
Research Statement
Srivatsan Ravi

Almost every computing system nowadays is distributed, ranging from multicore CPUs prevalent in everyday desk-
tops/laptops/Internet of Things (IoTs) to the very Internet itself. Thus, understanding the foundations of distributed
computing is important for the design of efficient computational techniques across all scientific fields. Moreover,
many problems that are trivial to solve sequentially are impossible or infeasible to solve in a distributed fashion, thus
presenting us with problems of deep intellectual yet practical interest.

My research is primarily concerned with the theory and practice of distributed computing. Designing provably cor-
rect distributed programs requires overcoming some nontrivial challenges, the most important of which is achieving
efficient synchronization among processes of computation. When there are several processes that attempt to con-
currently access the same data, they will need to coordinate their actions to ensure correct program behaviour, thus
motivating the search for efficient synchronization techniques. Synchronization though is hard due to failures and the
asynchrony pervasive in distributed systems. In fact, one of the seminal results in distributed computing is the impossi-
bility of deterministically achieving consensus: processes initially propose a value and must eventually agree on one of
the proposed values [61, 32], among failure-prone processes in an asynchronous environment. Alternatively phrased,
this result implies that it is impossible to achieve consistency, availability (à la progress) and partition-tolerance in
an asynchronous environment [36], the so called CAP theorem. Intuitively, this result implies that programmers of
distributed applications have to compromise on simultaneously providing strong variants of all three features of con-
sistency, availability and the ability to cope with failures or circumvent the impossibility by adopting weaker models
of computation.

Consequently, I find myself asking the following unsurprising questions about a distributed computation:

• What is the model of computation? Answering this question requires identifying the communication model: via
shared memory or message passing or variants thereof; timing assumption: synchrony vs. asynchrony which
specifies the relative speeds with which processes take steps in the computation; the failure pattern which
identifies the ways in which some subset of processes may become faulty; computing and memory capacity of
the processes, etc.

• Given a computational model, is it (im)possible to build a distributed application for a specific choice of consis-
tency and availability?

• What are the complexity metrics that characterize the cost of the computation and can we derive bounds that
identify the implementation’s theoretical cost?

• What are the available hardware and programming abstractions that help application programmers realize a
working implementation with largely sequential semantics in mind and finally

• How can we verify that the resulting implementation conforms to its intended sequential semantics?

Generally speaking, when reasoning about distributed computations in any context; multicore machines or graph
algorithms for routing in today’s Internet network architectures or information sharing in social peer-to-peer networks,
all the above questions apply. But there are also other practical considerations: Is there a bound on the number of
participating computational entities? Are we seeking deterministic or randomized algorithms? Is there an a priori
agreed naming convention for identifying the computational entities? Lastly, how easy or hard is the distributed
programming model? This latter question is especially important from a practical standpoint since it is the simplicity
of the programming model that determines whether ordinary programmers may choose to adopt it. Reasoning about
the correctness of a distributed computation is a science onto itself and the programming model must ideally enable

1



programmers to build distributed applications with largely their sequential semantics in mind and without worrying
about synchronization problems that may arise.

1 Prior and ongoing work
Broadly speaking, I have worked extensively on algorithms, formal semantics, lower bounds and programming mod-
els for multicore CPUs as well as cloud infrastructures, implementations of concurrent data structures and efficient
protocols for distributed cryptocurrencies. The following sections give a flavor of the kind of distributed computa-
tion models I have studied and hopefully, a hint of how distributed computing techniques have become all-pervasive;
directing emerging hardware trends to deploying applications on the cloud platform and how my own research has
contributed in expanding the problem and solution space.

1.1 Towards safe in-memory transactions
A significant portion of my past studies concern synchronization algorithms for today’s multicore CPU architectures.
This is typically modelled as a shared memory over which processes communicate using the CPU’s instruction set.
Traditional solutions for synchronization in shared memory like locking that provide mutual exclusion, i.e., restricting
data access to at most one process at a time, come with limitations. Coarse-grained locking typically serializes access
to a large amount of data and does not fully exploit hardware concurrency. Program-specific fine-grained locking, on
the other hand, is a dark art to most programmers and trusted to the wisdom of a few computing experts. Thus, it is
appealing to seek a middle ground between these two extremes: a synchronization mechanism that relieves the pro-
grammer of the overhead of reasoning about the conflicts that may arise from concurrent operations without severely
limiting the program’s performance. The Transactional memory (TM) abstraction [48, 75] is such a mechanism: it
combines an easy-to-use programming interface with an efficient utilization of the concurrent-computing abilities
provided by multicore architectures.

Transactional memory allows the user to declare sequences of instructions as speculative transactions that can
either commit or abort. If a transaction commits, it appears to be executed sequentially, so that the committed trans-
actions constitute a correct sequential execution. If a transaction aborts, none of its instructions can affect other
transactions. The TM implementation endeavors to execute these instructions in a manner that efficiently utilizes the
concurrent computing facilities provided by multicore architectures.

1.1.1 Safety for Transactional Memory [11, 10, 12]

We formalize the semantics of a safe TM: every transaction, including aborted and incomplete ones, must observe
a view that is consistent with some sequential execution. This is important, since if the intermediate view is not
consistent with any sequential execution, the application may experience a fatal irrevocable error or enter an infinite
loop. Additionally, the response of a transaction’s read should not depend on an ongoing transaction that has not
started committing yet. This restriction, referred to as deferred-update semantics appears desirable, since the ongoing
transaction may still abort, thus rendering the read inconsistent. We define the notion of deferred-update semantics
formally and apply it to several TM consistency criteria proposed in literature. We then verify if the resulting TM
consistency criterion is a safety property [68, 6, 62] in the formal sense, i.e., the set of histories (interleavings of
invocations and responses of transactional operations) is prefix-closed and limit-closed.

We first consider the popular consistency criterion of opacity [44]. Opacity requires the states observed by all
transactions, included uncommitted ones, to be consistent with a global serialization, i.e., a serial execution constituted
by committed transactions. Moreover, the serialization should respect the real-time order: a transaction that completed
before (in real time) another transaction started should appear first in the serialization.

One may notice that the intended safety semantics does not require, as opacity does, that all transactions observe the
same serial execution. As long as committed transactions constitute a serial execution and every transaction witnesses
a consistent state, the execution can be considered “safe”: no run-time error that cannot occur in a serial execution can
happen. We undertake a comprehensive study of definitions in literature that have adopted this approach [51, 28] and
verify if they are indeed safety properties.

2



1.1.2 Complexity of transactional memory

One may observe that a TM implementation that aborts or never commits any transaction is trivially safe, but not very
useful. Thus, the TM implementation must satisfy some nontrivial liveness property specifying the conditions under
which the transactional operations must return some response and a progress property specifying the conditions under
which the transaction is allowed to abort.

Two properties considered important for TM performance are read invisibility [14] and disjoint-access paral-
lelism [52]. Read invisibility may boost the concurrency of a TM implementation by ensuring that no reading trans-
action can cause any other transaction to abort. The idea of disjoint-access parallelism is to allow transactions that do
not access the same data item to proceed independently of each other without memory contention.

We investigate the inherent complexities in terms of time and memory resources associated with implementing
safe TMs that provide strong liveness and progress properties, possibly combined with attractive requirements like
read invisibility and disjoint-access parallelism. Which classes of TM implementations are (im)possible to solve?
Blocking TMs [55, 58]. We begin by studying TM implementations that are blocking, in the sense that, a transaction
may be delayed or aborted due to concurrent transactions. (i) We prove that, even inherently sequential TMs, that
allow a transaction to be aborted due to a concurrent transaction, incur significant complexity costs when combined
with read invisibility and disjoint-access parallelism. (ii) We prove that, progressive TMs, that allow a transaction to
be aborted only if it encounters a read-write or write-write conflict with a concurrent transaction [43], may need to
exclusively control a linear number of data items at some point in the execution. (iii) We then turn our focus to strongly
progressive TMs [44] that, in addition to progressiveness, ensures that not all concurrent transactions conflicting over a
single data item abort. We prove that in any strongly progressive TM implementation that accesses the shared memory
with read, write and conditional primitives, such as compare-and-swap, the total number of remote memory refer-
ences [7, 13] (RMRs) that take place in an execution in which n concurrent processes perform transactions on a single
data item might reach Ω(n logn) in the worst-case. (iv) We show that, with respect to the amount of expensive synchro-
nization patterns like compare-and-swap instructions and memory barriers [9, 64], progressive implementations are
asymptotically optimal. We use this result to establish a linear (in the transaction’s data set size) separation between
the worst-case transaction expensive synchronization complexity of progressive TMs and permissive TMs that allow
a transaction to abort only if committing it would violate opacity.
Non-blocking TMs [56]. Next, we focus on TMs that avoid using locks and rely on non-blocking synchronization:
a prematurely halted transaction cannot not prevent other transactions from committing. Possibly the weakest non-
blocking progress condition is obstruction-freedom [46, 50] stipulating that every transaction running in the absence
of step contention, i.e., not encountering steps of concurrent transactions, must commit. In fact, several early TM
implementations [47, 63, 75, 76, 34] satisfied obstruction-freedom. However, circa. 2005, several papers presented
the case for a shift from TMs that provide obstruction-free TM-progress to lock-based progressive TMs [27, 26, 31].
They argued that lock-based TMs tend to outperform obstruction-free ones by allowing for simpler algorithms with
lower complexity overheads. We prove the following lower bounds for obstruction-free TMs. (i) Combining invisible
reads with even weak forms of disjoint-access parallelism [15] in obstruction-free TMs is impossible, (ii) A read
operation in a n-process obstruction-free TM implementation incurs Ω(n) memory stalls [30, 8]. (iii) A read-only
transaction may need to perform a linear (in n) number of expensive synchronization patterns. We then present a
progressive TM implementation that beats all of these lower bounds, thus suggesting that the course correction from
non-blocking (obstruction-free) TMs to blocking (progressive) TMs was indeed justified.
Partially non-blocking TMs [57]. Lastly, we explore the costs of providing non-blocking progress to only a subset
of transactions. Specifically, we require read-only transactions to commit wait-free, i.e., every transaction commits
within a finite number of its steps, but updating transactions are guaranteed to commit only if they run in the absence
of concurrency. We show that combining this kind of partial wait-freedom with read invisibility or disjoint-access
parallelism comes with inherent costs. Specifically, we establish the following lower bounds for TMs that provide this
kind of partial wait-freedom. (i) This kind of partial wait-freedom equipped with invisible reads results in maintaining
unbounded sets of versions for every data item. (ii) It is impossible to implement a strict form of disjoint-access
parallelism [42]. (iii) Combining with the weak form of disjoint-access parallelism means that a read-only transaction
(with an arbitrarily large read set) must sometimes perform at least one expensive synchronization pattern per read
operation in some executions.

3



1.1.3 Complexity of Hybrid transactional memory

The TM abstraction, in its original manifestation, augmented the processor’s cache-coherence protocol and extended
the CPU’s instruction set with instructions to indicate which memory accesses must be transactional [48]. Most popular
TM designs, subsequent to the original proposal in [48] have implemented all the functionality in software [24, 75, 47,
63, 34]. More recently, CPUs have included hardware extensions to support small transactions [70, 1, 67]. Hardware
transactions may be spuriously aborted due to several reasons: cache capacity overflow, interrupts etc. This has led to
proposals for best-effort HyTMs in which the fast, but potentially unreliable hardware transactions are complemented
with slower, but more reliable software transactions. However, the fundamental limitations of building a HyTM with
nontrivial concurrency between hardware and software transactions are not well understood. Typically, hardware
transactions usually employ code instrumentation techniques to detect concurrency scenarios and abort in the case of
contention. But are there inherent instrumentation costs of implementing a HyTM, and what are the trade-offs between
these costs ands provided concurrency, i.e., the ability of the HyTM to execute hardware and software transactions in
parallel?
Cost of instrumentation in Hybrid transactional memory [4, 3, 5]. (i) We propose a general model for HyTM
implementations, which captures the notion of cached accesses as performed by hardware transactions, and precisely
defines instrumentation costs in a quantifiable way. (ii) We derive lower and upper bounds in this model, which
capture for the first time, an inherent trade-off on the degree of concurrency allowed between hardware and software
transactions and the instrumentation overhead introduced on the hardware.
Cost of concurrency in Hybrid transactional memory [17, 18]. State-of-the-art Software Transactional Memory
(TM) implementations achieve good performance by carefully avoiding the overhead of incremental validation, i.e.,
re-reading previously read data items to preclude inconsistent executions. Hardware TMs promise even better perfor-
mance. However hardware transactions offer no progress guarantees since they may abort for spurious reasons and
conflict aborts. Thus, they must be combined with software TMs, thus leading to the advent of hybrid TMs (HyTM).
To allow hardware transactions in a HyTM to detect conflicts with software transactions, hardware transactions must
be instrumented to perform additional metadata accesses. This instrumentation introduces overhead.

We first show that, unlike in software TMs, software transactions in HyTMs cannot avoid incremental validation.
Specifically, we establish that progressive HyTMs in which a transaction may be aborted only due to a data conflict
with a concurrent transaction, must necessarily incur a validation cost that is linear in the size of the transaction’s read
set. This is in stark contrast to progressive software TMs which can achieve O(1) complexity operations. Secondly, we
present two provably opaque HyTM algorithms in which both hardware and software transactions perform an optimal
number of metadata accesses. The first algorithm is progressive and the second algorithm is progressive only for
read-only software transactions. We show how some of the metadata accesses in these algorithms can be performed
non-speculatively without violating opacity. We evaluate implementations of these algorithms on Intel Haswell, which
does not support non-speculative accesses inside a hardware transaction, and IBM Power8, which does.

1.2 Designing concurrency-optimal data structures

To be pessimistic or optimistic? [38, 39, 40]. Lock-based implementations are conventionally pessimistic in nature:
the operations invoked by processes are not “abortable” and return only after they are successfully completed. The
TM abstraction is a realization of optimistic concurrency control: speculatively execute transactions, abort and roll
back on dynamically detected conflicts. But are optimistic implementations fundamentally better equipped to exploit
concurrency than pessimistic ones?

We compare the amount of concurrency one can obtain by converting a sequential implementation of a data ab-
straction into a concurrent one using optimistic or pessimistic synchronization techniques. To establish fair compari-
son of such implementations, we introduce a new correctness criterion for concurrent implementations, called locally
serializable linearizability, defined independently of the synchronization techniques they use.

We treat an implementation’s concurrency as its ability to accept schedules of sequential operations from different
processes. More specifically, we assume an external scheduler that defines which processes execute which steps of the
corresponding sequential implementation in a dynamic and unpredictable fashion. This allows us to define concurrency
provided by an implementation as the set of interleavings of steps of sequential operations (or schedules) it accepts,
i.e., is able to effectively process. Then, the more schedules the implementation would accept without hampering
correctness, the more concurrent it would be.

4



Our work makes the following contributions: (i) We provide a framework to analytically capture the inherent
concurrency provided by two broad classes of synchronization techniques: pessimistic implementations that imple-
ment some form of mutual exclusion and optimistic implementations based on speculative executions. (ii) We explore
the concurrency properties of search data structures which can be represented in the form of directed acyclic graphs
exporting insert, delete and search operations. We prove, for the first time, that pessimistic (e.g., based on conserva-
tive locking) and optimistic serializable (e.g., based on serializable transactional memory) implementations of search
data-structures are incomparable in terms of concurrency. Specifically, there exist simple interleavings of sequential
code that cannot be accepted by any pessimistic (and resp., serializable optimistic) implementation, but accepted by a
serializable optimistic one (and resp., pessimistic). Thus, neither of these two implementation classes is concurrency-
optimal. Our results suggest that “semantics-aware” optimistic implementations may be better suited to exploiting
concurrency than their pessimistic counterparts.
Concurrency-optimal list and binary search tree [41, 2]. We propose the first provably concurrency-optimal data
structure, the Versioned list. We show that the previous most efficient lists are not concurrency-optimal in that they
reject schedules of memory accesses that would not violate consistency. To this end, we consider the classic set
implementation as an example and show that, unlike the Harris-Michael [49] and the Lazy list-based sets [45], the
Versioned list is concurrency-optimal in that it accepts all correct schedules.

In addition, the Versioned list is probably the fastest list algorithm to date. It builds upon a new pre-locking
validation technique that exploits versioning and try-locks to achieve high performance of update operations and to
reduce the overhead of read-only operations. We implement our algorithm in Java 8, using the new StampedLock,
and in C11, exploiting the stdatomic intrinsics, and show that it outperforms the Harris-Michael algorithm, the Lazy
list algorithm and the Selfish optimization of Fomitchev and Ruppert’s algorithm [33] on Power8, SPARC and x86-64
architectures.

We also present the first concurrency-optimal implementation of a binary search tree (BST). The implementation is
based on a standard sequential implementation of an internal tree, and it ensures that every schedule, i.e., interleaving
of steps of the sequential code, unless linearizability is violated. To ensure this property, we use an novel read-write
locking scheme that protects tree edges in addition to nodes. Our implementation outperforms the state-of-the art
BSTs on most basic workloads, which suggests that optimizing the set of accepted schedules of the sequential code
can be an adequate design principle for efficient concurrent data structures.

1.3 Scheduling for big-data processing frameworks [72]
Often used in multi-user environments, big-data processing frameworks like Hadoop and Spark have struggled to
achieve a balance between the full utilization of cluster resources and fairness between users. In particular, data
locality becomes a concern, as enforcing fairness policies may cause poor placement of tasks in relation to the data on
which they operate. To combat this, the schedulers in many frameworks use a heuristic called delay scheduling, which
involves waiting for a short, constant interval for data-local task slots to become free if none are available; however,
a fixed delay interval is inefficient, as the ideal time to delay varies depending on input data size, network conditions,
and other factors.

We propose an adaptive solution (Dynamic Delay Scheduling), which uses a simple feedback metric from finished
tasks to adapt the delay scheduling interval for subsequent tasks at runtime. We present a dynamic delay implementa-
tion in Spark, and show that it outperforms a fixed delay in TPC-H benchmarks. Our preliminary experiments confirm
our intuition that job latency in batch-processing scheduling can be improved using simple adaptive techniques with
almost no extra state overhead.

1.4 Distributed transactions for programming scalable cloud services

Distributed programming model for cloud services [71]. Designing distributed Internet-facing applications that
are adaptable to unpredictable workloads and efficiently utilize modern cloud computing platforms is hard. The
actor model is a popular paradigm that can be used to develop distributed applications: actors encapsulate state and
communicate with each other by sending events. Consistency is guaranteed if each event only accesses a single actor,
thus eliminating potential data races and deadlocks. However it is nontrivial to provide consistency for concurrent
events spanning across multiple actors.

We address this problem by introducing the Atomic Events and Ownership Network (AEON): a protocol for
strongly consistent and truly scalable cloud applications across distributed actors. Concretely AEON provides the

5



following properties: (i) Programmability: programmers need only reason about sequential semantics when reasoning
about concurrency resulting from multi-actor events; (ii) Scalability: its runtime protocol guarantees serializable and
starvation-free execution of multi-actor events, while maximizing parallel execution; (iii) Elasticity: supports elasticity
enabling the programmer to transparently migrate individual actors without violating atomicity or entailing significant
performance overheads.

We implemented a highly available and fault-tolerant prototype of AEON in C++. We present formal operational
semantics which proves serializability and the absence of deadlocks. Extensive experiments show several complex
cloud applications built atop AEON significantly outperform others built using existing state-of-the-art distributed
cloud programming protocols. According to the experiments, AEON is about 3x faster than similar programming
models (EventWave [22] and Orleans [20]). And the elasticity of AEON guarantees service quality with minimal cost
compared to any static setup.
Programmable Elasticity for Actor-based Cloud Applications [16]. For many applications, it is pertinent for pro-
grammers to reason about distributed state resulting from message composition across multiple actors. Building a
cost-effective and scalable cloud application requires fine-grained scale-adjustment among the distributed application
state and cloud resources. However, there is no efficient solution which could manage application elasticity automati-
cally during runtime without completely disrupting ongoing and application events invoked by the clients.

In this work, we propose the idea of ”programmable elasticity”, which allows programmers to define elasticity rules
about actors with our programming model. The runtime endeavors to implement the elasticity rules while relieving
the application programmer from dealing with the management of distributed state and efficient utilization of cloud
resources. Unlike existing solutions, ours is designed for stateful actor-based applications, and the runtime conducts
elasticity management at the level of actors.

1.5 Towards Byzantine Generalized Paxos [65]
The Paxos [59] protocol for reaching agreement in a distributed system has made its way to the core of the implementa-
tion of the services that are used by millions of people over the Internet, in particular since Paxos-based state machine
replication is the key component of Google’s Chubby lock service [19], or the open source ZooKeeper project [54],
used by Yahoo! among others.

One of the most recent members of the Paxos family of protocols is Generalized Paxos. This variant of Paxos has
the characteristic that it departs from the original specification of consensus, allowing for a weaker safety condition
where different processes can have a different views on a sequence being agreed upon. However, much like the original
Paxos counterpart, Generalized Paxos does not have a simple implementation. Furthermore, with the recent practical
adoption of Byzantine [73] fault tolerant protocols in the context of blockchain protocols, it is timely and important
to understand how Generalized Paxos can be implemented in the Byzantine model. In this work, we make two main
contributions. First, we attempt to provide a simpler description of Generalized Paxos, based on a simpler specification
and the pseudocode for a solution that can be readily implemented. Second, we extend the protocol to the Byzantine
fault model, and provide the respective correctness proof.

1.6 Concurrency and privacy for cryptocurrencies [69]
Cryptocurrencies like Bitcoin [66] and Ripple [74] have grown as a possible avenue for secure decentralized online
payments and credit exchange between arbitrary pairs of processes in a distributed system. It is expected that any
cryptocurrency synchronization protocol needed to execute secure financial transactions provide resilience against
Byzantine adversaries, i.e., computing entities exhibiting malicious behavior. Unlike traditional protocols for Byzantine
agreement typically require knowledge of the set of participating processes [21], protocols for cryptocurrencies are
expected to work in a peer-to-peer setting in which several processes may join or leave the network arbitrarily. In
such cryptocurrencies, processes continuously extend a distributed data structure called a blockchain that maintains
the list of transactions issued by processes over time. Protocols like Bitcoin achieve agreement over the blockchain
data structure by forcing processes to solve a proof-of-work [29]: a cryptographic puzzle that essentially allows the
Bitcoin to tradeoff computation for communication complexity.

However, permissionless blockchains based on global consensus such as Bitcoin are inherently limited in trans-
action throughput and latency. Current efforts to address this key issue focus on off-chain payment channels that can
be combined in a Payment-Channel Network (PCN) to enable an unlimited number of payments without requiring to
access the blockchain other than to register the initial and final capacity of each channel. While this approach paves the

6



way for low latency and high throughput of payments, its deployment in practice raises several privacy issues as well
as technical challenges related to the inherently concurrent nature of payments, such as race conditions and deadlocks,
that have been understudied so far.

In this work, we lay the foundations for privacy and concurrency in PCNs, presenting a formal definition in the
Universal Composability framework as well as practical and provably secure enforcement solutions. In particular, we
present Fulgor and Rayo. Fulgor is the first payment protocol for PCNs that provides provable privacy guarantees for
PCN and is fully compatible with current Bitcoin. Nevertheless, Fulgor is a blocking protocol and therefore prone to
deadlocks of concurrent payments as in currently available PCNs. Instead, Rayo is the first protocol for PCNs that
enforces non-blocking progress (i.e., at least one of the concurrent payments terminates). We show through a new
impossibility result that the latter property necessarily comes at the cost of breaking anonymity. At the core of Fulgor
and Rayo is Multi-Hop HTLC, a new smart contract, compatible with Bitcoin, that provides conditional payments
while reducing running time and communication overhead with respect to previous approaches. Our performance
evaluation of Fulgor and Rayo shows that a payment with 10 intermediate users takes as few as 5 seconds and requires
to communicate 17 MB, thereby demonstrating their feasibility to be deployed in practice.

2 Expected future work
These are some of the questions I have thought about, but have not managed to write interesting papers (yet). In
general, I often find that my research is motivated and shaped by emerging new hardware trends that require a new
abstract computation model or via introduction of techniques from distributed computing to domains where the se-
quential implementation continues to be state-of-the-art.

2.1 Concurrent data structures for non-volatile memory (NVM)
It is expected that current volatile memory based on DRAM will be augmented by storage-class memories (SCM) that
are non-volatile and byte-addressable. The primary advantage of this hardware development is that it removes the
need for two distinct file formats: the in-memory object formatsand the persistent file format for the block-oriented
traditional persistent storage à la NAND flash that is prevalent in today’s solid-state devices. Yet, whether the data
structure is designed directly on NVM or via a combination of DRAM plus NVM, i.e., DRAM with a NVM backup on
account of the DRAM crash failure, there remain several open questions concerning the design of efficient persistent
concurrent data structures. Firstly, the data structure state must be constantly updated in the non-volatile memory
so that in the event of a crash failure, the computation may re-start from the most recent consistent state of the data
structure. This write-back to the NVM must be atomic so that the recovered data structure state is consistent. Secondly,
this raises the following question: what must be representation of the data structure in the NVM? For e.g., in a sorted
linked-list-based set, it may be sufficient to store the set of values contained in the set, as opposed to an unsorted
one since the pointer references can not be deterministically re-created during the re-start procedure invoked after
the crash-recovery. Deriving complexity bounds and implementing provably correct algorithms for non-blocking data
structures in NVMs is something I have been thinking about.

2.2 Secure computing platform for Internet-of-Things (IoT)
Computing today has evolved well beyond traditional computing processors to generic physical devices connected
to the Internet, the so called IoT. Traditional distributed computing techniques for synchronization have typically
focussed on relatively homogenous computing devices. However, the ubiquitous nature of IoT devices employing
multiple heterogenous embedded computing devices (e.g., Arduino, Raspberry Pi, Smart Phones etc.), communication
technologies (LTE, WiFi, RFID, etc.) and sensor networks (RFID tag, Actuators, etc.) requires new distributed
algorithms that allow IoT devices to shared information and coordinate decisions in a secure and privacy-preserving
manner. This opens several unique distributed computing challenges that I expect to be working towards, including
modelling the IoT computing platform and designing correct-by-construction algorithms that can deal with its sheer
scale and heterogeneity.

7



2.3 Distributed algorithms using trusted computing modules
Recent distributed computing research has focussed on implementing secure multi-part computation protocols that
assumes each computational entity has access to a trusted hardware module [53]. Intuitively, this trusted hardware
module prevents a malicious adversary from sending conflicting messages to different honest processes. Implement-
ing distributed algorithms using trusted computing modules has become more relevant since Intel released Software
Guard Extensions (SGX) [23] that enables secure remote computation among other use-cases. Yet, what sort of trusted
computing modules must be provided by hardware manaufacturers that can benefit a maximal set of distributed appli-
cations? This is a problem space I have made some preliminary progress and intend to continue working on.

2.4 Computing in oblivious shared memory
We consider the problem of computing in an asynchronous shared memory that is oblivious [37]: no information is
divulged to an adversary about the access patterns of the processes to the shared memory. Besides the fact that this a
nontrivial problem to formulate and solve, it had wide ranging applications especially in the context of today’s cloud
computing services. Consider a server hosting a shared memory for client processes to access by invoking operations of
a distributed algorithm. However, clients would wish that the server or the other clients be oblivious to their individual
access patterns. Specifically, a data structure implementation is said to be oblivious if any two equal-length sequences
of operations invoked are computationally indistinguishable to anyone but the client, a solution that typically involves
employing homomorphic encryption schemes [35]. One of my goals is formalizing the notion of obliviousness in the
distributed setting as well as deriving algorithms and complexity bounds for implementing oblivious non-blocking
cloud applications.

3 Concluding remarks
In his wonderfully sarcastic critique of the scientific community in His Master’s Voice 1, the great Polish writer Sta-
nisław Lem refers to a specialist as a barbarian whose ignorance is not well-rounded. While I have attempted at be-
coming a specialist on all things distributed, I am culturedly not totally ignorant of exciting innovations that are needed
in both the problem and solution space of distributed systems and their application across the STEM fields. Indeed,
given the ubiquity of computational algorithms across other scientific disciplines ranging from neurosciences [60],
fault-tolerant hardware design, quantum computing [25] and in general analytics for the data sciences, I envision
introducing techniques from distributed computing to other scientific fields.

References
[1] Advanced Synchronization Facility Proposed Architectural Specification, March 2009. http://developer.amd.com/

wordpress/media/2013/09/45432-ASF_Spec_2.1.pdf.

[2] V. Aksenov, V. Gramoli, P. Kuznetsov, A. Malova, and S. Ravi. A concurrency-optimal binary search tree. In 23rd Interna-
tional European Conference on Parallel and Distributed Computing (EURO-PAR), Spain, 2017.

[3] D. Alistarh, J. Kopinsky, P. Kuznetsov, S. Ravi, and N. Shavit. Inherent limitations of hybrid transactional memory. 6th
Workshop on the Theory of Transactional Memory, Paris, France, 2014.

[4] D. Alistarh, J. Kopinsky, P. Kuznetsov, S. Ravi, and N. Shavit. Inherent limitations of hybrid transactional memory. In
Distributed Computing - 29th International Symposium, DISC 2015, Tokyo, Japan, October 7-9, 2015, Proceedings, pages
185–199, 2015.

[5] D. Alistarh, J. Kopinsky, P. Kuznetsov, S. Ravi, and N. Shavit. Inherent limitations of hybrid transactional memory. Distributed
Computing, 2017.

[6] B. Alpern and F. B. Schneider. Defining liveness. Inf. Process. Lett., 21(4):181–185, Oct. 1985.

[7] T. E. Anderson. The performance of spin lock alternatives for shared-memory multiprocessors. IEEE Trans. Parallel Distrib.
Syst., 1(1):6–16, 1990.

[8] H. Attiya, R. Guerraoui, D. Hendler, and P. Kuznetsov. The complexity of obstruction-free implementations. J. ACM, 56(4),
2009.

1Stanislaw Lem, His Master’s Voice, Harvest Books, 1984, ISBN 0-15-640300-5

8

http://developer.amd.com/wordpress/media/2013/09/45432-ASF_Spec_2.1.pdf
http://developer.amd.com/wordpress/media/2013/09/45432-ASF_Spec_2.1.pdf


[9] H. Attiya, R. Guerraoui, D. Hendler, P. Kuznetsov, M. Michael, and M. Vechev. Laws of order: Expensive synchronization in
concurrent algorithms cannot be eliminated. In POPL, pages 487–498, 2011.

[10] H. Attiya, S. Hans, P. Kuznetsov, and S. Ravi. What is safe in transactional memory. 4th Workshop on the Theory of
Transactional Memory, Madeira, Portugal, 2012.

[11] H. Attiya, S. Hans, P. Kuznetsov, and S. Ravi. Safety of deferred update in transactional memory. In ICDCS, pages 601–610,
2013.

[12] H. Attiya, S. Hans, P. Kuznetsov, and S. Ravi. Safety and deferred update in transactional memory. In R. Guerraoui and
P. Romano, editors, Transactional Memory. Foundations, Algorithms, Tools, and Applications, volume 8913 of Lecture Notes
in Computer Science, pages 50–71. Springer International Publishing, 2015.

[13] H. Attiya, D. Hendler, and P. Woelfel. Tight rmr lower bounds for mutual exclusion and other problems. In Proceedings of the
Twenty-seventh ACM Symposium on Principles of Distributed Computing, PODC ’08, pages 447–447, New York, NY, USA,
2008. ACM.

[14] H. Attiya and E. Hillel. The cost of privatization in software transactional memory. IEEE Trans. Computers, 62(12):2531–
2543, 2013.

[15] H. Attiya, E. Hillel, and A. Milani. Inherent limitations on disjoint-access parallel implementations of transactional memory.
Theory of Computing Systems, 49(4):698–719, 2011.

[16] G. P. M. A. N. Z. M. P. E. Bo Sang, Srivatsan Ravi. Programmable elasticity for actor-based cloud applications. In 9th
Workshop on Programming Languages and Operating Systems (PLOS 2017), 2017.

[17] T. Brown and S. Ravi. Cost of concurrency in hybrid transactional memory. In Workshop on Transactional Computing
(Transact), Austin Texas, 2017.

[18] T. Brown and S. Ravi. Cost of concurrency in hybrid transactional memory. In Distributed Computing - 31th International
Symposium, DISC, 2017.

[19] M. Burrows. The chubby lock service for loosely-coupled distributed systems. In Proceedings of the 7th Symposium on
Operating Systems Design and Implementation, OSDI ’06, pages 335–350. USENIX Association, 2006.

[20] S. Bykov, A. Geller, G. Kliot, J. R. Larus, R. Pandya, and J. Thelin. Orleans: cloud computing for everyone. page 16, 2011.

[21] M. Castro and B. Liskov. Practical byzantine fault tolerance. In OSDI: Symposium on Operating Systems Design and
Implementation. USENIX Association, Co-sponsored by IEEE TCOS and ACM SIGOPS, Feb. 1999.

[22] W. Chuang, B. Sang, S. Yoo, R. Gu, M. Kulkarni, and C. E. Killian. EventWave: Programming Model and Runtime Support
for Tightly-coupled Elastic Cloud Applications. page 21, 2013.

[23] V. Costan, I. A. Lebedev, and S. Devadas. Secure processors part I: background, taxonomy for secure enclaves and intel SGX
architecture. Foundations and Trends in Electronic Design Automation, 11(1-2):1–248, 2017.

[24] L. Dalessandro, M. F. Spear, and M. L. Scott. Norec: Streamlining stm by abolishing ownership records. SIGPLAN Not.,
45(5):67–78, Jan. 2010.

[25] V. S. Denchev and G. Pandurangan. Distributed quantum computing: A new frontier in distributed systems or science fiction?
SIGACT News, 39(3):77–95, Sept. 2008.

[26] D. Dice, O. Shalev, and N. Shavit. Transactional locking ii. In Proceedings of the 20th International Conference on Distributed
Computing, DISC’06, pages 194–208, Berlin, Heidelberg, 2006. Springer-Verlag.

[27] D. Dice and N. Shavit. What really makes transactions fast? In Transact, 2006.

[28] S. Doherty, L. Groves, V. Luchangco, and M. Moir. Towards formally specifying and verifying transactional memory. Formal
Asp. Comput., 25(5):769–799, 2013.

[29] C. Dwork and M. Naor. Pricing via processing or combatting junk mail. In Proceedings of the 12th Annual International
Cryptology Conference on Advances in Cryptology, CRYPTO ’92, pages 139–147, London, UK, UK, 1993. Springer-Verlag.

[30] F. Ellen, D. Hendler, and N. Shavit. On the inherent sequentiality of concurrent objects. SIAM J. Comput., 41(3):519–536,
2012.

[31] R. Ennals. Software transactional memory should not be obstruction-free. 2005.

[32] M. J. Fischer, N. A. Lynch, and M. S. Paterson. Impossibility of distributed consensus with one faulty process. J. ACM,
32(2):374–382, Apr. 1985.

[33] M. Fomitchev and E. Ruppert. Lock-free linked lists and skip lists. In PODC, pages 50–59, 2004.

[34] K. Fraser. Practical lock-freedom. Technical report, Cambridge University Computer Laborotory, 2003.

9



[35] C. Gentry. Fully homomorphic encryption using ideal lattices. In Proceedings of the Forty-first Annual ACM Symposium on
Theory of Computing, STOC ’09, pages 169–178, New York, NY, USA, 2009. ACM.

[36] S. Gilbert and N. Lynch. Brewer’s conjecture and the feasibility of consistent, available, partition-tolerant web services.
SIGACT News, 33(2):51–59, June 2002.

[37] O. Goldreich. Towards a theory of software protection and simulation by oblivious rams. In Proceedings of the Nineteenth
Annual ACM Symposium on Theory of Computing, STOC ’87, pages 182–194, New York, NY, USA, 1987. ACM.

[38] V. Gramoli, P. Kuznetsov, and S. Ravi. From sequential to concurrent: correctness and relative efficiency (short paper). In
Principles of Distributed Computing (PODC), pages 241–242, 2012.

[39] V. Gramoli, P. Kuznetsov, and S. Ravi. Sharing a sequential data structure: correctness definition and concurrency analysis.
4th Workshop on the Theory of Transactional Memory, Madeira, Portugal, 2012.

[40] V. Gramoli, P. Kuznetsov, and S. Ravi. In the search for optimal concurrency. In Structural Information and Communication
Complexity - 23rd International Colloquium, SIROCCO 2016, Helsinki, Finland, July 19-21, 2016, Revised Selected Papers,
pages 143–158, 2016.

[41] V. Gramoli, P. Kuznetsov, S. Ravi, and D. Shang. A concurrency-optimal list-based set (short paper). In Distributed Computing
- 29th International Symposium, DISC 2015, Tokyo, Japan, October 7-9, 2015.

[42] R. Guerraoui and M. Kapalka. On obstruction-free transactions. In Proceedings of the twentieth annual symposium on
Parallelism in algorithms and architectures, SPAA ’08, pages 304–313, New York, NY, USA, 2008. ACM.

[43] R. Guerraoui and M. Kapalka. The semantics of progress in lock-based transactional memory. SIGPLAN Not., 44(1):404–415,
Jan. 2009.

[44] R. Guerraoui and M. Kapalka. Principles of Transactional Memory, Synthesis Lectures on Distributed Computing Theory.
Morgan and Claypool, 2010.

[45] S. Heller, M. Herlihy, V. Luchangco, M. Moir, W. N. Scherer, and N. Shavit. A lazy concurrent list-based set algorithm. In
OPODIS, pages 3–16, 2006.

[46] M. Herlihy, V. Luchangco, and M. Moir. Obstruction-free synchronization: Double-ended queues as an example. In ICDCS,
pages 522–529, 2003.

[47] M. Herlihy, V. Luchangco, M. Moir, and W. N. Scherer, III. Software transactional memory for dynamic-sized data structures.
In Proceedings of the Twenty-second Annual Symposium on Principles of Distributed Computing, PODC ’03, pages 92–101,
New York, NY, USA, 2003. ACM.

[48] M. Herlihy and J. E. B. Moss. Transactional memory: architectural support for lock-free data structures. In ISCA, pages
289–300, 1993.

[49] M. Herlihy and N. Shavit. The art of multiprocessor programming. Morgan Kaufmann, 2008.

[50] M. Herlihy and N. Shavit. On the nature of progress. In OPODIS, pages 313–328, 2011.

[51] D. Imbs and M. Raynal. Virtual world consistency: A condition for STM systems (with a versatile protocol with invisible
read operations). Theor. Comput. Sci., 444, July 2012.

[52] A. Israeli and L. Rappoport. Disjoint-access-parallel implementations of strong shared memory primitives. In PODC, pages
151–160, 1994.

[53] A. Jaffe, T. Moscibroda, and S. Sen. On the price of equivocation in byzantine agreement. In ACM Symposium on Principles
of Distributed Computing, PODC ’12, Funchal, Madeira, Portugal, July 16-18, 2012, pages 309–318, 2012.

[54] F. P. Junqueira, B. C. Reed, and M. Serafini. Zab: High-performance broadcast for primary-backup systems. In Proceedings
of the 2011 IEEE/IFIP 41st International Conference on Dependable Systems and Networks, DSN ’11, pages 245–256.

[55] P. Kuznetsov and S. Ravi. On the cost of concurrency in transactional memory. In International Conference on Principles of
Distributed Systems (OPODIS), pages 112–127, 2011.

[56] P. Kuznetsov and S. Ravi. Grasping the gap between blocking and non-blocking transactional memories. In Distributed
Computing - 29th International Symposium, DISC 2015, Tokyo, Japan, October 7-9, 2015, Proceedings, pages 232–247,
2015.

[57] P. Kuznetsov and S. Ravi. On partial wait-freedom in transactional memory. In Proceedings of the 2015 International
Conference on Distributed Computing and Networking, ICDCN 2015, Goa, India, January 4-7, 2015, page 10, 2015.

[58] P. Kuznetsov and S. Ravi. Progressive transactional memory in time and space. In Parallel Computing Technologies - 13th
International Conference, PaCT 2015, Petrozavodsk, Russia, August 31 - September 4, 2015, Proceedings, pages 410–425,
2015.

[59] L. Lamport. The Part-Time parliament. ACM Transactions on Computer Systems, 16(2):133–169, May 1998.

10



[60] J. W. Lichtman, H. Pfister, and N. Shavit. The big data challenges of connectomics. Nature Neuroscience, 17(11):1448–1454,
Oct. 2014.

[61] M. Loui and H. Abu-Amara. Memory requirements for agreement among unreliable asynchronous processes. Advances in
Computing Research, 4:163–183, 1987.

[62] N. A. Lynch. Distributed Algorithms. Morgan Kaufmann, 1996.

[63] V. J. Marathe, W. N. S. Iii, and M. L. Scott. Adaptive software transactional memory. In In Proc. of the 19th Intl. Symp. on
Distributed Computing, pages 354–368, 2005.

[64] P. E. McKenney. Memory barriers: a hardware view for software hackers. Linux Technology Center, IBM Beaverton, June
2010.

[65] R. R. Miguel Pires, Srivatsan Ravi. Generalized paxos made byzantine (and less complex). In 19th International Symposium
on Stabilization, Safety, and Security of Distributed Systems (SSS 2017), 2017.

[66] S. Nakamoto. Bitcoin: A peer-to-peer electronic cash system. 2009.

[67] M. Ohmacht. Memory Speculation of the Blue Gene/Q Compute Chip, 2011. http://wands.cse.lehigh.edu/IBM_
BQC_PACT2011.ppt.

[68] S. S. Owicki and L. Lamport. Proving liveness properties of concurrent programs. ACM Trans. Program. Lang. Syst.,
4(3):455–495, 1982.

[69] A. K. M. M. S. R. Pedro Moreno-Sanchez, Giulio Malavolta. Concurrency and privacy with payment-channel networks. In
ACM Conference on Computer and Communications Security (CCS), 2017.

[70] J. Reinders. Transactional Synchronization in Haswell, 2012. http://software.intel.com/en-us/blogs/
2012/02/07/transactional-synchronization-in-haswell/.

[71] B. Sang, G. Petri, M. S. Ardekani, S. Ravi, and P. T. Eugster. Programming scalable cloud services with AEON. In Proceed-
ings of the 17th International Middleware Conference, Trento, Italy, December 12 - 16, 2016, page 16, 2016.

[72] D. Schatzlein, S. Ravi, Y. Noh, M. S. Ardekani, and P. Eugster. The misbelief in delay scheduling. In Proceedings of the 4th
Workshop on Distributed Cloud Computing, DCC ’16, pages 9:1–9:6, New York, NY, USA, 2016. ACM.

[73] F. B. Schneider. Byzantine generals in action: Implementing fail-stop processors. ACM Trans. Comput. Syst., 2(2):145–154,
May 1984.

[74] D. Schwartz, N. Youngs, and A. Britto. The ripple consensus protocol. 2014.

[75] N. Shavit and D. Touitou. Software transactional memory. In PODC, pages 204–213, 1995.

[76] F. Tabba, M. Moir, J. R. Goodman, A. W. Hay, and C. Wang. Nztm: Nonblocking zero-indirection transactional memory. In
Proceedings of the Twenty-first Annual Symposium on Parallelism in Algorithms and Architectures, SPAA ’09, pages 204–213,
New York, NY, USA, 2009. ACM.

11

http://wands.cse.lehigh.edu/IBM_BQC_PACT2011.ppt
http://wands.cse.lehigh.edu/IBM_BQC_PACT2011.ppt
http://software.intel.com/en-us/blogs/2012/02/07/transactional-synchronization-in-haswell/
http://software.intel.com/en-us/blogs/2012/02/07/transactional-synchronization-in-haswell/

	Prior and ongoing work
	Towards safe in-memory transactions
	Safety for Transactional Memory AHKR13,WTTM1,safety-tm14
	Complexity of transactional memory
	Complexity of Hybrid transactional memory

	Designing concurrency-optimal data structures
	Scheduling for big-data processing frameworks dds-dcc
	Distributed transactions for programming scalable cloud services
	Towards Byzantine Generalized Paxos sss17
	Concurrency and privacy for cryptocurrencies ccs-payment

	Expected future work
	Concurrent data structures for non-volatile memory (NVM)
	Secure computing platform for Internet-of-Things (IoT)
	Distributed algorithms using trusted computing modules
	Computing in oblivious shared memory

	Concluding remarks

