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ABSTRACT With the deepening penetration of renewable resources worldwide, power system operators are
faced with emerging challenges, e.g., the increase of operating risks due to the volatility and uncertainty of
wind and solar power. To efficiently identify the operational limit violations, a switch from deterministic to
stochastic framework for assessing the system security, which could manage various types of uncertainties,
has been advocated in this paper. The established model is based on an improved probabilistic load flow,
which is adapted to incorporate the steady-state behavior of frequency regulation. An efficient importance
sampling (IS) technique is also developed to speed up the crude Monte Carlo (MC) simulation in estimating
the low probability of violations of security constraints. Extensive computational experiments on both the
IEEE 14-bus test case and a simplified regional system show that the proposed IS estimator makes significant
enhancement to the crude MC in the computational efficiency and has better numerical performance as
compared with other IS schemes.

INDEX TERMS Security risk assessment, numerical method, renewable energy integration, frequency
regulation, probability.

I. INTRODUCTION
Operating electric power systems economically and within
the security limits has always been a critical and controver-
sial issue for system operators, especially with large-scale
integration of renewable energy resources. The combination
of market liberalization and additional uncertainty entailed
by renewable generation forecast error has significantly
increased the operational risk. On the other hand, the electric
utilities tend to operate the systems closer to their security
margins for more economic gains, which however, could
diminish the reliability. To make a trade-off between the
reliability and economy, there is a rising need for effi-
cient tools that could give a comprehensive evaluation of
the system security level when taking into account various
uncertainties [1], [2].

At present, the security assessment tools such as N-1 cri-
terion based methods are mostly deterministic. They are
performed under the predefined operating conditions with a

given contingency list [3]. The entire system is maintained
within adequate security margins to satisfy the worst-case
scenario, which may lead to rather conservative results at a
higher operational cost far from reality. Therefore, a trend to
a new framework for assessing the security of power systems
is emerging where stochastic security measurement (SSM) is
employed to manage all sorts of uncertainties.

SSM provides a quantitative evaluation of the system secu-
rity level in terms of the degree and occurrence of viola-
tion of technical limits, e.g., transmission line overload and
over-/under-voltage violations using probabilistic methods.
The risk indices computed, which are dependent on the
power flow distribution and uncertainty modeling, are used
to enforce an upper bound on each state variable in the
optimal power flow (OPF) formulations as reported in [4].
In [5], Wang et al. presents a security-constraint stochastic
unit commitment (SC-SUC) model by adding security
requirements as chance-constraints in case of contingencies.
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The transmission line overload probability is evaluated in [6]
using the point estimate method accounting for the spatial
correlation in the wind-integrated power systems. Security
assessment is also performed in [7] to determine the optimal
spinning reserve scheduling for the compensation of wind
power fluctuations.While the application of SSM is attractive
and fundamental, an open question in these literatures is how
to conduct the SSM in an accurate and computationally-
efficient manner. Towards this end, we take advantage of a
powerful tool, i.e., probabilistic load flow (PLF), to calculate
the security metrics in the probabilistic framework.

PLF is implemented to capture the steady-state behavior
of the highly uncertain systems and can be either solved
numerically, e.g., using Monte Carlo simulation (MCS) [8]
or analytically. Analytical approaches such as convolution
method [9] and cumulant method (CM) [10] are less com-
putationally intensive due to the linearization of power flow
equations. The state variables (e.g., node voltage and line
flows) could be approximated with acceptable accuracy when
following the Gaussian or near-Gaussian distributions. How-
ever, the linear and Gaussian assumptions could limit the
applicability of the analytical methods especially for more
general and complicated practical systems. MCS typically
represents the uncertainty by repetitive sampling, and hence
it could immune the solution against the model and system
restrictions. Nevertheless, the cost of time required for esti-
mating the probability of events with low occurrence (e.g.,
the violation of operating constraints) could be very high,
making it intractable for on-line security computations [11].

To circumvent these problems, in this paper, we propose
a novel importance sampling (IS) technique for estimating
the very low steady-state operating risks in the presence
of renewable resources. The method is in fact a two-stage
procedure that, first, modeling of the state variables in the
form of piecewise affine approximations, and second, design
of an efficient IS estimator based on these approximations.
The contributions are threefold summarized as: 1) It com-
prehensively incorporates the steady-state performance of the
frequency regulation in the traditional PLF formulation by
considering the dynamic power flow allocation. 2) It can
achieve a significant speed-up ratio ofMCS by a newly devel-
oped IS estimator with numerical robustness and high accu-
racy. 3) In addition to the security indices such as probability
of line overload and voltage violation (as is possible to do
with existing methods), it also allows for evaluating the prob-
ability of exceeding the ramping capability and probability
of violation of over-/under-regulation limits of conventional
generators.

The remainder of the paper is organized as follows.
In Section II, probabilistic modeling of contingencies and
renewable power forecast error is presented. In Section III,
we formulate an improved PLF model with the consideration
of dynamic power flow allocation and frequency regulation.
Section IV presents the methods for constructing the opti-
mal IS estimator. Case studies are performed in Section V
where comparisons are made between the proposed IS and

other methods. Further discussions and conclusions are made
in Section VI and VII.

II. PROBABILISTIC MODELLING OF UNCERTAINTIES
A. MODELLING OF CONTINGENCIES
Contingencies such as outages of lines and generation units
could have great impacts on system security, thus should be
concerned in the security assessment. Conventionally, gen-
erator outage is considered as a discrete random variable
represented by the capacity outage probability table (COPT),
which gives the probability for each possible capacity level.
The line outage in [12] is modeled by two coupled virtual
power injections at both ends of the line. This is especially
useful as the network structure is kept intact with invariant
Jacobi and sensitivity matrices. The equivalent virtual power
injections 1P and 1Q can be calculated as follows [12].[
P0ij,Q

0
ij,P

0
ji,Q

0
ji

]T
= (I4×4 − T4×4)

[
1Pi,1Qi,1Pj,1Qj

]T (1)

where I4×4 is a 4×4 unity matrix. T4×4 is the sub-matrix of
the line flow sensitivity matrix. Pij, Qij and Pji, Qji are real
and reactive power flows from bus i to j and j to i, respectively.
The superscript ‘0’ is for the pre-contingency system.

When the virtual injections1P and1Q are obtained from
Eq. (1), the random line outages could therefore be handled
in a similar manner as the random power injections, but with
0-1 distributions given the forced outage rate (FOR) of each
line.

B. FORECAST ERROR MODELLING OF LOAD AND
RENEWABLE GENERATION
Apart from contingencies, forecast error of load and renew-
able power is another source of uncertainties that may cause
disturbances in the system, and hence raise the security level.
The system load L is assumed to be normally distributed
in most literature [13], defined as L ∼ N (mL , σL). The
mean value mL is the point forecast with load forecast error
eL ∼ N (0, σL) around it. Wind and solar power predic-
tions are less accurate than the load forecast, and their error
distributions are usually non-Gaussian. The probability den-
sity function (PDF) of wind power forecast error is found
to be biased and long-tailed [14], and can be modeled by
the weighed Beta distribution [14] or other mixed distribu-
tions [15]. In [16], a non-parametric approach is used to
simulate the forecast error sequence of solar power based on
the historical data. Moreover, the methodology in [17] can
be used to compute the correlation coefficient matrix [18] to
generate the correlated forecast error samples, when given the
spatial correlation between the renewable power injections at
adjacent nodes.

III. PROBLEM FORMULATION
A. DYNAMIC UNBALANCED POWER ALLOCATION
In the traditional power flow studies, it is assumed that system
power imbalance due to the generation-load mismatches is
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fully balanced by conventional generators at the slack bus.
This assumption may be true for small variations of power
injections, but will lead to large deviations from the real
operating conditions with increased power uncertainty e.g.,
renewable generation and flexible load. Dynamic power flow
model in [19] shows that the unbalanced power is actually
assigned to load and generators that are participating in the
control process, where the static frequency regulation char-
acteristics should be taken into account.

The real-time load and renewable power variations can be
tracked by the primary and secondary frequency regulation,
with which the frequency is maintained within its accept-
able limit. With the goal to better coordinate the primary
and secondary control, the frequency deviation threshold
1fT is set that, when the system disturbance is small i.e.,∣∣1Psys∣∣ ≤ KS1fT , we consider the mere effect of the primary
frequency regulation as

1Psys = KS1f ⇒ 1f = 1Psys/KS (2)

where 1Psys is the total real power imbalance; KS is the
unit power regulation factor of the system. The frequency
deviation 1f can be deduced from Eq. (2).
Accordingly, the unbalanced power allocated to

bus i (1Pbi ) is given by

1Pbi = 1PGi −1PLi = −KGi1f − KLi1f

= − (KGi + KLi)1Psys/KS (3)

where KGi, KLi are the unit power regulation factors of the
generator and load at bus i, respectively.
Remark 1: Practically, in order to reduce the frequent

action of the controller, we manually set the adjustable dead
band 1fd equal to the average of the dead band of all gen-
erator governors in the system. Then the unbalanced power
allocation model is modified as

1Pbi =


−KLi1Psys/

∑
KLi,

∣∣1Psys∣∣ ≤ KL1fd
− (KGi + KLi)1Psys/KS ,
KL1fd <

∣∣1Psys∣∣ ≤ KS1fT (4)

When there is a large power imbalance in the system that∣∣1Psys∣∣ > KS1fT , the total unbalanced power allocated to
bus i after the secondary control is calculated as

1Pbi = αi1Psys (5)

where αi is the participation factor of generator i. This value
could be determined according to the use of an affine control
strategy [20].

Above all, we finally derive the model of dynamic unbal-
anced power allocation as

1Pbi =


−KLi1Psys/

∑
KLi,

∣∣1Psys∣∣ ≤ KL1fd
− (KGi + KLi)1Psys/KS ,
KL1fd <

∣∣1Psys∣∣ ≤ KS1fT
αi1Psys,

∣∣1Psys∣∣ > KS1fT

(6)

Remark 2: For the sake of simplicity, we assume that there
are adequate spinning reserves for the primary and secondary
regulation, and all dispatched generators are capable of pro-
viding the frequency regulation response.

B. PROBABILISTIC LOAD FLOW CONSIDERING
FREQUENCY REGULATION
The analytical model in the conventional PLF computation
can be expressed in a matrix form as [21]{

1X = J−10 1W = S01W
1Z = T01W

(7)

where 1X , 1Z are state variables, representing the bus volt-
ages and line flows, respectively; 1W = [1P|1Q] is the
nodal power injections including real and reactive power1P
and 1Q; S0 = J−1

0 is the inverse of Jacobian matrix; T0 is
the sensitivity matrix of line flows with respect to 1W.

Due to the consideration of frequency regulation,
the unbalanced power allocated to each bus should be added
to the nodal power injections, and the first expression in
Eq. (7) becomes

1X =
[
SP0

---- SQ0
] 1Pnet +1Pb- - - - - - - - - - - -

1Qnet

 (8)

where SP0 and SQ0 are the block matrices denoting the real
and reactive part of S0. The superscript ‘net’ highlights the
net increase of power injections before the frequency control,
and is omitted for simplicity in the rest of the paper. For an
n-bus network, 1Pb =

[
1Pb1, · · · ,1P

b
i , · · ·1P

b
n
]T

is the
vector of the unbalanced power allocated to each node. The
reactive power injections are kept unchanged because of the
weak coupling with the frequency. Substituting Eq. (6) into
Eq. (8), we obtain the piecewise linearized form of 1X in
the following three segment (

∣∣1Psys∣∣ ≤ KL1fd , KL1fd ≤∣∣1Psys∣∣ ≤ KS1fT and
∣∣1Psys∣∣ > KS1fT ) as

1X =


SP0

(
1P − KL1Psys/

∑
KLi
)
+ SQ01Q

SP0
[
1P − (KG + KL)1Psys/KS

]
+ SQ01Q

SP0
(
1P + α1Psys

)
+ SQ01Q,

(9)

where KG = [KG1,KG2, · · · ,KGn]T ; KL = [KL1,
KL2, · · · , KLn]T and α = [α1, α2, · · · , αn]T .

1Psys ≈
n∑
i=1

(1PGi +1PRi +1PCi −1PLi) =
n∑
i=1

1Pi

(10)

where1PGi,1PRi,1PCi and1PLi are the incremental power
injections at bus iwith respect to the conventional generators,
renewable resources, contingencies and load, respectively.
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If we define H (α) =


1+ α1 α1 · · · α1
α2 1+ α2 · · · α2
...

...
. . .

...

αn αn · · · 1+ αn

, then
Eq. (9) can be rewritten as

1X =


SP0H

(
−KL/

∑
KLi
)
1P + SQ01Q

SP0H [−(KG + KL)/KS ]1P + SQ01Q
SP0H (α)1P + SQ01Q

(11)

Given that the load flow equation is linearized around a
specific point (normal operating point), the deviations that
are far away from this point may cause significant truncated
errors, especially in the process of secondary control. Herein,
we present a multi-linearization scheme to improve the accu-
racy of the single-point linearization.

When
∣∣1Psys∣∣ > KS1fT , we firstly divide the

system unbalanced power into m even intervals (i.e.,[
1P0sys,1P

1
sys

]
, . . . ,

[
1Pm−1sys ,1P

m
sys

]
). The integer m

should be properly selected according to the scale of 1Psys.
Suppose that µ1, · · · , µm are the mean values of the each
interval, the linearization point of the kth interval

[
Pk |Qk

]T
can be determined as Pk

- - - -
Qk

 =
 P0
- - - -
Q0

+ µk
 α

- - - -
0

, k = 1, 2 · · · ,m

(12)

where ‘0’ is a n × 1 zero vector. Then the mathematical
expression corresponding to the steady-state performance of
the secondary control (the third expression in Eq. (11)) can
be modified as

1X = SPkH (α)1P
′
+ SQk1Q

′, k = 1, 2, · · · ,m (13)

where Sk =
[
SPk |SQk

]T is the inverse of Jacobian matrix
with respect to the linearization point in the kth interval. P ′

and Q′ are the net power injections corresponding to the new
linearization point Sk .
Similarly, we can also have a modified model for the

line flows Z in a piecewise linear form as Eq. (11)
to incorporate the steady-state performance of frequency
regulation.
Remark 3: Although the multi-linearization process can

extend the linear model to handle the input variables with
large variations, the errors are likely to be ignored under the
following circumstances: 1) The equivalent power injections
of line outages are much larger than those of the load and
renewable generation. 2) The nodal power injections are large
but with opposite directions and offset each other. To address
these issues, we alternatively use the conventional Newton
iteration method to obtain more precise results in case that
the variation of voltage angle |1θ | (calculated via Eq. (11)
and (13)) exceeds a predefined threshold 1CT .

IV. IMPORTANTANCE SAMPLING FOR
SECURITY ASSESSMENT
A. CHALLENGES FOR MONTE CARLO SIMULATION
The main task in the stochastic security assessment is to
compute the probabilities of violating the security constraints,
which in essence is a rare-event simulation problem, defined
as

µ = E [1 {X > c}] (14)

where c is a predefined threshold; 1{·} is an indicator function
for the random variable X .µ can be estimated numerically by
performing MCS as follows.

µ̂ =
1
N

N∑
i=1

1
{
X i > c

}
(15)

where X i(i = 1, 2, · · · ,N ) are the random samples of X .
As for the case in section III, X is the state variable expressed
as a piecewise affine function of input power injections, for
which the PDFs are known and can be sampled directly.

The accuracy of MCS estimate can be measured by wd ,
called the relative half-width of 95% confidence interval.
According to the Central Limit Theorem [22], the confidence
interval for any random variable at 95% probability should be
within the interval

[
µ± 1.96σ/

√
N
]
when the sample sizeN

is large enough. We could thus obtain the width as

wd = 1.96
σ

µ
√
N

(16)

For a given wd , the number of MCS is demanded as

N (wd , σ ) = 1.962
σ 2

w2
dµ

(17)

Note that 1{X > c} is actually a Bernoulli random variable
with success probability µ and the variance σ 2

= µ(1− µ).
If µ is very small, Eq. (17) can be simplified as

N = 1.962
µ (1− µ)

w2
dµ

2
≈ 1.962

1

w2
dµ

(18)

For probabilities of order 10−4 with wd = 0.1, it requires
running the simulation for more than one million times,
which is considerably time-consuming. A method for reduc-
ing this computational challenge is presented in the following
sections.

B. IMPORTANCE SAMPLING TECHNIQUE
As can be seen in Eq. (17), the required MCS runs are
dependent on the variance σ 2. Therefore, the speed-up of
MCS can be achieved by the variance reduction technique and
importance sampling (IS) is considered in this paper.

The IS is originally used in the portfolio risk manage-
ment [23] for estimating the probability of investment losses
and can be adapted to other rare-event simulations. It makes
the use of the measure transformation to allow more samples
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that are generated from a new distribution (measure) to be
within a certain collection of the indicator function.

µ = E [1 {X > c}] = Eg

[
1 {X > c}

f (X)
g (X)

]
(19)

where g(·) is the IS distribution developed to acquire higher
probabilities of the out-of-limit events; Eg(·) is the expec-
tation with respect to g; The term f (X )/g(X ) is called the
likelihood ratio, denoted as l(X ). We could obtain µ with an
IS estimator as

µ̂ =
1
N

N∑
i=1

1
{
X̃ i > c

}
l
(
X̃ i
)

(20)

where X̃ i are samples drawn from g. The variance σ 2 in
Eq. (17) now becomes σ̃ 2 (the variance of 1{X > c}l(X )
under g), hence the computational efficiency could be
enhanced using IS provided σ̃ < σ .

C. ALGORITHMS FOR FINDING OPTIMAL IMPORTANCE
SAMPLING DISTRIBUTION
Given the salient feature of IS, a question that arises nat-
urally is how to design an efficient IS estimator. In [24],
a two-step method for computing the IS distribution in math-
ematical finance is presented which is also adaptable to our
application.
Step 1:Modify the approximation of state variables evalu-

ated in the system. The input power injections1W in Eq. (11)
with arbitrary distributions must be modified to be readily
utilized by the IS technique. Firstly, 1Wi is expressed by the
intermediate variable Vi as

1Wi = F−1i [8(Vi)], i = 1, 2, · · · , n (21)

where Vi ∼ N (0, 1) is the standard normal variable; Fi(·)
and8(·) are cumulative distribution functions (CDFs) of1Wi
and Vi, respectively. F

−1
i (·) is the inverse function of 1Wi.

To guarantee the desired correlation of 1W at different
nodes, the correlation coefficient matrix RV of V should
be determined empirically as in [25]. Let RV = LLT be
the Cholesky decomposition of RV , where L is the lower
triangular matrix. Suppose that Z = [Z1,Z2, · · · ,Zn]T is the
uncorrelated normal vector, we have

Z = L−1V (22)

Once the explicit expression between 1W and Z is
obtained, the state variable X can be approximated as a func-
tion of Z, which fulfills the prerequisite of the IS implementa-
tion. The above process is the so-called Nataf transformation
that allows for themapping of the correlated random variables
in their original space into the uncorrelated standard normal
domain.
Step 2: Find the optimal IS distributions for estimating the

probability of violations. Suppose thatZ ∼ N (θ , In) is shifted
from the original standard normal PDF8(·) after themeasure
transformation, then the likelihood ratio l and probability µ

are respectively given as

l (Z) =
8(Z)
8θ (Z)

= exp
(
−θTZ+

1
2
θTθ

)
(23)

µ = P {X (Z) > c} = E [1 {X (Z) > c}]

= E8θ
[
1 {X (Z) > c} exp

(
−θTZ+

1
2
θTθ

)]
(24)

where θ is the shifting parameter that dominates the perfor-
mance of an IS estimator; 8θ is the desired IS distribution
from which the samples Z̃ i are drawn for estimating the
approximation of µ.

µ̂ =
1
N

N∑
i=1

1
{
X
(
Z̃ i
)
> c

}
exp

(
−θTZ̃

i
+

1
2
θTθ

)
(25)

The optimal θ selected is the one that gives the minimum
variance of µ in Eq. (24). Since IS is an unbiased estimator,
the variance reduction of µ is equivalent to the decrease of its
second-order moment as

E8θ
[
1 {X (Z) > c} l2 (Z)

]
= E8θ

[
1 {X (Z) > c} exp

(
−2θTZ+ θTθ

)]
= E

[
1 {X (Z) > c} exp

(
−θTZ+

1
2
θTθ

)]
(26)

Consequently, the optimal shifting point θ∗ is determined
by a generalized stochastic optimization problem as

θ∗ = argmin f (θ)

= arg
θ

minE
[
1 {X (Z) > c} exp

(
−θTZ+

1
2
θTθ

)]
(27)

The Eq. (27) can be numerically solved by Newton
method [26]. We use the first and second derivatives of f (θ )
(gradient ∇f (θ ) and Hessian matrix ∇2f (θ )) to construct
an iterative format of θ . The major challenges include the
estimates of ∇f (θ ), ∇2f (θ ) at each iteration and the inverse
operation for the high order of Hessian matrix. In [27],
Glasserman simplified the problem Eq. (27) by substituting
the expectation on the right-hand side with the Laplace esti-
mate based on large deviation theorem. Computational gains
could be achieved as no iteration is needed compared with
Newtonmethod, but its numerical stability needs to be further
examined.

Herein, we present a new way of solving Eq. (27) as fol-
lows. The optimal solution θ∗ must satisfy that ∇f (θ∗) = 0,
which can be written as

E
[
−1 {X (Z) > c} exp

(
−θ∗TZ+

1
2
θ∗Tθ∗

)
Z
]

+E
[
1 {X (Z) > c} exp

(
−θ∗TZ+

1
2
θ∗Tθ∗

)
θ∗
]
= 0

(28)

If the stochastic term exp(−θ∗TZ) in the expectation
operator is regarded as a constant, the common item
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FIGURE 1. Flowchart of the proposed stochastic security assessment.

exp(−θ∗TZ + 1
2θ
∗T θ∗) in the first and second expectation

operators can be divided out, which yields

θ̃
∗
=

E [1 {X (Z) > c}Z]
E [1 {X (Z) > c}]

(29)

where θ̃
∗
is asymptotically optimal for θ∗, and could be

estimated by MCS. It is evident that the proposed algorithm
is very simple and easy to implement. Detailed information
regarding its accuracy and numerical stability will be tested
and discussed in the next section.

Fig. 1 depicts the flowchart of conducting the proposed
approach to the stochastic security assessment using the IS
scheme based on a modified PLF model which incorporates
the steady-state behavior of the frequency regulation.

V. CASE STUDIES
Two case studies are carried out to evaluate the performance
of the proposed methodology: the modified IEEE 14-bus sys-
tem and a simplified regional power system in the east coast
of China. We focus on assessing the system security level
in a look-ahead horizon with datasets of renewable energy,
load production and their forecasts. The improved PLFmodel
and its adapted sampling techniques are implemented using
Matlab 2014b on a PC with Intel core i5 3.0 GHz and 3GB of
RAM.

TABLE 1. Parameters of wind power forecast error.

A. MODIFIED 14-BUS SYSTEM
The network configuration and data used in the base case
of IEEE 14-bus system can be referred to [28]. Two wind
farms are installed at nodes 12 and 13 with forecasted power
of 20 MW and 30 MW at time tk , respectively. The fore-
cast error for wind power is modeled by Beta distribution
βk (ak , bk ) as in [24], the parameters of which are given
in table 1 and the correlation coefficient between them is
0.6. The load forecasts at tk are assumed to be equal to
their base values and the uncertainty is represented as 10%
deviation from their forecasts. In this system, generators at
bus 1 (g1) and 2 (g2) play the role of sharing the power
imbalance based on their participation factors (α1 = 0.55,
α2 = 0.45), whereas the other generators are functioned as
synchronous compensators. The assumed FORs representing
random outages of g1, g2 and all lines are 1.12%, 1.34%
and 0.15%, respectively. Other associated parameters are set
as KG1 = 25, KG2 = 15, GL = 1.5, 1fd = 0.005Hz,
1fT = 0.1Hz, 1CT = 0.1rad .
The estimates of probabilities of voltage violations and

line overloads using the proposed IS are compared to those
obtained by crude Monte Carlo (MC) in table 2 for four
specific examples (V10, V14, P3−4 and P12−13). Two scenar-
ios are conducted with and without the consideration of the
frequency regulation. Each µ̂ is the average of five repetitive
simulations. The required number of samples for the two
sampling techniques to reachwd = 0.1 are shown in columns
3 and 6, and their ratio r (speed-up ratio) demonstrates the
enhancement of the computational efficiency.

It can be seen that for a predefined accuracy level, the pro-
posed IS scheme could reduce the necessary MC runs from
up to ten thousand to only a few hundred times, which is
significantly more efficient than the crude MC method. It is
also worth noting that for smaller probabilities as in the
case of V10 and P3−4, larger gains could be achieved with
the ratio up to order of 102. Conversely, when estimating
higher operating risks (e.g. µ̂ = 0.024 for P12−13). Since the
occurrence of violations is not that rare, the speed-up effect
is less obvious. Moreover, results between the two scenarios
show a non-negligible difference, which is relatively subtle
for the bus voltage, but profound when it turns to line flows.
As for the examples of V10 and P12−13 whose CDFs are
illustrated in Fig. 2, we can see that the range of variations in
both cases get reduced when not considering the frequency
regulation, which in turn, may result in the underestimation
of the system risk level.

Our security assessment model also allows for evaluating
the probabilities of violating the under-/over-regulation limits
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TABLE 2. Comparisons of Crude MC and the proposed IS in estimating
the probabilities of voltage violations and line overloads with and
without frequency control in the IEEE 14-bus system.

FIGURE 2. CDF comparison of the bus voltage and line flow with and
without considering the frequency control: (a) V10, (b) P12−13.

of dispatched generators. Suppose that the tolerance band
of generator g1 and g2 are [0.4, 3.0] p.u. and [0.2, 0.6]
p.u., respectively. The output of g1 and g2 (denoted by
P̃g1 and P̃g2) considering the process of unbalanced power
allocation is given as

P̃gi = P̄gi +1P
b
i , i = 1, 2 (30)

where P̄gi is the expected value of P̃gi obtained by traditional
power flows without frequency regulation; The expression of
the unbalanced power 1Pbi is given by Eq. (6).

To confirm the effectiveness of the proposed IS scheme on
the computational performance, we comparatively tested the
aforementioned three IS methods in section IV.C (denoted as

FIGURE 3. Number of samples needed to achieve the accuracy level of
wd = 0.5 using crude MC and different IS schemes.

Newton, Laplace and Proposed for short) with crude MC as a
reference. Fig. 3 shows the number of samples N 0 needed for
reaching the accuracy level ofwd = 0.5 (Note the logarithmic
scale on the left-hand y-axis for P̃g1). Significant reduction
in MC runs can be observed in both cases using one of the
IS schemes, among which the Laplace and Proposed have
similar order of magnitude of the speed-up ratio, while the
Newton is outperformed by them demanding a few more
simulations. The big gap in the number of samples required
by the crude MC for P̃g1 and P̃g2 due to the different security
level turns out to be obscure when using IS methods.

For detailed comparisons among the three IS schemes
in terms of both the computational accuracy and numer-
ical robustness, the relative error index in Eq. (31) is
adopted to demonstrate the degree of deviation for the esti-
mated probabilities of P̃g1 and P̃g2 versus the sample size
N = 200, 300, · · · , 1000 as shown in Fig. 4.

εγµ =

∣∣∣∣ µ̂IS − µtµt

∣∣∣∣× 100% (31)

where εγµ is the average error of probabilityµwith superscript
γ referring to the specific state variables. µ̂IS andµt are the IS
estimate and the true value of µ (obtained by 100000 MCS),
respectively.

We can see from Fig. 4 that the Laplace and Proposed give
consistently more accurate results than the Newton for the
same sample size from 200 to 1000. The relative error of
Newton is extremely large with less than 200 samples, after
which it drops rapidly before leveling out when N > 800. In
contrast, the error curves of either the Laplace or Proposed
is steadier and remain almost stationary after 600 samples,
indicating numerical robustness and good convergence prop-
erty. Despite of a significant difference in the initial errors
between P̃g1 and P̃g2 (N = 200), the accuracy of the three
methods could finally reach the same order of magnitude with
sufficient samples.

B. SIMPLIFIED REAL REGIONAL SYSTEM
The performance and feasibility of the proposed method
is further tested on a larger and actual system here: the
simplified real regional system in east part of China with
data collected from Jiangsu Electric Power Dispatching
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FIGURE 4. Error curve comparisons of P̃g1 and P̃g2 by different IS
schemes in the IEEE 14-bus system: (a) P̃g1, (b) P̃g2.

TABLE 3. Parameters for 6 wind farms in the regional power grid at time
steps tk and tk+1.

Center (JEPDC). The network configuration is depicted
in Fig. 5 and it contains 3 voltage levels (500kV, 220kV
and 33kV), 34 buses, 43 branches and 5 conventional power
plants. Six wind farms are connected to buses 12, 18, 19, 22,
25 and 33 (marked A∼F) with nominal power of 55, 80, 100,
48, 50 and 42 MW, respectively. The IS schemes applied to
the IEEE 14-bus test system only investigate the snapshot of
operating conditions at time tk . In real applications, security
assessment should be performed at continuous time steps to
capture any operating changes and identify the potential risks
of the system. Suppose that the forecasts for wind and load
used at tk are from the historical data (10 a.m. July 1, 2016)
at a resolution of 15min (1t = 15min). For the next time step
tk+1 = tk+1t , the system load is expected to be increased by
6%. The parameters of wind forecasts at tk and tk+1 are shown
in table 3. Given that the time frame is short, the values of
FOR provided by JEPDC at tk and tk+1 are kept unchanged.

FIGURE 5. Configuration of the simplified real regional system.

TABLE 4. Comparisons of crude MC and the proposed IS in estimating
probabilities of voltage violations and line overloads with and without
frequency control in the real regional system.

Table 4 lists the results of several bus voltages and line
flows that have the highest risks. The speed-up of crude MC
is even more pronounced here due to the low risk occurrence
in the real systems. It is still true that a smaller probability
can guarantee a larger speed-up ratio. An exception is for
the case µ̂ = 8.2 × 10−5 in P22−25, where its ratio is less
than that of the P24−25. The discrepancy of the estimated µ̂
between the two scenarios is obvious even for the case of
bus voltages. Since the probability of transmission line over-
load is relatively small when not considering the frequency
regulation, only those lines with the probability higher than
10−6 are shown in the table (P19−20 and P24−25). Therefore,
the operating risks could be seriously underestimated, which
demonstrates the necessity of incorporating the frequency
performance into our model.

The relative error curves of the three IS schemes in estimat-
ing the probability of violating under-/over-regulation limits
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FIGURE 6. Error curve comparisons of Pg32 by different IS schemes at
time steps tk and tk+1 in the real regional system: (a) tk ; (b) tk+1.

of g32 are shown in Fig. 6 at time steps tk and tk+1, respec-
tively. It can be seen that the Laplace has more than twice
the error than the Newton and Proposed counterparts, and
shows no sign of convergence within 1000 simulations. This
means that the numerical robustness of the Laplace is very
sensitive to the system dimension, hence it is not applicable
when facing large complex networks. However, the Newton,
which is outperformed by the other two IS schemes in the
IEEE example, gives even more accurate results than those
of the Proposed. Both of the methods converge after 800 sim-
ulations at the percentage error of nearly 2%.

Fig. 7 demonstrates the probability of violating the
ramping constraints for generator g30 based on the 15-min
forecasts (from tk to tk+1) via boxplots. The ramping rate of
g30 in a specified time frame 1t is expressed as

R̃g30 = P̃(
tk+1)
g30 − P̃(tk )g30 /1t (32)

Clearly, we see a large variation of ramp-up/-down risk
using the Laplace, whereas the results obtained by the New-
ton and Proposed concentrate in a small region near the
median. This is consistent with the conclusion made as
in Fig. 6 that the Newton and Proposed outperform the
Laplace in larger systems with multiple variables.

VI. DISCUSSION & COMPARISON WITH PRIOR WORK
Comparing the problem formulation in Eq. (11) and (13) with
the traditional one in Eq. (7), we can see that our characteriza-
tion of the linearized PLF model is quite precise. To the best
of our knowledge, this is the first time in the literature where

FIGURE 7. Boxplots of the ramping risk for g30 using different IS schemes.

the power flow analysis considering the steady-state behavior
of the frequency regulation, the correlation and the large
variation of input variables under various uncertainties is
characterized in such a comprehensive manner. Specifically,
the proposed model makes it possible to evaluate the prob-
ability of violating the generator ramping and over-/under-
regulation limits by assuming that the power imbalance is
charged to a group of dispatched generators instead of the
single one at the slack bus. The results thus unfold a more
real picture for the forecasted operating conditions and avoid
underestimation of the system risk level under high renewable
uncertainty.

Generally, most existing works for the power system secu-
rity evaluation, using deterministic or probabilistic tools, are
based on the N − 1 or N -k criterion with a given operating
condition. Tough the deterministically based approaches such
as sensitivity analysis [29], have the merits of straightforward
understanding and easy implementation, the results are highly
conservative since it only depends on the worst-case sce-
nario. For other works that are in the probabilistic framework,
several reliability parameters like Loss of Load Probabil-
ity (LOLP), Expected Energy Not Served (EENS) are used
to reveal the effect of any cascading events [30]. However,
such security metrics require extensive calculations to cope
with the renewable uncertainty which presents at all times and
is intrinsically different from rare contingency events. Hence,
a highly desirable feature of the proposed security assessment
is that it does not need to consider the situation after an N −1
outage and its potential cascading events. The risk indices are
quantified in terms of the violation of technical limits, which
are much easier to be calculated and for the system operators
to identify the vulnerable or high-risk parts. Moreover, this
type of risk measures are usually used for incorporation in
the chance-constraint economic dispatch or unit commitment
problems.

Finally, a newly designed IS estimator is proposed to fit the
above PLF formulations for estimating the very low proba-
bility of the operating violations. Its numerical performance
is tested and compared with other two commonly used IS
schemes on two different-sized case studies. Though the level
of error is very close to one another after 1000 samples,
the proposed method shows better numerical stability for
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a wide range of sample size and system dimensions. To
achieve further reduction of the computational expense,
other smart sampling strategies like Latin Hypercube sam-
pling (LHS) and Quasi-Monte Carlo sampling (QMC) [31],
can be adopted and combined with the proposed IS scheme
to improve the sampling efficiency of the generalized random
sampling method.

VII. CONCLUSION
This paper presents a stochastic framework in the assess-
ment of power system security, accounting for uncertainties
involving the contingencies and renewable energy forecasts.
PLF, an efficient tool in probabilistic analysis, is modified
to incorporate the steady-state behavior of the frequency
regulation in the model which is represented as a piecewise
affine approximation of the input power injections. The error
induced by this linearized model is also alleviated using a
multi-linearization procedure.

Particularly, an importance sampling technique adapted
frommathematic finance is employed to speed-up theMCS in
estimating the low-probability events. Two essential steps are
modified to fit our applications: adjustments in the piecewise
function of the state variables and design of the optimal
IS distributions. Comparative studies and numerical experi-
ments are carried out on both the IEEE 14-bus benchmark
and a regional power network using the proposed method and
other IS schemes. It shows that more accurate and robustness
results are obtained simply by the proposed IS estimator with
significant reduction of computational effort as compared to
the crude MC.

It is noted that the probability indices computed in this
paper only partially reveal the system security level in a
steady-state manner. In this regard, future work should be
done which accounts for the dynamic behavior of the system
such as stability analysis, in order to form a comprehensive
security domainwhere the proposed IS scheme can be applied
to estimate the operating risks as well.
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