
Research Statement
Min Li

My research interests lie broadly in distributed systems, cloud computing, and large-scale data-intensive
computing. My graduate research has focused on two closely related directions: 1) making MapReduce
instances more efficient, when running on both bare metal clusters and virtualized clusters, through prudent
resource management and dynamic performance tuning; and 2) improving storage efficiency in virtualized
data centers by designing content-aware de-duplication based caching protocols and a similarity-aware virtual
machine management mechanism. I am enthusiastic about applying system principles to solve practical,
real-world system problems and to build deployable systems. In my future research, I intend to address
the resource management and storage optimization challenges arising in cloud computing specifically and
distributed systems in general.

Current and Prior Research

Making MapReduce more Efficient

MapReduce has emerged as the prevailing distributed computation paradigm for large-scale data-intensive
applications. While MapReduce is widely deployed on native clusters, the framework is also increasingly used
in massively parallel cloud environments, where MapReduce jobs are run on a set of virtual machines on a
pay-as-needed basis. However, undesirable configurations can impact MapReduce performance significantly.
Moreover, since MapReduce was designed to run on native clusters, MapReduce jobs suffer from performance
degradation when running in the cloud. I adopted a two-pronged approach to address these challenges: 1)
proposing dynamic performance tuning to improve job performance and speed up performance tuning test
runs, and 2) designing a topology-aware min-cost-flow-based resource manager for MapReduce in the cloud
to tackle placement anomalies.

Dynamically Tuning MapReduce Performance

MapReduce job parameters need to be tuned to achieve good performance. The reason is that the desirable
values for the related parameters are affected by cluster size, job characteristics, MapReduce functions, and
input data set. Existing best-practice tuning guides report performance gains on the order of multiples
from tuning. However, job parameter tuning is a daunting task in both native clusters and virtualized data
centers. The configuration space involves more than seventy parameters that affect the job performance.
Moreover, the traditional offline tuning system requires many test runs to identify a desirable configuration.

To this end, I proposed a dynamic fine-grain level online performance tuning approach that monitors the job
performance counters and system logs dynamically, tunes the parameters according to the collected informa-
tion, and changes the configuration dynamically during job execution. One use case of the dynamic tuning
system is to expedite the test runs by applying dynamic task level configurations. Unlike the traditional
MapReduce framework, our system allows different configurations for each task. This enables the system
to try multiple parameter configurations in parallel. Another use case for our system is to improve the
job performance in a single run. This feature benefits jobs that are run only once, making tuning through
multiple test runs impractical. I implemented the online tuning system based on YARN, a second-generation
Hadoop implementation. The parameters on which attention is focused are the container CPU and memory
allocation for each map and reduce task, the memory allocation of sort buffer in the map phase, the shuffle
buffer and reduce buffer in the reduce phase, and so on. I designed a gray-boxbased hill-climbing algorithm
that systematically searches the configuration space and finds near-optimal parameter configurations. I
evaluated dynamic online tuning on several benchmarks including K-means, text search, histogram, bigram,
and others, comparing the results against offline tuning and default parameter configuration. Initial results
showed that our mechanism can improve performance by 27%.

Designing a Topology-Aware Min-Cost-FlowBased Resource Management System for MapReduce in the
Cloud

MapReduce jobs suffer from performance degradation when running in the cloud due to inefficient resource
allocation. The MapReduce model is designed for and leverages information from the native clusters to
operate efficiently, whereas the cloud presents a virtual cluster topology overlaying or hiding actual network
information. This results in two placement anomalies: loss of data locality and loss of job locality, where jobs
are placed physically away from their data or other associated jobs, adversely affecting their performance.
Moreover, the multitenant cloud environment may result in interference between MapReduce applications.
Thus, there is an urgent need to design an efficient resource management system to deal with placement

1



anomalies in light of the actual topology information of the cloud.

To host MapReduce applications in the cloud more efficiently, I proposed CAM, a cloud platform that
provides an innovative resource scheduler. CAM reconciles both data and virtual machine resource allocation
with a variety of competing constraints. CAM uses a flow-networkbased algorithm that is able to optimize
MapReduce performance under the specified constraintsnot only by initial placement, but also by readjusting
through virtual machine and data migration. Additionally, the platform exposes otherwise hidden, lower-level
topology information to the MapReduce job scheduler so that it can make optimal task assignments.

An evaluation of CAM via actual implementation and large-scale simulation showed that CAM effectively
improves MapReduce performance compared with a state-of-the-art MapReduce resource scheduler that
relies on heuristics.

Alleviating Storage Bottlenecks by De-duplication-Based Caching and Resource Management

Another aspect of my graduate research has been work to mitigate storage bottlenecks in virtualized data
centers and virtual desktop environments (VDEs). Virtual data centers and VDEs typically employ shared
storage, which is facing a scalability issue due to the high costs associated with provisioning large, high-
speed shared storage. I addressed the problem in two steps: 1) using a cooperative storagelevel de-duplication
approach to reduce network bandwidth consumption between storage server and hosts accommodating virtual
machines, and 2) utilizing workload similarityaware virtual machine management techniques to improve the
efficiency of the cooperative storagelevel de-duplication method.

Reducing I/O Consumption through Cooperative Storage-Level

De-duplication in Virtualized Data Centers More data centers are being redesigned with consolidation in
order to reap the benefits of better resource utilization, power savings, and physical space savings. As
more consolidated workloads are concentrated on physical machines and the trend toward high-core-count
drive, higher-density virtual machines, the shared storage layer must respond with virtualization innovations
such as de-duplication and thin provisioning. I observed that there is a possibility to reduce bandwidth
between virtual machine hosts and storage servers by exploiting block sharing information in consolidated
data centers. Based on that observation, I designed a systematic caching sharing protocol to reduce the I/O
bandwidth consumption. More specifically, by examining host-side caching, data transfer within hosts and
between storage server and hosts, and storage serverside de-duplication in a holistic manner, I realized a
software-only solution that obviates the need to provision for peak loads without employing extra memory or
adding on-wire de-duplication boxes. We quantitatively evaluated the I/O bandwidth and latency reduction
using real-world trace-driven simulation. I also implemented a proof of concept based on NFS to quantify
the I/O latency benefits using real-world applications. This work lays the groundwork guaranteeing the
effectiveness of storage-level de-duplication optimization through virtual machine placement and migration.

Leveraging Workload SimilarityAware Virtual Machine Management for Storage Efficiency in VDEs

VDEs typically employ shared storage, which is facing a scalability issue due to the high costs associated with
provisioning large, high-speed shared storage. I/O reduction techniques aimed at improving the performance
and scalability of shared storage have been proposed based on the observation that virtual environments
exhibit a large number of common data accesses between different virtual machines. However, it may happen
that VMs with similar I/O accesses are placed on different physical machines, which leads to suboptimal
I/O reduction. Current virtual machine management policies usually ignore the I/O similarities, instead
focusing on optimizing other aspects of VM efficiency, including power efficiency, network traffic reduction,
service-level agreements, and other factors.

To address this challenge, I proposed a virtual machine manager that monitors the I/O accesses of indi-
vidual virtual machines and places those with similar I/O accesses on the same physical machine through
a hierarchical-clustering algorithm. This would improve I/O reduction efficiency, which in turn helps im-
prove the performance and scalability of the shared storage system. Evaluation showed that our approach
can effectively detect similarities between different sets of virtual machines and improve the performance of
storage system.

2



Future Research

In my future research, I plan to extend my experience in storage optimization in virtualized data centers and
data analytics performance improvement to areas of resource management and storage optimization in cloud
computing and distributed systems. In the following, I outline my vision for setting up an active research
group and establishing myself as an independent researcher.

Application-attuned Heterogeneous-aware Resource Management in the Cloud

Large distributed software framework (DSF) deployments such as MapReduce, Pig and Hive, in the cloud
continue to grow in both size and number, given the DSFs are cost-effective and easy to deploy. However,
a problem posed by modern applications is that they typically are complex workflows comprising multiple
different kernels. The kernels can be diverse, e.g., compute-intensive processing followed by data-intensive
visualization, and thus preclude the use of extant static global optimizations in DSFs. Another problem is
faced in evolving DSFs to efficiently handle increasing heterogeneity in the underlying infrastructure. For
instance, low-cost, power-efficient clusters that employ traditional servers along with specialized resources
such as FPGAs, GPUs, powerPC, MIPS and ARM based embedded devices, and high-end server-on-chip
solutions will drive future DSFs infrastructure. Similarly, high-throughput DSF storage is trending towards
hybrid and tiered approaches that use large in-memory buffers, SSDs, etc., in addition to disks.

To address the above problems, the following important challenges have to be tackled. Data analytic frame-
works computing substrates such as MapReduce have been designed to run in homogeneous environments for
applications that are typically composed of a single kernel. Thus, existing feature implementations such as
MapReduce slots and straggler detection, and data replica placement are not capable of exploiting hetero-
geneity in both the system architecture (different CPUs, embedded devices, GPUs, tiered-storage, etc.) and
various stages of a workflow. Second, current optimizations in compilers and runtime systems are severely
limited in handling user defined functions (UDFs), such as the ones implementing custom mappers, reducers,
and mergers. UDFs currently are treated as black boxes, whose properties and potential for parallelization
on different types of hardware remain unexplored. Third, these black-box UDFs are increasingly composed
into complex dataflows, but the runtime system remains unaware of their essential characteristics, and as a
result, opportunities for many cross-task and cross-job optimization opportunities are lost.

In my graduate research, I have studied how to effectively allocate and manage cluster resources for MapRe-
duce instances running in the cloud to alleviate the placement anomalies. I would like to extend the research
to design an automated, cross layer performance optimization framework for DSFs which will be able to
adapt to varying application and heterogeneous infrastructure characteristics at runtime to better drive
resource management and thus achieving high performance and efficiency.

Storage Substrate Optimization for Cloud Infrastructure

Virtualization is the key enabler for cloud computing especially for platform as a service(PaaS) such as Ama-
zon EC2 and windows Azure. However a challenging issue concerns the unpredictability in I/O virtualization.
There are large disk bandwidth deviations observed by applications running with virtualized environments.
On the other hand, SSDs, exhibiting superior random I/O performance, are increasingly deployed in high
end storage systems such as high throughput key value stores. The advancement of SSDs has opened up
new opportunities to improve the performance isolation in I/O virtualization. In my graduate research, I
have studied the caching protocols de-duplicating the blocks accesses to improve the storage efficiency in
virtualized environments. Here, I am interested in studying how SSDs can be utilized to provide stronger
performance isolation to avoid interference observed in traditional hard disks. I am also interested in inves-
tigating how the improvement of performance isolation facilitates the tight time coordination demanded by
scientific applications in high performance computing.

As different large scale data processing engines keep emerging, it is interesting to see how to dynamically
sharing cluster resource between different data processing frameworks and the corresponding data storage.
This would facilitate data sharing and significantly improve cluster utilization compared with static parti-
tioning. There are numerous challenges remains. For example, how to efficiently manage the caching tiers
between the data frameworks hosting application with different workload characteristics and requirements.
Web applications and ad-hoc queries on non-SQL databases are latency sensitive interactive application
which cache small objects while map-reduce like batching applications prefer all or nothing caching policies.
I am particularly eager to study how to allocate memory for multiple applications that belongs to different
large-scale data processing frameworks and build a coordinated cluster memory manager and caching tiers.

3


