
1 | P a g e
March 2019

Audit Data Standard and Audit Data Analytics Working Group

Upgrade the Financial Statement Audit using Audit Data Analytics

I. Introduction

This document is part of a series of instructional papers meant to illustrate how the AICPA’s

Audit Data Standards (ADS) facilitate the use of data analytics in the financial statement audit.

This paper focuses on a popular open-source programming language, Python, and how it can be

used to perform certain financial statement audit procedures. More specifically, this paper will

help users gain an understanding of how to use Python to do the following:

 Convert a trial balance and general ledger data set to the standardized ADS format

 Develop automated, repeatable routines to analyze the ADS standardized data set

 View, analyze, and document code and results

For further guidance, this paper can be used in conjunction with the micro learning session

video “Upgrade the Financial Statement Audit with Python.” To view additional micro learning

session videos related to this subject matter please visit the AICPA’s Audit Data Standards

website.

II. Overview

 Introduction

 What is Python?

 Python and the Financial Statement Audit

 Python Example

 Appendix A – Python Code

 Appendix B – Helpful Resources

https://www.aicpa.org/interestareas/frc/assuranceadvisoryservices/auditdatastandards.html
https://www.aicpa.org/interestareas/frc/assuranceadvisoryservices/auditdatastandards.html
https://www.aicpa.org/interestareas/frc/assuranceadvisoryservices/auditdatastandards.html

2 | P a g e
March 2019

III. What is Python?

Python is an open-source programming language that was first released in 1991; in other words,

the original source code is freely available and can be modified or redistributed. It’s available for

a variety of operating systems and can be used for general-purpose programming for both large

and small projects. Python’s simple coding style makes it the preferred language for those

beginning to learn how to code.

Python supports many programming paradigms such as imperative, functional, and procedural.

Programming paradigms are ways to classify programming languages based on their features.1

Common paradigms2 include the following:

 Imperative — allows side effects

 Object-oriented — groups code together with the state the code modifies

 Procedural — groups code into functions

 Declarative — does not state the order in which operations execute

 Functional — disallows side effects

 Logic — has a particular style of execution model coupled to a particular style of

syntax and grammar

 Symbolic programming — has a particular style of syntax and grammar

Python can be used in many different areas and throughout many different industries such as

data science, web development, finance, accounting and auditing, molecular biology, and

application security. Specific uses include the following:

 Data engineering – Cleansing data, structuring data, and loading data

 Analytics – AI, text mining, visualizations

 Automation – Extract, transform, load (ETL), conversion, and reporting

Python also can be used to create or interact with web applications as part of web development

or micro services. For the purpose of this paper, we will focus on the use of Python in the

financial statement audit.

IV. Python and the Financial Statement Audit

There are a wide variety of uses for Python. When it comes to the financial statement audit,

Python can help with extracting, transforming (or formatting) and loading data, as well as

testing and analyzing the data and developing visualizations to help view and document results.

Subsequent sections will walk through an example of how Python can be used for extracting

data and transforming it into the ADS standardized format, loading the standardized data, and

developing code to further analyze the ADS standardized data set.

1 https://en.wikipedia.org/wiki/Programming_paradigm

https://www.python.org/
https://en.wikipedia.org/wiki/Imperative_programming
https://en.wikipedia.org/wiki/Object-oriented_programming
https://en.wikipedia.org/wiki/Procedural_programming
https://en.wikipedia.org/wiki/Declarative_programming
https://en.wikipedia.org/wiki/Functional_programming
https://en.wikipedia.org/wiki/Logic_programming
https://en.wikipedia.org/wiki/Symbolic_programming

3 | P a g e
March 2019

V. Python Example

This section will walk through the process of using Python to (1) apply the ADS format to an SAP

test data set and (2) develop code to further analyze the ADS standardized data set (perform

journal entry testing procedures). As stated previously, this paper can be used in conjunction

with the micro session video, “Upgrade the Financial Statement Audit with Python.” Please note

that the routines developed here can be used on any ADS standardized data set and can be

accessed on the AICPA’s Audit Data Standards webpage.

 Applying the AICPA’s Audit Data Standard Format

As this example focuses on journal entry test work, the AICPA’s general ledger ADS format was

used and applied to an SAP test data set. The full audit data standard document can be accessed

on the AICPA’s Audit Data Standard website.

As a first step, the high-level mapping, discussed in the micro learning session “Introduction to

the Audit Data Standards” and shown in figure 1, was used to develop Python code to load the

SAP test data set and apply the general ledger ADS format. This mapping is important because

the field names identified in figure 1 were used within the Python code to help identify the fields

within the SAP test data set that would need to be reformatted.

https://www.aicpa.org/interestareas/frc/assuranceadvisoryservices/auditdatastandards.html
https://www.aicpa.org/interestareas/frc/assuranceadvisoryservices/auditdatastandards.html

4 | P a g e
March 2019

Figure 1 – High-Level Mapping of ADS Field Names to SAP Test Data Set Field Names

Python code was developed to load the SAP test data set into Python within the Jupyter Notebook.

Jupyter Notebook is an open-source web application that allows you to develop code and explore data

in a format that contains live code, results, visualizations, and narrative text.

In order to apply the ADS format to the SAP test data set, the test data set was loaded into Jupyter.

Figure 2 shows the code that was written to identify and load the appropriate fields from the SAP test

data set into Jupyter. For this example, only selected general ledger and trial balance fields from the test

data set were loaded into Jupyter.

ADS Table ADS Field Name SAP Table SAP Field Name

GL_Detail_YYYYMMDD_YYYYMMDD Journal_ID
BSEG_0001_Accounting
Document Segment

BELNR (Accounting Document
Number)

GL_Detail_YYYYMMDD_YYYYMMDD Journal_ID_Line_Number
BSEG_0001_Accounting
Document Segment

BUZEI (Number of Line Item
Within Accounting Document)

GL_Detail_YYYYMMDD_YYYYMMDD JE_Header_Description
BKPF_0001_Accounting
Document Header

BKTXT (Document Header
Text)

GL_Detail_YYYYMMDD_YYYYMMDD JE_Line_Description
BSEG_0001_Accounting
Document Segment

SGTXT (Item Text)

GL_Detail_YYYYMMDD_YYYYMMDD Source
BKPF_0001_Accounting
Document Header

BLART (Document Type)

GL_Detail_YYYYMMDD_YYYYMMDD Business_Unit_Code
BSEG_0001_Accounting
Document Segment

GSBER (Business Area)

Chart_Of_Accounts
GL_Account_Number SKA1_0001_GL Account Master

(Chart of Accounts)
SAKNR (G/L Account Number)

Chart_Of_Accounts

GL_Account_Name SKAT_0001_GL Account Master
Record (Chart of Accounts
Description)

MCOD1 (Search Term for
Matchcode Search)

Chart_Of_Accounts
Account_Type SKA1_0001_GL Account Master

(Chart of Accounts)
XBILK, GVTYP,

Chart_Of_Accounts
Account_Subtype SKA1_0001_GL Account Master

(Chart of Accounts)
KTOKS (G/L Account Group)

Chart_Of_Accounts

GL_Account_Description SKAT_0001_GL Account Master
Record (Chart of Accounts
Description)

TXT50 (G/L Account Long Text)

Trial_Balance_YYYYMMDD_YYYYMMDD GL_Account_Number GLT0_0001_GL account master
record transaction figures

RACCT (Account Number)

Trial_Balance_YYYYMMDD_YYYYMMDD Business_Unit_Code GLT0_0001_GL account master
record transaction figures

RBUSA (Business Area)

Trial_Balance_YYYYMMDD_YYYYMMDD Fiscal_Year GLT0_0001_GL account master
record transaction figures

RYEAR (Fiscal Year)

Trial_Balance_YYYYMMDD_YYYYMMDD Period GLT0_0001_GL account master
record transaction figures

RPMAX (Period)

5 | P a g e
March 2019

Figure 2 – Loading SAP Test Data Set (Trial Balance and General Ledger fields only) Into Jupyter

As seen in figure 2, code was written to identify where the SAP test data set trial balance and general

ledger files were saved (lines [3] and [4]). These files were then loaded into the Jupyter Notebook in a

format called a Pandas DataFrame (line [23]). Pandas is an open-source library providing high-

performance, easy-to-use data structures and data analysis tools, and DataFrame is the primary data

structure used in Pandas.

Once loaded into Jupyter, code was developed to “reshape” the data into the ADS format. Figure 3

illustrates the code that was used.

6 | P a g e
March 2019

Figure 3 – Python Code Developed to Reshape the SAP Trial Balance Test Data Into the ADS Format

Figure 3 illustrates the code that was written in order to begin “reshaping” the SAP trial balance data

set. As can be seen in the previous chart at line [37], the SAP fields: Account Number, Business Area,

Fiscal Year, and Ledger were identified to be “reshaped” into the ADS format: GL_Account_Number,

Business_Unit_Code, and Fiscal_Year. Figure 4, which follows, shows additional code that was used to

reformat and apply the ADS format to the SAP general ledger data set.

Figure 4 – Reshape the SAP General Ledger Test Data Into the ADS Format

7 | P a g e
March 2019

Figure 5 illustrates the final output (after the preceding routines were run) in the ADS format as

compared to the original SAP test data set format. It’s important to note that all output can be viewed in

Jupyter as well as downloaded into an Excel spreadsheet for further analysis.

Figure 5 – Final ADS Formatted Data Set Versus Original SAP Test Data Set

Original SAP Test Data Set (Excel Format)

ADS Standardized Data Set (Exported From Jupyter to Excel)

Figures 2–5 illustrate portions of the code used to apply the ADS format to the SAP test data set. To view

the full Jupyter notebook, please see appendix A.

Analyzing the ADS Standardized Data Set

Utilizing the AICPA’s Audit Data Analytics to Traditional Procedures – Mapping Document, the following

journal entry audit procedures were selected to be performed over the ADS standardized data set.

https://www.aicpa.org/interestareas/frc/assuranceadvisoryservices/auditdataanalyticsguide.html

8 | P a g e
March 2019

Figure 6 – Audit Data Analytics to Traditional Procedures – Mapping Document

*TRADITIONAL AUDIT PROCEDURES

INDUSTRY

AUDIT ASSERTION OR

OBJECTIVE OF THE

PROCEDURE

PHASE OF

AUDIT

a. Examine population for missing or

incomplete journal entries.

General

Completeness and

accuracy

Interim and year-end

b. Examine possible duplicate account entries.

General

Completeness

Interim and year-end

c. Examine round-dollar entries.

General

Completeness and

accuracy

Interim and tear-end

d. Examine post-date entries.

General

Completeness and

accuracy

Interim and year-end

e. Examine entries posted on weekends.

General

Completeness and

accuracy

Interim and year-end

Figure 6 represents a portion of the AICPA’s Audit Data Analytics to Traditional Procedure – Mapping

Document. For each of the audit procedures noted (a–e), routines were developed and run on the ADS

standardized data set. The following figures represent the code used to develop these routines. Please

note that Python also allows users to save blocks of code in separate files, then load those files as

libraries to be used within other files. This provides for more readable code and allows libraries that are

useful in more than one situation to be used repeatedly through a simple import process. In these

examples, the individual routines were written and saved as separate files, then imported into the main

file. This allows Python beginners (and those who may not be familiar with coding) to more easily

understand what routine is being run without having to understand all of the underlying code within

each routine. Figure 7 illustrates the Python routines that were developed to cover the audit procedures

noted previously, as well as some additional procedures. The routines were developed in a separate

library (Test_Procedures) and able to be imported individually from that library as Test_1_Procedures

and Test_2_Procedures.

9 | P a g e
March 2019

Figure 7 – Test 1 and Test 2 Procedures

10 | P a g e
March 2019

Figures 8 and 9 take a deeper dive into the routine “check for gaps in journal entry IDs.” Figure 8

represents the code and routine that was run, and figure 9 represents the related output. Output for

each of the routines noted here can be viewed in appendix A of this paper.

11 | P a g e
March 2019

Figure 8 – Routine Developed to Examine the Population for Missing or Incomplete Journal Entries

As noted previously, Python allows users to write code or use already written code, save as a separate

file, and import the library and use a specific method such as Test_1_Procedures.check_for_gaps to run

the routine. Figure 8 illustrates the routine that was created to check for missing or incomplete journal

entries. This particular routine checks the population for gaps in journal entry ID number. The ADS field

that is used in the coding is Journal_ID. As noted, 12 instances of gaps in IDs were noted within the

population. Figure 9 illustrates the related output.

Figure 9 – Missing or Incomplete Journal Entry Output

Applying audit data analytic techniques and tools to an audit, such as those that can be done using

Python, can be very beneficial. It can help with the analysis of audit areas, increase your understanding

of an entity and its operations, and greatly improve efficiency and accuracy. The routines that were

created in this example are accessible via the AICPA’s Audit Data Standards webpage. Each of the

routines can be used on any AICPA ADS standardized data set, as long as the data set is properly named

and contains the proper types of data in each field. Users are encouraged to visit the site and

experiment more with these routines. For additional information and guidance on Audit Data Analytics

and Audit Data Standards, please visit the AICPA’s Audit Data Analytics website.

https://www.aicpa.org/interestareas/frc/assuranceadvisoryservices/auditdatastandards.html
https://www.aicpa.org/interestareas/frc/assuranceadvisoryservices/auditdatastandards.html

12 | P a g e
March 2019

VI. Appendix A —Python Code

The images that follow are screenshots from the Jupyter notebook. It represents the Python code

developed to (1) apply the ADS format to an SAP test data set and (2) run routines over the ADS

standardized data set for further analysis. The following code can be accessed on the AICPA’s Audit

Data Standards webpage.

Loading and Reshaping the SAP Test Data Set

https://www.aicpa.org/interestareas/frc/assuranceadvisoryservices/auditdatastandards.html
https://www.aicpa.org/interestareas/frc/assuranceadvisoryservices/auditdatastandards.html

13 | P a g e
March 2019

14 | P a g e
March 2019

15 | P a g e
March 2019

16 | P a g e
March 2019

17 | P a g e
March 2019

Running Routines, Covering Journal Entry Procedures, for Further Analysis

18 | P a g e
March 2019

19 | P a g e
March 2019

 (Please note that the preceding results are a portion of the 6,919 items.)

20 | P a g e
March 2019

 (Please note that the preceding results are a portion of the 226 items.)

21 | P a g e
March 2019

 (Please note that the preceding results are a portion of the 149 items.)

22 | P a g e
March 2019

 (Please note that the preceding results are a portion of the 190 items.)

23 | P a g e
March 2019

VII. Appendix B — Helpful Resources

Python Resources:

 Python

 Beginner’s Guide to Python

 Microsoft Azure Notebooks

 Jupyter

 AICPA Resources:

 Audit Data Analytics

 Audit Data Standards

 Rutgers AICPA Data Analytics Research Initiative

https://www.python.org/
https://wiki.python.org/moin/BeginnersGuide/Programmers
https://notebooks.azure.com/
https://jupyter.org/
https://www.aicpa.org/interestareas/frc/assuranceadvisoryservices/auditanalytics.html
https://www.aicpa.org/interestareas/frc/assuranceadvisoryservices/auditdatastandards.html
https://www.aicpa.org/interestareas/frc/assuranceadvisoryservices/radar.html

