
Indian J. Pure Appl. Math.,46(6): 865-877, December 2015

c© Indian National Science Academy DOI: 10.1007/s13226-015-0154-3

A SURVEY ON ZARISKI CANCELLATION PROBLEM

Neena Gupta

Statistics and Mathematics Unit, Indian Statistical Institute,

203B. T. Road, Kolkata700 108,India

e-mails: neenag@isical.ac.in, rnanina@gmail.com

(Received15January2015;after final revision19May2015;

accepted3 June2015)
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1. INTRODUCTION

Let k be a field. The polynomial ringk[X1, . . . , Xn] is one of the oldest rings that mathemati-

cians have attempted to investigate. The study of polynomial rings and their quotients, equivalently

the study of affine spaces and their closed subspaces, is the driving motivation of the area called

“Affine Algebraic Geometry”. There are fascinating problems on polynomial rings which are still

open. Though these problems are very easy to state, it is normally difficult to approach them. The

most celebrated problems on polynomial rings include the Jacobian problem (first asked by Ott-

Heinrich Keller in 1939), the Zariski cancellation problem, the epimorphism or embedding problem

of Abhyankar-Sathaye, the affine fibration problem of Dolgačev-Věısfěıler, the linearization problem

of Kambayashi, the problem of characterisation of polynomial rings by a few chosen properties, and

the study of the Automorphism groups of polynomial rings.

One of the major difficulties in the study of the polynomial rings in more than two variables

is the paucity of our knowledge about their automorphism groups. After Jung [25] and Kulk [47]

showed that all automorphisms of the polynomial ring in two variables over a field are “tame”, there
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was very little progress on the automorphism problem for a long time. A major development in

affine algebraic geometry in the present century was the Shestakov-Umirbaev theory [44] to detect

“wild” automorphisms on a polynomial ring in three variables over a field; the application of the

theory to prove that an automorphism constructed by Nagata in 1972 was a “wild” automorphism, as

conjectured by Nagata, and the simplification and development of the theory by Kuroda [28].

The articles of Kraft [27], Freudenburg and Russell [16] and Miyanishi [32] give a survey on

problems in affine algebraic geometry; the monograph of Essen [15] gives an account of polynomial

automorphisms and the Jacobian conjecture; the Epimorphism problem and its offshoots are discussed

in the articles by Russell and Sathaye [39], and by Dutta and Gupta [13]; the problems on affine

fibrations are discussed by Bhatwadekar and Dutta in [7] and [12].

In this article, we shall discuss some recent developments on the cancellation problem and its

connections with other problems. We shall first begin with the history of the problem. Before that we

introduce some notation.

Throughout the article, our rings will be assumed to be commutative with unity. We shall use the

notationR[n] for a polynomial ring inn variables over a commutative ringR. Thus,E = R[n] will

mean thatE = R[t1, . . . , tn] for some elementst1, . . . , tn in E which are algebraically independent

overR. Unless otherwise stated, capital letters likeX1, X2, . . . , Xn, Y1, . . . , Ym, X, Y, Z, T will be

used as variables of polynomial rings.

Let R be a ring andA andB be twoR-algebras. The notationA ∼=R B would mean thatA is

isomorphic toB as anR-algebra.

An R-algebraB is said to becancellativeover R if, wheneverA[X] ∼=R B[X] for someR-

algebraA, thenA ∼=R B.

2. THE ZARISKI CANCELLATION PROBLEM

The following cancellation problem was first raised by Zariski in 1949 at the Paris Colloquium on

Algebra and Theory of Numbers [41]. He asked [34]:

Question1 : Let L andL′ be two finitely generated fields over a fieldk and letL(x), L′(x) be

simple transcendental extensions ofL andL′ respectively. Suppose thatL(x) ∼=k L′(x). Does it

follow thatL ∼=k L′?

In particular, whenL′ = k(x1, . . . , xn), the rational function field inn variables, Q.1 takes the

following form:
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Question1′ : Let k be a field. Suppose thatL(y) ∼=k k(x1, . . . , xn+1) for some simple transcen-

dental extensionL(y) of a fieldL. Does it follow thatL ∼=k k(x1, . . . , xn)?

Q. 1 does have an affirmative answer under certain cases but not in general. In fact, Beauville,

Colliot-Thélène, Sansuc and Swinnerton-Dyer constructed a family of examples in [6] which show

that even the special case Q.1′ does not have an affirmative answer in general. They constructed a field

F containing some subfieldk such thatF (y1, y2, y3) ∼=k k(x1, x2, . . . , x5) but F �k k(x1, x2). In

[43], Shepherd-Barron showed that actuallyF (y1, y2) ∼=k k(x1, x2, . . . , x4). It is not known whether

F (y1) ∼=k k(x1, x2, x3). If yes, thenL = F provides a counter-example to Q.1′ and if not, then

L = F (y1) provides a counter-example to Q.1′.

From around the early 1970’s, analogous cancellation problems over rings were taken up by

mathematicians like Abhyankar, Coleman, Eakin, Enochs, Heinzer, Hochsteret al. (see [9], [1], [14]

and [24]). The cancellation problem over rings may be formulated as follows:

Question2 : Let k be a field andB be ak-algebra. Suppose thatA is ak-algebra and that the

polynomial ringsA[X] andB[X] are isomorphic ask-algebras. Does it follow thatA ∼=k B? In

other words, is thek-algebraB cancellative?

Abhyankaret al., showed in 1972 [1] that Q. 2 has an affirmative answer for any domainB of

transcendence degree one over a fieldk. A counter-example to Q. 2 was constructed by Hochster

in 1972 [24] fork = R (the field of real numbers) anddimB = 4. His example was based on the

fact that the projective module defined by the tangent bundle over the real sphere with coordinate

ring S = R[X, Y, Z]/(X2 + Y 2 + Z2 − 1) is stably free but not a freeS-module. Around 1989,

Danielewski constructed explicit examples [11] to show that ifB is a domain of transcendence degree

two over the field of complex numbersC, thenB need not be cancellative overC.

We now discuss a very important case of Question 2: the case whenB is a polynomial ring over

the fieldk.

Question2′ : Letk be a field andA be an affinek-algebra. Suppose thatA[X] ∼=k k[X1, . . . , Xn+1].

Does it follow thatA ∼=k k[X1, . . . , Xn]? In other words, is the polynomial ringk[X1, . . . , Xn] can-

cellative?

Recall that the famous Serre conjecture asserts that all stably free modules overB = k[X1, . . . , Xn]

are free. By 1974, this conjecture had been proved forn ≤ 3 (by Seshadri forn = 2 [42] and by

Murthy and Towber [33] fork = C andn = 3) and, in 1976, Quillen [35] and Suslin [45] indepen-

dently settled the conjecture completely. Therefore, counter-examples like Hochster’s are certainly
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impossible for Question 2′.

For an algebraically closed fieldk, Question 2′ is equivalent to the following geometric version:

Question2′′ : Let k be an algebraically closed field andV be an affinek-variety such thatV ×
A1

k
∼=k An+1

k . Does it follow thatV ∼=k An
k? In other words, is the affinen-spaceAn

k cancellative?

In view of the importance of this elegant version of the original Q. 1, Question 2′ (or Q. 2′′) has

become popular as the Zariski cancellation problem (cf. [18], [31], [27] and [32]). Question 2′ has

inspired many fruitful explorations over the past 45 years. Some of the major research accomplish-

ments during the 1970’s, like the characterisation of the affine plane, originated from the efforts to

investigate the problem. The problem has interesting connections with the embedding problem, affine

fibration problem, linearization problem, stable coordinate problem, and so on. Question 2′ is still

open in characteristic zero and is of great interest to people in the area of affine algebraic geometry.

The polynomial ringk[X] was shown to be cancellative over a fieldk of any characteristic by

Abhyankaret al. [1]. In fact, as mentioned earlier, they proved the more general result that any

domainB of transcendence degree one over a fieldk is cancellative overk. They also showed that,

for any UFDR, the polynomial ringR[X] is cancellative overR.

The proof of the cancellative property ofk[X], whenk is a field, is not very difficult. But for the

polynomial ringk[X,Y ] the problem is more intricate. In an attempt to solve the cancellation prob-

lem forC[X, Y ], Ramanujam established in 1971 his celebrated topological characterisation of the

affine plane [36]. In [30], Miyanishi (1975) gave an algebraic characterisation of the polynomial ring

k[X, Y ]. This algebraic characterisation was used by Fujitaet al. [18], [31] to prove the cancellation

property ofk[X, Y ] over fields of characteristic zero and by Russell [37] over perfect fields of arbi-

trary characteristic. Later, using methods of Mumford and Ramanujam, Gurjar [23] gave a topological

proof of the cancellation property ofC[X, Y ]. More recently, a simplified proof of the cancellation

property ofk[X, Y ] for an algebraically closed fieldk was given by Crachiola and Makar-Limanov

in [10]. The arguments in this paper were used by Bhatwadekar and the author [8] to establish the

cancellation property ofk[X,Y ] over any arbitrary fieldk. However, after Russell’s work in 1981,

the Cancellation Problem for higher dimensional affine varieties had remained unanswered for more

than three decades.

In 1987, Asanuma [3] constructed a three-dimensional affine ring over a field of positive charac-

teristic as a counterexample onA2-fibration problem in positive characteristic. This was envisaged in

[4] as a possible candidate for a counter-example to either the Zariski cancellation problem or the lin-

earization problem for the affine threespace in positive characteristic. In [20], the author showed that
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Asanuma’s ring is indeed a counter-example to the cancellation problem. Thus, when ch.k > 0, the

affine3-spaceA3
k is not cancellative. Subsequently in [22], the author showed that when ch.k > 0,

the affinen-spaceAn
k is not cancellative for anyn ≥ 3. Thus, over a field of positive characteristic,

the Zariski cancellation problem has been completely answered in all dimensions. However, over a

field of characteristic zero, the problem still remains open forn ≥ 3.

We shall now discuss the known counter-examples to the Zariski cancellation problem (i.e., Q.2′).

We begin with Asanuma’s example.

3. ASANUMA’ S DILEMMA : THE FIRST COUNTER-EXAMPLE

A finitely generated flatS-algebraA is said to be anAn-fibration (overS) if A ⊗S k(P ) = k(P )[n]

for each prime idealP of S. The affine fibration problem of Dolgačev-Věısfěıler asks if everyAn-

fibration over a regular local ringS is necessarily a polynomial ring overS. A nontrivial theorem of

Sathaye [40] showed thatanyA2-fibration over a PIDS containingQmust be isomorphic toS[2].

In [3], Asanuma made the next major breakthrough in the affine fibration problem. He proved a

stable structure theorem ([3, Corollary 3.5]) for any affine fibration over a regular local ring. In the

same paper, Asanuma also constructed the first counter-example to theA2-fibration problem over a

PID in positive characteristic. We present below a version of Asanuma’s example.

Let k be a field of characteristicp (> 0) and letR = k[X, Y, Z, T ]/(XmY + Zpe
+ T + T sp),

wherem, e, s are positive integers such thatpe - sp andsp - pe. Let x denote the image ofX in R.

Thenk[x] ⊂ R and the following properties are satisfied byR (cf. [3, Theorem 5.1]):

(1) R⊗k[x] k(P ) = k(P )[2] for all P ∈ Spec k[x].

(2) R[1] = k[x][3] = k[4].

(3) R 6= k[x][2].

(1) shows thatR is anA2-fibration overk[x]; (2) shows thatR is a stably polynomial ring over

k[x], in particular, a stably polynomial ring overk; and (3) shows thatR is not a polynomial ring over

k[x]. ThusR is a non-trivialA2-fibration overk[x].

The ringR was soon to acquire a wider significance. In a subsequent paper [4, Theorem 2.2],

using the ringR, Asanuma constructed non-linearizable algebraic torus actions onAn
k over any infi-

nite fieldk of positive characteristic whenn ≥ 4. He then asked whetherR is a polynomial ring and

explained the significance of his question as follows [4, Remark 2.3]:
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“If R is a polynomial ring then it will give an example of a non-linearizable torus action

on k3 in positive characteristic. On the other hand ifR is not a polynomial ring then it

will clearly give a counter-example to the Cancellation Problem.”

Thus either way one would answer a major problem in affine algebraic geometry. This dichotomy

has been popularized by Russell as “Asanuma’s Dilemma” (cf. [38, Problem 2, p 9]).

In [20], using techniques of Crachiola and Makar-Limanov, the author has shown thatR is not a

polynomial ring at least whenm ≥ 2. Consequently, it follows that the Zariski cancellation problem

does not have an affirmative answer in positive characteristic. In a subsequent paper, the author made

further investigations on the Asanuma ring.

4. SUBSEQUENTDEVELOPMENTS ANDEXAMPLES

We now discuss the concepts behind Asanuma’s example and see how it is related to other interesting

problems in the area of affine algebraic geometry.

We shall use the following terminology. A polynomialg ∈ k[Z, T ] will be called aline if

k[Z, T ]/(g) = k[1] and a lineg will be called anontrivial line if k[Z, T ] 6= k[g][1].

We briefly recall the Epimorphism problem for the affine plane. Letf ∈ k[Z, T ] be a polynomial

such thatk[Z, T ] = k[f ][1]. Then clearlyk[Z, T ]/(f) = k[1]. The Epimorphism problem asks the

converse: iff ∈ k[Z, T ] is such thatk[Z, T ]/(f) = k[1], is thenk[Z, T ] = k[f ][1]? In other words,

does there exist a non-trivial line?

The famous Epimorphism theorem of Abhyankar-Moh [2] (also proved independently by Suzuki

[46]) asserts that there does not exist any nontrivial line over any field of characteristic zero. However,

as early as in 1957, Segre [41] had exhibited an example of a nontrivial line over any field of positive

characteristic. Later Nagata gave a family of examples [34]. For more details on the Epimorphism

Problem see [13].

Asanuma’s3-dimensional ringR can be considered as a special case of the general class of

threefolds inA4
k defined by the zero locus of a polynomial of the formXmY − f(Z, T ), where

f(Z, T ) is a Segre-Nagata nontrivial line. This led us to a problem which was asked independently

by Russell.

Q. Let f be any nontrivial line andA be a ring defined by the relationxry = f . Is the ringA

necessarily not a polynomial ring over the fieldk?

As classification of nontrivial lines is still an open problem, Russell’s question has to be ap-
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proached abstractly. In [21], the author has answered Russell’s question affirmatively. The general-

isation is more transparent and conceptual, and has simplified the earlier proofs in [20]. The proofs

are independent of the characteristic.

The problems investigated by the author in [21] may be formulated as follows.

Q. Let k be a field of any characteristic andF ∈ k[X,Z, T ]. Let

A = k[X, Y, Z, T ]/(XrY − F (X, Z, T )), where r > 1.

Find conditions onF for which

(I) A is a stably polynomial ring.

(II) A is itself a polynomial ring.

(III) The polynomialXrY − F is a coordinate ink[X,Y, Z, T ].

A solution to problem I is as follows [21, Theorem 4.2].

Theorem4.1— Let k be a field of any characteristic andF ∈ k[X,Z, T ] a polynomial in three

variables. Let

A = k[X, Y, Z, T ]/(XrY − F (X,Z, T )), where r ≥ 1.

ThenA is a stably polynomial ring ifF (0, Z, T ) is a line ink[Z, T ]. That is,A[1] = k[x][3] = k[4] if

k[Z, T ]/(F (0, Z, T )) = k[1].

Note that the condition in Theorem 4.1 depends only onF (0, Z, T ) and not on the general form

of F (X, Z, T ).

The problems II and III have been shown to be equivalent and their precise solution is described

below ([21, Theorem 3.11]):

Theorem4.2— Letk be a field of any characteristic andF ∈ k[X, Z, T ], a polynomial in three

variables. Letf(Z, T ) = F (0, Z, T ), G = XrY − F (X,Z, T ) ∈ k[X, Y, Z, T ], wherer > 1 and

A = k[X, Y, Z, T ]/(G). Then the following statements are equivalent:

(i) f(Z, T ) is a variable ink[Z, T ].

(ii) A = k[x][2], wherex denotes the image ofX in A.

(iii) A = k[3].

(iv) G is a variable ink[X,Y, Z, T ].
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(v) G is a variable ink[X,Y, Z, T ] along withX.

Theorem 4.2 answers in one statement several very different looking questions that had been of

long interest in the field.

Theorem 4.1 shows that the ringA is a stably polynomial ring ifF (0, Z, T ) is a line and now by

the equivalence of (i) and (iii) in Theorem 4.2, it follows thatA is not a polynomial ring ifF (0, Z, T )

is not a coordinate ofk[Z, T ]. Thus, ifF (0, Z, T ) is a nontrivial line ink[Z, T ], thenA is a stably

polynomial ring but not a polynomial ring. This gives a recipe for constructing counter-examples to

the Zariski cancellation problem (ZCP). The proofs of Theorems 4.1 and 4.2 are independent of the

characteristic of the field. But we know by the Abhyankar-Moh-Suzuki theorem that a non-trivial line

never exists in characteristic zero. Thus, for obtaining counter-examples to the cancellation problems

for affine3-space, an application of Theorems 4.1 and 4.2 can be made only in positive characteristic.

The equivalence of (i) and (iii) answers in one stroke Russell’s question affirmatively. It also ex-

plains the nontriviality of another important threefoldV, namely, the Russell-Koras threefold defined

over the complex number field by the zero locus of the polynomialx2y + x + z2 + t3 = 0. This

threefold has played a pivotal role in the linearization problem ofA3
C. We briefly discuss this problem.

The Linearization Conjecture asserts that any algebraic action ofk∗ on k[n] is linearizable. But

it was shown that ifV were isomorphic to the affine threespaceA3
C, thenV would admit aC∗-

action which is not linearizable. It was therefore important to know whetherV ∼= A3
C. Koras and

Russell had constructed a family of such examples envisaged as possible counter-examples to the

linearization problem forA3
C, the hypersurfaceV being one of the simplest. For quite some time,

no known invariant could distinguishV from the affine threespace.V is smooth, contractible and

diffeomorphic toR6. The coordinate ring ofV is a UFD which can be embedded in the polynomial

ringC[3]. Analogous properties characterize the affine plane.

Subsequently, in a remarkable paper [29], Makar-Limanov discovered an invariant: the ring ob-

tained as the intersection of the rings of invariants of allGa-actions. He called it the ring of absolute

constants; now it is commonly known as the Makar-Limanov invariant. This invariant distinguished

the hypersurfaceV from the affine3-space. In a subsequent paper [26], Kaliman and Makar-Limanov

proved that none of the Russell-Koras threefolds is an affine3-space. This led Russell and Koras to

complete their proof of the conjecture that every algebraicC∗-action ofC3 is linearizable.

A major part of the proof of (i)⇐⇒ (iii) of Theorem 4.2 is based on techniques adapted from

Makar-Limanov’s arguments. The implication (iii)=⇒ (i) in Theorem 4.2 now gives us the precise

reason for the non-trivially ofV: namely that the polynomialZ2 + T 3 is not a coordinate ink[Z, T ].
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The equivalence of (iii) and (iv) is a special case of Abhyankar-Sathaye conjecture for the affine

four spaceA4
k. The conjecture asserts that ifG ∈ k[X, Y, Z, T ] is a polynomial in four variables

such thatk[X,Y, Z, T ]/(G) = k[3] thenk[X,Y, Z, T ] = k[G][3]. The result also extends, partially, a

theorem of Sathaye-Russell on the embedding of linear surfaces inA3
k to linear hypersurfaces inA4

k.

In [21, Theorem 3.11], the author has also shown that each of the equivalent statements of The-

orem 4.2 is equivalent to5 other statements each involving the triviality of a ring of invariants called

the “Derksen invariant”, associated to “exponential maps”. We now briefly say a few words about

these concepts.

An important tool for studying polynomial rings has been the ring of invariants of a polynomial

ring under a suitable algebraic group action. For instance, Hilbert’s 14th problem was related to

the finite generation of the ring of invariants of an algebraic group action. Some of the recent low-

dimensional counterexamples to Hilbert’s 14th problem in characteristic zero were realised as the

rings of invariants ofGa-actions (see [17] for details).

The concept of an exponential map is a ring-theoretic formulation of aGa-action (see [20, p.

280]); in the case when the ground field is of characteristic zero, this concept is equivalent to that

of a derivation which is “locally nilpotent” (see [17]). Two invariants of a ring defined by its locally

nilpotent derivations or exponential maps, the Makar-Limanov invariant mentioned earlier and the

Derksen invariant, have turned out to be powerful tools for settling certain central questions in affine

algebraic geometry. The Derksen invariant of a ringR, denoted byDK(R), is the subring ofR

generated by the rings of invariants of all the nontrivial exponential maps ofR. If A = k[n], then it is

easy to see thatDK(A) = A for n ≥ 2 (cf. [20, Lemma 2.4]).

A crucial step in the proof of the theorem mentioned above [21, Theorem 3.11] is the following

theorem on the Derksen invariant of the ringA [21, Proposition 3.7]:

Theorem4.3— Letk be a field andA be an integral domain defined by

A = k[X,Y, Z, T ]/(XrY − F (X, Z, T )), where r > 1.

Setf(Z, T ) := F (0, Z, T ). Letx, y, z andt denote, respectively, the images ofX, Y , Z andT in A.

Suppose thatDK(A) 6= k[x, z, t].

Then the following statements hold.

(i) There existZ1, T1 ∈ k[Z, T ] anda0, a1 ∈ k[1] such thatk[Z, T ] = k[Z1, T1] andf(Z, T ) =

a0(Z1) + a1(Z1)T1.
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(ii) If k[Z, T ]/(f) = k[1], thenk[Z, T ] = k[f ][1].

As a consequence of Theorem 4.3, it follows that iff is a non-trivial line, i.e.,k[Z, T ]/(f) = k[1]

butk[Z, T ] 6= k[f ][1], thenDK(A) = k[x, z, t] $ A. HenceA cannot bek[3].

Another result proved in [21, Theorem 4.11] describes the isomorphism classes of the rings of

Asanuma type.

Theorem4.4 — Let k be a field of positive characteristic. For any integerr ≥ 2 and any non-

trivial line f in k[Z, T ], set

A(r, f) := k[X, Y, Z, T ]/(XrY − f(Z, T )).

ThenA(r, f) is isomorphic toA(s, g) if and only ifr = s and there exists ak-algebra automor-

phismθ of k[Z, T ] such thatθ(g) = δf for someδ ∈ k∗.

Note that by Theorem 4.1,A(r, f)[1] = k[4]. Therefore, by Theorem 4.4, if we vary the integer

r, we will get an infinite family of rings which are not isomorphic to each other but are all stably

isomorphic to the polynomial ringk[3]. Again the proof is independent of the characteristic of the

field. But as non-trivial lines exist only in positive characteristic, we get an infinite family of counter-

examples to the Zariski cancellation problem but only over fields of positive characteristic.

5. HIGHER DIMENSIONAL COUNTER-EXAMPLES

In [22], the author generalised the construction of the affine threefoldxry = F (x, z, t) to construct

counter-examples to the Zariski cancellation problem in higher dimension in positive characteristic,

i.e., to show that the polynomial ringk[X1, . . . , Xn] is not cancellative for anyn ≥ 3. This settles

the Zariski cancellation problem completely in positive characteristic. She proved [22, Theorem 3.7]:

Theorem5.1— Letk be a field of any characteristic andA an integral domain defined by

A = k[X1, . . . , Xm, Y, Z, T ]/(X1
r1 · · ·Xm

rmY − f(Z, T )),

whereri ≥ 2 for eachi. Suppose thatk[Z, T ]/(f(Z, T )) = k[1]. Then

A[1] = k[X1, . . . , Xm][3] = k[m+3].

Moreover, if ch.k > 0 andf(Z, T ) is a non-trivial line ink[Z, T ] then

A 6= k[m+2].

The proof involves a suitable generalisation of Theorem 4.3.
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6. A CANDIDATE COUNTER-EXAMPLE IN CHARACTERISTIC ZERO

Shastri had proved that any knot admits a polynomial embedding in the affine threespaceA3
R. He

also gave explicit construction for the embedding of the trefoil knot inA3
R. Let φ : R[X,Y, Z] →

R[T ] be the polynomial embedding of a non-trivial knot and ker(φ) = (f, g) for somef, g ∈
k[X, Y, Z]. Using Shastri’s embeddingφ, Asanuma constructed the ringB = R[t][X, Y, Z, U, V ]/

(tdU − f, tdV − g) and proved thatB[1] = R[5] (cf. [5, Corollary 4.2]). He further asked [5, Remark

7.8]:

Question: Is B = R[4]?

Again this question of Asanuma has twin consequences. Either way, one answers a major problem

in Affine algebraic geometry:

If B = R[4], then there exist non-linearizableR∗-actions on the affine four spaceA[4]
R . If B 6= R[4],

then clearlyB is a counter-example to the ZCP!!
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