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ABSTRACT The comparative analysis of the population variation pat- 
terns exhibited by different types of information has long been a genuine 
anthropologicallgenetic preoccupation. One of the generic problems attract- 
ing repeated attention is the connection between genetic and cultural con- 
sequences of population isolation; we expect both patterns and amounts of 
variation to reflect the same history of group fission and fusion, but what do 
we see in practice? Numerous techniques have been employed in such work, 
all based on comparison of different matrices of pairwise distanceslaffini- 
ties. A basic difficulty with all of these methods is that the N(N - 1) pair- 
wise elements of an (N x N) matrix cannot be mutually independent. Re- 
cently, a versatile test of matrix correlation that allows for this fact, 
originally developed by Mantel but since extensively modified and ex- 
tended, has gained popularity in anthropology, as well as geography, ecol- 
ogy, sociology, psychometrics, population biology, and systematics. We 
present here a general framework for many of these efforts, based on the 
Mantel test, and then illustrate its use with four examples from our own 
work and that of our colleagues: a) genetic affinity and migrational sepa- 
ration in the Bainwa, b) clinal versus cluster variation in the Yanomama, c) 
genetic, linguistic, and geographic affinities among the Chibcha-speaking 
tribes, and d) migration and genetic affinity in the Gainj and Kalam. The 
technique is nonparametric and so general that it is useful for many differ- 
ent types of pattern comparison, even when the connections between differ- 
ent types of information are poorly understood. Greater analytic potential is 
generally realized when there are definite theoretical connections between 
the patterns being compared. With theoretical care and a bit of imagination, 
one can combine the advantages of parametric assumptions with the ro- 
bustness of nonparametric analysis. Novel analyses and anthropological 
opportunities are emerging continuous~y. 0 1992 Wiley-Liss, Inc. 

Many anthropological questions are profitably approached by comparing the 
patterns of population differencestsimilarities obtained with different sorts of in- 
formation. For example, isolation between populations will produce both genetic 
and cultural divergence, with both patterns and amounts of variation reflecting 
the same history of group fissions and fusions. Several different techniques have 
been employed in such comparative work, all relying on matrices of pairwise dis- 
tances or affinities. The difficulty encountered with all of these methods is that 

0 1992 Wiley-Liss, Inc. 
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N(N - 1) pairwise elements of an (N x N> matrix cannot be mutually independent; 
in fact, there can be no more than (N - 1) independent comparisons among a set 
of N elements. Notwithstanding the difficulties, the need to make such compari- 
sons and the development of new methods to facilitate them have been genuine 
anthropological preoccupations for some time. Techniques of dealing with this 
problem that are familiar in the anthropological literature are: 1) matrix correla- 
tion techniques (Sokal and Rohlf, 1962; Sneath and Sokal, 1973), 2) matrix dilation 
and rotation techniques (Schonemann and Carrol, 1970; Gower, 1971), and 3) 
smallest space techniques (Lingoes, 1965; Guttman, 1968). There are also tech- 
niques that rely less directly on matrices of distances, such as 4) comparisons of 
phyletic networks (Sokal and Rohlf, 1962; Spielman, 1973; Spielman et al., 1974), 
5) spatial autocorrelation (Sokal and Oden, 1978a,b; Sokal, 1979, 1983a,b, 1986, 
1988; Jones et al., 1980; Sokal et al., 1980, 1985, 1986, 1987a,b,c, 1989; Cliff and 
Ord, 1981; Sokal and Riska, 1981; Sokal and Wartenberg, 1981,1983; Caugard et 
a]., 1982, Sokal and Friedlaender, 1982; Sokal and Menozzi, 1982; Winkler and 
Sokal, 1987; Barbujani, 1987; Sokal and Thompson, 1987; Sokal and Uytterschaut, 
1987; Sokal and Winkler, 19871, and 6) map-quadrat techniques (Derish and Sokal, 
1988). 

Recently, a versatile test of matrix correspondence, originally developed by Man- 
tel (1967), has gained wide popularity in geography (Hubert and Golledge, 1982), 
ecology (Manly, 1986; Burgman, 1987), psychometrics (Hubert and Baker, 1978; 
Hubert, 1979a,b, 1985, 1987; Hubert and Subkoviak, 1979; Hubert and Golledge, 
19811, population biology (Sokal, 1979; Sokal et al., 1980; Douglas and Endler, 
1982; Schnell et al., 1985, 19861, and systematics (Dietz, 19831, as well as in 
anthropology (Dow and Cheverud, 1985; Salzano et al., 1986; Sokal et al., 1986; 
Smouse et al., 1986; Dow et al., 1987; Long et al., 1987; O’Brien, 1987; Smouse and 
Wood, 1987; Barrantes et al., 1990). The Mantel test has been generalized in 
different fashions (Hubert, 1985, 1987; Dow and Cheverud, 1985; Manly, 1986; 
Smouse et al., 1986; Krackhardt, 1987, 1988; Dow and de Waal, 1989), and pro- 
vides a useful analytical framework for matrix correlation analysis. 

The purpose of this review is to show how a large number of efforts in matrix 
correlation analysis can be subsumed under a single analytical framework based 
on the Mantel test, and to illustrate its use with a number of examples from our 
own work and that of our colleagues. We shall restrict attention in this way, 
because much of the critical anthropological information that makes a problem 
interesting in the first place is unpublished, and we need to capitalize on every- 
thing we know about the situation in each case. In the process of pursuing these 
examples, we shall nevertheless present some new analyses, rather than simply 
recapitulating the published record. The picture that will emerge is that while 
maximum analytic potential is best realized when there is a clear theoretical 
motivation for the connection between two or more patterns, the technique is so 
general that it can be useful for a great many different types of pattern compari- 
son, even where the theoretical connections are poorly understood. 

THE MANTEL TEST OF MATRIX CORRELATION 

Our basic tool here will be the Mantel test of matrix correspondence. We begin 
with a set of N populations, for which a full set of N(N - 1) pairwise distances (or 
affinities) are computed from two different types of data, one set denoted X and the 
other Y .  In practice, most distance measures of interest are symmetric, A, = AJc, 
but we can deal equally well with antisymmetric measures, A, = -AJc, or with 
asymmetric measures, A, f .  A,1. An example of a symmetric relationship would be 
the straight line distance between two points, 

A, = Ixc - xJ I = AJ1, (la) 
where direction is of no particular theoretical interest. An example of an antisym- 
metric relationship would be the difference in dominance rank between two indi- 
viduals, 
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TABLE I .  Example distance matrices for a quartet of populations 
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a. Symmetric distance matrix 
Population 

1 2 3 4 
P 
o l l  I -  0.75 0.34 0.65 I 
P U 1 2  
1 1  

i 

0.75 - 0.51 0.14 

0.34 0.51 - 0.10 

0.65 0.14 0.10 - 

b. Antisymmetric distance matrix 
Pouulation 

1 2 3 4 

- + .27 - .09 + .45 

-.27 - + .68 - .36 

+ .53 + .09 -.68 - 

- .45 + .36 - 5 3  - 

c. Asymmetric distance matrix 
Population 

1 2 3 4 
P 

0.22 0.68 0.40 I 

- I  0.91 0.62 

Entries are stylized 

A, = ( X ,  - X J )  = -11.. J,’ (lb) 

where direction does have a potentially important impact, the implications of such 
a difference being anything but symmetrical. An example of an asymmetric rela- 
tionship might be the degree of relationship between two individuals, measured by 
the fraction of genes shared in common for a sex-linked trait. A male shares all of 
his sex-linked genes with his full sister, but she shares only half of hers with her 
brother. This sort of measure is also asymmetric for maternal and paternal half 
sibs. In this case, we have: 

AG f ?Aji. (lc) 

It is convenient to package these distance measures into a square matrix of 
dimension N (Table 1). Most distance matrices have zero diagonal elements, the 
distance from an item to itself being zero, but even that is not essential. Alterna- 
tively, we can define square matrices of pairwise affinities (e.g., kinship coeffi- 
cients among a set of individuals), where the affinity of an item with itself is unity, 
and maximum departure from affinity is represented by zero. 
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Given two matrices of distances between the same set of items, each matrix 
based on a different type of information, we wish to determine the level of corre- 
spondence. There are various ways to define correspondence, and depending on the 
definition, various types of test-related measures have been defined. Probably the 
most widely used measure is that of Mantel (1967), who devised a test of matrix 
correspondence based on a general regression approach. Let the two matrices be 
denoted Dxx = {Ax,} and DYY = {A,,}, respectively, both of dimension N .  Compute 
the measure Zxy, a summation of element-by-element product of the two matrices 
(Hadamard product), 

N 

i #  j 
Zxy = DXX*DYY = x AXGAY@ (2) 

As mentioned earlier: the elements of the Dxx are not mutually independent; there 
are no more than (N - 1) independent contrasts. If there are L < (N - 1) variables 
involved in the definition of Ax,, then the rank of the matrix is only L. Similar 
strictures apply to Dyy. We need to allow for this fact in our test procedure. Mantel 
(1967) provided a normal distribution test of Z,, for large matrices. Mielke et al. 
(1981) have advocated the use of a Pearson Type I11 distribution for Zxy, a two- 
parameter exponential family distribution that is flexible enough in shape to fit 
most empiric data sets. The safest method is permutational evaluation of the null 
distribution (Mantel, 1967; Cliff and Ord, 19811, which requires no assumptions 
about the distribution of Zx, at  all-an important consideration, since we some- 
times know very little about how Ax, and AYy are distributed. 

Although we can test Zxy easily enough, it is difficult to interpret. We can, 
however, transform Zxy into a standardized regression coefficient or even a cor- 
relation coefficient whose magnitude is not scale dependent, the choice depending 
on whether we view Ax, as fixed and measured without error or as a random 
variable, measured with error. For many of the examples that follow, the random 
definition makes sense, but since the computed values of Zxy, rm, and bYX map 
one to one in any case, we will concentrate on the correlational measures. The first 
step is to subtract the average element of Dxx from each of the individual ele- 
ments, and similarly for D,, (Smouse et al., 1986). We then compute sums of 
squares and cross-products, using these deviations, Sx, and S,,, variables that 
have been centered around the mean 

N - N 

SS(Y) = E ( A y i j  - Ay..)' = xS$ij, 
i i j  i f  j 

N 

SP(X,Y) = x S X i j 6 y i j .  (3c) 
i # j  

With these sums of squares and products, we can compute both a regression coef- 
ficient (b,) and a correlation coefficient rxy as follows 

In the case where X is itself treated as a random variable (rather than as a fixed 
predictor of Y), rm is the standard Pearson correlation coefficient. If the two 
matrices have nothing to do with each other, then we should expect by, and rxy to 
be zero. 

To test whether the observed value of rxy is significantly different from zero, we 
need the null hypothesis distribution, obtained in permutational fashion (Mantel, 
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1967; Cliff and Ord, 1981). Hold one of the matrices constant, say Dxx, and per- 
mute rows (and corresponding columns) of the other. What that amounts to is a 
permutation of the ID numbers on the items themselves. If the two sets of mea- 
sures are truly independent, it should not matter at all which of the Ys goes with 
which of the Xs.  Given the permutation of D,,, compute the value or rxu and tally 
the result. Still holding Dxx constant, permute D y y  again, compute a new rxy, 
tally it, and continue. With matrices of dimension N ,  there are N! possible permu- 
tations. For example, the distance matrix in Table l a  has four populations and six 
pairwise distances. There are 4! = 24 different arrangements of these values for 
the upper triangular portion of the matrix; the distances are symmetric, so the 
arrangement of the lower triangle always reflects the upper triangle exactly. That 
requires renumbering the rows columns in the same order. For small matrices (say 
N I 7), we can exhaustively enumerate the permutations, but for larger matrices, 
we require a random subsample cf the full 

Note that the denominator of Equation (4) is constant with respect to permuta- 
tion, since we are merely renaming the elements of Equations (3a) and (3b). Be- 
cause the means of the two matrices are constant with respect to row (and corre- 
sponding column) permutation, we see that Zxy and rxy represent a one-to-one 
transformation. The null distribution for rxy is identical to that for Zxy, barring a 
scale transformation and centering. We have also allowed explicitly for the inter- 
nal correlations of Dxx and Dyy,  since permutation preserves those correlations; 
the test is thus conditioned on the internal structure of the two matrices. We have 
taken two rigid (N - 1)-dimensional figures, and rotated one of them in space (by 
randomizing the labels of the vertices), and then asked how well the two match 
(without regard to orientation). For example, with N = 4, each of the distance 
matrices represents an  irregular tetrahedron in three-dimensional space. We as- 
sess the degree to which they are the same shape, subject only to rotation and scale 
translation. The null distribution is obtained simply by reassigning names to the 
four vertices of one of the tetrahedrons in all possible (4! = 24) ways. Given a 
permutationally derived null distribution for rxy, we determine how many of our 
randomly permuted distance matrices, Dyy,  yield an  rxy value a t  least as large as 
the value we actually observed. In principle, we could have either a positive or 
negative r,,, so a two-tailed test of the null hypothesis would be appropriate. In 
most anthropologicallgenetic applications, theory postulates a directional alterna- 
tive model, and a one-tailed test is in order. 

This procedure is so general that it can be used on just about any pair of distance/ 
affinity matrices imaginable, but it has a special relationship to standard corre- 
lation and regression analyses that deserves a mention. Consider two variables, X 
and Y,  for each of which we define antisymmetric distance measures as per Equa- 
tion (lb). It turns out that bYX and rxy are precisely the values we would get if we 
were to do a correlation analysis of the original X and Y values (Li, 1976). The 
permutational null distribution amounts to holding the X s  constant and permut- 
ing the Ys,  as might be appropriate if we were unwilling to assume that the Y s  
were normally distributed. 

For a single character in each matrix, there is seldom anything to be gained by 
translating the X s  and Ys to distance matrix form, but the fact that  we can do so 
is revealing. In  the case where both X and Y are Bernoulli variables (taking values 
0 and 1 only), then the Mantel distribution leads exactly to Fisher’s exact contin- 
gency test. On the other hand, in the case of data that are inherently dyadic (say 
the number of agonistic interactions between two individuals), standard univari- 
ate regression and correlation measures are not available; pairwise distance anal- 
ysis is unavoidable. In the case where X and Y are multivariate vectors, we can do 
a variety of multivariate analyses of the correlations between the two vectors, but 
they might be more work than a simple Mantel test. 

There are a number of extensions of this basic treatment that permit even wider 
deployment of pattern correlation analysis. Consider two collections of variables, 
W and X, used to describe the patterns in a third set, Y. Instead of two matrices, 

permutations. 
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we have a trio. We treat the analysis as a multiple regression or correlation prob- 
lem (Smouse et al., 1986), defining a model 

(5) Sy, = byw Swg + byx Sxxy + €0. 

To analyze, we begin with the sums of squares and cross-products 
N N 

All the standard multiple-regression machinery can be derived from Equations 
(6a-d). Using such definitions, we can define a vector of regression coefficients, B, 
which is estimated in the usual matrix fashion. Define 

The vector of estimated regression coefficients is 

s = (x'X)-lx'Y, (8) 

and the coefficient of multiple determination is 

Y 'X(X'X) -'x'Y 
Y'Y . 

R2 = 

In the case where Dm, Dxx, and Dyy are all random and measured with error, we 
can rewrite Equation (9a) as 

R2 = 1 - (1  - 1.2Xy)(l - & y . x ) ,  (9b) 
where rwy and rxy are the usual correlation coefficients and rXy. ,  and rwy.x are 
the respective partial correlation coefficients 

Using the latter, we can assess how much of the variation in Dyy  is accounted for 
by variation in Dww, while holding Dxx constant, and the reverse. A proper per- 
mutational test for this situation depends on whether Dxx and Dww are viewed as 
fixed and measured without error, in the usual regression sense, or whether they 
are viewed as variable andlor measured with error. In the first case, we hold Dxx 
and Dww constant, permuting Dyy, a procedure that protects the interrelations of 
the two predictor sets, thought to be associated. In the latter case, we compute the 
regression of Dyy on Dxx and obtain the residuals, denoted DYy.,,. We also com- 
pute the regression of Dww on Dxx and obtain the residuals, denoted Dm.x,. 
Finally, we compute the correlation between the two sets of residual matrices to 
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get the partial correlation between D,, and D,,, with D,, fixed. Holding either 
of the two residual matrices constant, permute the other to evaluate the null 
distribution. Extension of these procedures to multiple predictor (X and W) and 
multiple predicted (Y and Z) matrices is a straightforward extension of multivari- 
ate least squares analysis (Smouse et al., 1986; Krackhardt, 1987, 1988), but the 
permutational null distribution frees us from the (generally inappropriate) mul- 
tivariate normality assumptions. 

The final point we need to make at  this juncture is less concerned with the 
computational aspects of the problem than it is with the choice of inputs. The 
procedures are so simple that we can handle almost any matrices that we can 
define. That permits analysis of variables that do not have well-behaved or even 
well-understood distributional properties, an advantageous property of no mean 
proportions. On the other hand, the results will never be better than the input 
data. uptimai payoff will come with careful attention to the details of how the 
distance matrices are defined. In practical terms, theory-motivated analysis is 
best, where the variables make sense in the context of the problem. The best way 
to illustrate this comment is by example. We turn to a series of real examples from 
our own work and that of our collaborators, for each of which an attempt has been 
made to capitalize on the background and theoretical information that made the 
problem interesting in the first place. 

GENETIC AFFINITY AND MIGRATIONAL SEPARATION IN THE BANIWA 

Salzano et al. (1986) have recently completed a demographic and genetic study 
of the Baniwa, an Arawak-speaking tribe of northern Brazil. The broad objectives 
were to compare this tribe with other groups from northern Brazil and neighboring 
Venezuela, most of whom are not Arawak-speakers. Several communities were 
studied, all of them found along the Rio IGana or Rio Negro (Fig. 1). In the course 
of this cross-tribal study, it became important to examine the pattern of genetic 
affinities among the various Baniwa communities. Travel in this part of the world 
is almost entirely riverine, and we suspected that the genetic affinities among 
these Baniwa communities would decrease with travel distance along the river 
system. The obvious way to compare geographic separation and genetic distance is 
by means of a Mantel test. For this purpose, we used a Euclidean genetic distance 
metric [see Equation (14) below], and postulated that genetic distance (A,,) was 
related to river distance (ARy)  in linear fashion 

AcLJ = flAnv (11) 

Relative distances along the river were measured with a planimeter from the 
map, and the genetic distances were computed from ten polymorphic genetic loci 
(Salzano et al., 1986). Both genetic (AGy) and riverine travel (ARy) distances are 
presented in Table 2; analysis yields rGR = 501. The dimension of both matrices 
is only 5, so there are only 5! = 120 permutations to evaluate; there were 8/120 
stronger random correlations, so P 5 .075. Although Jandu Cachoeira (the most 
isolated community) is genetically the most disparate, as might be expected from 
its map position, the other populations do not show genetic affinities that are 
entirely consistent with map order. Study of the recent demographic histories of 
the communities reveals a clear reason for these seemingly anomalous results. In 
Amazon&, there is a general tendency for acculturation (and its attendant admix- 
ture) to move progressively upriver, from major towns into the hinterlands, and 
the Baniwa illustrate this point nicely. All of these populations have come into 
contact with neo-Brazilian society over the last hundred years or so. The time 
depth and degree of contact decreases (but only in a rough way) as one moves 
upriver from Boa Vista. The interesting feature is that the admixture history of 
what are rapidly becoming communities of the “regional melting pot” can still be 
deciphered from careful pedigree reconstruction (Salzano et al., 1986). 

The non-Baniwa in-migrants have themselves been a mixed lot. The Arekena 
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Fig. 1. Baniwa communities along the Rio Igana and Rio Negro of northern Brazil CC. Cue Cue: MA. 
Maracajfi; BV, Boa Vista; JA, Jauacana; JC, Jandu Cachoeira cmdified from Salzano et ai., 1986). 

TABLE 2. Distances among five Baniwa communities 

cc MA BV JA JC m value 
__ .17 .05 .09 1.00 .82 

MA .41 __ .11 .08 .83 .68 
cc 
BV .51 .32 - .04 .95 .61 
JA .48 .35 ‘48 __ .91 .52 
JC .61 .40 .52 .49 - .04 

CC, Cue CUB; MA, Maracajh; BV, Boa Vista; JA, Jauacank JC, Jandu Cachoeira. The river distances, standardized so 
the largest is 1.00, are presented above the diagonal; genetic distances are presented below the diagonai; migrational 
inputs from non-Arawakan groups are presented to the right (data drawn from Salzano et al., 19861. rcR = ,501, P i .075; 
rcM = ,613, P i .025; rGR.M = -0,191, P C ,668; r O M . ~  = ,445, P 5 ,110; multiple R G ( R ~ ,  = .631, P 5 ,010. 

are a neighboring Arawak tribe with whom the Baniwa have intermarried to some 
extent, but they were probably genetically fairly similar, and we will lump them 
with the Baniwa for purposes of analysis; the “Baniwa” thus represent the regional 
‘‘Arawakan” gene pool. There are several additional Amerindian contributors to 
the regional gene pool, among them the Tucano, Cubeo, and Tariana. In addition, 
there are many individuals in these communities who are representatives of the 
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regional (agglomerated and no longer differentiable) Amerindian gene pool, called 
“Nyengatu” (really a linguistic designation for the regional lingua franca, based on 
a Tucano dialect disseminated by the missionaries). In addition, several of these 
communities are admixed with neo-Brazilian settlers of European and African 
ancestry. Non-Arawakan percentages among the nominal “Baniwa” communities 
are: Cue Cue, 82%; Maracaja, 68%; Boa Vista, 61%; Jauacana, 52%; and Jandu 
Cachoeira, 4% (no overt evidence but routine allowance for some undetected ad- 
mixture). River position is not an infallible predictor of admixture history, al- 
though there is a rough correspondence. We were led to ask whether admixture 
history might be a better predictor of affinity among the Baniwa communities than 
strict travel distance along the river system. 

On the premise that all of these communities have received genes from the same 
regional (non-Arawakan) population. there is a regular relationship that should 
obtain between differential admixture and genetic distance in this situation. Con- 
sider first a single, two-allele locus. Denote the ancestrallrecipient “Arawakan” 
frequency of A ,  as pA and that of the non-Arawakan donor gene pool as pN. Then 
the frequencies for the ith Baniwa community should be 

(12) 

where the m, values represent the accumulated influx of non-Arawakan genes into 
the ith community. Algebraic manipulation shows that the squared genetic dis- 
tance between the ith and j th  communities takes the simple form 

PL = (l - m~)PA + m$N, 

A& = [pi - pjI2 = [mi - mjI2[pA - p ~ ] ’  = [mi - mj] ’AL 

We next need to replace the single-locus, two-allele distance measure with its 
multiple-allele, multiple-locus analogue, a Mahalanobis distance measure on the 
pattern of Kurczynski (1970), Smouse and Williams (1982), and Chakraborty 
(1992) 

where we sum over all K = CeKe alleles and 8 = 1, . . . ,L loci, and where p.ke is 
the average allele frequency for the five communities. We substitute Equation (14) 
for the left hand (observed) side of Equation (13). 

We do not know the ancestral frequencies of either the Arawakan or the non- 
Arawakan gene pools with any precision, of course, but whatever they were, we 
take the value of A& as a constant for each of the painvise contrasts of Baniwa 
communities. Taking square roots of both sides of Equation (13), we expect 

and we define D,, = Im, - mjl as the “migrational distance” between the ith and 
j th  communities. The genealogy derived migrational estimates (Salzano et al., 
1986) are presented on the far right in Table 2. The observed correlation between 
genotypic and migrational distance is rG, = .613. With migrational distance in- 
stead of river distance, only 21120 random permutations provide higher correla- 
tions, so P 5 .025. Is it possible to do better by using both river and migrational 
distance? The two are highly correlated (rMR = .916), so there will be considerable 
redundancy of information. Using Equations (10a) and (lob), we see that ?-GR.M = 
-.191 and rGM.R = .445. The coefficient of multiple determination is R2 = .398, 
computed via Equation (9b). Taking the square root of this value, we have R,,, 
= .631 > rGM = .613; the improvement is small. In summary, physical isolation is 
correlated with genetic divergence, but is less important than the history of gene 
flow from the outside. We need to translate travel distance into its admixture 
consequences if we are to elicit the full value of our anthropological knowledge. 
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Fig. 2. Internal genetic structure of the Yanomama. a: The logarithm [piq] of ALB*YAN-2 along a 
NW-SE transect through the tribe (modified from Tanis et  al., 1974). b: Historical separation network, 
with dialect groups, miniclusters, and villages (modified from Sokal et  al., 1986). 

CLINAL VERSUS CLUSTER VARIATION IN THE YANOMAMA 

Our studies of the Yanomama from Venezuela and northern Brazil have shown 
that the internal genetic structure of the tribe can be traced to important social 
and demographic forces that impinge on the group (e.g., Neel, 1978a,b; Smouse, 
1982). We have described a very striking cline in the frequency of ALB*YAN-2 
within the tribe (Tanis et al., 1974), an allele that is highly polymorphic within the 
tribe but which does not occur in the surrounding groups. The result is shown in 
Figure 2a. Later analyses (Ward and Neel, 1976) showed that six of 11 polymorphic 
loci showed clinal variation within the tribe but that the clines ran in several 
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different directions. Our best interpretation was that these clines were the result 
of centrifugal expansion of the tribe at an earlier historical stage. 

Parallel efforts to elucidate the internal genetic structure of the tribe (Ward, 
1972; Spielman, 1973; Spielman et al., 1974; Spielman and Smouse, 1976; Smouse 
and Neel, 1977; Smouse and Ward, 1978; Smouse et al., 1982, 1983) have made it 
clear that genetic variation within the tribe is hierarchically organized, largely as 
a residual feature of this same expansion history, with villages grouped into mini- 
clusters (of a few decades duration), miniclusters grouped within dialect clusters 
(of a few centuries duration), and dialect clusters grouped within the tribe (Fig. 
2b). The dialect clusters would be called different tribes in other anthropological 
situations, but the distinctiveness of the Yanomama sensu lato from their neigh- 
bors (of distantly related Carib and Arawak ethnicity) has made the “dialect- 
cluster” terminology attractive. The hierarchical structure of the tribe is defined 
on the basis of verbal history (Ward, 1972) and linguistic affinity (Spielman et al., 
1974). 

Since the hierarchical groupings are spatially organized within the 150,000- 
square-mile territory of the Yanomama, we had always wondered whether the 
clinal variation was merely a consequence of the cluster structure. Using a set of 
15 allele frequencies for each of 50 Yanomama villages, we subsequently com- 
pleted several analyses addressed to that question (Sokal et al., 1986). The essence 
of the problem is to compute matrices of genetic, geographic, and historical dis- 
tances, and to determine whether history or geography better describes genetic 
population structure within the tribe. 

For that study, we used Nei’s (1972) standardized genetic distance measure to 
gauge the genetic divergence between pairs of villages. This is a different type of 
measure from Equation (141, and in fact it is not Euclidean, but it is particularly 
useful here, and we shall use it again later. Briefly, we define a measure of genetic 
affinity, I,, for the ith and j th  villages, where the and P J k e  are defined as for 
Equation (14) 

L KP c x P i k @ j k e  

L KP L KP [ e = 1  c k = l  C d k e  x e = 1  k = l  c d k e ] l f i  

(16) e = 1  k = l  
ZkJ = 

Nei and Feldman (1972) have shown that under the neutral mutation model of 
evolution, genetic affinity decays exponentially with time, so that we expect 

I, - exp{-2at}, (17a) 
where ci is the rate constant for decay, assumed to be the same for all neutral 
genetic loci, and t is measured in generations. They define a genetic distance 
measure, AG,, whose neutral expectation is linear in time 

AG, = -log{Z,} - 2at. (17b) 
We can obtain rough measures of relative times since divergence that are inde- 
pendent of the genetic data from information on historical and linguistic diver- 
gence, and can place the 50 villages into a crude network, with length along the 
internodes and legs measured in decades since separation (Fig. 2b). The precise 
value of the constant ci is not known with any certainty, but for our purposes, the 
only important point is that all pairwise comparisons employ the same value. 
Measuring genetic distance along the network should give us a roughly time- 
proportional and time-linear pattern of divergence. 

Geographic distance is measured in the usual straight-line fashion, using the 
map coordinates of the villages. Travel is most surely not accomplished in straight 
line fashion in the lowland rainforest, but for this study, we had no realistic 
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alternative. If we view genetic affinity as a consequence of gene flow (genetic 
diffusion), then Zu can be related to geographic distance in the classical “isolation 
by distance” form (Morton et al., 1968, 1971; Malecot, 1969; Morton, 1969) 

1, - ex~{-oJ)~} or A,, = -log{zu} - dDu. (18) 

Both fission and diffusion processes have probably been important in the pattern 
of genetic affinities and differences among Yanomama villages, and we were at- 
tempting to determine which was the more important factor. The basic outcome is 
that the correlation between genetic (GI and geographic (D) distance is rGD = .415 
(P 5 .0001), while that between genetic (G) and historical (H) distance is rGH .= 
,374 (P 5 .0002). To determine how much of the cluster structure is inherent in 
sheer geographic separation and vice versa, we use the partial correlation analysis 
presented in Equations (9a) and (9b), derived in Smouse et al. (1986). The corre- 
lation between geographic (D) and historical (H) distance is rDH = .777 (P 5 .0001), 
confirming that geography and cluster structure are highly confounded. The par- 
tial correlation of genetic (GI and geographic (D)  distance, with historical (H) 
distance held constant, is rGD = .213. That of genetic (G) and historical (H) 
distance, with geographic (D) distance held constant, is r G H D  = .090. The coeffi- 
cient of multiple determination is R2 = .1789; the square root of that number is 
R, (D = .423, as compared with rGD = .415; there is nothing much to be gained 
by a a i n g  historical connections, once geography has been factored into the argu- 
ment, since most cluster structure is inherent in the geography. This is a reversal 
of the Baniwa pattern presented earlier. Although hierarchical genetic organiza- 
tion may have been created by centrifugal expansion of the tribe, as postulated by 
Ward and Neal (1976), there has obviously been enough subsequent gene flow 
among these groups to “blur the boundaries” between them. 

GENETIC, LINGUISTIC, AND GEOGRAPHIC AFFINITIES IN LOWER CENTRAL AMERICA 

The lower Central American corridor is a critical archaeological region for any 
understanding of the peopling of South America (reviewed in Barrantes et al., 
1990). One of the interesting questions that arises from our ongoing studies of the 
genetic structure within and affinities among a series of Chibcha-speaking Indian 
tribes from lower Central America (Fig. 3) is whether the current tribes are de- 
scended from the original migrants who first crossed the Isthmus, or whether they 
represent a much later wave of colonization from either the north or the south. We 
also need to know how they are related to each other. A lot has been learned about 
the genetic (Tanis et al., 1977; Spielman et al., 1979; Barrantes et al., 1982, 1990; 
Mohrenweiser and Novotny, 1982a,b) and linguistic (Constenla, 1984, 1985; Var- 
gas, 1986) affinities of these people in the last decade, as well as their archaeolog- 
ical history (Linares and Ranere, 1980; Cooke, 1984,1986; Lange and Stone, 1984; 
Snarskis, 1984; Irving, 19851, and we have recently attempted a composite evolu- 
tionary reconstruction (Barrantes et al., 1990). 

Our measure of genetic distance is defined as in Equation (17b), because of its 
expected linearity with time since divergence and with geographic distance. We 
are able to define a similar measure of linguistic divergence, using cognate per- 
centages from Constenla (1985) and Vargas (1986). Recall that glottochronological 
work begins with a standard word list (Swadesh, 1955,1967) consisting of numer- 
ous lexical items. For each item, the ith andjth languages are judged to be cognate 
if the name for the item is the same, within the limits of systematic phonemic 
changes. Given W lexical items, the fraction that is cognate between the ith andjth 
languages is denoted Ku, by analogy with Zi. in Equation (17a). Statistical analysis 
of written languages has shown (Hymes, 1d60; Greenberg, 1987) that Ku decays in 
roughly time-linear form, described by 
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where p is the rate constant for decay, assumed to be the same for all lexical items, 
and t is measured in years. By analogy with the genetic analysis in Equations (17a) 
and (17b), we can define a linguistic distance metric, C,, which should be linear 
with time since divergence 

c, = -log(K,) - 2pt. (19b) 
If both D ,  and C were time-linear, they should be colinear with each other. If 

D, were linear w i d  geographic distance, as postulated in Equation (18), then we 
should also expect colinearity of C,  and G,. Using ten Chibcha population samples 
for which we have geographic position, genetic, and linguistic data, we plot C, 
against D,  in Figure 4a. Mantel analysis shows that the correlation is highly 
significant (rcD = .69, P 5 .001), but there are severe departures from linearity, 
suggesting that the decay of linguistic affinity, C,, is not colinear with D,. Com- 
parison of C, with G ,  (not shown) shows the sam-e trend A!though our Mantel twt 
does not actually require any assumptions about linearity, we conclude that C, is 
neither linear with genetic divergence nor with geographic separation. It is prob- 
ably not linear with time, either. 

One of the critical theoretical assumptions that leads to time-linearity of both D 
and C, is homogeneity of the decay rate constants a and p across genetic loci an3 
lexicaf items, respectively; any departure from decay rate homogeneity leads to 
departures from strict time-linearity. Nei et al. (1976) had earlier shown that a 
varies among genetic loci, finding it mathematically convenient to describe the 
variation of a values among loci with a gamma distribution. The relationship 
between Z, and the average value of a (say &) then takes the form (Nei et al., 1976) 

where a is the coefficient of Variation of decay rates, 01, across genetic loci. We can 
translated into a new measure (Dq) which has time-linear expectation 

The coefficient of variation in a values is thought to be about 0.8 in human studies 
(Nei et al., 1976), but we really cannot distinguish among a values over a range 
from (0.0 cc a cc 2.0) with our data. For small values of &t, this will always be the 
case. We use a = 1.0 for convenience. 

Rate heterogeneity is also known to affect the decay rate of linguistic affinity 
across lexical items (Hymes, 1960; Greenberg, 19871. Using the same sort of 
gamma-distribution arguments concerning the average rate constant 73, we see 
that the relationship between K ,  and time is 

where b is the coefficient of variation of decay rates,- p, across the lexical items. 
This formula can be translated into an equation for C, 

C, = [l - R i b ] / b .  [R ib ]  - 2pt. (21b) 
In contrast to the experience with gen2tic distances, C, and C, are not colinear 

over a reasonable range of 6,  because 2pt >> 26t. Some correction for heteroge- 
neity in f3 is clearly in order, but there is no extraneous information available to 
tell us what values of b we should use. Having arbitrarily set a = 1.0, we chose a 
value of b such that C, and D, are roughly colinear. A little trial and error fitting 
makes it clear that a value of b = 0.5 linearizes the relationship adequately, 
yielding a value of rcD-= .735,We claim no special virtue for this value except that 
it reduces the plot of C, and D, to roughly colinear form (Fig. 4b). It also reduces 
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Fig. 4. Relationships between linguistic (C) and genetic distances (D] among eight Chibcha-speaking 
groups of lower Central America. a: Plot of C, against D,; b: plot of C, against D,. The distances are 
defined in the text (from Barrantes et  al., 1996). 

that of c, and G, to roughly colinear form (not shown). Neither of the geographic 
plots is very compelling, especially in view of the essentially corridor-like geogra- 
phy, but we might want to adjust the linguistic-genetic correlation for the common 
geographic component in any case; we obtain r,,., = .652 (with P still 5 .001). 
Linearity is not essential for the test, of course, but its initial failure told us 
something useful about the validity of our theoretical predictions. The strong cor- 
relation between analogous genetic and linguistic measures of affinity confirms 
our initial supposition that the processes of genetic and linguistic diversification 
are strongly parallel. 
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A COMPARISON OF MIGRATION AND GENETIC AFFINITY PATTERNS IN NEW GUINEA 

Many of applications of the Mantel test and our extensions have been developed 
in connection with our long-term studies on gene flow and genetic differentiation 
in the Gainj- and Kalam-speaking populations of Papua New Guinea (Wood et al., 
1982, 1985; Long, 1986; Wood, 1986, 1987; Wood and Smouse, 1982; Long et al., 
1986, 1987; Smouse and Wood, 1987; Smouse and Long, 1988), studies that eluci- 
date the relationships between human population structure and their underlying 
demographic determinants. We have sought to explain the pattern of migration 
and genetic differentiation among Gainj and Kalam communities in terms of four 
primary demographic features; population size, endemicity (the tendency for off- 
spring to be born in the same parish as their parents), geographic location, and the 
mix of the Gainj and Kalam languages spoken. Two distinct analytical strategies 
have been carried in parallel. Our first strategy has been the multiple-regression 
approach described above (Long et al., 1987) Our second strategy relied on pre 
diction of a steady-state genetic distance matrix from primary demographicicul- 
tural variables and comparison of this predicted matrix with observations on ge- 
netic markers, using the Mantel test. A pilot version of this approach was 
presented by Smouse and Wood (1987); a more complete analysis is presented here. 

A brief description of the salient features of Gainj and Kalam population struc- 
ture is in order before we present our analyses and conclusions. Both groups reside 
on the northern fringe of Papua New Guinea’s central highlands, and both are 
subdivided into local groups called parishes (Fig. 5). Each parish contains between 
20 and 200 individuals, and parish exogamy and patrilocal postmarital residence 
are usual (Johnson, 1982). We expect that the level of genetic differentiation 
among parishes will reflect a balance between the disruptive effects of genetic drift 
and the homogenizing effects of gene flow. Genetic drift among Gainj/Kalam par- 
ishes is due to small parish population sizes, and is exacerbated by cultural prac- 
tices such as polygyny (Johnson, 1982). Interparish migration rates are structured 
according to underlying factors such as geography, language, exogamy, and pop- 
ulation size. How genetic drift is counterbalanced by migration and the extent to 
which cultural and demographic variables influence this process remain to be 
demonstrated. 

We examined the demography of a set of 18 parishes, including seven composed 
primarily of Kalam speakers, six composed primarily of Gainj speakers, and five 
with varying mixtures of the two (Fig. 5). As might be expected, the linguistic mix 
of a parish is not independent of its geographical location. For these 18 subpopu- 
lations, we have data on parish size (Wood et al., 1982; Long et al., 1986), Gainj/ 
Kalam linguistic mix (Wood et al., 1985; Long et al., 19871, and the distance along 
primarily trail routes between parishes (Wood et al., 1985). All of these primary 
variables influence the patterns of migration and genetic affinities in one way or 
another. We have an estimated migration matrix (Wood et al., 1985) on the full set 
of 18 parishes and genetic data for 17 of the 18 (Wood et al., 1982; Long et al., 
1986). 

Multiple-regression approach 
Long et al. (1987) used the Mantel multiple-regression method for empiric eval- 

uation of the impact of the four aspects of Gainj/Kalam population structure on 
genetic distance: parish (population) size, endemicity, geographic distance, and 
linguistic distance. The population sizes of the different parishes were found to 
exert the greatest effect on the pattern of genetic distances (R2 = .31). As expected, 
the smallest parishes were the most divergent and the largest parishes were the 
least divergent. More surprisingly, endemicity (i.e., the tendency for individuals to 
be born in the same parish as their parents) showed no effect on genetic distances, 
once parish sizes were accounted for. Geographic and linguistic distances both 
showed statistically significant but very weak (R2 < .07) effects on the pattern of 
genetic distances. We were unable, however, to demonstrate an effect of linguistic 
distance, independent of geographic distance. 
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Fig. 5. A map of Gainj and Kalam parishes from the Takwi and Asai valleys of northern Papua New 
Guinea, with linguistic mix indicated by cross-hatching; blackened parishes have greater than 90% 
Kalam-speakers; open parishes have greater than 90% Gainj-speakers; hatched parishes have an inter- 
mediate mix (from Wood et al., 1985). 

Population structure modds 
We have also modeled the patterns of interparish migration, in terms of primary 

demographic, geographic, and linguistic variables (Wood et al., 1985), using a 
modified ‘Lgravity model.” This model predicts pairwise interparish migration 
rates from the equation 

(22) 

where m, is the fraction of the parents for children who were born in the ith parish 
who were themselves born in the j th  parish, and mLl is corresponding fraction born 
in the same parish. The term p is the endemicity parameter, reflecting the cultural 
strength of the tendency for parents and offspring to be born in the same parish. 
The term a(S, - S,) measures the tendency for parents to be recruited from larger 
to smaller parishes (or the reverse). The terms yG, and 6L, measure the effects of 
geographic separation and linguistic isolation on migration rates, respectively. 
The e,  is an error term. Geographic distance was measured with a pedometer along 
major travel routes, and L, has been defined (Wood et al., 1985) as 

log[m,lm,,l = p + a(S, - SJ + yG, + 6L, + e,, 

%Kalam(j) 
- 

%KaZam( i )  
% Gainj(i) log %Gainj(j) ” L, = ]log (23)  
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TABLE 3. Mantel correlations between observed genetic distances among Gainj and Kalam parishes 
and those predicted by the migration model theon 

Mantel outcomes Degrees 
of Residual xz Migrational parameters 

model included Male Female freedom r P 

Model 

0 none 6073.94 2465.82 306 ,000 ,500 
1 CL 856.59 1680.82 305 ,443 ,005 
2 CL, a 828.16 1549.82 304 .419 ‘012 
3 CL, Y 778.45 1199.30 304 ,288 .058 
4 h 6 655.12 1175.41 304 ,428 ,000 
5 CL,  a, Y 750.51 1044.40 303 .178 ,144 
6 w >  a, 8 627.39 1030.58 303 .294 .012 
7 IJ’, Y, 8 652.21 1054.66 303 ,400 ,010 
8 I*> a, Y, 6 624.48 896.46 302 ,260 ,027 
Observed complete fit 0.00 0.00 0 .412 .001 

Both the observed migration matrix and the migration models of Wood et al. (1985) were used, along with residual 2‘ 
values for those models; w,  endemicity effect; a, population density effect; y, geographic distance effect; 6, linguistic 
divergence effect. 

where the percentages represent the proportions of individuals within the ith and 
j th  parishes who identify their primary language as either Kalam or Gainj, re- 
spectively. The log-linear form for linguistic distance was chosen to match the 
log-linear form of the migrational model. 

Wood et al. (1985) have described the various parameter estimation and hypoth- 
esis testing techniques for the log-linear model, Equation (23); basically, we obtain 
parameter estimates and a set of x2 goodness-of-fit test criteria; the reader is 
referred to that paper for the details. Exhaustive analysis provides the results in 
Table 3, where we have separated male and female components of migration for the 
18 parishes. We have migrational data on one parish for which we have no genetic 
data, but will include it in the migrational analysis to establish the predicted 
genetic outcomes. Endemicity accounts for most (85%) of the x2 variation in mi- 
gration rates for males and a substantial fraction (32%) of that for females. The 
parameter estimates (pf = -2.11, pm = -4.47) indicate that males are more 
philopatric than are females. After accounting for the level of endemicity, linguis- 
tic distance is the most important variable, as seen by comparing the residual x2 
for H4 with those for H2 or H3. The estimated linguistic divergence coefficient is 
slightly greater ill magnitude for females (6 -0.42, 6, = -0.34); females are 
slightly more constrained by linguistic di$erInces than are males. Geographic 
distance is also a barrier to migration, with females again being more constrained 
than males (y - 0.13, y, = -0.08). Population densities of donor and recipient 
parishes also i a i e a  small effect, with recruitment being preferentially from larger 
to smaller parishes in both sexes (af = -0.008, 01, = -0.006). The full model 
accounts for 90% of the migrational variation in males but only 64% of that in 
females. There is some confounding in the full model; geographic and linguistic 
distances are highly correlated, and a clean separation of their effects is problem- 
atic. Considering that we begin with 306 degrees of freedom and use only four to 
fit the model, we have achieved a compelling and parsimonious description of the 
migration matrix. 

The next step in our analysis was to convert these predicted migration matrices 
into predicted genetic distance matrices. We accomplished that by applying the 
“migration matrix theory” developed by others (Bodmer and Cavalli-Sforza, 1968; 
Smith, 1969; Imaizumi et al., 1970; Harpending and Jenkins, 1974; Wood, 1986; 
Rogers, 1987). The Mantel test is then applied to assess the level of correspondence 
between each of these predicted genetic distance matrices and the actual (ob- 
served) matrix. The essential strategy of the migration matrix theory is to predict 
a matrix, V(t)  = { ~ ~ ( t ) } ,  where 
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The elements of this expression are q,(t) and q#), the allele frequencies a t  a given 
locus for the ith and j t h  parishes in generation t, respectively, and q, the expected 
allele frequency at the same locus, assumed to be identical across all parishes. The 
diagonal elements of V(t )  are the variances of allele frequencies within popula- 
tions, and the off-diagonal elements are the covariances of allele frequencies 
among populations. Division by q(1 - 4) in the expression for u J t )  removes the 
effect of scale, so that the same u J t )  values pertain to all alleles a t  all loci. The 
values of u J t )  will change from generation (t)  to generation (t + 1) until an 
equilibrium is reached. The predictions of this matrix are not made from allele 
frequencies! Rather, they are made from the migration matrix, M = {m,,}, where 
m, is the proportion of alleles in the ith subpopulation that originated in the j th  
sukpopulation in the previous generation, and from a diagonal matrix U(t) = [ I  - 
u,,(t - 1)]/2NeL, with N,, defined as the effective population size of the ith subpop- 
ulation. The theory predicts that 

t 
V(t )  = 2 [M’IrU(r)[M]‘. 

r=O 
(25) 

Harpending and Ward (1982) have used a spectral decomposition of M to power the 
equation, showing that the results are more robust to computer rounding error. We 
will only need to power for three to four generations for our example (see below), 
so we will not need that additional wrinkle here. 

Another sort of prediction that can be obtained from the migration matrix the- 
ory, and the type we need here, is the set of expectations for the N(N - 1)/2 
painvise genetic distances among subpopulations for the tth generation 

DGG(t)  = {d,(t)} = u,,(t) + u,(t) - 2~,(t). (26) 

Wood (1986) has shown that D,G(t) converges rapidly to an equilibrium solution, 
DGG(*),  when the level of migration is as high as it is here. Since each sex con- 
tributes half the genes of the next generation, we have used an unweighted aver- 
age of the predicted migration matrices for the two sexes to construct M for Equa- 
tion (25), one set of predicted matrices for each demographic model tested. We 
estimated the effective population size (N,,) of each parish to be roughly half the 
census number tS,), in accord with the results of a detailed demographic analyses 
by Wood (1987). Given M and U, we constructed a predicted genetic distance 
matrix for each of our migrational models. Using only the 17 parishes for which we 
have genetic data, we compared the predicted equilibrium matrix, DGG(*),  with our 
observed distance matrix, DGG,  using the Mantel test. 

For initial evaluation, we obtained a predicted genetic distance matrix from an 
observed migration matrix, reflecting the details of movement from one parish to 
another over a two-generation period. The predicted and observed genetic distance 
matrices exhibit a moderate but highly significant correlation (r = .412, P 5 .001). 
For subsequent analyses, we used the model migration matrices generated from 
each of the modified gravity models in Table 3 to predict genetic distance matrices. 
The results are presented in the final two columns of Table 3 and are a little 
surprising. For the model (0) using only the endemicity parameter p, predicted 
genetic distances are more highly correlated ( r  = .443, P 5 .005, as in Table 3) with 
observed genetic distances than are the genetic distances generated from the ob- 
served migration matrix. The estimated endemicity parameter p is the same for all 
parishes, so differences in pairwise predicted genetic distances are a reflection only 
of differences in the effective sizes, N,,, of the several parishes. Basically, smaller 
parishes drift more than large ones, and with random migration among them at  a 
constant level, the affinities among parishes reflect the effective size differences. 
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The genetic distance predictions from all of our other migration models are less 
correlated with observed genetic distances than is model (0). Although the genetic 
distances generated from migration models that include linguistic distance are no 
worse than those with endemicity alone, they are also no better. When geographic 
distance is included in the model, correlations between predicted and actual ge- 
netic distances are severely diminished. The effects of population density on mi- 
gration rates do not appear to affect the pattern of genetic distances, except insofar 
as they influence U(t) via differences in N,,, the same drift effect we described 
earlier. 

These results illustrate some important considerations both for migration ma- 
trix theory and for applications of the Mantel test. Migration matrix theory is 
appealing in principle, because it provides expected genetic distances for a set of N 
popu~atiuns, given theh effective population &zeb and pairwise rnigrdtion r e h .  
Nevertheless, it carries the assumptions that the effective population sizes and 
pairwise migration rates have remained constant for many generations and that 
they are known without error. Neither assumption is ever strictly true in the 
analysis of natural populations. Furthermore, since the actual genetic distance 
between two parishes is a random variable, and the migration matrix theory pro- 
vides only an expectation for this random variable, we cannot expect our observed 
genetic distances to equal our predicted values precisely, even if the model as- 
sumptions were met in precise detail. Moreover, the data always depart from 
precise theory to some degree. For example, Rogers and Harpending (1986) and 
Rogers (1987) show that both the age structure of the population and the familial 
component of nonrandom gene flow can have an influence on the outcome. Neither 
effect is allowed for in the elaborate (but still relatively oversimplified) models 
above. 

It is unfortunate that prediction of the standard errors of the genetic distances is 
beyond the current scope of migration matrix theory; we cannot conduct a rigorous 
analysis of correspondence between the observed and expected values, based on 
stringent distributional assumptions. The best we can hope for is to demonstrate 
empirically a significant correspondence between the predictions of our idealized 
theory and our observations. Herein lies the strength of the Mantel test. Whether 
or not we accept the correlation between our observed genetic distances and those 
predicted from the observed migration matrix ( r  = .412) as being important, it is 
surely of interest that some of our predicted migration matrices do equally well or 
better than the observed matrix, despite the fact that only a few salient features of 
Gainj/Kalam population structure have been used to predict those migration ma- 
trices. 

Our results also provide some insight on Gainj/Kalam population structure. The 
structure of genetic differentiation among Gainj and Kalam parishes is not the 
same as the structure of migration. Geographic distance and language have mod- 
est impact on migration but virtually no impact on genetic differentiation. While 
this seems counterintuitive at  first glance, it is consistent with the theoretical 
balance between drift, due to small effective population size, and migration. From 
first principles, we know that N ,  is inversely related to the magnitude of genetic 
drift. Parish effective population sizes in this region of New Guinea are small, so 
there is considerable random dispersion each generation. There is also, however, 
considerable migration; about 50% of the genes born in a parish derive from other 
parishes in the previous generation. This high level of migration can be expected 
to “erase” any accumulated genetic pattern rapidly. As a consequence, the genetic 
structure we observe at any given moment is correlated with the most recent burst 
of genetic drift, embodied in the N,, values, with the overall exchange rate, em- 
bodied in the endemicity parameter b, and little else. If we can extract the essen- 
tial pattern of drift and the magnitude of gene flow, we are doing about as well as 
we can expect. In this case, the pursuit of more exquisite anthropological/demo- 
graphic detail was not productive, though that was not obvious at  the outset. The 
multiple-Mantel treatment developed by Smouse et al. (1986) and deployed by 
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Long et al. (1987) would seem to provide about as much precision as the data will 
support. 

DISCUSSION 

We have made much of the relationship between matrix correlation analysis and 
standard regression and correlation techniques. We should mention briefly an 
additional extension holding promise in anthropological genetics context. Livshits 
et al. (1991) have turned to the deployment of D,matrices that are of the “design” 
or “contrast” form so familiar and useful in traditional analysis of variance. Using 
a whole series of design matrices for D ,  they have investigated the pattern of 
genetic variation among worldwide Jewish populations and their non-Jewish coun- 
trymen. The basic question, an old one, is whether separated Jewish populations 
have remained genetically isolated since the diaspora, or whether they have ad- 
mixed with their respective ~iuii-Jawidi neighbors. The analyses, ah might be CA- 
pected, show that the truth is somewhere in between; Jewish populations do show 
strong traces of their shared ancestry, but they also show affinities with their 
non-Jewish neighbors. The whole topic has been the subject of much discussion, 
and the results have shed some welcome light on the matter. Quite apart from 
clarifying an interesting anthropological situation, Livshits et al. (1991) have pro- 
vided the beginnings of an important technical breakthrough that warrants addi- 
tional attention in future work. 

There have been three other noteworthy extensions of the Mantel procedure to 
multiple matrices. The first of these is described by Dow and Cheverud (1985), 
based on an idea first presented by Hubert and Golledge (1981). Where there are 
two matrices (Dxx and D-), both thought to be predictive of another matrix 
(D ,,), but correlated among themselves, the suggested procedure is to compare 
D,, with the difference matrix 

If the b or r values are positive, X is said to be the better predictor; if the value of 
b or r is negative, W is said to be the better predictor. To employ this technique, it 
is first necessary to transform both Dxx and Dww to a common scale, usually 
accomplished by subtracting the average element and dividing by the standard 
deviation, i.e. normalization. Using this procedure, Dow and Cheverud (1985) ex- 
amined genetic, anthropometric, and geographic variation among 19 Yanomama 
villages, using data from Spielman (1973), finding that anthropometric and geo- 
graphic distances are more correlated than are genetic and geographic distances. 
Sokal et al. (1986) used the same approach to examine the 50-village Yanomama 
data set we described earlier, but were unable to choose between geographic and 
historical separation as predictors of genetic distance. Oden (1992) has shown that 
the Dow-Cheverud technique is vulnerable to spatial autocorrelation, and the 
whole matter needs further investigation. 

The second extension is described by Hubert (1985). This method is based on a 
different view of the way in which various sets of measures “interact.” With this 
procedure, DYY is contrasted with the element by element (Hadamard) product of 
Dxx and Dw 

Dxx*ww = Dxx*Dww = {Ax,Aw,>. (28) 

Here it is the nonlinear interactions of the two predictor matrices that are of 
interest. Using this procedure, Sokal et al. (1986), once again examining the 50- 
village Yanomama data set described above, have shown that genetic distance is 
not credibly correlated with this Hadamard product (interaction) of geographic and 
temporal separation. If we compare the three analyses of our 50-village Yanomama 
set, we are led to the conclusion that geographic and temporal separation are 
highly confounded and largely interchangeable as predictors of genetic distance; 
they do not show any nonlinear interactive effects. 
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Manly (1986) has derived an alternative regression model, predicting one dis- 
tance matrix as a linear combination of several others. He also normalizes, and 
then computes partial correlation coefficients. Barring the normalization, which is 
mere scale transformation, Manly’s formulation is identical to that of Smouse et al. 
(1986), used extensively here. Where Manly’s procedure departs from ours is in his 
attempt to place confidence intervals on his estimated r coefficients. Permutational 
analysis under the null hypothesis provides both a test and a confidence interval 
around ( r  = 0) ,  but that is not what Manly has done. His effort is directed toward 
placing a confidence interval around the observed correlation ( r  f :  0); he uses a 
more elaborate sampling scheme. Oden and Sokal (1992) have raised some ques- 
tions about Manly’s confidence intervals, but technical questions aside, the central 
idea has merit; matrix correlation analysis is commonly conducted with the a 
priori expectation that the null hypothesis is not true, constituting a convenient 
statistical straw man. That being the case, a confidence interval on the nonzero 
correlation would be useful. Evaluating the same 19 Yanomama Indian villages as 
Dow and Cheverud (19851, Manly obtains the same qualitative conclusions. His 
coefficient of multiple determination is R2 = .733 (P 5 .001), when predicting 
genetic data from geographic and anthropometric data, so that would be our value 
as well. 

Oden and Sokal(l992) have recently compared all four of these methods for the 
case where Dxx and D y y  both contain internal spatial autocorrelation, due to 
geographic patterns embedded within Dw Both the Dow-Cheverud (1985) and 
Hubert (1985) procedures are highly vulnerable to spatial autocorrelation, partic- 
ularly if the pattern is nonlinear (fairly typical, if our experience is any indication). 
Oden and Sokal (1992) show that the P values are seriously underestimated by 
permutational analysis. The Manly confidence intervals appear to be seriously 
underestimated as well. The size of the problem in each case increases with the 
level of spatial autocorrelation. The Smouse et al. (1986) method favored here 
seems to be more resistant to spatial autocorrelation. We can partial Dww out of 
the linear correlation between Dxx and DYY, but when the spatial autocorrelation 
is very large and highly nonlinear, even the present method is vulnerable. Krack- 
hardt (1987, 1988) has shown that generalizations of the current approach to 
multiple matrices are remarkably unbiased in the face of h e a r  autocorrelation, 
but it makes sense that nonlinear relationships are difficult to deal with, using a 
technique designed for linear relationships. 

Two additional comments are in order. 1) We have shown with the Chibcha 
example that the appropriate way to deal with nonlinear relationships is to 
linearize them before conducting the analysis. On the other hand, if we have no 
theory to guide us or if we have no data on geographic connections, we can- 
not protect ourselves; but that has ever been the price of ignorance. Moreover, 
and as we have shown with our examples, even if we have information on 
geography, there are cases where it can actually obfuscate the issue. 2) Manly’s 
(1986) estimated confidence intervals are too narrow, but since his matrix 
correlation analysis is isomorphic to ours, permutational evaluation of the null 
hypothesis should yield the same result as our method, which is somewhat 
more robust. Oden and Sokal’s (1992) results indicate that a reexamination of 
Manly’s confidence interval procedure is in order. Confidence intervals on r f :  0 
would be useful, if they were reliable, a problem that will have to be left for 
the future. The strengths and limitations of permutational testing procedures are 
matters that need further work, because it is hard to imagine a credible 
alternative. If the relatively forgiving nonparametric procedures are vulner- 
able, then the assumption-laden distributional alternatives almost have to be 
more so. 

Statistical quibbles aside, the Dow-Cheverud and Hubert approaches capture 
the essence of two different types of dependency of D y y  on a pair of predictor 
matrices, Dxx and Dww. The Dow-Cheverud approach detects additive relation- 
ships, while the Hubert approach tests for nonadditive interactions. The general- 
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ized regression approach advocated here can easily incorporate both types of de- 
pendency, since we can always write 

Ayij = a,Axg + a,Awg + a3AxGAwV + eV. (29) 
Dow-Cheverud have (implicitly) set a, = -a2 and u3 = 0; Hubert has implicitly set 
a,  = 0 = a2. Both approaches are thus special cases of the quadratic model (29), a 
more general version of which we have used for analysis of the Gainj and Kalam 
(Long et al., 1987) 

We found no significant quadratic effects, but (in fairness) we also found only one 
linear effect (see above). There may well be situations where higher order effects 
will provide usefill information now and de Waal (1989); citing Hubert (19871T 
develop a cubic version of the Mantel model that is designed to search for these 
higher order effects, and use them to elucidate subgroup interactions among sets of 
different elements. The method is reminiscent of that provided by Livshits et al. 
(1991), based on the idea of contrasts. 

Comparative work with different distance and affinity measures has a long 
history in anthropology, and there is every reason to anticipate still further de- 
velopments. We show here that there are simple techniques available that can be 
used in concert with as much social, demographic, and historical information as we 
can bring to bear. In anthropological context, there are two lessons to be learned. 
1) There are many anthropological problems that can be handled in this same 
general fashion; all that is needed is a little imagination. We have stressed an- 
thropological genetics here, because that  is our area of expertise, but other arenas 
are equally amenable to examination. The basic methodology is simple, and stan- 
dard programs are readily available. Our examples were chosen to span a range of 
extraneous information we could expect to elicit in social, historical, demographic, 
and linguistic context. 2) Within broad limits, we conclude that the more we know, 
the more we can learn with matrix correlation analysis. We have shown that 
theory-guided efforts are especially fruitful, even where (as in our Chibcha and 
Gainj/Kalam examples) we encounter some surprises. Even in cases where tradi- 
tional analyses are equivalent, there is much to be learned by comparing pairwise 
data. For problems where the data are inherently pairwise, these matrix correla- 
tion methods provide one of the few natural, yet powerful tools for analytical 
exploration. 
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