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In this survey article we describe known results and open questions on the Zariski cancellation
problem, highlighting recent developments on the problem. We also discuss its close relationship
with some of the other central problems on polynomial rings.
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1. INTRODUCTION

Let k£ be a field. The polynomial ring[X1,...,X,] is one of the oldest rings that mathemati-
cians have attempted to investigate. The study of polynomial rings and their quotients, equivalently
the study of affine spaces and their closed subspaces, is the driving motivation of the area called
“Affine Algebraic Geometry”. There are fascinating problems on polynomial rings which are still
open. Though these problems are very easy to state, it is normally difficult to approach them. The
most celebrated problems on polynomial rings include the Jacobian problem (first asked by Ott-
Heinrich Keller in 1939), the Zariski cancellation problem, the epimorphism or embedding problem
of Abhyankar-Sathaye, the affine fibration problem of DolaVésfdler, the linearization problem

of Kambayashi, the problem of characterisation of polynomial rings by a few chosen properties, and
the study of the Automorphism groups of polynomial rings.

One of the major difficulties in the study of the polynomial rings in more than two variables
is the paucity of our knowledge about their automorphism groups. After Jung [25] and Kulk [47]
showed that all automorphisms of the polynomial ring in two variables over a field are “tame”, there
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was very little progress on the automorphism problem for a long time. A major development in
affine algebraic geometry in the present century was the Shestakov-Umirbaev theory [44] to detect
“wild” automorphisms on a polynomial ring in three variables over a field; the application of the
theory to prove that an automorphism constructed by Nagata in 1972 was a “wild” automorphism, as
conjectured by Nagata, and the simplification and development of the theory by Kuroda [28].

The articles of Kraft [27], Freudenburg and Russell [16] and Miyanishi [32] give a survey on
problems in affine algebraic geometry; the monograph of Essen [15] gives an account of polynomial
automorphisms and the Jacobian conjecture; the Epimorphism problem and its offshoots are discussed
in the articles by Russell and Sathaye [39], and by Dutta and Gupta [13]; the problems on affine
fibrations are discussed by Bhatwadekar and Dutta in [7] and [12].

In this article, we shall discuss some recent developments on the cancellation problem and its
connections with other problems. We shall first begin with the history of the problem. Before that we
introduce some notation.

Throughout the article, our rings will be assumed to be commutative with unity. We shall use the
notationR™ for a polynomial ring inn variables over a commutative ring. Thus,E = RI" will
mean thatt' = R[ty,...,t,]| for some elements, ..., t, in E which are algebraically independent
over R. Unless otherwise stated, capital letters IKe, Xo, ..., X, Y1,..., Y, X, Y, Z, T will be
used as variables of polynomial rings.

Let R be aring and4d and B be two R-algebras. The notatioA = B would mean thatd is
isomorphic toB as anR-algebra.

An R-algebraB is said to becancellativeover R if, wheneverA[X] =r B[X] for someR-

algebraA, thenA =i B.

2. THE ZARISKI CANCELLATION PROBLEM

The following cancellation problem was first raised by Zariski in 1949 at the Paris Colloquium on
Algebra and Theory of Numbers [41]. He asked [34]:

Questionl : Let L and L’ be two finitely generated fields over a figldand letL(z), L'(z) be
simple transcendental extensionslofind L’ respectively. Suppose thatz) = L'(x). Does it
follow that L =, L'?

In particular, whenl/ = k(x1,...,x,), the rational function field im variables, Q.1 takes the
following form:
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Questionl’ : Let k be a field. Suppose thét(y) = k(x1,...,z,+1) for some simple transcen-
dental extensiotd.(y) of a field L. Does it follow thatl = k(z1,...,x,)?

Q. 1 does have an affirmative answer under certain cases but not in general. In fact, Beauville,
Colliot-Thélene, Sansuc and Swinnerton-Dyer constructed a family of examples in [6] which show
that even the special case Qdbes not have an affirmative answer in general. They constructed a field
F containing some subfield such thatF'(y1, y2, y3) =k k(x1, 22, ..., 25) but F' 25 k(z1,22). In
[43], Shepherd-Barron showed that actudlfy;, y2) = k(z1,x2,...,x4). Itis not known whether
F(y1) =k k(x1,29,23). If yes, thenL = F provides a counter-example to Qdnd if not, then
L = F(y1) provides a counter-example to Q.1

From around the early 1970’s, analogous cancellation problems over rings were taken up by
mathematicians like Abhyankar, Coleman, Eakin, Enochs, Heinzer, Hoetste(see [9], [1], [14]
and [24]). The cancellation problem over rings may be formulated as follows:

Question2 : Let k be a field andB be ak-algebra. Suppose that is a k-algebra and that the
polynomial ringsA[X ] and B[ X]| are isomorphic ag-algebras. Does it follow thatt =, B? In
other words, is thé&-algebraB cancellative?

Abhyankaret al., showed in 1972 [1] that Q. 2 has an affirmative answer for any doiadih
transcendence degree one over a fieldA counter-example to Q. 2 was constructed by Hochster
in 1972 [24] fork = R (the field of real numbers) antim B = 4. His example was based on the
fact that the projective module defined by the tangent bundle over the real sphere with coordinate
ring S = R[X,Y, Z]/(X% +Y? + Z% — 1) is stably free but not a fre6-module. Around 1989,
Danielewski constructed explicit examples [11] to show that i a domain of transcendence degree
two over the field of complex numbet then B need not be cancellative ovEr

We now discuss a very important case of Question 2: the case ®hea polynomial ring over
the fieldk.

Questior?’ : Letk be afield andd be an affing:-algebra. Suppose tha{X| = k[ X, ..., X,11].

Does it follow thatA = k[X1, ..., X,,]? In other words, is the polynomial ring X1, ..., X, can-
cellative?
Recall that the famous Serre conjecture asserts that all stably free modulésevielrX, . . ., X,

are free. By 1974, this conjecture had been provechfat 3 (by Seshadri fon = 2 [42] and by
Murthy and Towber [33] folk = C andn = 3) and, in 1976, Quillen [35] and Suslin [45] indepen-
dently settled the conjecture completely. Therefore, counter-examples like Hochster’s are certainly
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impossible for Question’2
For an algebraically closed field Question 2is equivalent to the following geometric version:

Question2” : Let k be an algebraically closed field aivdbe an affingk-variety such tha¥ x
A} = A7 Does it follow thatV =2, A7? In other words, is the affine-spaceA? cancellative?

In view of the importance of this elegant version of the original Q. 1, Questi¢orX). 2’) has
become popular as the Zariski cancellation problem (cf. [18], [31], [27] and [32]). Questlmas2
inspired many fruitful explorations over the past 45 years. Some of the major research accomplish-
ments during the 1970’s, like the characterisation of the affine plane, originated from the efforts to
investigate the problem. The problem has interesting connections with the embedding problem, affine
fibration problem, linearization problem, stable coordinate problem, and so on. Quésisostil2
open in characteristic zero and is of great interest to people in the area of affine algebraic geometry.

The polynomial ringk[X] was shown to be cancellative over a figldf any characteristic by
Abhyankaret al. [1]. In fact, as mentioned earlier, they proved the more general result that any
domainB of transcendence degree one over a field cancellative ovek. They also showed that,
for any UFD R, the polynomial ringR[ X is cancellative oveR.

The proof of the cancellative property bfX|, whenk is a field, is not very difficult. But for the
polynomial ringk[X, Y] the problem is more intricate. In an attempt to solve the cancellation prob-
lem for C[X, Y], Ramanujam established in 1971 his celebrated topological characterisation of the
affine plane [36]. In [30], Miyanishi (1975) gave an algebraic characterisation of the polynomial ring
k[X,Y]. This algebraic characterisation was used by Fejital. [18], [31] to prove the cancellation
property ofk[X, Y] over fields of characteristic zero and by Russell [37] over perfect fields of arbi-
trary characteristic. Later, using methods of Mumford and Ramanujam, Gurjar [23] gave a topological
proof of the cancellation property Gf[ X, Y]. More recently, a simplified proof of the cancellation
property ofk[X, Y] for an algebraically closed field was given by Crachiola and Makar-Limanov
in [10]. The arguments in this paper were used by Bhatwadekar and the author [8] to establish the
cancellation property of[X, Y] over any arbitrary field:. However, after Russell's work in 1981,
the Cancellation Problem for higher dimensional affine varieties had remained unanswered for more
than three decades.

In 1987, Asanuma [3] constructed a three-dimensional affine ring over a field of positive charac-
teristic as a counterexample ai-fibration problem in positive characteristic. This was envisaged in
[4] as a possible candidate for a counter-example to either the Zariski cancellation problem or the lin-
earization problem for the affine threespace in positive characteristic. In [20], the author showed that
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Asanuma’s ring is indeed a counter-example to the cancellation problem. Thus, wher-dh.the

affine 3—space&% is not cancellative. Subsequently in [22], the author showed that whel £h0,

the affinen-spaceA} is not cancellative for any > 3. Thus, over a field of positive characteristic,

the Zariski cancellation problem has been completely answered in all dimensions. However, over a
field of characteristic zero, the problem still remains opemfor 3.

We shall now discuss the known counter-examples to the Zariski cancellation problem (i)e., Q.2
We begin with Asanuma’s example.

3. ASANUMA’S DILEMMA : THE FIRST COUNTER-EXAMPLE

A finitely generated flaS-algebraA is said to be am\"-fibration (over S) if A ®g k(P) = k(P)
for each prime ideaP of S. The affine fibration problem of Dolgav-Vasfdler asks if everyA”-
fibration over a regular local rin§ is necessarily a polynomial ring ovét A nontrivial theorem of
Sathaye [40] showed thahy A2-fibration over a PIDS containingQ must be isomorphic t§12.

In [3], Asanuma made the next major breakthrough in the affine fibration problem. He proved a
stable structure theorem ([3, Corollary 3.5]) for any affine fibration over a regular local ring. In the
same paper, Asanuma also constructed the first counter-exampleAd-fimation problem over a
PID in positive characteristic. We present below a version of Asanuma’s example.

Let k be a field of characteristig (> 0) and letR = k[X,Y, Z, T]/(X™Y + ZP" + T + T*P),
wherem, e, s are positive integers such thatt t sp andsp 1 p¢. Letz denote the image ok in R.
Thenk[z] C R and the following properties are satisfied By(cf. [3, Theorem 5.1]):

(1) R @y k(P) = k(P) for all P € Spec k[z].
2) R — k[x] (8] — g4l

(3) R # kl[z]®.

(1) shows thatR is an A2-fibration overk[z]; (2) shows that is a stably polynomial ring over
k[x], in particular, a stably polynomial ring ovér and (3) shows thak is not a polynomial ring over
k[z]. ThusR is a non-trivialA2-fibration overk[z].

The ring R was soon to acquire a wider significance. In a subsequent paper [4, Theorem 2.2],
using the ringRR, Asanuma constructed non-linearizable algebraic torus actiodg aver any infi-
nite field & of positive characteristic whem > 4. He then asked whethét is a polynomial ring and
explained the significance of his question as follows [4, Remark 2.3]:
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“If R is a polynomial ring then it will give an example of a non-linearizable torus action
on k3 in positive characteristic. On the other handrifis not a polynomial ring then it
will clearly give a counter-example to the Cancellation Problem.”

Thus either way one would answer a major problem in affine algebraic geometry. This dichotomy
has been popularized by Russell as “Asanuma’s Dilemma” (cf. [38, Problem 2, p 9]).

In [20], using techniques of Crachiola and Makar-Limanov, the author has showR thatot a
polynomial ring at least whem > 2. Consequently, it follows that the Zariski cancellation problem
does not have an affirmative answer in positive characteristic. In a subsequent paper, the author made
further investigations on the Asanuma ring.

4. SUBSEQUENTDEVELOPMENTS AND EXAMPLES

We now discuss the concepts behind Asanuma'’s example and see how it is related to other interesting
problems in the area of affine algebraic geometry.

We shall use the following terminology. A polynomial € k[Z,T] will be called aline if
k[Z,T]/(g) = k" and a lineg will be called anontrivial lineif k[Z, T] # k[g]™.

We briefly recall the Epimorphism problem for the affine plane. Let k[Z, T| be a polynomial
such thatc[Z, T] = k[f]l!l. Then clearlyk[Z, T]/(f) = k!!l. The Epimorphism problem asks the
converse: iff € k[Z,T] is such thak[Z, T]/(f) = kY, is thenk[Z, T = k[f]11? In other words,
does there exist a non-trivial line?

The famous Epimorphism theorem of Abhyankar-Moh [2] (also proved independently by Suzuki
[46]) asserts that there does not exist any nontrivial line over any field of characteristic zero. However,
as early as in 1957, Segre [41] had exhibited an example of a nontrivial line over any field of positive
characteristic. Later Nagata gave a family of examples [34]. For more details on the Epimorphism
Problem see [13].

Asanuma’s3-dimensional ringR can be considered as a special case of the general class of
threefolds inA}; defined by the zero locus of a polynomial of the foaxi"Y — f(Z,T), where
f(Z,T) is a Segre-Nagata nontrivial line. This led us to a problem which was asked independently
by Russell.

Q. Let f be any nontrivial line an® be a ring defined by the relatiasfy = f. Is the ringA
necessarily not a polynomial ring over the fiéid

As classification of nontrivial lines is still an open problem, Russell's question has to be ap-
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proached abstractly. In [21], the author has answered Russell's question affirmatively. The general-
isation is more transparent and conceptual, and has simplified the earlier proofs in [20]. The proofs
are independent of the characteristic.

The problems investigated by the author in [21] may be formulated as follows.

Q. Let k be a field of any characteristic adde k[ X, Z, T]. Let
A=kX,Y,ZT)/(X"Y - F(X,Z1T)), wherer > 1.

Find conditions o’ for which
() Ais a stably polynomial ring.
(I A is itself a polynomial ring.
(1) The polynomial X"Y" — F'is a coordinate ik[ X, Y, Z, T.
A solution to problem I is as follows [21, Theorem 4.2].

Theorem4.1— Letk be a field of any characteristic antl € k[ X, Z, T] a polynomial in three
variables. Let
A=k[X,)Y,Z,T]/(X"Y — F(X,Z,T)), where r> 1.

ThenA is a stably polynomial ring i (0, Z, T) is a line ink[Z, T]. That is, Al = k[z]B] = k4 if
k[Z,T]/(F(0,2,T)) = k.

Note that the condition in Theorem 4.1 depends only@6, Z, T') and not on the general form
of F(X,Z,T).

The problems Il and lll have been shown to be equivalent and their precise solution is described
below ([21, Theorem 3.11]):

Theorem4.2— Letk be a field of any characteristic ankl € k[ X, Z, T, a polynomial in three
variables. Letf(Z,T) = F(0,Z,T),G = X"Y — F(X,Z,T) € k[X,Y,Z,T], wherer > 1 and
A=Ek[X,Y,Z,T|/(G). Then the following statements are equivalent:

() f(Z,T)isavariable ink[Z,T].
(i) A = k[z]?, wherez denotes the image of in A.
(i) A= kBl

(iv) Gisavariable ink[X,Y,Z T].
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(v) Gisavariable ink[X,Y, Z,T] along with X .

Theorem 4.2 answers in one statement several very different looking questions that had been of
long interest in the field.

Theorem 4.1 shows that the riagis a stably polynomial ring if(0, Z, T') is a line and now by
the equivalence of (i) and (iii) in Theorem 4.2, it follows thats not a polynomial ring i’ (0, Z, T')
is not a coordinate of[Z, T|. Thus, if F(0, Z,T) is a nontrivial line ink[Z, T, then A is a stably
polynomial ring but not a polynomial ring. This gives a recipe for constructing counter-examples to
the Zariski cancellation problem (ZCP). The proofs of Theorems 4.1 and 4.2 are independent of the
characteristic of the field. But we know by the Abhyankar-Moh-Suzuki theorem that a non-trivial line
never exists in characteristic zero. Thus, for obtaining counter-examples to the cancellation problems
for affine3-space, an application of Theorems 4.1 and 4.2 can be made only in positive characteristic.

The equivalence of (i) and (iii) answers in one stroke Russell's question affirmatively. It also ex-
plains the nontriviality of another important threefdldnamely, the Russell-Koras threefold defined
over the complex number field by the zero locus of the polynontial+ = + 2% + t3 = 0. This
threefold has played a pivotal role in the linearization problerifWe briefly discuss this problem.

The Linearization Conjecture asserts that any algebraic actiéh oh k£ is linearizable. But
it was shown that ifV were isomorphic to the affine threespa@é, thenV would admit aC*-
action which is not linearizable. It was therefore important to know whether A%. Koras and
Russell had constructed a family of such examples envisaged as possible counter-examples to the
linearization problem fo\2, the hypersurfac& being one of the simplest. For quite some time,
no known invariant could distinguisi from the affine threespacéV is smooth, contractible and
diffeomorphic toR®. The coordinate ring o¥ is a UFD which can be embedded in the polynomial
ring C13!. Analogous properties characterize the affine plane.

Subsequently, in a remarkable paper [29], Makar-Limanov discovered an invariant: the ring ob-
tained as the intersection of the rings of invariants ofzaltactions. He called it the ring of absolute
constants; now it is commonly known as the Makar-Limanov invariant. This invariant distinguished
the hypersurfac® from the affine3-space. In a subsequent paper [26], Kaliman and Makar-Limanov
proved that none of the Russell-Koras threefolds is an affispace. This led Russell and Koras to
complete their proof of the conjecture that every algeb&siaction ofC? is linearizable.

A major part of the proof of (i)<=- (iii) of Theorem 4.2 is based on techniques adapted from
Makar-Limanov’'s arguments. The implication (iig=- (i) in Theorem 4.2 now gives us the precise
reason for the non-trivially o¥: namely that the polynomiaf? + 7% is not a coordinate ik[Z, T).
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The equivalence of (iii) and (iv) is a special case of Abhyankar-Sathaye conjecture for the affine
four spaceAi. The conjecture asserts thatGf € k[X,Y, Z, T] is a polynomial in four variables
such that[X,Y, Z, T]/(G) = kBl thenk[X,Y, Z, T] = k[G]P. The result also extends, partially, a
theorem of Sathaye-Russell on the embedding of linear surfacgstimlinear hypersurfaces ify}.

In [21, Theorem 3.11], the author has also shown that each of the equivalent statements of The-
orem 4.2 is equivalent td other statements each involving the triviality of a ring of invariants called
the “Derksen invariant”, associated to “exponential maps”. We now briefly say a few words about
these concepts.

An important tool for studying polynomial rings has been the ring of invariants of a polynomial
ring under a suitable algebraic group action. For instance, Hilbert's 14th problem was related to
the finite generation of the ring of invariants of an algebraic group action. Some of the recent low-
dimensional counterexamples to Hilbert's 14th problem in characteristic zero were realised as the
rings of invariants ofz,-actions (see [17] for details).

The concept of an exponential map is a ring-theoretic formulation @f,-@ction (see [20, p.
280]); in the case when the ground field is of characteristic zero, this concept is equivalent to that
of a derivation which is “locally nilpotent” (see [17]). Two invariants of a ring defined by its locally
nilpotent derivations or exponential maps, the Makar-Limanov invariant mentioned earlier and the
Derksen invariant, have turned out to be powerful tools for settling certain central questions in affine
algebraic geometry. The Derksen invariant of a riRgdenoted byDK(R), is the subring ofR
generated by the rings of invariants of all the nontrivial exponential maps HfA = k[, then itis
easy to see th@dK(A) = A forn > 2 (cf. [20, Lemma 2.4]).

A crucial step in the proof of the theorem mentioned above [21, Theorem 3.11] is the following
theorem on the Derksen invariant of the riAg21, Proposition 3.7]:

Theorem4.3— Letk be a field andA be an integral domain defined by
A=k[X,Y,Z,T])(X"Y — F(X,Z,T)), wherer > 1.

Setf(Z,T) := F(0,Z,T). Letx, y, z andt denote, respectively, the images®dfY, Z andT in A.
Suppose thabK(A) # k[x, z, t].
Then the following statements hold.

(i) There existZ,, T1 € k[Z,T) andag,a; € k! such thatk[Z, T] = k[Z,, T3] and f(Z,T) =
ao(Z1) + a1(Zl)T1.
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(i) If k[Z,T)/(f) = kY, thenk[Z, T] = k[f]IL.

As a consequence of Theorem 4.3, it follows that i§ a non-trivial line, i.e.k[Z, T]/(f) = k!
butk[Z, T] # k[f]V), thenDK(A) = k[z, z,t] S A. HenceA cannot be:!).

Another result proved in [21, Theorem 4.11] describes the isomorphism classes of the rings of
Asanuma type.

Theorem4.4— Let k be a field of positive characteristic. For any integep> 2 and any non-
trivial line fin k[Z, T}, set

A(r, f) =k[X,Y, Z,T]/(X"Y — f(Z,T)).

ThenA(r, f) is isomorphic toA(s, g) if and only ifr = s and there exists &-algebra automor-
phismé of k[Z, T'] such that)(g) = ¢ f for somed € k*.

Note that by Theorem 4.14(r, f)!!l = k[, Therefore, by Theorem 4.4, if we vary the integer
r, we will get an infinite family of rings which are not isomorphic to each other but are all stably
isomorphic to the polynomial ring[3l. Again the proof is independent of the characteristic of the
field. But as non-trivial lines exist only in positive characteristic, we get an infinite family of counter-
examples to the Zariski cancellation problem but only over fields of positive characteristic.

5. HIGHER DIMENSIONAL COUNTER-EXAMPLES

In [22], the author generalised the construction of the affine threefajd= F'(x, z,t) to construct
counter-examples to the Zariski cancellation problem in higher dimension in positive characteristic,
i.e., to show that the polynomial rinig[ X1, . .., X,,] is not cancellative for any > 3. This settles
the Zariski cancellation problem completely in positive characteristic. She proved [22, Theorem 3.7]:

Theorem5.1— Letk be a field of any characteristic andl an integral domain defined by
A=k[X1,..., XY, Z,T]/(X;"™ - X,,™Y — f(Z,T)),
wherer; > 2 for eachi. Suppose that[Z,T)/(f(Z,T)) = kY. Then
A = k(X .. X )P = kbS]
Moreover, if ch.k > 0 and f(Z,T) is a non-trivial line ink[Z, T'] then
A # flm+2,

The proof involves a suitable generalisation of Theorem 4.3.
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6. A CANDIDATE COUNTER-EXAMPLE IN CHARACTERISTIC ZERO

Shastri had proved that any knot admits a polynomial embedding in the affine threéspaéte
also gave explicit construction for the embedding of the trefoil knatiin Let ¢ : R[X,Y, Z] —
R[T] be the polynomial embedding of a non-trivial knot and(ker = (f,g) for somef,g €
k[X,Y, Z]. Using Shastri's embedding, Asanuma constructed the ridg = R[t|[X,Y, Z,U,V]/
(tU — f,t%V — ¢) and proved thaB!!) = R/ (cf. [5, Corollary 4.2]). He further asked [5, Remark
7.8]:

Question Is B = R4I?

Again this question of Asanuma has twin consequences. Either way, one answers a major problem
in Affine algebraic geometry:

If B = R4, then there exist non-linearizatitg-actions on the affine four spagé; . If B  RI4),
then clearlyB is a counter-example to the ZCP!!
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