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This paper proposes a DEMD-based textured video coding scheme for efficient

representation of textured data compatible with a H.264/MPEG framework.
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We encode the DEMD residue image of all non-/ frames (P and B frames in
H.264/MPEQG) instead of the original frame. All non-/ frames are synthesised
using correlation search and patch-based multi-level IMF synthesis from the
DEMD representation of key frames (I frames, in the H.264/MPEG frame-
work) and the DEMD residual image of the frame being synthesised. Exper-

imental results show that the proposed scheme provides better compression
results as compared to MPEG/H.264 with acceptable reconstruction quality.

© 2014 Elsevier Ltd. All rights reserved.

1. Introduction

Textures are homogeneous patterns that contain spatial, tem-
poral, statistical and perceptual redundancies, which intensity
or colour alone cannot describe adequately. Video applications
(such as representing textured backgrounds in video conferenc-
ing, or tele-teaching scenarios) demand high compression with
good perceptual reconstruction quality, instead of bit-accurate
(high PSNR) reconstruction. This is because the human brain
is able to decipher important variations in data at scales smaller
than those of the viewed object.

Conventional video compression schemes such as MPEG2 [1]
and H.264 [2] exploit statistical dependencies on the entire sig-
nal subject to a mean squared error (MSE) criterion. Efficient
exploitation of statistical dependencies does not always corre-
spond to the best psycho-visual result. Representing textured
video data using conventional approaches (MPEG2/H.264, for
instance) is not efficient primarily because of three reasons, (a)
they are based on Shannon-Nyquist sampling [3], thus do not
exploit inherent sparsity present in the signal, (b) acquisition
and encoding are carried out on the entire signal, while most
of the transformed data is discarded in the compression pro-
cesses and thereby significantly wasting storage resources and
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high computational cost (This is more relevant in case of tex-
ture video because of the fine detail and high frequency con-
tent), (c) these schemes do not exploit the perceptual redun-
dancy present in the video data, which could result in much
higher compression at an acceptable psycho-visual quality. The
goal of a novel contemporary lossy compression scheme should
be to reduce the entropy while preserving the perceptual quality
of the frame using high-level computer vision tools and tech-
niques. Most of these high-level processing techniques results
in a small number of semantically relevant features, which can
represent the salient features of the entire signal very accurately.
Given this paradigm, a number of technical challenges arise, (i)
how to identify an algorithm that can pre-process the video sig-
nal and how to identify the segment that should be represented
by MSE-accurate criterion, (ii) how to create an approximation
with subjective correspondence, (iii) how to represent a picture
that consists of a mix of two approaches to compression.

In this paper, we propose a DEMD-based textured video
coding scheme for efficient representation of textured data. We
encode the DEMD residue image of all non-/ frames (which
due to the representation, are expected to have a significantly
lower entropy, and can therefore be represented using fewer
bits (Fig. 1 shows an example of the compression gain due to
the DEMD-based entropy reduction for sample textured videos
used in this paper) of all non-/ frames (P and B frames in
H.264/MPEG standard) in a H.264/MPEG framework. All non-
I frames are synthesised using correlation search and patch-
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Fig. 1. DEMD residue encoding of / frames usually leads to better com-
pression as compared to encoding the original / frame: results for some
standard test sequences.‘Standard_ MPEG2/H.264’ indicates / frame en-
coding, and ‘DEMD-MPEG2/H.264’ indicates DEMD residue encoding in
an MPEG2/H.264 framework.

based multi-level IMF synthesis from the DEMD representa-
tion of key frames (I frames, in the H.264/MPEG framework)
and the DEMD residual image of the frame being synthesised.

Existing methods of textured video compression can be broadly
classified as parametric or non-parametric. Parametric approaches

can achieve very high compression at low computational cost.
Structural textures (with non-stationary data content) primarily
have a large number of similar ordered patterns (texture sub-
units). Parametric models lose their compression gain advan-
tage as the number of parameters increases considerably. Non-
parametric approaches can be applied to a wide variety of tex-
tures (with irregular texture patterns) and provide better percep-
tual results (higher Mean Opinion Score (MOS) values). How-
ever, these schemes are often computationally more complex.
Recent work in the parametric approach is typically based
on Auto Regressive (AR) [3] or Auto Regressive Moving Av-
erage (ARMA)-based modelling [4, 5, 6]. AR- and ARMA-
based models in texture synthesis enable blocks to be selec-
tively removed at the encoding stage, and reconstructed at the
decoder with acceptable perceptual quality. AR- and ARMA-
based approach are suitable for the textures with stationary data,
like steady water, grass and sky, however they are not suitable
for structured texture with non-stationary data (e.g., brickwall:
Fig. 8) as blocks with non-stationary data are not amenable to
AR modelling. Further, they are block-based approaches, and
blocking artifacts can appear in the synthesised image.
Non-parametric approaches are pixel-based or patch-based.
Efros and Leung [7] proposed pixel-based non-parametric sam-
pling to synthesize texture. Wei and Levoy [8] further im-
prove the above using a multi-resolution image pyramid based
on a hierarchical statistical method. A limitation of the above
pixel-based methods is an incorrect synthesis owing to incor-
rect matches in searching for close-by similar statistics. Patch-
based methods overcome this limitation by considering features
matching patch-boundaries with multiple pixel statistics. Peo-
ple generally use Markov Random Field (MRF) models for tex-
ture analysis [8, 9]. The popular choice for texture synthesis is
a patch-based graph cut [10, 11]. Recent region based texture
representation and synthesis algorithms [12] address the limi-
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tations of the block based representation in handling homoge-
neous textures and blocking artifacts.

Zhang et al. [13] propose a DEMD-based image synthesis
approach with a small representative texture sample. This patch
is subjected to a DEMD-based decomposition for efficient rep-
resentation of the texture information. To reconstruct a full-
level image, the authors start from a highest level (say, k) of
the DEM decomposition of the representative patch. They con-
struct the k-th IMF corresponding to the full-resolution size by
taking information from smaller patches inside the sample (the
authors show an example with 64 X 64 representative sample
textures, and smaller 8 X 8 patches), and placing them in the
template for the full-resolution IMF (with overlap, to enforce
smoothness). For the next lower IMF(k — 1th) onwards, the
authors perform a correlation search for each smaller block in
the full-resolution template, with the closest-matching smaller
block in the k — 1th level decomposition of the representative
texture sample. The synthesised full-resolution image is the
DEMD synthesis of the full-resolution IMFs. This approach
shows good results for textured image synthesis with perceptu-
ally acceptable quality. However this approach leaves the fol-
lowing important questions unanswered: (a) The selection cri-
terion for the small representative texture: its size and location,
(b) Selection criterion for the size of the smaller patch, and the
extent of the overlap (10-20% of the patch size in examples in
the paper), (c) objective assessment of the quality of the syn-
thesised image, (d) the level of IMF decomposition required for
optimal synthesis, (e) inability to handle texture sequences with
irregular patterns, as the authors themselves mention [13]).

Our proposed scheme is a hybrid approach, combining the
advantages of parametric and non-parametric methods, which
enables us to handle a wide variety of textured videos which
cannot be accounted for by either method alone. DEMD can
handle textures with stationary and non-stationary data. The
scheme is in an H.264-/MPEG-based framework, for better com-
patibility with existing video coding standards. We take advan-
tage of the temporal encoding efficiency of standard video cod-
ing frameworks (H.264/MPEG) to encode the DEMD residues
frames. The synthesis is done using correlation search and
patch-based multi-level IMF synthesis from the DEMD repre-
sentation of key frames (I frames, in the H.264/MPEG frame-
work) and the DEMD residual image of the frame being syn-
thesised. Unlike [13], we provide both compression results, as
well as an objective (PSNR) and perceptual (MOS-based) as-
sessment of our encoded results. We give an energy encoding
efficiency-based heuristic to determine the number of decom-
position levels in the DEMD, which can either be sent from
the encoder to the decoder, or can be independently estimated
by the decoder in the same way as the encoder did it, for the
decomposition and subsequent encoding. Unlike the work of
Zhang et al. [13], since we perform the DEMD-based analy-
sis of the full resolution frame, this does not suffer from the
limitations of choosing a small representative patch size (which
anyway cannot be done efficiently for an irregular texture pat-
tern). Working with a full resolution instead of image blocks (as
in [13]) typically gives us more compression with an acceptable
perceptual reconstruction quality.



To the best of our knowledge, no related work address these
issues. A very preliminary work in this direction was our earlier
work [14]. The current submission differs considerably from
the above preliminary work in the following ways. The earlier
work encoded the IMFs’ maxima and minima for multiple IMF
levels, instead of the more efficient residue encoding in the cur-
rent work. Moreover, the temporal information encoding in the
H.264/MPEG framework - is a major contribution of the current
submission. A heuristic in the earlier work [14] was to drop the
residue (assuming that the residue was not sufficiently informa-
tive), leading to comparatively worse reconstruction quality, as
well as compression (since the maxima and minima of many
IMFs were also encoded).

The rest of the paper is organized as follows: Section. 2,
provides an overview of DEMD-based video encoding and de-
coding framework. Section. 3 provides details of our test set-up
and experimental results followed by a conclusion in Section. 4.

2. DEMD-based Video Coding

Huang et al. [15] propose Empirical Mode Decomposition
(EMD) as a decomposition of a signal f(f) into a ‘low fre-
quency/residue’ term r(¢) and a ‘high frequency/detail’ part
i1(¢). Each ir(¢) can be similarly decomposed, to give a K-level
decomposition,

K
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Here, functions f;(¢) are the Intrinsic Mode Functions (IMFs) [15],

[16], [17]. Advantages of such an iterative decomposition in-
clude the ability to handle any class of signals, non-linear, lin-
ear, non-stationary, and stationary. Further, the decomposition
at each level is a simple numerical technique, and has an asso-
ciated concept of a local scale (of an oscillation), and involves a
perfect reconstruction. Liu et al. [18], [19], [20] extend the ba-
sic idea to 2-D, considering a dominant image direction (which
is natural for an image segment containing texture) 6:

K
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6 can be estimated using a Wold decomposition-based method [21]

using the maximum of the Radon transform of the spectrum [13].
For instance, Fig. 2 shows dominant texture direction extraction

for the brickwall sequence used in our experiments. This is typ-

ically not expected to change appreciably for a textured video.

In the following sections, we discuss how we use DEMD for

our encoder and decoder framework.

2.1. DEMD-based Encoder Framework

We consider a video as being composed of a set of shots,
where each shot has an [ frame, followed by a sequence of non-I
(P, B) frames. (One can have either a fixed number of such non-
I frames, or have this varied adaptively according to the motion
in adjacent frames, and the associated propagation error.) Fig. 3
gives an overall block diagram of the proposed encoder. An [/
frame is sent to an H.264/MPEG encoder, which creates the

Fig. 2. The dominant texture direction, for the brickwall sequence.
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Fig. 3. The Encoder framework

encoded bit-stream. For a non-/ frame to be encoded, the sys-
tem creates the DEMD decomposition of the frame according
to Eq. 2. We use a simple wavelet-based method to decide on
the number of levels K for the DEMD process. We estimate K
from the corresponding DEMD of the I frame.

The theory of EMD guarantees a decrease in the number of
extrema across decomposition levels (O(log N) for an N-point
function) [17]. Practically, one needs to stop when the infor-
mation content in the residue is insignificant. This is often best
done in the transform domain. We choose the computationally
light Haar wavelets (O(N) for an N-point signal). A study of the
local properties (amplitude, phase, isotropy and orientation) of
a 2-D IMF in the wavelet domain reveals that the HH sub-band
energy best represent the IMF image, while the LL sub-band
represents the overall entropic information. We compute the ra-
tio of the energies in the HH and LL sub-bands, and stop the
decomposition once this ratio becomes a small fraction of that
for the original input frame. We selected this fraction empiri-
cally (0.01) based on experiments with a wide range of texture
videos, and monitoring the synthesis quality (MOS as well as
PSNR). Any further decomposition results in unnecessary com-
putations with little tangible gain in reconstruction quality, or
compression (e.g., Fig. 7).

The encoder sends the penultimate-level residues {ri_1 (x,y)}
- the logic behind sending the (K — 1)th level residue is to en-
able the decoder to have some information content to enable
it to perform a search for the closest patch in the DEMD de-
composition image at a particular level. (Sec. 2.2 has the de-
tails of the process.) The motivation behind this is the same
as that for splitting frames of a video into I and non-I frames:
the latter can be predicted (P: unidirectionally, or B: bidirec-
tionally) from an I frame, due to temporal redundancy. Hence,
it is reasonable to assume spatial correlation of a kth level de-
composition between an I and a non-/ frame. For an / frame,



the input to the H.264/MPEG encoder is the frame itself. For a
non-1 frame, the input to the H.264/MPEG encoder is the (K—1)
level residue, which is expected to contain far less information
as compared to the original frame, to enable it to be more effi-
ciently compressed using a standard H.264/MPEG encoder.

2.2. DEMD-based Decoder Framework

The decoder receives the H.264/MPEG stream, with each
shot segment composed of an / frame, and a set of non-I (K —
1)th level residue frames {r%_l (x,y)}. Fig. 4 shows a block level
view of the proposed decoder framework.
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Fig. 4. The Decoder framework

The decoder first decomposes the decoded [ frame into K
DEMD components iik’l (x,y), according to the same energy-
based stopping criterion as in the encoder (Sec. 2.1). The de-
coder also estimates 6 exactly as the encoder does it. For every
non-/ frame, the decoder starts from the H.264/MPEG-decoded
(K — 1)th level residue frame. It performs an additional de-
composition of r%’f’l”_[ (x,y) into ii‘”"”—' (x,y) and r%"”"_’ (x,).
As mentioned in the previous section (Sec. 2.1), we assume
that the decomposition proceeds till there is very little infor-
mation content in the Kth level residue. The (K — 1)th level
residue is the last decomposition level with some useful infor-
mation in the residue image rf("f;"_’ (x,¥). The decoder does a
correlation-based search for each block in the target IMF im-
age i(;("fol'lfl (x,y), with a block in the corresponding / frame IMF
image i(li’l_ ,(x, ), with an overlap.

Each pixel in the IMF image has a 3-tuple feature vector:
the magnitude (‘instantaneous bandwidth’), and the two angu-
lar directions (the ‘instantaneous frequencies’) [22, 13]. To get
the best matching patch, we do a local search in two 8 x 8 blocks
on each side of the candidate block in the upper level newly-
synthesised IMF image (with overlap), and select the one with
least Euclidean distance from the corresponding block in the
I frame IMF. We repeat the procedure for the other decom-
position levels as well, using the same correspondence infor-
mation for the blocks from the correspondence information at
level (K — 1). Fig. 5 demonstrates the overall block level view
for IMF decomposition and synthesis flow described above.

2.2.1. Patch Selection & Synthesis: Issues, Workable Solutions
It may be argued that an EMD generates IMFs with overall
decreasing frequency content, so one may pose a question of
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Fig. 5. The IMF Decomposition and synthesis flow

having an adaptive block size for the block texture map. How-
ever, EMD involves the concept of a local frequency and a local
scale [15], [16], [17], and it is not easy to have an adaptive block
size.

As a compromise, for a texture synthesis application [13],
Zhang et al. use a fixed block size, but perform correlation
search with the immediate previously synthesised IMFs (as-
suming that the frequency content will not change drastically
between two adjacent IMF levels - an approximation in terms
of the theory, but a workable heuristic). An even more gross
approximation is a ‘flat search’: to assume that the correspon-
dence of blocks determined at the Kth IMF level, remains un-
changed across other IMF levels also. The advantage of this
gross approximation is less computational cost, since we do not
have to work out a correspondence across multiple IMF decom-
position levels. The trade-off is the reconstruction quality. The
limitation is usually visible in artifacts across the patch bound-
ary of the synthesised IMFs.

As a workable solution, we assume an empirically chosen
compromise block size, and perform a correlation search across
all prior synthesised IMFs for each block, at the cost of in-
creased computational complexity, but to ensure that most lo-
calised frequency transitions can be captured across multiple
decomposition levels (for the cases where a correlation search
with the immediately previous synthesised IMF does not cap-
ture the best possible block correlation). Fig. 6 shows a com-
parison of a ‘flat search’ with correlation search, for two and
three levels of IMF decomposition, for instance. for six repre-
sentative videos.

The approach in this paper works across temporal redun-
dancy as well (in a video with frames). Even at the level of a
frame, our approach differs from that of Zhang et al. [13] as we
encode full-resolution reference data, unlike a small set of sam-
ple texture (whose size is empirically selected as 64 x 64 and
content is expected to represent all the structural texture unit in
the image). This enables us to extend our proposed framework
for a wide variety of textures, such as irregular texture patterns.
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Fig. 6. Illustration of patch based synthesis using a ‘flat search’ versus ¢
correlation search (Sec. 2.2.1 has the details and explanation). Correla-
tion search based patch synthesis provides better simulation results (PSNR
data) as compared to ‘flat search’-based patch synthesis.

The synthesis is also faster in our proposed scheme because
it uses full resolution reference data: finding the best possi-
ble patch requires a very localised search, unlike the exhaustive
search in case of sample based texture synthesis scheme [13].

For the synthesised texture quality assessment, we do ob-
jective quality assessment using PSNR as well as subjective as-
sessment using MOS, while Zhang et al. [13] use only a sub-
jective assessment criterion and rate the reconstruction quality
with the visual effect achieved.

3. Results and Discussion

In this section, we present experimental results for repre-
sentative structured textures (Sec. 1) with periodic (escalator,
fabric) and pseudo-periodic (brickwall, party_scene), and non-
structured/statistical textured sequences (floorbox, circularhole,
dog_grass, bridge_far, container). All the test sequences are
128 x 128, 8-bit, gray scale videos. PSNR and MOS have been
used as the quality metrics. Mean Opinion Score(MOS) com-
putation was done by collecting responses of various students
and staff working in the lab and averaging them. All the exper-
iments are carried out in MATLAB, running on a Windows XP
PC with a P4 CPU and 1GB RAM.

Table 1 shows sample compression results with just a single
level of IMF decomposition. The H.264 compression is larger
than the MPEG?2 one (better spatial and temporal redundancy
encoding), and our scheme performs significantly better than
either, in the respective frameworks. An exception to the above
trend is for the brickwall and container sequences, where the
significant periodicity with high structural transitions between
frames in brickwall and dynamic statistical transition between
frames in container sequence, limits the compression gain with
DEMD as opposed to encoding the raw video data. This is a
limitation of the proposed scheme, as summarised towards the
end of this section.

The compression gain increases considerably with the num-
ber of levels of IMF decomposition, as dictated by the energy-
based decomposition stopping criterion (Sec. 2.1). Fig. 7 shows
some representative results. The importance of the energy-
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Fig. 7. Compression gain over MPEG2/H.264 for the proposed multilevel
IMF synthesis

based stopping criterion can be noted here, as some test se-
quences as floorbox have an optimal compression with accept-
able quality, at the first IMF decomposition level itself. Addi-
tional levels of IMF decomposition for such sequences only add
computational complexity without any significant gain.

Figs. 8, and 9 demonstrate synthesis results of the four tex-
tured video sequences comprising synthesised IMF image and
non-/ frame sequences. All images with framed boundaries are
synthesised frames. (The decoder performs one level of decom-
position to get the Kth level residue and the Kth IMF: details in
Sec. 2.2). The Mean Opinion Score(MOS) data on a scale of
5 indicates that the synthesis quality is perceptually acceptable
with a comparable PSNR range to H.264, as shown in Table 1.

It is interesting to note that in the experiments with the

dog_grass sequence, we have not explicitly performed a foreground-

background separation, and encoded the background (the grass,
and the rocks in the meadow) alone. In spite of this, the pro-

posed framework works better as compared to a standard MPEG2/

H.264 encoding, as can be seen from the data in Table 1, and
the graphs in Fig. 7 even for one IMF level alone, and more so
for further levels of IMF decomposition.

The approach in this paper combines the effective decom-
position property of DEMD to exploit temporal redundancy,
within the framework of the H.264/MPEG standard for flexi-
bility with regard to a standard, and a possibly better feature
representation scheme for textured videos. A limitation of the
proposed scheme is in cases such as the brickwall and container
videos, where the H.264 temporal redundancy representation
for the DEMD residue does not give an appreciably better com-
pression gain as compared to working with the raw frame data.
Such situations typically arise when the video data has consid-
erable aperiodicity with high structural transitions or dynamic
statistical transition between frames.

4. Conclusion

In this paper, we propose a DEMD-based textured video
coding scheme for efficient representation of textured data in a



Table 1. Even a single level of IMF decomposition provides considerable compression gain over MPEG2 and H.264, at acceptable quality levels (PSNR as
well as MOS) - for representative structured (Sec. 1) as well as non-structured/statistical textures. Sec. 3 has the details and the explanations. Columns 2
& 3 give the encoded bit sizes using MPEG-2 alone, and the DEMD-based proposed scheme in an MPEG-2 framework (‘proposed In MPEG?2’). Columns

5 & 6 show the corresponding figures for H.264.
Encoded | Encoded %Gain | Encoded | Encoded | %Gain Quality Quality Quality Quality
Sequence BitSize BitSize Over BitSize BitSize Over (PSNR,dB) | (PSNR,dB) MOS) (MOS)
standard | proposed | standard | standard | proposed | standard standard proposed standard | proposed
MPEG2 | In MPEG2 | MPEG2 H.264 In H.264 H.264 H.264 In H.264 H.264 In H.264
circularhole 37220 32659 12.25 6940 4190 39.63 36.00 35.03 4.5 44
escalator 43806 38849 11.32 12188 8920 26.81 34.00 30.16 4.5 4.4
Sfloorbox 36268 31613 12.83 3632 3442 5.50 37.00 37.80 44 4.2
dog_grass 24408 22977 5.86 3176 2792 12.09 35.84 34.64 4.5 42
fabric 53514 42074 21.38 20726 8460 59.18 32.59 28.43 4.5 4.0
party_scene 51707 44165 14.59 12544 7376 41.20 35.06 39.31 4.5 4.6
bridge_far 28778 26792 6.90 2932 1406 50.35 36.49 44.34 4.6 4.7
container 35682 33120 7.18 1322 2902 -54.44 37.32 33.47 4.5 42
brickwall 49017 45133 7.92 1516 4192 -63.08 34.43 39.01 4.5 4.5

H.264/MPEG framework. We encode the DEMD residue im-
age of all non-/ frames (P and B frames in H.264/MPEG stan-
dard) in a H.264/MPEG framework, and not the original frames
themselves. All non-/ frames are synthesised using correla-
tion search and patch-based multi-level IMF synthesis from the

DEMD representation of key frames (I frames, in the H.264/MPEG

framework) and the DEMD residual image of the frame be-
ing synthesised. Experimental results show that the proposed

[7]1 A. Efros, T. Leung, Texture synthesis by non-parametric sampling, Inter-
national conference on computer vision (1999) 1033 — 1038.

[8] L.Y. Wei, M. Levoy, Fast Texture Synthesis using tree-structured vector
quantization, in Proc. SIGGRAPH, New Orleans, Louisiana, USA (2000)
479 — 488.

[9] P.Ndjiki-Nya, M. Koppel, D. Doshkov, T. Wiegand, Automatic structure-
aware inpainting for complex image content, International Symposium on
Visual Computing (2008) 1144 — 1156.

[10] V. Kwatra, A. Schodl, I. Essa, G. Turk, A. Bobick, Graphcut textures :
image and video synthesis using Graph Cuts, in Proc. SIGGRAPH, San

scheme provides better compression results as compared to MPEG/H.264Diego, CA, USA (2003) 277 — 286.

with acceptable reconstruction quality. A possible application
of the proposed framework could have been for efficient repre-
sentation of a BRDF (Bi-Directional Reflectance Function) of
an object, where different images of an object in a single pose
are taken in different illumination conditions. A video repre-
sentation of the same may offer better compression in repre-
sentation as compared to storing a large set of such images.
If such a dataset has significant structural textural information,
an approach similar to the proposed approach may be viable.
Another possible application scenario could be hyper-spectral
satellite imagery, where images in any band typically contain
textured areas. Representing these textures in different bands
as a video using the proposed DEMD-based framework of this
paper could be a possible efficient representation.
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Fig. 8. Synthesis results for sequences (in raster-scan order), brickwall and
escalator: a. Input / frame and synthesised non-/ frames, b. 1st level IMF
image for /-frame and 1st level synthesised IMF image for non-/ frames,
c. 2nd level IMF image, and d. DEMD residue image. The images with
framed boundaries are synthesised frames: the decoder decomposes the
encoded (K — 1)th level residue into the Kth level residue and IMF, and per-
forms a correlation search to get the synthesised frames: Details in Sec. 2.2,
Sec. 2.2.1.
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Fig. 9. Synthesis results for sequences party_scene and dog grass : a. In-
put / frame and synthesised non-/ frames, b. 1st level IMF image for
I-frame and 1st level synthesised IMF image for non-/ frames, c. 2nd
level IMF image, and d. DEMD residue image. As mentioned in the text
(Sec. 3), it is interesting to note that the sequence dog_grass is not a pure
‘textured’ video and we have not extracted the foreground (the dog) and
coded only the background texture. In spite of this, Table 1 and Fig. 7 show
that the compression in the proposed framework is better than a standard
MPEGZ2/H.264 encoding. The images with framed boundaries are synthe-
sised frames: the decoder decomposes the encoded (K — 1)th level residue
into the Kth level residue and IMF, and performs a correlation search to
get the synthesised frames: Details in Sec. 2.2, Sec. 2.2.1.



