requirements are also present with the case ERP system. First of all from legal point of

view the ERP system contains sensitive information which has to be reliably accounted to

someone: who has created this information and thus is responsible for it. Secondly some of

the customers have stricter requirements for the internal control of their organization and

for this they require functioning audit trail. Occasionally other customers require

information about data changes as well and this generates work for the support department

of the application which can be decreased with easy to use audit trail information. Audit

trail can also support the bug detection and verification because possible bugs can be

verified to have happened because of the malfunction of the software and not because

incorrect actions of the user.

The other possible questions of “why” and “where”, in other words reason for the change

and physical location of the changer, were excluded from the requirements (Flores &

Jhumka, 2017). They were not seen as important as the “what”, “when” and “who”,

because gathering the reasons for changes would require additional work through the

system and in most cases the reason would be of little value. Same restrictions are

associated with the location of the changer.

21

https://paperpile.com/c/bc9CuZ/r9gz

Aforementioned basic requirement of traceability and the shortcomings of the existing

solution offer the basis for the more detailed requirements. Most importantly the audit trail

should be reliable, meaning that when it is activated every change should be recorded and

there should be no caps within the trail nor records with inadequate metadata, for example

the id of the user and timestamp. Also any alteration attempts towards the recorded history

data should be prevented so that the integrity of the records is ensured. For effective

implementation and maintenance of the system wide audit trail the ease of development

and deployment need to be addressed as well. The proposed solution should be easy to

understand for the developers and it should require only minor work per each part of the

system that it is applied to. The possibility to automate the process is desirable. This would

also support the maintainability of the solution since if it was to be altered the changes

could be automatically applied system wide. In addition to the developers the ease of use

should apply also to the end users of the audit trail, for example to customer support and

customers themselves. In practice they should be able to get the information they need with

minimal effort. Last major requirement is the cost of processing time and storage capacity.

For the most part the audit trail functionality is very basic in ERP systems meaning that

there is only limited sales potential related to it. In some cases it can remove the obstacles

for sales, for example when customer requires enhanced audit trail capabilities for internal

control but in most cases it is mainly basic feature which customers expect to be in place at

least on some level. For this reason the improved audit trail is unlikely to bring any direct

profits for the company meaning that recurring costs associated with it should be

minimized. These are mainly the costs generated from processing power and storage. The

new audit trail functionality should be able to run with current processing power without

noticeable difference in system performance for the end user. Furthermore the required

storage capacity for the history data should be as low as possible. This can be achieved

with proper data compression. The requirements are summarized in the table 5.

22

Table 5. Summary of the requirements.

Requirement Description

Reliability Every change must be recorded with appropriate metadata and the

recorded history must be immutable. Changing the data without audit

record must not be possible.

Usability The development, maintenance and use of the functionality should require

as little work as possible. The developers should be able to add the

auditing functionality to new data entity with one hour of work. The audit

log should be usable for users without special technical knowledge.

Performance The recording of the history data should require as little storage space as

possible. The increase in storage space usage should be at most ten folds

for each audited entity. The recording process should not have impact on

the performance of the system which is noticeable to the user.

3.4 Comparison of the different methods

The literature review resulted in surprisingly low number of actual technical audit trail

implementation examples. It seems that most of the research has focused on the

implications which the audit trail has on continuous auditing and internal control of the

organizations (for example Cruz-Correia et al., 2013). Database triggers were the only

specific method which was found in the review. It is also the method which the current

audit trail in the ERP system is based on. Since the literature did not provide any strong

and concrete alternatives for the triggers, which were considered to be not optimal in the

case of the ERP system, they had to be found from elsewhere.

First alternative came from the third party company who are consulted by the case

company on more demanding database maintenance tasks. The ERP system was currently

in the process of migrating to a 2016 version of SQL Server. This edition of the SQL

Server has many additional features compared to the old version, one of the most

interesting being the introduction of system versioned temporal tables which provide built-

23

in support for storing and querying data that is or has been stored in the table at any given

time. 3 This behavior is ideal for storing the audit trail. Feature was introduced in ANSI

SQL 2011 standard but was not included in the SQL Server until the 2016 version

(Kulkarni & Michels, 2012). The two remaining methods, namely SQL Server Change

Data Capture and implementation in the application layer were formed by conversations

within the development team and by interviewing product managers and architects from

other ERP product developers. The general advantages and disadvantages of the

alternatives are discussed next and summary about these characteristics is presented in the

table 6.

3.4.1 SQL Server Change Data Capture

Change Data Capture (CDC) is feature which enables tracking changes to the data in a

database. It logs the DML actions of the database along with the actual data and stores

them within the database making them relationally searchable. 4 The main purpose of the

CDC is to get the data that has changed. Main use case is the data replication to multiple

instances, for example into data warehouse. The warehouse contains copy of the actual

data which is constantly changing and is stored to different location closer to the

application. With CDC it becomes possible to sync the warehoused data with the actual

data for example once a day. The main advantage is that if the actual data is changing

rapidly, instead of directly mirroring every change from the actual data to the warehoused

data only the current state of the changed data can be synced to the warehouse once a day

because with CDC it is possible to identify which parts of the data have changed. This

makes the replication more efficient because unnecessary syncs can be eliminated. Similar

functionality could be achieved by utilizing database triggers, timestamp columns and

additional metadata tables, but CDC automates the change capture making the

development process faster and less error prone. With CDC there is no need for schema

changes and it also contains automated cleanup mechanism for deleting the recorded data

3 Rabeler, C., Hamilton, B., Sauber, S., Milener, G., & Guyer, C. (2016). Temporal Tables. Retrieved 19

November 2017, from https://docs.microsoft.com/en-us/sql/relational-databases/tables/temporal-tables

4 Rick, B., Bruce, H., & Craig, G. (2016). Track Data Changes (SQL Server). Retrieved 28 December 2017,

from https://docs.microsoft.com/en-us/sql/relational-databases/track-changes/track-data-changes-sql-server

24

https://paperpile.com/c/bc9CuZ/LSnC

after certain time period. Furthermore the CDC is very efficient because it is not directly

tied to the database events, rather it gathers the changes from the database logs which are

automatically generated by the DML events. 5

The CDC is not actually meant for providing data auditing functionalities, but it was

included as a possible audit trail solution because of its ability to automatically and

efficiently capture the changes of data. This is the starting point of the audit trail and while

the CDC is not necessary designed for providing such a feature, it could in theory be used

as a basis for audit trail. However the question of who has changed the data would have to

be addressed some other way. Furthermore in audit trails the actual trail of changes is of

utmost importance and in CDC the fact that something has changed along with the start

and end states is more important than the full trail of changes. This difference is

problematic from the auditing point of view.

3.4.2 Database Triggers

Database triggers are perhaps the most used method for implementing database audit trail

which is supported by the fact that it was the only concrete method found in the systematic

literature review (Roratto & Dias, 2014). In essence the triggers are stored procedures, in

other words small pieces of code, which run automatically after certain database events.

There are two main types of triggers Data Manipulation Language triggers (DML) and

Data Definition Language triggers (DDL). DML triggers fire after data manipulation

events: insert, update and delete and they can be used for example for enforcing business

rules and data integrity at the database level or for writing logs about the changes. DML

triggers have two types: after triggers which fire after the actual event and instead of

triggers which fire instead of the actual event. DML triggers are executed in a single

transaction with the event that fired it. Meaning that if the execution of the trigger fails the

actual event will also be rolled back. This can be beneficial for logging purposes because

no action can happen without successful logging. In contrast the DDL triggers fire after

5 Rick, B., Bruce, H., & Craig, G. (2016). Track Data Changes (SQL Server). Retrieved 28 December 2017,

from https://docs.microsoft.com/en-us/sql/relational-databases/track-changes/track-data-changes-sql-server

25

https://paperpile.com/c/bc9CuZ/FDmq

events which change the database schema, for example create, alter and drop.6 DML

triggers are more tied to the normal end use of the database and DDL triggers to the

development and maintenance. In theory they could both be used for auditing purposes by

creating triggers which fire after audited events, be it data or scheme change, and write the

event information (what changed, timestamp and user information) to the log table.

However in this case only events which are important from the business logics point of

view were considered important, meaning that only the actions committed by the end users

needed to be audited. For this purpose only the DML triggers would be needed.

The biggest advantage of the triggers, namely their ability to run diverse code, is also a big

weakness. Nowadays it is often preferred to include only as few logic to the database as

possible. This is mostly because actual programming languages and frameworks provide

better tools for development and debugging making the development and especially the

maintenance of the application level logic easier than the database logic. Triggers transfer

or duplicate the logic from the application to the database. From the point of view of the

application this logic is hidden and it can create significant problems in maintenance and

debugging. For example a case where a bug is caused by the combined effect of the

application logic and logic hidden in the database triggers. In this case the developer has

firstly be aware of the existing triggers, which is not always the case, and then has to debug

both the application and the database. DML triggers create also a second kind of

maintenance issues because they are table specific. Meaning that if one kind of trigger is

needed to multiple tables it must be created and in future maintained for each table

separately or alternatively additional functionality must be created for automating this

process.

6 Byham, R., Hamilton, B., & Guyer, C. (2017, March 14). DML Triggers. Retrieved 14 November 2017,

from https://docs.microsoft.com/en-us/sql/relational-databases/triggers/dml-triggers

26

3.4.3 SQL Server Temporal Tables

Temporal features were introduced to SQL standard in 2011 but SQL Server adopted them

only in the 2016 version of the software 7 (Kulkarni & Michels, 2012). In essence a

temporal table is a system versioned table which keeps record about all the changes which

are made to the data contained in the table. This is done by adding period columns to the

main table and creating additional history table which has identical structure to the main

table. The period columns are normal SQL columns with datetime type. The other column

marks the beginning of the validity of the row and the other the end of the validity. The

period definition was implemented with two columns to make the adaption of the temporal

features easier, since many of the tools which utilize SQL do not have support for the

actual period data type. When data is inserted, updated or deleted from the main table the

period columns are updated accordingly and row is added to the history table. When

system versioning is turned on for the table the user cannot directly interact with the

history table which enhances the integrity of the history data. (Kulkarni & Michels, 2012)

However by turning the system versioning off it is possible to modify the history table like

any other database table but once the versioning is turned back on the database can

automatically detect the holes in the history data.

The querying of the history data is done with new select parameters which can return the

state of the row at a specified point in time (as of) or all the states within certain time

period (between and, contained in, from to). The default behavior is to return the current

state of the row which provides perfect backwards compatibility with existing queries

where additional parameters are not defined. (Kulkarni & Michels, 2012) The parameter

values are compared to the period columns of the rows and in practice they are no more

than specified where clauses to these columns.

7 Rabeler, C., Hamilton, B., Sauber, S., Milener, G., & Guyer, C. (2016). Temporal Tables. Retrieved 19

November 2017, from https://docs.microsoft.com/en-us/sql/relational-databases/tables/temporal-tables

27

https://paperpile.com/c/bc9CuZ/LSnC
https://paperpile.com/c/bc9CuZ/LSnC
https://paperpile.com/c/bc9CuZ/Atdv
https://paperpile.com/c/bc9CuZ/LSnC
https://paperpile.com/c/bc9CuZ/Atdv

The greatest strength, namely the ability to record every change ever made to the database

table, is also the biggest caveat of the temporal tables. Recording the full state of every

change generates extensive amounts of data which has to be stored, processed and

maintained. Activating the system versioning is an table operation and it cannot be

configured to only include certain columns of the table. This means that database should be

designed to support the system versioning from the ground up so that data which is not

critical for versioning can be placed to separate tables which will not need system

versioning.

3.4.4 Implementation in application

All of the previous methods are implemented in the database which is natural because most

of the time the data which is the target of the auditing is stored in the database. However

with suitable architecture the functionality can just as well be implemented in the

application. This way the functionality is not dependent on any specific database product

or on any database at all. Additionally the solution could be implemented in higher level

programming language rather than in SQL, making it more maintainable. Also when the

auditing is implemented in the application the user could be identified more easily than in

the database.

In order to make the application level audit trail functional and reliable there has to be

centralized way for interacting with the data storage, be it database or some other form of

storage. In object oriented design this means for example that stored data must be

retrieved, created and altered through classes which are inherited from common base class

which declares and implements required methods for accessing data. If this kind of

architecture is in place the audit trail functionality can be added to it by extending the base

class to record auditing information when data access operations are performed. There are

also various frameworks for object-relational mapping which handle the conversion from

application objects to database entities and vice versa.

The biggest downside of application level implementation is the requirements which it

imposes to the software architecture. They are especially problematic for existing software

which might require extensive refactoring in order to achieve centralized data access

28

functionality. Secondly the application level implementation is by default slower than

purely database level implementation due to overhead associated with communication

between application and database. Often this is not a problem on applications with

moderate transaction volumes but it can prove out to be the performance bottleneck in

larger applications with high volumes of transactions.

Table 6: General advantages and disadvantages of the alternatives for audit trail

implementation. Advantages are marked with + and disadvantages with -.

Method Characteristics

SQL Server Change
Data Capture

+ Asynchronous functionality which increases performance
+ No need for schema changes
+ Automated cleanup mechanism
− By default will not record the trail of changes

Database Triggers + Diversity
+ Well documented because of their popularity
− Diversity
− Maintenance issues
− Synchronous functionality has impact on performance

SQL Server
Temporal Tables

+ Automatic functionality for recording the changes
+ Reliability and integrity are builtin in the functionality
− No control over the recording functionality which increases

the size of the recorded history data

Implementation in
application

+ More advanced tools available for higher level
programming languages.

+ User information is available in the application level by
default.

+ The auditing logic is visible to the application.
− Poses requirements for the architecture of the application
− The performance is bound to be slower than in database

implementations.

29

3.5 Comparison in the context of case ERP system

For choosing the final implementation method it was necessary to compare the strengths

and weaknesses of the possible solutions in the actual context of the case ERP system. This

meant taking into account the characteristics of the system: large user base, high volumes

of transactions, complexity of the system, used technologies as well as the previously

described requirements: reliability, usability and performance implications.

3.5.1 SQL Server Change Data Capture

While CDC is not actually designed for implementing audit functionality it still offers the

main functions for auditing, namely it records the fact that data has changed and the

changed values as well. All this happens automatically in the database once the feature is

enabled and configured. Additionally the data is captured asynchronously from the

transaction logs which minimizes the effect on database performance. This is important

because the case ERP system processes tens of thousands of operations daily. Thus the

biggest advantages of the CDC are the automatic functionality after configuration and

minimal impact on the database performance.

However by default the change data is kept for relatively short period of time meaning that

actual audit trail implementation would require additional functionality which would read

the CDC data and store it in more permanent way. In practice this would have to happen

every time data is changed, because CDC records only the initial and current states of the

data and not the states which might have been valid in between these states. Also the initial

configuration of the CDC was seen complicated especially because there was no previous

experience about its usage within the personnel of the company. This meant that extensive

preliminary research about the constraints and considerations associated with CDC would

be required before selecting it as the solution. Furthermore the CDC would not record the

user data by default meaning that additional functionality would need to be created in order

to be able to associate users with the changes.

30

3.5.2 Database Triggers

The database triggers provide greater opportunities for customization than the other

database level solutions. With triggers it becomes possible to select the audited information

at column level, for example only record changes to specific columns within a table. The

format of the recorded data could also be freely designed. However the freedom of the

triggers comes with a price because the functionality has to be enabled table by table and

be coded manually. This creates additional maintenance job which could be reduced by

developing additional framework which could automatically create triggers for desired

tables. This way the maintenance process could be more or less automated similarly to the

CDC and Temporal Tables. However the development of the said framework would require

significant effort and it would be more error prone than the out of the box functionalities of

the CDC and Temporal Tables. Additionally the past experience with triggers had shown

that their performance was not good enough in many case because of the synchronous

insertion of the history data. Meaning that users would notice significantly longer loading

times on features where the trigger based auditing was enabled. However the performance

could be improved by redesigning the underlying database design.

3.5.3 SQL Server Temporal Tables

Temporal tables were new feature in SQL Server 2016 which was promoted to be designed

for data auditing purposes, among with data analysis and point in time analysis 8. It enabled

the automatic recording of all the data changes, much like the CDC, but unlike CDC it did

not require any customization to be suitable for auditing. The lack of initial customization

work would also make the solution more reliable compared to the CDC and triggers and

would also reduce the effort needed for maintenance. In addition to the change recording

the temporal tables also offer a dedicated syntax for querying the change data. The existing

SQL queries would return the current state of the data while the new types of queries could

8 Rabeler, C., Hamilton, B., Sauber, S., Milener, G., & Guyer, C. (2016). Temporal Tables. Retrieved 19

November 2017, from https://docs.microsoft.com/en-us/sql/relational-databases/tables/temporal-tables

31

return the history from certain period or at certain point in time (Kulkarni & Michels,

2012). These queries would make the utilization of the history data more straightforward

because there would be no need to create unified functionality for querying the data.

Because of its comprehensive and automatic nature the temporal tables feature leaves little

room for customization. While this reduces the amount of work needed for its deployment

and makes it less error prone it also means that it can only be enabled on the table level.

Meaning that when the versioning is enabled changes to the all the columns in the table are

recorded. This is problematic for the mature and naturally grown system where the tables

often contain more columns than is optimal and redesigning of the database structure to be

more manageable is costly. In addition to this rigidity the temporal tables also place

additional constraints for the database. Most importantly they cannot be used with foreign

keys with cascade rules. Example of such cascade rule could be the database constraint

which connects invoice rows to the invoice. When the invoice is deleted its rows can also

be deleted or their reference to the invoice can be set to null with the cascade rule. This is

important for maintaining the referential integrity within the database. This is severe

restriction with temporal tables which was fixed in the 2017 version of the SQL Server.

However in this case the migration to this version was not currently possible meaning that

referential integrity would have to be forced in some other way for example in the

application level. Additional constraint was the incompatibility of the temporal tables and

instead of triggers which would generate additional work for recording the user who made

the change. Also the performance of the Temporal Tables seems questionable because the

history data is inserted synchronously with the actual data meaning that the performance

cost is similar to the triggers.

3.5.4 Implementation in application

The implementation in the application level would be the most manageable solution

because it could be implemented with high level programming language with advanced

tool support for example for debugging. The functionality of this solution would not be

completely automatic like with temporal tables, but with better tool support and with

possibility to utilize automated unit testing the likelihood of errors could be greatly

32

https://paperpile.com/c/bc9CuZ/LSnC
https://paperpile.com/c/bc9CuZ/LSnC

reduced. Additionally compared to the database level solutions the id of the user could be

easily obtained in the application meaning that there would be no additional work for

implementing such a functionality.

The most drastic drawback for this method is the fact that currently in the system there is

no unified point for interacting with the database. In the newer parts of the application

there is extensive data access layer which handles most, if not all, of the database

interactions and in any case it could be extended to be comprehensive. However in the

older parts of the application the comparable layer for data access is less comprehensive

and database can be accessed in various ways from various locations. This means that there

is no suitable place for implementing the auditing functionality in the application without

major refactoring of the system. Additionally the performance of the solution is

questionable because in addition to the synchronous insertion of the history data, which is

comparable to the triggers and temporal tables, there is also overhead with communication

between the application and the database. In theory the functionality could be implemented

asynchronously but this would be complicated requiring more work and increasing the

error risk.

33

4 IMPLEMENTING THE NEW AUDIT TRAIL

The possible implementation methods were evaluated and compared based on their

suitability for fulfilling the previously defined requirements for audit trail. The results of

the comparison are illustrated in table 7. In order to make the comparison more descriptive

the requirements of the performance and usability were split down to storage space and

processing time performances and ease of implementation and maintenance. The

alternatives were ordered based on their alleged performance derived from the literature

and experiences within the development team of the ERP system. Extensive measurements

were not made at this stage and for this reason there are several cases within the

comparison where two or more alternatives are seen as equal. This means that no

meaningful difference was seen between these alternatives.

Table 7. Comparison of the different methods based on the audit trail requirements of ERP

system.

Requirement Alternatives listed from best to worst

Reliability 1. Temporal Tables
2. Change Data Capture
3. Triggers & Implementation in

application

Performance (storage space) 1. Change Data Capture & Triggers &
Implementation in application

2. Temporal Tables

Performance (processing time) 1. Change Data Capture
2. Temporal Tables & Triggers
3. Implementation in application

Ease of implementation 1. Temporal Tables
2. Triggers & Change Data Capture &

Implementation in application

Ease of maintenance 1. Temporal Tables
2. Implementation in application
3. Change Data Capture & Triggers

34

Firstly the reliability of the audit trail could most fully be achieved with temporal tables

because the recording process is fully automated and the integrity of the history is

guaranteed by the database. With CDC the recording process could be automated as well

but there are no similar guarantees for the integrity. Secondly storage space wise the

performance is similar between all the methods except for temporal tables which has worst

performance in this regard. The difference is that with other methods the recorded data can

be configured column by column and only changed columns can be recorded, whereas with

temporal tables the whole row is recorded when one column changes. This generates a lot

of redundant data but on the other hand it also means that state of the row in the past can be

reconstructed by retrieving just one history record. In the case where only the changes are

recorded the reconstruction would require iterating over multiple changes. Processing time

wise the best alternative is the CDC because of its asynchronous functionality. Temporal

tables and triggers are seen as equals because of their synchronous functionality.

Implementation in application is last because in addition to storing the history data, which

is common for all the methods, it is associated with the additional cost of communicating

between application and database. However this additional cost could be removed if the

history is always stored with the same query as the actual change. The ease of

implementation is greatest for the temporal tables because it requires only simple

activation process for each table. The other alternatives are tied because they would require

either significant effort for implementing the functionality in maintainable manner or

significant changes to the architecture of the application. Because of the mostly automated

functionality the temporal tables are viewed as the most maintainable alternative as well.

The implementation in the application was second because if it could be put in place there

could be centralized place for the auditing functionality, which is not true for database

solutions.

Based on this comparison the temporal tables and CDC were the strongest alternatives. Out

of these the temporal tables was chosen as the final solution. While the CDC has more

advantages performance wise the usability of the temporal tables was seen as more

important factor especially because the use of CDC would require extensive work for fully

adapting the functionality to audit trail use case. Furthermore the discarded alternatives all

had some critical issues associated with them. Even if the trigger performance could be

35

improved, extensive amount of work would still be required for implementing a framework

which would make them maintainable. Likewise a lot of work would be needed for

providing additional functionality for CDC to be suitable for storing the audit data.

Although the CDC would have performance benefit compared to the temporal tables. The

implementation in the application is not viable solution because there are numerous ways

to communicate with the database in the system.

After choosing the temporal tables as the solution for implementing the audit trail, a proof

of concept was developed to confirm the suitability of the solution and to highlight the

temporal table features to stakeholders. The proof of concept contained all the necessary

functionality for the audit trail but it was activated only on the limited part of the system.

The part chosen for the proof of concept was the user rights of the system. They were

chosen because they were seen as the part which required the most work from the customer

support, even though they were part of the existing audit trail solution. In addition to the

activation of the temporal tables the proof of concept also included solutions for storing the

user information for changes and clean up functionality for history data. By default these

were not part of the temporal tables functionality and in fact the implementation of these

features turned out to be the most laborious part of the proof of concept. However it should

be noted that this was not specific for the temporal tables and all the other considered

alternatives would have required similar effort for the user information recording and clean

up functionality.

In the context of temporal tables several easily confused terms are used. In this work

temporal tables is used to name the feature in the SQL Server 2016 and temporal table is a

database table on which this feature is turned on. Synonyms for these terms are system

versioning (the feature) and system versioned table (table on which the system versioning

is turned on). When system versioning is turned on a history table is created which

replicates the scheme of the actual table (which is now temporal or system versioned

table).

36

4.1 Recording the user information

Crucial step for providing useful audit trail is the capturing of the “last updated by the

user” information, which tells who has made the change to the data. This is challenging

because temporal tables does not have built in support for identifying the user who has

made the change. However this same challenge is present with other considered database

level alternatives as well. The identification is done by adding new column for the user’s id

to the system versioned tables. This way the system versioning would record also the

changer information. This approach is similar to the existing auditing identification of the

ERP system. However additional steps are taken to address the shortcomings of the current

approach regarding the reliability of the identification information. In the new audit trail

the database is responsible for creating the user information for insert statements through

the column default value which is defined to be the id of the user who has inserted the row.

This means that there is no need for the application to include this information in the insert

statements. However the application is left with the responsibility of updating this

information when update events are performed on the data. The value can be provided by

the database but the application must include the user id column in the update statements

so that it is updated with the new value. It would have been more preferable to leave the

handling of the both inserts and updates completely to the database because in the system

there is no completely centralized place for interacting with the database. Since the updater

id would need to be included in everywhere where the update statements were made this

was somewhat error prone. Especially considering that by default the missing id would not

cause any exceptions or even runtime errors but rather it would result in the rows

containing wrong information for the updater id. In theory the update could be handled

with instead of trigger which would run instead of the update statement and perform the

update with the updater id. However these triggers were not allowed in system versioned

tables in SQL Server 20169. On the other hand the after trigger which would update only

the updater id was not suitable either because it would result in creating duplicate rows in

9 Rabeler, C., Hamilton, B., & Andzic Mladen Guyer, C. (2017). Temporal Table Considerations and

Limitations. Retrieved 23 November 2017, from https://docs.microsoft.com/en-us/sql/relational-

databases/tables/temporal-table-considerations-and-limitations

37

history for each update. The first history row would contain the new values with old

updater id and the second would contain the updated updater id. In order to overcome these

issues an after trigger was created which only checks that the updater information is

included in the update statement. If the information is missing the trigger throws an error

and rollbacks the transaction so that the update statement is reverted. This way the

database will be responsible for forcing the application to include the mandatory

information and thus the correctness of the user information can be trusted.

The problem of recording the user information was even more complicated in case of

deletions. In this case there were the same problems as with the updates but additionally

they could not be resolved with similar after trigger because after the deletion there would

be no row left for the trigger to write the user id to. To solve this issue additional table was

created to hold the deleter information for system versioned tables. This table contained the

user id of the deleter as well as the id of the deleted row and a timestamp which would tie

it to the row in the history table. Additionally reference to the original table was added so

that deletions from all of the tables could be written to the same table. This means that this

table would grow largely over time and for this reason an index which contained the

columns needed in the temporal queries was added to improve the query performance.

Despite the performance impact this approach was seen more desirable because it is more

maintainable than creating separate deletion information tables for each of the actual

tables.

4.2 Altering the foreign keys

The temporal tables have the significant drawback of not being compatible with the foreign

keys with cascade actions. Cascade actions define the functionality which applies to cases

where the parent entry of the foreign key relationship is deleted or updated. Possible

actions are cascading the operation, which means deleting or updating the child entries as

well, setting the foreign key column of the child entries to null or doing nothing which

essentially means that parent entries can not be deleted as long as they have child entries.

With temporal tables the only allowed action is the do nothing, which means that the

cascade functionality must be implemented in the application layer where it is needed.

38

More precisely when the table is system versioned it can not be the child table of the

cascade foreign key relationship. The limitation is not present if the parent table is system

versioned. Examples of these are shown in figure 1 with example database structure with

three entities: vendor, invoice and invoice line. Invoice line has foreign key to invoice

which has foreign key to vendor. Initially both foreign keys have cascade action and the

figure shows how these must be changed when each of the tables is versioned.

Figure 1. Examples of cascade constraints with temporal tables. On the left side is the initial

state and on the right side the necessary changes are highlighted. The table to be versioned is

marked with green background color.

The cascade logic is implemented in the application by adding the needed operations to the

points where database interaction occurs. So for example a method which deletes entries in

the parent table deletes first the possible child entries of the parent. This approach is

possible when there are centralized modules in the application for interacting with the

database objects. This was not completely true for the case ERP system which meant that

for some entities the interaction points would have to be manually searched and the

cascading functionality added. Since the limitation is only present when the versioned table

is the child of the relationship the cascade logic must be added to the parent objects in the

application. These are the only places where modifications are needed even though the

cascade operation is recursive. So if the versioned table is part of the longer chain of

cascade foreign key relationships only its parent objects, not parent’s parents, need to be

changed when versioning is activated for it.

39

4.3 Activating the versioning

The most elementary part of the database changes was the activation of system versioning.

While this process could be scripted to happen automatically to multiple tables in the

database at once, it was decided that it was more manageable to do it table by table

especially at the proof of concept stage. The following code example in the figure 2 shows

the example SQL script for adding system versioning to the existing table. The activation

requires two datetime2 columns to be added in the versioned table for indicating the period

of validity of the record. The data in these rows is then automatically generated by the

database system. The validity of the record starts when it is inserted or updated and it ends

when the record is deleted or updated to something else. The optional hidden clause means

that the columns will not be returned in the query results unless they are explicitly included

in the query. This way the functionality of the existing queries is guaranteed to remain the

same after the activation of the system versioning. After the columns are added they must

be defined as period for system_time and then the system versioning can be turned on.

(Kulkarni & Michels, 2012)

CREATE SCHEMA History;

ALTER TABLE InsurancePolicy

 ADD

 SysStartTime datetime2(0) GENERATED ALWAYS AS ROW START HIDDEN

 CONSTRAINT DF_SysStart DEFAULT SYSUTCDATETIME()

 , SysEndTime datetime2(0) GENERATED ALWAYS AS ROW END HIDDEN

 CONSTRAINT DF_SysEnd DEFAULT CONVERT(datetime2 (0), '9999-12-31 23:59:59'),

 PERIOD FOR SYSTEM_TIME (SysStartTime, SysEndTime);

GO

ALTER TABLE InsurancePolicy

 SET (SYSTEM_VERSIONING = ON (HISTORY_TABLE = History.InsurancePolicy))

;

Figure 2. Example of temporal table activation 10

10 Rabeler, C., Hamilton, B., Sauber, S., Milener, G., & Guyer, C. (2016). Temporal Tables. Retrieved 19

November 2017, from https://docs.microsoft.com/en-us/sql/relational-databases/tables/temporal-tables

40

https://paperpile.com/c/bc9CuZ/LSnC+Atdv

In addition to the actual activation of the versioning two other steps had to be taken at this

stage so that the system versioning would meet the requirements set for audit trail. First of

all the history table had to be indexed for improving the query performance in potentially

large history tables. Secondly a partition scheme and function needed to be created for

enabling the maintenance of the history data.

Two indexes were added to the history table for improving the query performance and

decreasing the needed storage capacity. Firstly a clustered columnstore index was created

for improving both the query performance and data compression. Columnstore index is

designed for data warehousing scenarios where the data in the tables is not updated which

is the case with history tables. In such scenarios the indexing can achieve up to ten times

better query performance as well as compression rates.11 This was crucial for audit trail

functionality since history tables could contain up to hundreds of thousands and potentially

even millions of rows so tenfold performance improvement would be huge when measured

in absolute terms. In addition to the column store index normal index containing the

timestamp columns, user id and id in the actual table is created for further improving the

query performance. Columns of this index are chosen based on the most likely use cases

which are querying for all the changes made to specific row (id) and for all the changes

made by the specific user (user id).

The second important step, namely the partitioning, means dividing the table into separate

units which can be stored in different filegroups. The partitioning of the history table was

necessary for being able to remove data from the table. This functionality is described

more accurately in the chapter 4.4, but the initial partition scheme is presented here. When

system versioning is turned on the user cannot directly interact with the history table

meaning that it is not possible to delete rows from it. However it is possible to partition the

history table and then switch out partitions from it to the temporary table (not to be

confused with temporal table) which can then be dropped, essentially deleting the rows.

11 Barbara, K., Hamilton, B., & Guyer, C. (2016). Columnstore indexes - overview. Retrieved 27 November

2017, from https://docs.microsoft.com/en-us/sql/relational-databases/indexes/columnstore-indexes-overview

41

The temporary table must have identical scheme compared to original table of the partition.

Furthermore handling data in partitions increases the performance of the history data clean

up process because, instead of individually deleting the rows which are old enough to be

deleted, the whole partition can be deleted in bulk. In practice this means “moving” the

partition from the history table to the temporary table and then dropping the whole table at

once. This is not computationally expensive operation since it does not require actual data

movement because the rows are not moved between tables. Rather the database is told that

this partition is no longer part of the history table but it is now a part of the just created

temporary table. Then the whole temporary table can be dropped at once.

The history tables were partitioned by the SysEndTime column, which presents the end

time for validity of the entry, because it is constantly increasing column in the history

table and that is requirement for the partitioning. It should be noted that SysStartTime

column, which presents the start time of the validity, would not have been suitable for the

partition function because its values are not constantly increasing as can be seen by

simplified example: record X is created in 1.1.2000 and record Y in 2.1.2000, record Y is

updated in 3.1.2000 resulting in creation of history table row with SysStartTime 2.1.2000,

then record X is updated in 4.1.2000 resulting in creation of history table row with

SysStartTime 1.1.2000 which is smaller than previously created history row for record Y

and shows that SysStartTime is not constantly increasing.

The partitioning is phased so that each partition holds the history data from specific month

and it is defined as RANGE LEFT partitioning meaning that the defined partition limits are

the upper limits of the partition. Example of this is shown in figure 3. If row is added to

this table with SysEndTime 1.12.2016 it will be located in the partition 1 because the value

is smaller than the smallest partition limit. If the SysEndTime was 2.2.2017 the row would

be in the partition 3. This shows that each partition represents a month except the first and

last partitions which hold the values which are less or more than the outermost limits of the

partitions. These are also the most vital partitions for the retention management process

because both of them have to be empty when merge (partition 1) and split (partition 4)

operations are performed during clean up process. If they are not empty the operations

cause movement of the data which can be potentially expensive if the amount of the data is

42

large. For merge and partition 1 this is given because data in the partition is switched out

before merging meaning that it will always be empty at this stage. However for the split

and partition 4 there is no similar guarantee and thus the partition function must contain

enough partitions in comparison to the retention time of history table so that there will

always be empty partition for the split operation. The number of required partition limits is

the retention time in months plus three. Additional limits, or in essence months, are needed

for the following reasons. Firstly when the maintenance process is run there has to be

empty partition at the end of the partition scheme so that it can be splitted without data

movement hence the first additional limit. Secondly to ensure that the system has at least

retention time’s worth of history at all times the second additional month is needed. If there

were no month dedicated for this then the system would have retention time’s worth of

history when the maintenance process is run but directly after that the system would hold

the history data for one month less than the set retention time. These two additional limits

would be enough to make the sliding window partitioning functional but third additional

limit is added to give more time to react in error conditions. Here error condition means

situation where the clean up process is unsuccessful for one reason or another. In such a

scenario it is important to be able to fix the issue in time so that the last partition remains

empty for the split operation. By adding additional limit there is always at least a month for

repairing the issue regardless of the time of month the maintenance process is run. Without

this month the time to fix the issue would be the time from the moment the process is run

to the end of the current month. The functioning process is illustrated in the figure 5 in next

chapter.

1.1.2017 1.2.2017 1.3.2017

Partition 1 Partition 2 Partition 3 Partition 4

Figure 3. Example of the left range partitioning

4.4 Clean up process for history data

The last major step in the back-end functionality is the automated clean up functionality

which periodically deletes the history data that is older than the chosen retention period for

the data. This is important because the size of the history data will grow over time. This is

43

also the most complex part of the auditing system because implementing sliding window

partitioning scenarios requires careful planning since once the functionality is deployed

changing it could in worst case require the deletion of the previously recorded data. Such

scenario can occur if the partition scheme is broken during the process, for example

partition is deleted but new one is not created. Over time this would result in a case where

there is no empty partition left at the end of the partition scheme and thus creating a new

partition would require splitting the last partition which now contains data and this would

make the split operation computationally expensive because data would need to be moved

to temporary table row by row and then inserted back after the split. Solving this situation

would have to be done in a way which will not cause blocking in the system or the

versioning would need to be reseted and the existing history data would need to be deleted

or moved elsewhere. Malfunction of the process could also mean performance issues in the

database which are hard to notice and debug. The size of the ERP system places additional

robustness requirements for the functionality since there are numerous databases which can

have slight variations in structure. Lastly the partitioning by time meant that testing could

not be done in 100% authentic way because it is not feasible to wait a month, which was

the theoretical minimum retention time and test if the history is cleared correctly. Of course

the actual retention times would be even longer. For this reason it was necessary to make

the process not dependent on the current time so it could be run with mock timestamp.

The task of periodically deleting or archiving the old history data was divided into two

main steps: first a stored procedure was created in each database that contains system

versioned tables alongside a table which holds the information about system versioned

tables such as name, retention time and information about constraint names of the table.

This meant that database could contain system versioned tables with varying retention

times. Secondly a SQL Server Agent Job was created to periodically run the procedure on

all databases within the system.

The stored procedure would iterate over system versioned tables and it would delete the

partitions which were older than the history data retention time. Every time a partition is

deleted a new partition is added to the end of existing partition scheme to hold the new

44

history rows. Each table is processed inside a transaction so that the number of partitions is

guaranteed to remain the same. The high level logic of the process is described in pseudo

code in the figure 4. The actual logic was implemented in SQL.

timestamp = parameter1

historyTables[] = getHistoryTables()

For Each table In historyTables:

 oldPartitions[] = getPartitionsOlderThanRetentionTime(table.retentionTime,

 table.partitionFunctionName, timestamp)

 For Each partition In oldPartitions:

 tempTable = createTempTable()

 SwitchOutPartitionTo(tempTable)

 Drop(tempTable)

 MergePartition(partition)

 newestPartition = getNewestPartition()

 SplitPartition(newestPartition)

 Next partition

Next table

Figure 4. High level presentation of the clean up logic

In the procedure the information of system versioned tables is retrieved from the

documenting table, which holds information about all the versioned tables in current

database, to the cursor which fetches the needed information (table name, retention time,

partition function name) for the current iteration. The old and to be removed partitions are

then fetched from the system tables of the database based on the partition function name,

retention time and timestamp which was given to the procedure as a parameter. Normally

the timestamp will be the current timestamp but for testing purposes an arbitrary timestamp

can be given so the functionality can be tested for example as if the time was a year ahead

of the actual current time. The temporary table for the switch out is created by selecting

from the history table to the temporary table with top 0 clause which essentially copies the

history table scheme to the temporary table without copying any actual data. After this the

oldest partition can be switched to the temporary table and then the table can be dropped.

45

The new partition is created by splitting the current newest partition which is found from

system tables similarly to the oldest partitions. The whole process is then repeated for each

partition which is older than the specified retention time. It should be noted that this

process cannot be statically scripted because of the variables like table name and retention

time. For this reason the actual procedure generates the queries dynamically from the static

commands and the variables and then executes them. Since the commands are dynamically

generated it is a good practice to address the risk of SQL injection, even though the

variables can not be modified by end users. This was done by providing the variables as

parameters to the procedure which executed the SQL commands and by enclosing the

database object name variables with brackets rather than just appending the variables

straight away to the command string. This way the variables will always be interpreted as

data and not as SQL commands.

The process of merging and splitting partitions is illustrated in the figure 5 with adequate

partition scheme for 6 months retention time. The process is run on 15th day of each

month, but the actual date is irrelevant for the functionality of process. In the image each

partition limit is shown as a date and each partition represents month expect the first and

last partitions which are open ended and would hold all the records with smaller or greater

values than the respective limits. The limits are the upper limits of the partitions and for

this reason the limits seem the appear a month behind. For example at the initial state the

row with date 10.1 will be placed to the partition with limit 1.2 and thus this limit is shown

in the January column rather than in February. Each row represents a moment in time and

the current month is marked with light brown background. Partitions to be merged are

marked with red text and newly created partitions are marked with purple text. The purple

background marks the splitted partition.

46

Row Dec Jan Feb Mar Apr May Jun Jul Aug Sept Oct Nov Dec Jan

1 1.1 1.2 1.3 1.4 1.5 1.6 1.7 1.8 1.9

...

2 1.1 1.2 1.3 1.4 1.5 1.6 1.7 1.8 1.9

3 1.2 1.3 1.4 1.5 1.6 1.7 1.8 1.9 1.10

4 1.3 1.4 1.5 1.6 1.7 1.8 1.9 1.10 1.11

... Error in the process

5 1.3 1.4 1.5 1.6 1.7 1.8 1.9 1.10 1.11

6 1.5 1.6 1.7 1.8 1.9 1.10 1.11 1.12 1.1

7 1.6 1.7 1.8 1.9 1.10 1.11 1.12 1.1 1.2

Figure 5. Illustration of sliding window partitioning functionality.

The row 1 displays the initial state of the partitioning in December when the system

versioning is activated, partition scheme created and sliding window maintenance process

deployed. There are 9 partition limits, 6 months + 3 additional as described in the chapter

4.3, which results in 10 partitions. The row 2 shows the state in next year’s July when the

process deletes history data for the first time. When the process is run on 15.7 the partitions

with limits before 15.1 are deleted, in this case the 1.1 partition. The last partition, which

would contain values greater than 1.9, is splitted and new partition limit with value 1.10 is

created as shown in row 3. The splitting will not cause data movement because the last

partition will be empty. This is certain because current date is 15.7 and the last partition

would contain records with timestamp greater than 1.9. The same process occurs in August

(row 3) and partition with limit 1.2 is merged and new partition with limit 1.11 is created.

The transition between rows 4 and 5 represents error condition where the maintenance

process fails to complete on September (row 4). Assuming that the issue is fixed by the end

of the October the process now finds two partition limits to be merged (1.3 and 1.4 on row

5). They are merged sequentially and after merging the 1.3 partition new partition is

created by splitting the partition which holds the records with values greater than 1.11. This

partition is still empty because it was specifically created for this scenario where the

monthly execution of the process has failed. After this the second merge and split are

performed as usual. Row 6 shows how the process has now recovered to its initial state

with two partitions proceeding the current month. If the issue was not resolved in time the

maintenance process would still be functional but it could require significantly more time

47

to execute. This is because the last partition would have started to fill up with the history

data of current month and splitting it up would require inserting the rows to temporary

table, deleting them from the partition and then inserting them back after the split. This is a

size of data operation meaning that the more rows there are the longer the process takes.

The actual impact on the performance of the system is hard to evaluate or test. It is possible

that there would not be noticeable difference on the performance of the system even if this

scenario realized. However because this could not be verified it was more desirable to try

to prevent this from happening by adding the additional partition for giving more time to

react on error conditions.

The previously described stored procedure is run with SQL Server Agent Job which is built

in functionality that can be scheduled to run SQL scripts. The script iterates over all the

databases and performs the stored maintenance procedure. It will also write information to

the logging database which contains logs from other similar background tasks within the

ERP system. This way the progress of the process can be observed and potential issues are

located. The agent job is scheduled to run on the weekend in the middle of every month.

The actual date has little significance for the maintenance processes functionality as long

as it is not too close to the partition limits in other words turn of the month. This could

create a situation where the number of deleted partitions changes during the processing and

some databases would then have different partitions than the others. In theory this should

not be a problem but since the scenario is complicated and hard to test it could lead to

unexpected behavior and thus it should be avoided. From the business perspective it also

makes sense to perform the maintenance in the middle of the month because on average

the ERP system is used more heavily on the turn of the months and thus if the clean up

process would fail in a way that would directly affect the users the harm would be lesser in

the middle of the month. The same effect is strengthened by scheduling the process to run

in the weekend.

48

4.5 Deployment and communication

The deployment of the auditing functionality needs to be carefully planned, because it

consists of several modules which are mostly autonomous, but there are also some critical

dependencies. This means that the deployment must be done in partially ordered fashion.

The final functionality can be seen as compromising from modules with following task:

user information recording, storing user information for updates, storing user information

for deletes, enforcing the presence of the user information, modifying the database

constraints, creating support structures, activating the versioning and partitioning and lastly

maintenance plan. The dependencies and essentially the deployment order of these

modules is presented in figure 6. The other possibility would be to deploy the whole

functionality at once, but normally it is preferable to do the deployment in smaller sets so

that the possible issues are easier to locate. Furthermore it is more preferable to activate the

audit trail to the system gradually and not at once, which is what was done in the case

study where all the functionality was developed but the audit trail was firstly deployed only

to the limited part of the system.

Figure 6. Dependencies between audit trail modules

As can be seen from the figure the modules form two separate processes which do not have

dependencies and could be deployed simultaneously. The first is the activation of the user

information recording, where the user information must first be recorded, then stored for

updates and deletes and lastly the presence of the information can be enforced. The other

process is the activation of the actual versioning, which firstly requires removing the

possible constraints with cascade operations and creating support structures for the

49

auditing functionality, for example the documenting table which lists the audited tables.

Then the versioning can be activated with partitioned history table and lastly the clean up

functionality is created.

The knowledge sharing about the new audit trail functionality was done by providing

extensive documentation about its functionality and usage. This was done by documenting

the internal functionality of each of the above modules as well as providing higher level

instructions about the steps which are needed when the audit trail is activated to the new

part of the system. This information was stored to the intra-net of case company for future

reference and it was presented to the development team in a scheduled knowledge sharing

session. Furthermore instructions on how to monitor the new functionality, for example the

growth of history data and execution of the maintenance process, needed to be

communicated to the application management personnel.

50

5 RESULTS

The suitability of the proposed proof of concept was evaluated based on the previously

described requirements: reliability, usability and performance which was divided into

storage space use and computational performance. Based on these three factors the overall

suitability of the solution was evaluated as well.

5.1 Reliability

The reliability of the audit trail was the most basic requirement for the new solution. With

the temporal table based solution the reliability is for the most part built in to the

functionality. When system versioning is turned on every change to the actual table will

create row to the history table with appropriate timestamps. If for same reason the creation

of the history row fails then the actual change is reverted as well. The integrity of the

history data is also guaranteed by built in functionality since the history data can not be

altered when the system versioning is active. Some of the alteration attempts involving

history data tampering by turning the versioning off can also be automatically detected

when the versioning is turned back on. However this applies only when history records are

deleted or timestamps are altered and thus the reliability of the audit trail can be held

questionable if malevolent user gains administrative access to the database. However this

risk is valid for basically all imaginable audit trail solutions.

By default the temporal tables will not take into account the correctness of the identity of

the user but in the proof of concept this problem is overcome by using triggers and other

database functionality for providing and ensuring the presence of the user information. If

the information is missing the database will throw an observable error so that the issue can

be fixed. This way the user identification is robust against development errors and there are

not any conceivable weak spots for the identification which was not the case with the

existing solution. In conclusion the proposed audit trail solution manages to reliably

answer the basic auditing questions what, who and when. This is achieved mostly with

built in functionality with few manual additions. Despite its strengths the reliance on built

in functionality creates potential vulnerability because in case of there being error in the

51

built in functionality the ERP system would be dependent on feature provider for fixing the

issue. However because the feature is part of the widely used database system the vendor’s

reaction time to at least more critical issues is likely to be rapid.

5.2 Usability

The usability of the proposed solution is important for both developers and users. The

ability of proposed solution to present the complete state of the data at any point in the

past, without need to iterate over multiple history records like with methods that would

record only the changed data, means that querying the history data is faster and thus the

solution can support user interfaces with wide range of features. This enables the wider use

of the audit trail. Previously it could only be used by the support of the case company but

with improved functionality it can be used through out the case company and customers

can even used it them selves. In this regard it fulfills the requirement of usability for users.

From the developer perspective usability means the amount of effort which is needed for

enabling the audit trail for specific part of the system. Minimal effort is desirable because it

decreases the required work time and the probability of errors. The proposed method has

two mandatory steps and two additional steps which might be required depending on the

case. The steps and their sub-steps are described in the table 8. The additional steps are

written in cursive.

The first step is to add column to the versioned table for holding the id of the user who has

last edited the data. After that the access points from where the versioned table is updated

in the application need to be modified to include the user information. After this the

triggers can be added for the versioned table for recording the deleter information and

enforcing the presence of the user information in the update statements. It is important to

ensure beforehand that the user information is always present because otherwise the trigger

will prevent the data from being updated. The second step applies only to tables which

have foreign key constraints with cascade actions. For example for deleting the child

entries when parent entry is deleted. These types of foreign keys are not allowed with

temporal tables if the temporal table is the child object of the relationship. For this reason

52

they must be modified to have no cascade actions. Before that the actions must be added to

the application so that the cascade functionality is still present in the system. In practice the

cascade functionality must be added to the access points of versioned table’s parent tables

and not to the access point of the versioned table. Furthermore implementing the actions in

the application is mandatory for cases where entry with foreign key children must be

deleted. Otherwise the foreign key without cascade actions in the database would prevent

the parent entry from being deleted. Same rules apply to updates as well. The third step is

the activation of the actual system versioning. Here the information of the newly versioned

table must be added to the documenting table which is used in the clean up process. Then

the predefined activation script can be altered to have the appropriate number of partitions,

based on the retention time of table, and run. Last step is ensuring the backwards

compatibility in tables which have been part of the existing auditing system. This is done

by reading the history data from both the new and old audit trails in places where auditing

data is used and by deleting the existing audit trigger.

Table 8. List of audit trail activation steps. Steps 1 and 3 are mandatory in each case and

steps 2 and 4 are not needed in every case.

Step Sub-step

1. Recording user information 1. Create column for user information
2. Update data access points
3. Create trigger for recording deleter information
4. Create trigger for enforcing updater information

2. Altering cascade constraints 1. Add cascade rules to application
2. Remove cascade rules from database

3. Activating the versioning 1. Define the retention period and add versioned
table to documenting table

2. Run the activation script with appropriate
number of partitions

4. Ensuring the backwards
compatibility

1. Replace the old audit log with the new one
2. Remove old audit triggers.

53

The number of required steps is a bit greater than was initially hoped, but most of them are

very generic requiring only small alterations to predefined scripts. For this reason they

could be automated and this would greatly reduce the effort needed per table for activating

the versioning. However the automation process was left outside of the scope of this work.

The automation would also reduce the risk of errors. Currently most of the risks associated

with activating the versioning have either small impact, for example they affect only the

versioning process itself, or they are easy to identify, for example missing user information

in updates which generates immediately observable error. The only conceivable exception

is the defining of the partitions. If there are not enough partitions created for the history

table, compared to the retention time, this can create an error which is only detected when

it starts to cause slowness in the maintenance functionality, because there are no empty

partitions to be split. This risk is reduced by instructing the developers on how the number

of partitions is defined. Overall the usability of the proposed system is seen as adequate but

there is room for improvements. Currently it will be challenging for developers to

complete all the described steps within an hour, which was the desired time limit in

requirements. However the partial automation of the process could greatly speed up the

process as discussed.

5.3 Performance

The most critical factors from the performance point of view were the storage space and

impact on the responsiveness of the system. Both of these factors are mostly affected by

the number and variance of stored history rows which depend on the update frequency of

the information. This is determined by the user behavior: how often users update the

information, the scope of the possible values (boolean value has two possible values and

string value has theoretically almost infinite number of possible values, but in practice the

real values are much more limited) and the extent of the update (are all columns updated or

only one). However it would have been too time consuming to try to simulate actual user

behavior with these variables because they will vary greatly depending on the use case and

the nature of the data. For this reason the storage space requirements were mainly

evaluated by creating a worst case scenario where entries were updated directly in the

database with randomized data. This is not completely realistic use case because in reality

54

the data is not randomized and thus the storage space requirements per history row found

during testing are the worst case scenarios. This is because with real data the possible set

of values is much more limited compared to the completely randomized values and thus

same values are more likely to appear enabling the compression of the data. This can also

be seen by comparing the test cases where every column of the table was randomized to

the cases where only single column was randomized. In the later case the compression

rates are up to ten times higher. By doing multiple updates it was possible to evaluate how

much storage space would be required at most with certain update frequencies and how

rapidly the storage size increased with the number of history rows.

The execution performance of audit trail was evaluated in the same manner by updating the

data directly in the database and measuring the CPU time of the operations. However in

these tests the updated data was not randomized. This was due to technical limitation

which meant that the data generation was included in the duration of update operation. The

initial tests with and without the randomization revealed that the CPU time consisted

mostly of the randomization process and thus it hid the actual variations in the

performance. The complete results of the measurements are shown in the appendix 2 and 3.

The storage space tests were run only once with similar test data. The results are still

representative because the measured variable of storage space has none or only minimal

random variation, meaning that there is no need for averaging multiple test results. This

was also confirmed by initially running few tests multiple times. The CPU time tests on the

other hand were run 4 times to average out the small variances between tests.

5.3.1 Storage space requirements

The storage space tests had 4 variables: the usage of system versioning and columnstore

index, the extent of the update (all columns and single column) and the number of existing

history rows in other words the number of previous updates. The results are presented as

space used per data row and as multipliers which describe how many times the actual data

can be updated before the history data uses as much space as the actual data, in other words

when the amount of required space doubles from the initial state where there is no history

recorded. These measures were chosen over absolute measures because they give more

generally applicable view on the performance. For example if the space requirement

55

doubles up after each data row is updated twice then this is true regardless of the database

scheme or the number of actual rows. Using absolute measures, for example the actual

space used after certain number of updates, is heavily case dependent and would not give

as general results. The table 9 highlights the differences of storage space usage in different

cases. The sizes shown here are measured after the operation has been run. The complete

results with initial states are presented in the appendix 2.

Table 9. Storage space usage per row in different scenarios

Row
Number of
previous
updates

Operation
System

Versioning
Columnstore

index
Size main/
row (KB)

Size history/
row (KB)

1 0
Update every column with

randomized data.
OFF OFF 1.099 0

2 1
Update every column with

randomized data.
OFF OFF 1.099 0

3 0
Update every column with

randomized data.
ON OFF 1.18 0.311

4 1
Update every column with

randomized data.
ON OFF 1.18 0.519

5 38
Update every column with

randomized data.
ON OFF 1.18 0.717

6 0
Update every column with

randomized data.
ON ON 1.18 0.02

7 1
Update every column with

randomized data.
ON ON 1.18 0.19

8 38
Update every column with

randomized data.
ON ON 1.18 0.354

9 0
Update single column with

randomized data.
OFF OFF 0.571 0

10 1
Update single column with

randomized data.
OFF OFF 0.571 0

11 0
Update single column with

randomized data.
ON OFF 0.572 0.311

12 1
Update single column with

randomized data.
ON OFF 0.572 0.328

13 38
Update single column with

randomized data.
ON OFF 0.572 0.343

14 0
Update single column with

randomized data.
ON ON 0.572 0.02

15 1
Update single column with

randomized data.
ON ON 0.572 0.033

16 38
Update single column with

randomized data.
ON ON 0.572 0.047

56

The tests revealed that by default the compression rates seem to be greater in the history

table and the effect is significantly increased with the use of columnstore index. The better

compression rate in history tables by default is interesting because it seems to be

undocumented. Some of the difference can be explained by the measurement method

because initially the table was populated with not random data. This data would remain in

the history table even if the further update iterations would generate only randomized data

meaning that some of the data in the history table was not randomized and thus would have

greater potentiality for compression while the data in the actual table was totally

randomized. However this does not completely explain the difference because even with

multiple update iterations the difference hinders only slightly. Furthermore the first update

shows that the initial data used on average 0.311 KB (row 3 in table 9) of space in history

table and 0.337 KB (initial state of row 1, which is shown in appendix 2) in actual table.

This means that history table used 8% less space after first update.

Second conclusion which can be drawn from the results is that the usage of the

columnstore index is highly beneficial for the compression rates. Even in the worst case

scenario where every column was updated the storage space usage was 63% lower with the

index compared to the versioning without index with single prior update (rows 7 and 4)

and still 51% lower with 38 prior updates (rows 8 and 5). The difference is even bigger in

the more favorable case where only single column was updated: 90% lower storage space

usage with single prior update (rows 15 and 12) and 86% lower with 38 prior updates

(rows 16 and 13). In the single column update case the advantage in compression rate is

roughly tenfold as advertised by the database vendor12. Compared to the actual table the

required storage space per row is 70% lower with 38 previous updates in the case where

every column is updated (row 8) and 92% lower in the one column case (row 16). What

this means in practice is that in the theoretical worst case scenario the storage space usage

would double up compared to the current usage when every row is updated on average

about 3.3 times during the history retention time. In the more favorable scenario, which is

12 Barbara, K., Hamilton, B., & Guyer, C. (2016). Columnstore indexes - overview. Retrieved 27 November

2017, from https://docs.microsoft.com/en-us/sql/relational-databases/indexes/columnstore-indexes-overview

57

likely closer to the reality, the storage space usage is doubled after about 12.2 updates. The

actual update frequency is impossible to predict accurately without field testing in the real

production environment, which was not possible in this case. However it is unlikely that

the average update count for data entries would be measured in hundreds rather than in

dozens. This is because most of the data in the system has limited lifetime during which it

can be updated, for example invoices. So even if the history data has long retention period

the updates can happen only in the much more limited timespan. In any case the storage

space requirements will not increase ten folds with any realistic update frequencies which

was the minimum requirement for storage space usage. With the discovered factors the ten

fold increase in storage use would require 33 updates for each row in worst case and in

more favorable case 122 updates for each row.

5.3.2 Performance of the database operations

The execution performance was measured by comparing the CPU time of large update

operations with varying audit mechanisms and history data sizes. In practice this meant

updating every row in a table which contained about 36 000 rows. There were in total a

baseline case, which did not have any auditing mechanism activated, and three test cases:

trigger, temporal tables and temporal tables with columnstore index, which was the

proposed method in this work. Each test case contained three steps: firstly without history

data, secondly with history data equal to updating all the rows of the table five times and

lastly history data equal to updating all the rows of the table 15 times. This was done to

observe the possible performance impact the accumulation of the history data could have.

Exception being the baseline case which did not have these steps because in this case there

was no auditing which would accumulate history data. For other cases each of these steps

were executed four times to eliminate any random variations in the results. The test cases

were also split into two different scenarios: in the first only one column was updated and in

the second three columns were updated. This highlights some differences between the

auditing methods. This testing method resulted in the 80 different measurements which are

shown in the appendix 3.

58

The results had two surprising discoveries. Firstly there seems to be minimal performance

impact associated with size of the history data at least with tested history sizes, which was

543 585 rows of history data at largest. It is likely that the performance impact would have

come more observable when the history size increases further but still the impact seems to

be smaller than initially anticipated. The second surprising result was that the number of

updated columns did not seem to affect the results except in case of the triggers. Because

of these discoveries the results from different measurements were averaged for each

method and these averages are compared to get a understanding of the differences. The

values are presented in table 10.

Table 10. Average execution times of different auditing methods

Row Trigger Temporal Columnstore AVG CPU-time (s) STDEV (s)
1 OFF OFF OFF 2.346 0.141
2 OFF ON OFF 2.426 0.253
3 OFF ON ON 2.676 0.18
4 ON OFF OFF 3.343 0.503

Naturally the best performance was achieved without logging. In this case the average

execution time was 2.35 seconds. The execution time for the existing trigger based logging

was the worst of the candidates with 3.34 seconds. It was also heavily affected by the

increase in the number of updated columns. With one column the execution time was 2.87

seconds and with three columns it was 3.82 seconds. With other methods the difference

was statistically insignificant. Temporal table performance was significantly better than

trigger performance with average execution time of 2.43 seconds without the columnstore

indexing and 2.68 with it. The columnstore indexing seems to have slight negative effect

on the execution performance of the solution, but this is acceptable considering its

advantages with query performance and compression. The overall difference between

temporal tables and triggers is understandable because of poorer performance of the

triggers with multicolumn case. However the difference in single column case is a bit

surprising considering that theoretically both methods employ the same functionality of

synchronously inserting history rows to separate table which was empty at the beginning of

the test cases.

59

There were some random variation between test rounds and because the results for

different methods are relatively close to each other this means that while the differences

discovered by the measurements are likely to exists, any conclusions about their scale

should be drawn with caution. Furthermore the tests were simplified cases from real life

scenarios which are more complicated and have more variations. For example the

measured CPU time of the database operation is only small part of the response time users

experience while they use the system and it also fails to address the important IO time of

the operations. Additionally the used operation, updating every single row in the table, is

unlikely to happen in reality and the actual operations are normally much simpler with

smaller execution times and absolute differences between the methods. For testing

purposes a large scale operation was used to lessen the random variations between the

measurements so the actual differences between the methods would be more observable.

Likewise, the CPU time was the measure which is least affected by the other variables, like

network delay and measurement inaccuracy, which would have been present if

measurements were done through for example user interface of the system, even though

this method would have been closer to the actual use cases. Despite the challenges in

measuring the differences the result strongly suggest that proposed solution has better

execution performance than existing trigger based solution and this performance is

relatively close to the case where auditing method is not used. Additionally the difference

between existing and proposed methods is likely to increase in the real use scenarios where

the number of updated columns may vary. The small difference between no auditing and

proposed auditing method also means that the impact on performance is not noticeable for

users which was the requirement for the proposed solution. The average execution time in

the test, which was heavy database operation, was only about 0.3 seconds slower with

proposed auditing method which is hardly noticeable for users. With normal database

operations and other processing times, for example network latency, the difference

becomes insignificant.

60

5.4 Overall suitability

Overall the proposed proof of concept fulfills the requirements of reliability, usability and

performance. In this regards the proposed proof of concept is suitable for system wide use

which was the major issue for the existing auditing solution. However there are some

issues regarding the usability and performance. For the developer usability there are more

steps involved in the activation of the auditing than is desirable. Also since the process

requires some manual work there is room for errors, some of which could be critical, for

example the incorrect partitioning. However this issue could be resolved with further work

by automating the activation process which would lessen the required work and leave less

room for errors. Performance wise the test results were successful but since the auditing

system could not be tested in the real production environment, which would be the only

way to get accurate update frequency of the data, there is some uncertainty about the

solutions functionality under real workloads. The uncertainty is mainly concerned with the

storage space requirements of the history data. However the testing suggests that compared

to the actual data the history data size doubles up when on average every row in the table is

updated 3.3 - 12 times, depending on the scope (how many columns) and randomness

(how varying the values are) of the updates. The doubling up of the storage space after on

average 3.3 updates is the absolute worst case scenario where the data is completely

random and even in this scenario the 3.3 factor means that the required storage space is

unlikely to multiply with realistic update frequencies especially because the audited data

should be rarely changing by its nature. If the update frequency is high it is likely caused

by automatic processing which can not directly be attributed to any person and thus will

not necessarily require auditing. However in complitely different case where the update

frequency of the data would be significantly higher the proposed solution could generate

excessive amounts of history data and thus it might not be suitable. In these scenarios a

solution which would record only the actual changes would be more suitable.

61

6 DISCUSSION AND CONCLUSIONS

The research questions of this work was “How to implement audit trail in the large ERP

system which has grown naturally over the time and what factors need to be considered

before, during and after the implementation in this scenario?”. The example process of

adding auditing functionality to existing ERP system is presented in the case study part of

this work. The considerations discovered during the case study are presented in table 11.

Before the implementation it is first of all important to gather the requirements for the

auditing functionality. The requirements can be specific to auditing functionality itself, for

example if it is necessary to log the same information as in the case study: “who”, “what”,

“when”, or if it is necessary to include additional information for example “why” and

“where” (Flores & Jhumka, 2017).

Table 11. Factors to consider when adding auditing functionality to existing ERP system

Phase relative to
implementation

Considerations

Before ● Gather functional and nonfunctional requirements amongst
stakeholders

● If possible plan the whole system with auditing in mind
● Consider demand and computational costs

During ● Should the format of the audit trail be static or dynamic
● Architecture of the system
● Maintenance of the history data
● Knowledge distribution

After ● Plan for deployment
● Monitor the functionality

In addition to these the system specific requirements like usability and performance need

to be considered as well. If the audited system is small with low usage rates it is not as

important to focus on the performance of the auditing. However if the system is likely to

grow then special considerations should be given to both performance and design of the

functionality so that it can later support the grown system. If possible the auditing

62

https://paperpile.com/c/bc9CuZ/r9gz

functionality should be designed and implemented as early as possible in the life cycle of

system (Flores & Jhumka, 2017). This is evident in the case study as well because the

major challenges were not about the auditing functionality itself. Rather they were about

how to get the functionality to work with the existing system, for example implementing

reliable recording of the user information and altering the incompatible database

constraints. If the auditing had been considered from the start these issues could have been

avoided. The demand for the audit trail must also be considered because it sets the limits

on the price of the functionality, for example how much additional storage space can be

used and how large the performance impact can be.

In the implementation phase several technical decision have to be made based on the

previously defined requirements. Most importantly the format of the audit trail must be

decided. The two main approaches are saving the full state of the data entry whenever it is

changed and saving only the changed parts of the entry. For clarity the first method is

referenced as static method and the second as dynamic method for the rest of this chapter.

The names come from the fact that with static method the state of the data in the past can

be generated by simply reading it from single history record, whereas with dynamic

method the state has to be dynamically recreated by reading multiple history entries. The

static method is used in the proposed solution with the temporal tables. The dynamic

method was used by the existing auditing functionality. The main difference between the

methods is that the static one generates more data, in terms of storage space, and the

dynamic one generates more history data entries because each changing column is

recorded to separate entry. However the actual storage space requirement is smaller

because no redundant unchanged data is saved. It is also possible to combine the two

methods by storing all the changes to single entry. This requires developing an additional

structure for storing the changes which needs to be planned with care (Bishop, 1995). But

it also combines the best features of the original methods, recording only the changed data

with entry number equal to the static method. It is more efficient to get the past state of the

data with the static method because the complete states are stored for each moment in time.

With the dynamic method this requires reconstructing the state by iterating over several

63

https://paperpile.com/c/bc9CuZ/9j3i
https://paperpile.com/c/bc9CuZ/r9gz

changes. The choice between the methods boils down to the trade off between storage and

processing time. The static method uses more storage while the dynamic method uses more

processing power for maintaining and querying the higher number of entries.

Other considerations during the implementation are the architecture of the system, the

maintenance of the history data and knowledge distribution. The architecture needs to be

considered so that all the places where the audited data can be altered will include the

auditing functionality. For database driven systems the most natural place for auditing is

the database: the audit trail is completed when all the desired database operations are

logged. However gathering the metadata for the log, for example user information can be

more challenging, which was the case with the proposed proof of concept. In these kinds of

situations the knowledge about the architecture is important as well. Maintenance of

history data needs to be considered so that expired data can be deleted and storage space

freed. Considerations must be done for two reasons. First of all simply deletion of the

expired entries might not be possible, which is the case with temporal tables. Secondly

even if the deletion is possible it might be computationally expensive operation especially

in larger systems. In the proposed solution both of these concerns were addressed with the

sliding window partitioning in history tables. Last important step during implementation is

to share and receive information and feedback about the new functionality. Since the

auditing is a feature which is likely to be deployed system wide it is important to gather

feedback from other developers and stakeholders so that the final solution will be as

efficient and easy to understand as possible. Furthermore sharing information about the

new functionality is important so that once it is deployed others can start to utilize it as

easily as possible.

Lastly once the implementation is completed it is necessary to plan for deployment of the

new feature. Since the feature is likely to be system wide and it can potentially generate

large amounts of history data once it is activated it is preferable to do the deployment in

smaller sets rather than all at once. This can be done by utilizing proof of concept like was

done in the case study of this work. Even then the deployment process must be planned

carefully because the auditing functionality might have internal dependencies meaning that

some parts of it must be deployed before others. For example in the proof of concept the

64

recording of user information must be deployed before its existence can be enforced. After

deployment the functionality of new audit module must be monitored. This way the actual

usage rates can be verified to be within the values which the auditing functionality was

tested against. If usage rates, in practice the update frequency of data, are greater than

expected then redesigning of the system might be required.

6.1 Limitations and future work

The greatest limitations regarding the results of this work was the exclusion of final

deployment of the system from the scope of this work. This posed limitations to the

evaluation of overall suitability of the proposed solution. The overall suitability was only

evaluated based on the test scenarios rather than in functionality in production

environment. The tests were planned to be as close to the real environment as possible, but

since there is some uncertainty about the actual update frequency of data, final verification

of the proposed solution could not be done until it is deployed. This limitation leads the

way for the immediate future work. After deploying and monitoring the proof of concept,

its functionality can be verified and the auditing can be extended to other parts of the

system. Then user interface could be developed to get the full benefits of the auditing.

Additional limitation is that most of the conclusions on this work are drawn from the single

case study and there is little reflection to the previous scientific research. However this is

due to the apparent lack of previous study about this subject. This leads to the notion that

research wise it would be beneficial to do further study about audit trail implementation

methods. The systematic literature review of this work suggests that there is a lack of

research about audit trail implementation methods from the software development

perspective. Audit trail itself is widely researched concept, but most of the research is done

from the perspective of accounting or organizational behavior. Even outside of the

scientific literature there does not seem to be many thoroughly considered industry best

practices about auditing. There are a few somewhat commonly used technologies, such as

database triggers, but no broader frameworks which would address such real world

challenges as large systems, maintainability and adding auditing to already mature

65

systems. For this reason the research should first focus on identifying auditing solutions

and then comparing them so that framework for selecting suitable methods for varying real

life scenarios could be generated.

66

REFERENCES

Albon, K. I., Davis, D., & Brooks, J. K. (2015). A Risk-Based Approach to Data Integrity.

Pharmaceutical Technology Europe; Cleveland, 27(7), 26–29. Retrieved from

https://search-proquest-

com.ezproxy.cc.lut.fi/docview/1707515184/abstract/D559E9F7C1E64186PQ/1

Alles, M. G., Kogan, A., & Vasarhelyi, M. A. (2008). Putting Continuous Auditing Theory into

Practice: Lessons from Two Pilot Implementations. Journal of Information Systems, 22(2),

195–214. https://doi.org/10.2308/jis.2008.22.2.195

Anonymous. (2011). 3 Steps to Simplify Audits, Demonstrate Compliance and Manage Risk

Across the Enterprise. Database Trends and Applications; Chatham, 25(4), 16. Retrieved

from https://search-proquest-com.ezproxy.cc.lut.fi/docview/911809200/?pq-

origsite=primo

Beland, K., Larson, K., Rowley, T., Mueller, M., Smith, C., Rizzo, A., … Rendell, M. (2014).

Security and Audit Trail Capabilities of a Facilitated Interface Used to Populate a Database

System with Text and Graphical Data Using Widely Available Software. Journal of Software

Engineering and Applications, 7(8), 713. Retrieved from https://search-proquest-

com.ezproxy.cc.lut.fi/docview/1567063675/

Bishop, M. (1995). A standard audit trail format. National Information Systems, 18. Retrieved

from http://www.dtic.mil/get-tr-doc/pdf?AD=ADA302547#page=155

Bizarro, P. A., & Garcia, A. (2011). Using XBRL Global Ledger to Enhance the Audit Trail and

Internal Control - ProQuest. The CPA Journal, 81(5), 64–71. Retrieved from

https://search-proquest-com.ezproxy.cc.lut.fi/docview/875640416/

Chang, S.-I., Yen, D. C., Chang, I.-C., & Jan, D. (2014). Internal control framework for a

67

compliant ERP system. Information & Management, 51(2), 187–205.

https://doi.org/10.1016/j.im.2013.11.002

Cruz-Correia, R., Boldt, I., Lapão, L., Santos-Pereira, C., Rodrigues, P. P., Ferreira, A. M., &

Freitas, A. (2013). Analysis of the quality of hospital information systems audit trails. BMC

Medical Informatics and Decision Making, 13, 84. https://doi.org/10.1186/1472-6947-13-

84

Debreceny, R. S., Gray, G. L., Ng, J. J., Lee, K. S., & Yau, W. (2005). Embedded Audit Modules in

Enterprise Resource Planning Systems: Implementation and Functionality. Journal of

Information Systems, 19(2), 7–27. https://doi.org/10.2308/jis.2005.19.2.7

Flores, D. A., & Jhumka, A. (2017). Implementing Chain of Custody Requirements in Database

Audit Records for Forensic Purposes. In 2017 IEEE Trustcom/BigDataSE/ICESS.

https://doi.org/10.1109/trustcom/bigdatase/icess.2017.299

Kulkarni, K., & Michels, J.-E. (2012). Temporal features in SQL:2011. ACM SIGMOD Record,

41(3), 34. https://doi.org/10.1145/2380776.2380786

Li, S.-H., Huang, S.-M., & Lin, Y.-C. G. (2007). Developing a Continuous Auditing Assistance

System Based on Information Process Models. The Journal of Computer Information

Systems; Stillwater, 48(1), 2–13. Retrieved from

http://search.proquest.com.ezproxy.cc.lut.fi/docview/232574185/abstract/EEC981877

6A44221PQ/1

Mullins, C. S. (2011). Compliance and Data Access Tracking. Database Trends and Applications;

Chatham, 25(4), 27. Retrieved from https://search-proquest-

com.ezproxy.cc.lut.fi/docview/911809182/?pq-origsite=primo

Patel, A., Qi, W., & Wills, C. (2010). A review and future research directions of secure and

trustworthy mobile agent‐based e‐marketplace systems. Information Management &

68

Computer Security, 18(3), 144–161. https://doi.org/10.1108/09685221011064681

Prakash, B., & Nalini, N. (2014). Improved Security of Audit Trail Logs in Multi-Tenant Cloud

Using ABE Schemes (Vol. 5).

Rezaee, Z., Sharbatoghlie, A., Elam, R., & McMickle, P. L. (2002). Continuous Auditing: Building

Automated Auditing Capability. AUDITING: A Journal of Practice & Theory, 21(1), 147–

163. https://doi.org/10.2308/aud.2002.21.1.147

Roratto, R., & Dias, E. D. (2014). Security information in production and operations: a study on

audit trails in database systems. Journal of Information Systems and Technology Management,

11(3), 717–734. Retrieved from

http://www.jistem.fea.usp.br/index.php/jistem/article/view/10.4301%252FS1807-

17752014000300010

Shin, I., Lee, M., & Park, W. (2013). Implementation of the continuous auditing system in the ERP‐

based environment. Managerial Auditing Journal, 28(7), 592–627.

https://doi.org/10.1108/maj-11-2012-0775

Simeunovic, N., Grubor, G., & Ristic, N. (2016). Forensic accounting in the fraud auditing case.

The European Journal of Applied Economics, 13(2), 45–56.

https://doi.org/10.5937/ejae13-10509

Singh, K., Best, P. J., Bojilov, M., & Blunt, C. (2014). Continuous Auditing and Continuous

Monitoring in ERP Environments: Case Studies of Application Implementations. Journal of

Information Systems, 28(1), 287–310. https://doi.org/10.2308/isys-50679

Singh, K., Best, P., & Mula, J. (2013). Automating Vendor Fraud Detection in Enterprise Systems.

Journal of Digital Forensics, Security and Law, 8(2), 7–40. Retrieved from

http://ojs.jdfsl.org/index.php/jdfsl/article/view/87

White, D. E., Oelke, N. D., & Friesen, S. (2012). Management of a large qualitative data

69

set: Establishing trustworthiness of the data. International Journal of Qualitative Methods,

11(3), 244–258. Retrieved from

http://journals.sagepub.com/doi/abs/10.1177/160940691201100305

70

APPENDIX 1. SYSTEMATIC LITERATURE REVIEW DATABASES

ACM - Association for Computing Machinery.

ACS Publications.

Aerospace Database (ProQuest - CSA).

Alma Talent Fokus.

Aluminium Industry Abstracts (ProQuest - CSA).

Amadeus - Analyse major databases from

European sources.

ANTE: Abstracts in New Technologies and

Engineering (CSA) (ProQuest XML).

ARTO - kotimainen artikkeliviitetietokanta.

ASFA Marine Biotechnology Abstracts (CSA -

ProQuest).

Biotechnology & BioEngineering Abstracts

(ProQuest - CSA).

Biotechnology Research Abstracts (ProQuest -

CSA).

Cambridge Structural Databse CSD.

Ceramic Abstracts (ProQuest - CSA).

Chemical Abstracts SciFinder Scholar.

Chemoreception Abstracts (ProQuest - CSA).

Civil Engineering Abstracts (ProQuest - CSA).

Computer and Information Systems Abstracts

(CSA) (ProQuest XML).

Conference Papers Index (CSA) (ProQuest

XML).

Copper Technical Reference Library (ProQuest -

CSA).

CORDIS Community Research and Development

Information Service.

Corrosion Abstracts (ProQuest - CSA).

CRC Handbook of Chemistry and Physics.

Dawsonera.

Directory of Open Access Books (DOAB).

DOAJ Directory of Open Access Journals.

E-PRTR - The European Pollutant Release and

Transfer Register.

Earthquake Engineering Abstracts (ProQuest -

CSA).

Ebook Library (EBL).

EBSCO - Academic Search Elite.

EBSCO - Business Source Complete.

Edilex.

Electronics and Communications Abstracts

(ProQuest - CSA).

Ellibs Library.

eMagz - sähköinen lehtikirjasto.

Emerald Journals.

Engineered Materials Abstracts (ProQuest -

CSA).

Engineering Research Database (CSA) (ProQuest

XML).

Environmental Engineering Abstracts (ProQuest -

CSA).

ePress - kotimaisia sanomalehtiä.

EPRI - Electric Power Research Institute.

Espacenet (European Patent Office).

Facts databases on chemicals / Kemikaalien

faktatietokannat.

FINLEX - ajantasainen lainsäädäntö.

FreePatentsOnline.

GreenFILE (EBSCO).

IEEE Xplore Digital Library.

INIS - International Nuclear Information System

(IAEA).

IOPScience - Institute of Physics.

Journal and High Cited data JHCD (JCR+ESI).

JournalTOCs.

JSTOR Arts & Sciences I.

Kauppakamari Ammattikirjasto.

Kauppalehti Online.

KH Net -kiinteistötietopalvelu (KH-kortisto).

Kielitoimiston sanakirja.

KnowPap - Paperitekniikan ja tehtaan

automaation oppimisjärjestelmä.

KnowPulp - Sellutekniikan ja tehtaan

automaation oppimisjärjestelmä.

LUTPub / Doria.

LVI Net -tietopalvelu (LVI-kortisto).

MarketLine Advantage.

Materials Business File (ProQuest - CSA).

Materials Research Database with METADEX

(CSA) (ProQuest XML).

Mechanical & Transportation Engineering

Abstracts (ProQuest-CSA).

Melinda - kirjastojen yhteisluettelo.

METADEX (ProQuest - CSA).

MOT Dictionaries.

Nature weekly journal.

OAPEN.

OECD iLibrary.

OpenDOAR - The Directory of Open Access

Repositories.

Oxford English Dictionary.

Palgrave encyclopedia of strategic management.

PROLA - American Physical Society.

ProQuest Central (ProQuest XML).

PSK Standardit.

PubMed. RefWorks (New).

RefWorks (Old).

Royal Society of Chemistry Journals.

RT Net (RT-kortisto).

Rusgate.

ScienceDirect - All Subscribed Content (Elsevier

API).

SCOPUS (Elsevier).

SFS-standardit.

SFSedu- standardisoinnin oppilaitosportaali.

Social Science Research Network (SSRN) -

eLibrary.

Solid State and Superconductivity Abstracts

(ProQuest - CSA).

Springer eBooks.

Springer LINK.

SpringerLink eBooks - Business.

SpringerLink eBooks - Chemistry.

SpringerLink eBooks - Computer Science.

SpringerLink eBooks - Computing.

SpringerLink eBooks - Energy.

SpringerLink eBooks - Engineering.

SpringerLink eBooks - Environment.

SpringerLink eBooks - Mathematics.

SpringerLink Journals.

ST-Akatemia Online -palvelu.

Suomalais-Venäläinen kauppakamari.

Talentum lehtiarkisto.

Taylor & Francis Online Journal Library.

TEPA-termipankki.

Terveyskirjasto.

Thomson One Banker.

Ulrichsweb - Global Serials Directory.

Web of Science (WOS).

Wiley Online Library.

71

APPENDIX 2. RESULTS OF STORAGE SPACE USAGE TESTS

72

APPENDIX 3. RESULTS OF EXECUTION TIME TESTS

73

	1 INTRODUCTION
	1.1 Goals and delimitations
	1.2 Research Methodology
	1.3 Structure of the thesis

	2 LITERATURE REVIEW
	2.1 Audit trail
	2.2 Continuous Auditing
	2.3 Audit Trail Implementation Methods

	3 CASE ERP SYSTEM
	3.1 Current state of the audit trail in the ERP
	3.2 Audit trail survey in similar ERP systems
	3.3 Requirements
	3.4 Comparison of the different methods
	3.4.1 SQL Server Change Data Capture
	3.4.2 Database Triggers
	3.4.3 SQL Server Temporal Tables
	3.4.4 Implementation in application

	3.5 Comparison in the context of case ERP system
	3.5.1 SQL Server Change Data Capture
	3.5.2 Database Triggers
	3.5.3 SQL Server Temporal Tables
	3.5.4 Implementation in application

	4 IMPLEMENTING THE NEW AUDIT TRAIL
	4.1 Recording the user information
	4.2 Altering the foreign keys
	4.3 Activating the versioning
	4.4 Clean up process for history data
	4.5 Deployment and communication

	5 RESULTS
	5.1 Reliability
	5.2 Usability
	5.3 Performance
	5.3.1 Storage space requirements
	5.3.2 Performance of the database operations

	5.4 Overall suitability

	6 DISCUSSION AND CONCLUSIONS
	6.1 Limitations and future work

	REFERENCES
	APPENDIX 1. SYSTEMATIC LITERATURE REVIEW DATABASES
	APPENDIX 2. RESULTS OF STORAGE SPACE USAGE TESTS
	APPENDIX 3. RESULTS OF EXECUTION TIME TESTS

