@ AICPA

Audit Data Standard and Audit Data Analytics Working Group

Upgrade the Financial Statement Audit using Audit Data Analytics

Introduction

This document is part of a series of instructional papers meant to illustrate how the AICPA’s
Audit Data Standards (ADS) facilitate the use of data analytics in the financial statement audit.
This paper focuses on a popular open-source programming language, Python, and how it can be
used to perform certain financial statement audit procedures. More specifically, this paper will
help users gain an understanding of how to use Python to do the following:

e Convert a trial balance and general ledger data set to the standardized ADS format
e Develop automated, repeatable routines to analyze the ADS standardized data set
e View, analyze, and document code and results

For further guidance, this paper can be used in conjunction with the micro learning session
video “Upgrade the Financial Statement Audit with Python.” To view additional micro learning
session videos related to this subject matter please visit the AICPA’s Audit Data Standards
website.

Overview

e |ntroduction

e Whatis Python?

e Python and the Financial Statement Audit

e Python Example

e Appendix A —Python Code

e Appendix B — Helpful Resources

1|Page

March 2019

https://www.aicpa.org/interestareas/frc/assuranceadvisoryservices/auditdatastandards.html
https://www.aicpa.org/interestareas/frc/assuranceadvisoryservices/auditdatastandards.html
https://www.aicpa.org/interestareas/frc/assuranceadvisoryservices/auditdatastandards.html

[ll. What is Python?

Python is an open-source programming language that was first released in 1991; in other words,
the original source code is freely available and can be modified or redistributed. It’s available for
a variety of operating systems and can be used for general-purpose programming for both large
and small projects. Python’s simple coding style makes it the preferred language for those
beginning to learn how to code.

Python supports many programming paradigms such as imperative, functional, and procedural.
Programming paradigms are ways to classify programming languages based on their features.?
Common paradigms? include the following:

e Imperative — allows side effects

e Object-oriented — groups code together with the state the code modifies

e Procedural — groups code into functions

e Declarative — does not state the order in which operations execute

e Functional — disallows side effects

e Logic — has a particular style of execution model coupled to a particular style of
syntax and grammar

e Symbolic programming — has a particular style of syntax and grammar

Python can be used in many different areas and throughout many different industries such as
data science, web development, finance, accounting and auditing, molecular biology, and
application security. Specific uses include the following:

e Data engineering — Cleansing data, structuring data, and loading data
e Analytics — Al, text mining, visualizations
e Automation — Extract, transform, load (ETL), conversion, and reporting

Python also can be used to create or interact with web applications as part of web development
or micro services. For the purpose of this paper, we will focus on the use of Python in the
financial statement audit.

IV. Python and the Financial Statement Audit

There are a wide variety of uses for Python. When it comes to the financial statement audit,
Python can help with extracting, transforming (or formatting) and loading data, as well as
testing and analyzing the data and developing visualizations to help view and document results.
Subsequent sections will walk through an example of how Python can be used for extracting
data and transforming it into the ADS standardized format, loading the standardized data, and
developing code to further analyze the ADS standardized data set.

L https://en.wikipedia.org/wiki/Programming_paradigm

2|Page
March 2019

https://www.python.org/
https://en.wikipedia.org/wiki/Imperative_programming
https://en.wikipedia.org/wiki/Object-oriented_programming
https://en.wikipedia.org/wiki/Procedural_programming
https://en.wikipedia.org/wiki/Declarative_programming
https://en.wikipedia.org/wiki/Functional_programming
https://en.wikipedia.org/wiki/Logic_programming
https://en.wikipedia.org/wiki/Symbolic_programming

V. Python Example

This section will walk through the process of using Python to (1) apply the ADS format to an SAP
test data set and (2) develop code to further analyze the ADS standardized data set (perform
journal entry testing procedures). As stated previously, this paper can be used in conjunction
with the micro session video, “Upgrade the Financial Statement Audit with Python.” Please note
that the routines developed here can be used on any ADS standardized data set and can be
accessed on the AICPA’s Audit Data Standards webpage.

Applying the AICPA’s Audit Data Standard Format

As this example focuses on journal entry test work, the AICPA’s general ledger ADS format was
used and applied to an SAP test data set. The full audit data standard document can be accessed
on the AICPA’s Audit Data Standard website.

As a first step, the high-level mapping, discussed in the micro learning session “Introduction to
the Audit Data Standards” and shown in figure 1, was used to develop Python code to load the
SAP test data set and apply the general ledger ADS format. This mapping is important because
the field names identified in figure 1 were used within the Python code to help identify the fields
within the SAP test data set that would need to be reformatted.

3|Page
March 2019

https://www.aicpa.org/interestareas/frc/assuranceadvisoryservices/auditdatastandards.html
https://www.aicpa.org/interestareas/frc/assuranceadvisoryservices/auditdatastandards.html

Figure 1 — High-Level Mapping of ADS Field Names to SAP Test Data Set Field Names

ADS Table

ADS Field Name

SAP Table

SAP Field Name

GL_Detail_YYYYMMDD_YYYYMMDD

Journal_ID

BSEG_0001_Accounting
Document Segment

BELNR (Accounting Document
Number)

GL_Detail_YYYYMMDD_YYYYMMDD

Journal_ID_Line_Number

BSEG_0001_Accounting
Document Segment

BUZEI (Number of Line Item
Within Accounting Document)

GL_Detail_YYYYMMDD_YYYYMMDD

JE_Header_Description

BKPF_0001_Accounting
Document Header

BKTXT (Document Header
Text)

GL_Detail_YYYYMMDD_YYYYMMDD

JE_Line_Description

BSEG_0001_Accounting
Document Segment

SGTXT (ltem Text)

GL_Detail_YYYYMMDD_YYYYMMDD

Source

BKPF_0001_Accounting
Document Header

BLART (Document Type)

GL_Detail_YYYYMMDD_YYYYMMDD

Business_Unit_Code

BSEG_0001_Accounting
Document Segment

GSBER (Business Area)

Chart_Of_Accounts

GL_Account_Number

SKA1_0001_GL Account Master
(Chart of Accounts)

SAKNR (G/L Account Number)

Chart_Of_Accounts

GL_Account_Name

SKAT_0001_GL Account Master
Record (Chart of Accounts
Description)

MCOD1 (Search Term for
Matchcode Search)

Chart_Of_Accounts

Account_Type

SKA1_0001_GL Account Master
(Chart of Accounts)

XBILK, GVTYP,

Chart_Of_Accounts

Account_Subtype

SKA1_0001_GL Account Master
(Chart of Accounts)

KTOKS (G/L Account Group)

Chart_Of_Accounts

GL_Account_Description

SKAT_0001_GL Account Master
Record (Chart of Accounts
Description)

TXT50 (G/L Account Long Text)

Trial_Balance_YYYYMMDD_YYYYMMDD

GL_Account_Number

GLTO_0001_GL account master
record transaction figures

RACCT (Account Number)

Trial_Balance_YYYYMMDD_YYYYMMDD

Business_Unit_Code

GLTO_0001_GL account master
record transaction figures

RBUSA (Business Area)

Trial_Balance_YYYYMMDD_YYYYMMDD | Fiscal_Year GLTO_0001_GL account master | RYEAR (Fiscal Year)
record transaction figures
Trial_Balance_YYYYMMDD_YYYYMMDD | Period GLTO_0001_GL account master | RPMAX (Period)

record transaction figures

Python code was developed to load the SAP test data set into Python within the Jupyter Notebook.
Jupyter Notebook is an open-source web application that allows you to develop code and explore data
in a format that contains live code, results, visualizations, and narrative text.

In order to apply the ADS format to the SAP test data set, the test data set was loaded into Jupyter.
Figure 2 shows the code that was written to identify and load the appropriate fields from the SAP test
data set into Jupyter. For this example, only selected general ledger and trial balance fields from the test
data set were loaded into Jupyter.

March 2019

4|Page

Figure 2 — Loading SAP Test Data Set (Trial Balance and General Ledger fields only) Into Jupyter

In [30]:

In [1]:

In [2]:

In [3]:

In [4]:

This is a jupyter notebook, running Python 3.6.

We will use this notebook to impart GL / TB demo data, perform some reconciliations, and then perform a few audit procedurss.

Upgrade Pandas library to latest version

'pip install pandas —-g ——upgrade

Load libraries
import pandas as pd

pd.options.display.float_format = "{:,.2f}"'.format

Location of gl and tb files

th = 'data/GLT0_0001 GL account master record transaction figures.xlsx'

gl = 'data/BSEG_0001_Accounting Document Segment.xlsx’

Pull TB data into Dataframe

: | th_df = pd.read excel(tb, sheet name=0)

As seen in figure 2, code was written to identify where the SAP test data set trial balance and general
ledger files were saved (lines [3] and [4]). These files were then loaded into the Jupyter Notebook in a
format called a Pandas DataFrame (line [23]). Pandas is an open-source library providing high-
performance, easy-to-use data structures and data analysis tools, and DataFrame is the primary data
structure used in Pandas.

Once loaded into Jupyter, code was developed to “reshape” the data into the ADS format. Figure 3
illustrates the code that was used.

March 2019

5|Page

Figure 3 — Python Code Developed to Reshape the SAP Trial Balance Test Data Into the ADS Format

wvalue name='Balance Az Of Date')

In [37]: | tb_column renames = {
'BACCT (Account Humber)': "GL_Account Humber',
'BEUSA (Buziness Area) ': "Busginess_Unit Code',
'RYEAR (Fiscal Year)': 'Fiscal_ Year',
'"BELDNER (Ledger)': 'Ledger’
}
In [38]: | tb df melt = tb_df.melt({id vars=tb column renames.keys(),

Reshape the data to unpivot periods from columns to rows

value wvars=['T5L01 (Total transactions of the period im transaction currency)',

'TSL02 (Total transactions of the period in transaction currency) ',
'TSLO3 (Total transactions of the pericd in transaction currency)',
'TSL04 (Total transactions of the period in transaction currency) ',
'TSLOS (Total transactions of the pericd in transaction currency)",
'TSL06 (Total transactions of the period in transaction currency) ',
'"TSLO7 (Total transactions of the period in transaction currency) ',
'TSLO8 (Total transactions of the peried in transaction currency)”,
'TSLO9 (Total transactions of the period in transaction currency) ',
'TSL10 (Total transactions of the peried in transaction currency)",
'TSL11 (Total transactions of the period in transaction currency) ',
'TSL12 (Total transactions of the pericd in transaction currency) "]
var_ name='Period',

Figure 3 illustrates the code that was written in order to begin “reshaping” the SAP trial balance data
set. As can be seen in the previous chart at line [37], the SAP fields: Account Number, Business Area,
Fiscal Year, and Ledger were identified to be “reshaped” into the ADS format: GL_Account_Number,
Business_Unit_Code, and Fiscal_Year. Figure 4, which follows, shows additional code that was used to

reformat and apply the ADS format to the SAP general ledger data set.

Figure 4 — Reshape the SAP General Ledger Test Data Into the ADS Format

In [48]: gl _column_rename bseg = |

'Journal ID Line Humber',

}

gl column rename bkpf

'BELNR (Zccounting Document Number)': "Journal ID",

'BUZEI (Humber of Line Item Within Accounting Document) ':

'SGTET (Item Text)': 'JE Line Description’,

'GSBER (Business Area)': 'Business Unit_Code',

'AUGDT (Clearing Date)': "Effective Date',

'GJRHR (Fiscal Year)': 'Fiscal Year',

'HKONT (General Ledger Account)': 'GL Account Number',

'"PSWET (Amount for Updating in General Ledger)': "Amount',

'SHKZG (Debit/Credit Indicaetor)': "Rmount Credit Debit Indicator®,
'"PSWSL (Update Currency for General Ledger Transaction Figures) ':

= {

'Imount Currency’

'Entered Date’,

'BETXT (Document Header Text)': "JE Header Description®,
'"BLART (Document Type)'": '"Scurce',

'USHAM (Uszer name)': 'Entered By',

'BLDAT (Document Date in Document) ' 'Document_Date',
'CPUDT (Day On Which Accounting Document Was Entered) ':
'CPUIM (Time of Entry)': "Entered Time',

'BELNER (Accounting Document Number)': 'Journal ID',
'MONAT (Fiscal Pericd)': "Period!

March 2019

6|Page

Figure 5 illustrates the final output (after the preceding routines were run) in the ADS format as
compared to the original SAP test data set format. It’s important to note that all output can be viewed in
Jupyter as well as downloaded into an Excel spreadsheet for further analysis.

Figure 5 — Final ADS Formatted Data Set Versus Original SAP Test Data Set

Original SAP Test Data Set (Excel Format)

TSLO1 (Total

transactions

RACCT RBUSA RY_EAR RLDNR .DRCRK of the period
{Account (Business (Fiscal {Ledger) [Deblt{Credlt in
Number) Area) Year) Indicator) transaction
currency)

1000 1000 1904 0 5 484 570.00
1000 7000 1904 0 H -2,000,000.00
1000 7000 1994 0 5 2,000,000.00
1000 9900 1904 0 5 0.00
1010 1000 1994 0 H -1,616.00

ADS Standardized Data Set (Exported From Jupyter to Excel)

GL_Account_Number Business_Unit_Code Fiscal_Year Ledger Period Balance_As_Of Date
0 1000 1000 1994 0 01 484 570.00
1 1000 T000 1994 0 01 -2,000,000.00
2 1000 T000 1994 0 01 2,000,000.00
3 1000 9900 1994 0 01 0.00
4 1010 1000 1994 0 01 -1,616.00

Figures 2-5 illustrate portions of the code used to apply the ADS format to the SAP test data set. To view
the full Jupyter notebook, please see appendix A.

Analyzing the ADS Standardized Data Set
Utilizing the AICPA’s Audit Data Analytics to Traditional Procedures — Mapping Document, the following
journal entry audit procedures were selected to be performed over the ADS standardized data set.

7|Page
March 2019

https://www.aicpa.org/interestareas/frc/assuranceadvisoryservices/auditdataanalyticsguide.html

Figure 6 — Audit Data Analytics to Traditional Procedures — Mapping Document

% %k %k %

AUDIT ASSERTION OR

PHASE OF
OBJECTIVE OF THE
*TRADITIONAL AUDIT PROCEDURES INDUSTRY PROCEDURE AUDIT

a. Examine population for missing or General Completeness and Interim and year-end

incomplete journal entries. accuracy

b. Examine possible duplicate account entries. General Completeness Interim and year-end

c. Examine round-dollar entries. General Completeness and Interim and tear-end
accuracy

d. Examine post-date entries. General Completeness and Interim and year-end
accuracy

e. Examine entries posted on weekends. General Completeness and Interim and year-end

accuracy

Figure 6 represents a portion of the AICPA’s Audit Data Analytics to Traditional Procedure — Mapping
Document. For each of the audit procedures noted (a—e), routines were developed and run on the ADS
standardized data set. The following figures represent the code used to develop these routines. Please
note that Python also allows users to save blocks of code in separate files, then load those files as
libraries to be used within other files. This provides for more readable code and allows libraries that are
useful in more than one situation to be used repeatedly through a simple import process. In these
examples, the individual routines were written and saved as separate files, then imported into the main
file. This allows Python beginners (and those who may not be familiar with coding) to more easily
understand what routine is being run without having to understand all of the underlying code within
each routine. Figure 7 illustrates the Python routines that were developed to cover the audit procedures
noted previously, as well as some additional procedures. The routines were developed in a separate
library (Test_Procedures) and able to be imported individually from that library as Test_1_ Procedures

and Test_2 Procedures.

March 2019

8|Page

Figure 7 — Test 1 and Test 2 Procedures

In

[81:

[9]:

[101:

Import Test 1 Procedures

from Test Procedures import Test_1_ Procedures

Run Test 1 Procedures

Test_1 Procedures.check for gaps in JE ID(GL_Detail 20070101 200701231}

Checking for gaps in Journal Entry ID3 is started
12 instances detected
Reaults saved at Output Folder/Test_3_1 1 check for gaps_in JE_ID.csv

Test 1 Procedures.comparison of entries of GL and log file(GL Detail 20070101 200701231, Log Fi

le 20070101 200701231

Compariscn of entries in General Ledger and Log File is for gaps in Journal Entry IDs i3 3ta

rted

0 instances detected

Reaults saved at Output Folder/Test_3_1 2 Compariszon_of Entries of GL_and Log_File.csv

Test_1 Procedures.comparison of entriea of GI. and log file (GL Detail 20070101 200701231, Log Fi

le 20070101 200701231

Compariscn of entries in General Ledger and Log File is for gaps in Journal Entry IDs i3 3ta

rted

0 instances detected

Reaults saved at Output Folder/Test_3_1 2 Compariszon_of Entries of GL_and Log_File.csv
9|Page

March 2019

In [11]:
In [12]
In [13]:
In [14]:
In [15]:
In [16]
In [17]
In [18]
In [19]:

Import Test 2 Procedures

from Test Procedures import Test_2 Procedures

Run Test 2 Procedures

Test_2 Procedures.check for incomplete entries(GL Detail Z0070101_200701231)
Checking for Incomplete Entries is started

4 inastances detected

Results saved at Output Folder/Test_3 2 1 check for incomplete entries.csv

Test_2 Procedures.check for duplicate entries(GL Detail 20070101 200701231)

Checking for Duplicate Entries is started
691% inatances detected
Results saved at Output_Folder/Test_3_2_2 check for duplicate entries.csv

Test_2_ Procedures.check for round dollar entries(GL Detail 20070101_200701231)

Checking for Round Dollar Entries is started

226 instances detected
Besults aaved at Output_ Folder/Test_3_2 3 check for round dollar entries.csv

Test_2 Procedures.check for post date entries(GL Detail 20070101 200701231)

Checking for Post Date Entries is started
1439 instances detected
Results saved at Output Folder/Test_3_2 4 check for post date entries.csv

Teat_2_ Procedures.check for_weekend entries (GL_Detail 20070101 200701231}

Checking for Weekend Entries i3 started
0 instances detected
Results saved at Output_Folder/Test_3_2_5.1_check for weekend entries.csv

Test 2 Procedures.check for nights entries(GL_Detail 20070101 200701231)

Checking for Night Entries is started
190 instances detected
Begults saved at Output_ Folder/Test 3 2 5.2 check for nighta entriesg.csv

Test 2 Procedures.check for rare users(GL Detail 20070101 200701231)
Checking for Rare Users is started

52 instances detected

Results saved at Output_Folder/Test_3_2 6.1 check for_ rare_users.cav

Test 2 Procedures.check for rare accounts(GL Detail 20070101 200701231}

Checking for Rare Accounts is 3tarted
32 instances detected
Results saved at Output_Folder/Test_3_2 6.2 check for_ rare_accounts.csv

Figures 8 and 9 take a deeper dive into the routine “check for gaps in journal entry IDs.” Figure 8
represents the code and routine that was run, and figure 9 represents the related output. Output for
each of the routines noted here can be viewed in appendix A of this paper.

10| Page

March 2019

Figure 8 — Routine Developed to Examine the Population for Missing or Incomplete Journal Entries

Run Test 1 Procedures

In [8]:|Test_1 Procedures.check for gaps in JE ID({GL Detail 20070101 _200701231)
Checking for gaps in Journal Entry IDs is started

12 instances detected
Reaults saved at Output_Folder/Test_3_1

_ 1 _check_for gaps_in JE_ID.cav

As noted previously, Python allows users to write code or use already written code, save as a separate
file, and import the library and use a specific method such as Test_1_Procedures.check_for_gaps to run
the routine. Figure 8 illustrates the routine that was created to check for missing or incomplete journal
entries. This particular routine checks the population for gaps in journal entry ID number. The ADS field
that is used in the coding is Journal_ID. As noted, 12 instances of gaps in IDs were noted within the
population. Figure 9 illustrates the related output.

Figure 9 — Missing or Incomplete Journal Entry Output

Gap identified! 198888888 iz followed by 1888116858
Gap identified! 188811855 iz followed by 488808068
Gap identified! 498080811 is followed by 1480089028@
Gap identified! 1488808015 is followed by 1509000800

Gap
Gap
Gap
Gap
Gap
Gap
Gap
Gap

identified!
identified!
identified!
identified!
identified!
identified!
identified!
identified!

Test Results:
Total of 12 gaps found

1508000882
laoageaadz
13eageaal4
1968885892
280800828
4308080891
4909000883
Ses8aoaaaas

is
is
is
is
is
is
is
is

followed
followed
followed
followed
followed
followed
followed
followed

by
by
by
by
by
by
by
by

logagoaeas
158ad0a0a8
1oaadaaeas
leaadeaeas
45adoaeae
45aadoae0e
SEeagoanae
S18ag0a0aa

Applying audit data analytic techniques and tools to an audit, such as those that can be done using
Python, can be very beneficial. It can help with the analysis of audit areas, increase your understanding
of an entity and its operations, and greatly improve efficiency and accuracy. The routines that were
created in this example are accessible via the AICPA’s Audit Data Standards webpage. Each of the

routines can be used on any AICPA ADS standardized data set, as long as the data set is properly named
and contains the proper types of data in each field. Users are encouraged to visit the site and
experiment more with these routines. For additional information and guidance on Audit Data Analytics
and Audit Data Standards, please visit the AICPA’s Audit Data Analytics website.

11| Page
March 2019

https://www.aicpa.org/interestareas/frc/assuranceadvisoryservices/auditdatastandards.html
https://www.aicpa.org/interestareas/frc/assuranceadvisoryservices/auditdatastandards.html

VI. Appendix A —Python Code

The images that follow are screenshots from the Jupyter notebook. It represents the Python code
developed to (1) apply the ADS format to an SAP test data set and (2) run routines over the ADS
standardized data set for further analysis. The following code can be accessed on the AICPA’s Audit
Data Standards webpage.

Loading and Reshaping the SAP Test Data Set

In [30]:

In [1]:

In [2]:

In [3]:

In [4]:

In [23]:

March 2019

This is a jupyter notebook, running Python 3.6.

We will use this notebook to import GL / TB demo data, perform some reconciliations, and then perform a few audit procedures.

Upgrade Pandas library to latest version

'pip install pandas -g ——upgrade

Load libraries
import pandas as pd

pd.cptions.display.float format = "{:,.2f}'.format

Location of gl and tb files

th = 'data/GLT0_0001 GL account master record transaction figures.xlsz'

gl = 'data/BSEG_0001_Accounting Document Segment.xlsx'

Pull TB data into Dataframe

th df = pd.read excel(tb, sheet_name=0)

12| Page

https://www.aicpa.org/interestareas/frc/assuranceadvisoryservices/auditdatastandards.html
https://www.aicpa.org/interestareas/frc/assuranceadvisoryservices/auditdatastandards.html

See what the first five records look like

In [24]: | tb df.head()
Out[24]:
transz
RCLNT RRCTY BUKRS |RYEAR| RACCT RBUSA RTCUR DRCRK
RLDNR RVERS .] . B
{Not (Ledger) {Record (Version) (Company | (Fiscal | (Account|{Business | (Currency | (Debit/Credit | ... pe
found...) Type) Code)| Year)| Number) Area) Key) Indicator)
cu
(¢
0300 1] 0 1 3000 1904 1000 1000 UsD S .| 0.00
1300 0 0 1 3000 1994 1000 7000 UsD H _|10.00
2300 0 0 1 3000 1994 1000 7000 UsD 5 _|10.00
3300 1] 0 1 3000 1904 1000 9900 UsD S .| 0.00
4|3200 1] 0 1 3000 1904 1010 1000 UsD H .| 0.00
5 rows = 63 columns
£ >
Reshape the data to unpivot periods from columns to rows
In [37]: tb_column renames = |
'R T (Account Number)': 'GL Account Humber®,
'RBUSA (Business Area)": "Business Unit Code',
'RYERR (Fiscal Year)': "'Fiscal Year’,
'"RLDNE (Ledger)': "Ledger"
}
In [38]: tb df melt = tbh df.melt(id vars=tb column renames.keya(),
value_wvars=["T5L01 (Total transactions of the period in transaction currency) ',
'"T5L02 (Total trensactions of the period in
'"T5L03 (Total trensactions of the period in
'"T51.04 (Total trensactions of the period in
"T5L05 (Total trensactions of the period in
'"TS5LO& (Total trensactions of the pericd in I
"TSLO7 (Total trensactions of the pericd in er
'"TSLO8 (Total trensactions of the pericd in er
"T5L0% (Total trensactions of the period in BT
"T51.10 (Total trensactions of the period in BT
"TSL11 (Total transactions of the peried in (=)
'"T51.12 (Total trensactions of the period in BT
var_ name="Feriod',
value name='Balance Az QOf Date")
13| Page

March 2019

Rename the period fields
In [33]:|tb df melt['Period'] = tbh_df meltc['Period'].map(lambda x: x[3:3])
In [40]: |tb df melt = tb_df melt.rename (columns=tbh_column renames)

In [41]: |tk df melt.head()

GL_Account_MNumber | Business_Unit_Code | Fiscal_Year| Ledger | Period | Balance_As_Of_Date
0| 1000 1000 1954 0 0 434 570.00
1| 1000 7000 1954 0 | -2,000,000.00
21000 7000 1994 0 01 2,000,000.00
3| 1000 ga00 1994 0 01 0.00
411010 1000 1954 0 | -1.616.00

In [42]: | # Save file for L rt ex le

th df melt.to csv('data/Trial Balance YYYYMMDD YYYYMMDD.csv', index=False)

Pull data from gl into Dataframe

In [46]: gl_df = pd.read excel(gl, sheet name=0)

1 i Ths P
(CLlegring Uace) ", "G

Update Currency for General Ledger Tra
In [47]: gl_df.head()
BUZEI AUGBL
BELNR Number of BUZID AUGCP | (D t
MANDT| BUKRS NR| . japg | (Number o SR uGDT CP | (Document| oy
(Accounting . Line Item | {(Identification N (Clearing | Number of .
{Not | (Company (Fiscal Cr . (Clearing (Posting |.
found...) Code) Document Year) Within of the Line Date) Entry the Key)
Number) Accounting [tem) Date)[Clearing ¥
Document) Document)
0|300 3000 100000000 | 2007 1 MNaMN 180001071 | 19000101 [nan 40
1|300 3000 100000000 | 2007 2 MNaMN 180001071 | 19000101 [nan 50
2|200 3000 100000001 | 2007 1 MNaMN 15000101 | 19000101 [nan 40
3|300 3000 100000001 | 2007 2 NEL 18000101 | 19000101 [nan 50
41200 3000 100000002 | 2007 1 MNaN 19000107 | 19000101 [nan 40
5 rows = 87 columns
< >
14| Page

March 2019

In [43]: gl_column_ rename_baeg = |

'BELNE (Accounting Document Mumber)': 'Journal ID',

'BUZEI (Humber of Line Item Within Accounting Document) ': "Journal ID Line Number',
'SGTXT (Item Text)': "JE Line Description’,

'GSBER (Business Area)': 'Business Unit Code',

'AUGDT (Clearing Date)': 'Effective Date’,

'GJAHE (Fiscal Year)': 'Fiscal Year',

'"HKONT (General Ledger Account)': 'GL Account Number®,

'"PSWBT (EZmount for Updating in General Ledger)': 'Emount”,

'SHEZG (Debit/Credit Indicator)': "imount Credit Debit_Indicator',

'P5WSL (Update Currency for General Ledger Transaction Figures) ': "Amount Currency'

}

gl _column rename bkpf = |
'BKTXT (Document Header Text)': "JE_Header Description',
'BLART (Document Type)': 'Scurce’,
'USNEM (User name) ': '"Entered By',
'BLOAT (Document Date in Document) ' : 'Document_Date',
'CPUDT (Day On Which Accounting Document Was Entered) ': "Entered Date’,
'CPUIM (Time of Entry)': 'Entered Time',
'BELNE (Accounting Document Mumber)': 'Journal ID',
'MONAT (Fiscal Pericd)': '"Period'

In [49]: gl dff'Net'] = gl df.apply(lambda x: x['PSWBT (Amount for Updating in
i1f x['SHEZG (Debit/Credit Indicator}'] == 'H

H
(x['"PSWBT (Amount for Updating in General Ledger) '] * -1),

e e e

In [50]: gl_df = gl df.rename(columns=gl_column rename bseg)

In [51]: |cola = list(gl coclumn rename bseg.wvalues())
gl _df renamed = gl df[cols)

In [52]: | gl_df renamed.head()

Qut [52]:

Journal_ID_ JE_Line_ | Business_Unit_ Effective_Date | Fiscal_Year GL_Account_ Amoun

Journal_ID
~ | Line_Number Description Code Number

100000000 | 1 ?2;3“8'9” ohne 1 2000 19000101 2007 473000 89,7705

=

-

100000000 |2 MNaN NaM 19000101 2007 113100 9,770.5.

2| 100000001 |1 Reisekst./Unterkunft | 9900 19000101 2007 474210 587521
3| 100000001 (2 MNaN NaM 19000101 2007 113100 5875.21
4

100000002 |1 NaN 9500 12000101 2007 474211 24480

< >

Load file to pull other fields from

In [50]: | xwalk = "data/BEFF_ 0001 Accounting Document Header.TXT'

In [51]: xwalk df pd.read csv(xwalk, sep='|", low memory=False]

In [52]: | xwalk df = =Zwalk df.rename (columns=gl_ column_ rename bkpf)

15|Page
March 2019

In [52]: |uwalk df = xwalk_df.rename (columns=gl_column_rename bkpf)

In [53]:|cola = list(gl_column rename bkpf.values())

In [54]: xwalk final = xwalk df[cols]

In [55]: |xwalk final.head()

JE_Header_Description | Source | Entered_By | Document_Date | Entered_Date | Entered_Time | Journal_ID | Period
0| MaN SA STEINER | 20070101 20070122 101208 100000004 (1
1| MaN SA STEINER | 20070101 20070122 101207 100000003 (1
2| NaN SA STEINER 20070101 20070122 101206 100000002 |1
3| NaN SA STEINER 20070101 20070122 101206 100000001 |1
4| NaN SA STEINER 20070101 20070122 101205 100000000 |1

gl_df final = pd.merge (gl _df renamed, xwalk final, on="Journal ID", how="left')
gl df final.head()

b
1

o

(=11

o
(=11

Journal_ID | Journal_ID_Line_Number | JE_Line_Description | Business_Unit_Code | Effective_Date | Fiscal_Year | GL_
0| 100000000 | 1 Postkosten ohne Tel. | 9300 19000101 2007 473
1| 100000000 | 2 NaN NaN 19000101 2007 112
2100000001 |1 Reisekst./Unterkunft | 9900 19000101 2007 474
3| 100000001 |2 MNaN NaN 19000101 2007 112
41100000002 | 1 MNalN 9900 19000101 2007 474
< >

In [57]: | # Save the gl Lo csv

gl df final to cav('datas/GL Detail YYYYMMDD ¥YYYMMDD.csv', index=False)

16| Page
March 2019

Running Routines, Covering Journal Entry Procedures, for Further Analysis

Automated Audit Procedures based on Audit Data
Standards

This is a jupyter notebook, running Python 3.6. Our aim is to provide an example of Audit Data Standards uses in Audit

Engagements

Load libraries

In [1]: import pandas as pd
import numpy as np

Set Number Format

In [2]: | pd.cptions.display.float format = *

Load the files to dataframes

In [4]: |Log_File_ 200

101_200701231.head()

1, -2E}" . format

1 = pd.read cgv('data/GL _Detail YYYYMMDD YYYYMMDD.csv')
= pd.read_cav('dataslog file.cav

Journal_ID | Amount_Credit_Debit_Indicator Total | Entered_Date | Entered_Time
0| 100000000 |H 9,770.52 | 20070122 101205
1100000000 | S 9,770.52| 20070122 101205
2(100000001 |H 5,875.20| 20070122 101206
3 (100000001 |5 5,875.20| 20070122 101206
41100000002 |H 24480 |20070122 101206
In [5]: | GL Detail 20070101 _200701231(['Net'] = GL Detail 20070101 20070123l.apply (lambda x: x['Amount']
i
. if x['Emount Credit Debit Indicatcr'] == 'H'

March 2019

else (x['Zmount']),

axis=1)

17| Page

Import Test 1 Procedures

In [6]: from Test Procedures import Test 1 Procedures

Run Test 1 Procedures

In [8]: Test 1 Procedures.check for gapa in JE ID({GL_Detail 20070101 200701231}

Checking for gaps in Journal Entry IDs is started

12 instances detected

Results saved at Output_Folder/Test_3_1 1 check for gaps_in JE ID.cav

Gap identified! 190083088 iz followed by 188811856
Gap identified! 188811895 is followed by 408008880
Gap identified! 480888811 is followed by 1488880008
Gap identified! 1408888815 is followed

Gap identified! 1500880002
Gap identified! 16B28000282
Gap identified! 1888800814
Gap identified! 1988885892
Gap identified! 2600000000
Gap identified! 4300880001
Gap identified! 4008000883
Gap identified! S@BA220280
Test Results:

Total of 12 gaps found

is
is
is
is
is
is
is
is

followed
followed
followed
followed
followed
followed
followed
followed

by
by
by
by
by
by
by
by
by

15@aaaaeae
logageaoas
lsoaapaeas
19gaaaaaas
2e0aapaeas
4508a0aea8
49g8008008
Segadedeas
Sloadadeas

In [3]: Test_ 1 Frocedures.comparison of entries of GL and log file (GL Detail 20070101 200701231, Log Fi

le_20070101_200701231)

Compariscn of entries in General Ledger and Log File is for gaps in Journal Entry IDs iz =sta

rted
0 instances detected

Results saved at Output_Folder/Test_3_ 1 2 Comparison of Entries of GL &nd Log File.csv

"Following @ journal entries exist in General Ledger, but missing from the Log File:"

Amounts of following @ journal entries do not match their amounts in Log File:

March 2019

18| Page

Import Test 2 Procedures

In [11]: from Test Procedures import Test_2_Procedures

Run Test 2 Procedures

In [12]: Test_ 2 Procedures.check for_ incomplete_entries(GL_Detail 20070101_200701231)

Checking for Incomplete Entries iz started
4 instances detected
Reaults saved at Output Folder/Test_3_2 1 check for_ incomplete entries.cav

In [13]: Test_Z_ Procedures.check for duplicate entries(GL Detail 20070101 Z00701231)

Checking for Duplicate Entries iz started
6919 instances detected
Results saved at Output_Folder/Test_3_2_2 check for duplicate entries.csv

sJournal_ID,GL_Account_MNumber,Period,Net, Journal_Entry_Count
9,100000809,473120,1,1977.6,2
1,100000192,473120,1,1977.6,2
2,100000009,113100,1,-1977.6,2
3,1ee0@8192,11310&,1,-1977.6,2
4,100080861,473110,1,23.82,3
5,lee080a79,473118,1,23.82,3

6, 180688897 ,473118,1,23.82,3
7,100088861,113108,1,-23.82,3
&,100000879,113100,1,-23.82,3
0,100000897 ,113100,1,-23.82,3
18,1e0208062,473126,1,1149.12,3
11, 1e02p8050,473126,1,1149.12,3
12,190088898,473128,1,1149.12,3
13,106888862,113108,1,-1149.12,3
14, 180888888, 113108,1,-1149.12,3
15, 1e0888898,113188,1,-1149.12,3
16,100068863,4760900,1,54.088,3
17,1e0208051,476%900,1,54.08,3
18, 100208099 ,476900,1,54.08,3

(Please note that the preceding results are a portion of the 6,919 items.)

19| Page
March 2019

In [14]: Test_2 Procedures.check for round dollar entries(GL_Detail 20070101_200701231)

Checking for Round Dollar Entries is started
226 instances detected
Begults saved at Output Folder/Test 3 2 3 check for round dollar entries.cav

;Journal_ID,GL_Account_Mumber,Period,Net,1888= Remainder
1164, 1860865582 , 477800 ,1, 56000 .0,0.8
1165,1080005582,113100,1, -56000.0,0.0
2368,100001184,476900,3,1000.0,0.0
2369,108001184,113100,3, -1000.0,8.0
6258,108003129,477000,5,35000.0,8.0
£259,108003129,113100,5, -35000.0,0.0
6276,180083138,477800,6,35008.4,0.8
6277,100083138,113100,6, -35000.0,0.0
6204,180083147 477800 ,56,35000.0,0.8
6295,1009003147,113100,6, -35000.0,0.0
6444,108003222,465100,7,2000.0,0.0
6445 ,108003222,176000,7, -2000.0,8.0
11406 ,100005703 ,400000,10, -4000.8,0.0
114087,160085703, 32600, 10,4000.0,0.0
12538,1688086265,476080,11,1000.6,8.8
12531,100006265,113188,11, -1900.0,8.0
16316,1000A5005,474240,12,1000.0,0.08
16317,100008005,113100,12,-1000.8,0.0
16320,100011050, 280008,12,-0.0,0.0
16321,160011050, 236008,12,0.0,0.8
16324,100011051, 236008,12,0.0,0.8
16325,160011051, 286008,12,-8.0,0.0
16328,100011052, 230008,12,0.0,0.08
16329,1000811852, 280008,12, -8.8, 0.0

(Please note that the preceding results are a portion of the 226 items.)

20| Page
March 2019

In [15]: | Test 2 Procedures.check for post date entries(GL Detail 20070101 Z200701231)

Checking for Post Dete Entries iz started
143 instances detected
Besults saved at Output_Folder/Test 3 2 4 check for post_date_entries.csv

»Journal_ID,Document_Date,Entered_Date,Period,Net
16668, 4000026804 , 20878531, 208784 38,5,60563.8
16669 ,400002004 , 20878531, 208784 38,5, 296.8
16678,400082004 , 20878531, 208784 38,5, 166.8
16671 4000800804 , 20078531, 200764 36,5, 204,86
16672 ,400000004 , 20070531, 200784 30,5, 666.08
16673,400000004 , 20070531, 260764 30,5,359.08
16674 ,400000004 , 20070531, 280784 30,5,283.08
16675 ,408082084 , 20878531, 20878438,5,75.8
16676, 4000820804 , 20878531, 208784 38,5,558.8
16677 4000820804 , 20878531, 208784 38,5,562.8
16678, 400002004 , 20878531, 208784 38,5, 214.8
16679 ,4000800804 , 20878531, 208764 30,5,642.08
16688,400000004 , 20678531, 20070430,5,82.8
16681 ,400000004 , 20070531, 260764 30,5,996.08
16682 ,400000004 , 20070531, 200784 30,5,1742.0
166383 ,408080004 , 20878531, 20070430,5,320.08
16684 , 400202094 , 20878531, 208784 38,5, 208.8
16685 ,400082804 , 20878531, 20878430,5,2111.8
16686, 400002004 , 20878531, 208784 38,5,159.8
16687 ,400080804 , 20878531, 208704 30,5,68.8
16688 ,400000004 , 206078531, 20878430,5,7246.0
16680 ,400000004 , 20070531, 200764 30,5,1945.0

(Please note that the preceding results are a portion of the 149 items.)

In [16]: Test_ 2 Procedures.check_ for weekend entries(GL_Detail 20070101_200701231)

Checking for Weekend Entries iz started
0 instances detected
Results saved at Output_Folder/Test 3_2_5.1_check for weekend entries.csv

sJournal_ID,Entered_Date,Entered_Time,Entry_Date_Time_Formatted,WeekDayNo

March 2019

21| Page

In [17]: Teat_2 Procedurea.check for nighta entries(GL_Detail_ 20070101 200701231)

Checking for Night Entries is started
190 instances detected
Results saved at Qutput_Folder/Test_3_2 5.Z_check for nights entries.csv

s»Journal_ID,Entered_Date,Entered_Time,Entry_Date_Time_Formatted,Hour
23945,1900882929, 20070724, 228711 ,2807-87-24 22:87:11,22
23046,1990802920 , 20070724, 228711 ,2807-87-24 22:87:11,22
23847 ,199080292] , 20070724 ,220715,2007-87-24 22:87:15,22
23048 ,199000202] , 20070724 ,220715,2007-87-24 22:87:15,22
230409 ,1990002022 , 20070724 ,220716,2007-087-24 22:87:16,22
23050,19%90082022 , 20070724, 220716,2007-087-24 22:87:16,22
23851,1%08882923 , 20078724 ,228716,2807-87-24 22:87:16,22
23852,1909802923 , 20078724 ,228716,2807-87-24 22:87:16,22
23853,1908882924 , 20070724 ,228716,2807-87-24 22:87:16,22
23854 ,1998882924 , 20070724, 228716,2807-87-24 22:87:16,22
23855,1990882925 , 20070724 ,220716,2007-87-24 22:87:16,22
23856,19900@2025 , 20070724 ,220716,2007-087-24 22:87:16,22
230857,1990082026 , 20070724 ,220716,2007-87-24 22:87:16,22
23058,1990082026, 20070724, 220716,2007-67-24 22:87:16,22
238559,19008825927 , 20078724, 228716 ,2007-07-24 22:87:16,22
23008,1900802927 , 20078724 ,228716,2807-87-24 22:87:16,22
23861,1990882928 , 20070724, 228716,2807-87-24 22:87:16,22
23062 ,1990082928 , 20070724 ,220716,2807-87-24 22:87:16,22
23863,1990802920 , 20070724 ,220716,2807-87-24 22:87:16,22
23064 ,1990002020 , 20070724 ,220716,2007-87-24 22:87:16,22
23065,1990082030, 20070724 ,220716,2007-87-24 22:87:16,22
23066,1900082030, 20070724, 220716,2007-87-24 22:87:16,22

(Please note that the preceding results are a portion of the 190 items.)

22 |Page
March 2019

VII. Appendix B — Helpful Resources

Python Resources:

Python

Beginner’s Guide to Python

Microsoft Azure Notebooks

Jupyter

AICPA Resources:

Audit Data Analytics

Audit Data Standards

Rutgers AICPA Data Analytics Research Initiative

23| Page
March 2019

https://www.python.org/
https://wiki.python.org/moin/BeginnersGuide/Programmers
https://notebooks.azure.com/
https://jupyter.org/
https://www.aicpa.org/interestareas/frc/assuranceadvisoryservices/auditanalytics.html
https://www.aicpa.org/interestareas/frc/assuranceadvisoryservices/auditdatastandards.html
https://www.aicpa.org/interestareas/frc/assuranceadvisoryservices/radar.html

