
Coverage Analysis for GUI Testing

By

Abdul Rauf, MS (CS), MSc (CS)

A thesis submitted in partial fulfillment of the requirements for the degree of Doctor of

Philosophy to the FAST National University of Computer & Emerging Sciences

Department of Computer Science

National University of Computer & Emerging Sciences, Islamabad, Pakistan.

(July 2010)

ii
Coverage Analysis for GUI Testing

iii
Coverage Analysis for GUI Testing

Dedicated to my family, my teachers and

everyone who helped and prayed for my

success.

iv
Coverage Analysis for GUI Testing

Acknowledgements

I would like to bend myself before Allah, the Almighty, the Most Gracious, and the

Most Merciful, whose blessings bestowed upon me to undertake and carry out this research

work.

 I would not have reached this stage without the support, love and prayers of my family

and friends.

 This dissertation describes research undertaken at the department of Computer Science;

National University of Computer & Emerging Sciences, Islamabad, between January 2005

and August 2010, under the kind supervision of Prof. Dr. Arshad Ali Shahid, whose

encouragement, guidance and support throughout has enlightened me throughout this

research program. His advice, discussion, and effective comments were always a source of

motivation. I am also extremely thankful to Dr. Anwar Majeed Mirza, who managed and

administrated my research activities. I am also extremely thankful to Dr. Aftab A. Maroof,

Dr. Rauf Baig, Dr. Farrukh Hussain and Dr. Waseem Ikram, for supporting me well

throughout my research work.

 I would like to pay tribute to my friends Dr. Ayaz, Dr. Mazhar Hussain, Mr. Sajid Anwar,

Mr. Navid Kazim Khan, Mr. M. Ramzan, Dr. Amjad Iqbal, Mr. Sana Ullah, Mr. M. Nazir,

Mr. Nawazish Naveed, Mr. Sheeraz Akran, Mr. Aamir Khan, Mr. Zahoor Jan, Mr. Hassan

Mujtaba, Mr. Sohail Masood, Mr. M. Asif Khan, Mr. Atta Ul Waheed, Miss Sadia Batool,

Miss Zunaira Jalil, Miss Hajra Jabeen and Mr. Arif Jamal. I am also very thankful to whole

library staff especially to Mr. Kazim Ali Syed for timely providing me with the resources. I

am also thankful to accounts and networks staff of FAST-NU for their cooperation and

collaboration. Special thanks to my friend Vrushali A. Shedage for proof reading my thesis.

 I acknowledge the enabling role of the Higher Education Commission of Pakistan

and appreciate their financial support through its Indigenous PhD Scheme.

v
Coverage Analysis for GUI Testing

Table of Contents

Coverage Analysis for GUI Testing ... i

Abstract ... x

List of Publications .. xii

Conference Papers .. xiii

Chapter 1: Introduction .. 14

1.1 Background and Motivation .. 15

1.2 Problem Statement .. 18

1.3 Knowledge Based Software Engineering ... 20

1.4 The Goal of the Thesis .. 21

1.5 Thesis Contributions ... 22

1.6 Thesis Organization... 24

Chapter 2 State-of-The-Art Automated GUI Testing ... 26

2.1 Software Testing ... 27

2.1.1 Test Plan ... 28

2.1.2 Test Case .. 28

2.1.3 Test Script... 28

2.1.4 Test Bed.. 29

2.1.5 Test Oracle ... 29

2.1.6 Black Box Testing .. 29

2.1.7 White Box Testing .. 29

2.1.8 Gray Box Testing .. 30

2.1.9 GUI Testing .. 30

vi
Coverage Analysis for GUI Testing

 2.1.10 Clean Room Software Engineering ... 30

2.1.11 Statistical Testing .. 31

2.2 Automated Software Testing ... 31

2.3 Measurements in Software Testing .. 32

2.4 Test Coverage ... 33

2.5 Graphical User Interface Testing ... 35

2.6 Graphical User Interface Testing Techniques ... 37

2.7 Knowledge Based Software Testing .. 39

Chapter 3 Modeling GUI for Testing .. 46

3.1 Modeling GUI for Testing ... 47

3.2 Role of Modeling in GUI Testing .. 48

3.3 Existing UML Extensions.. 50

3.4 Extending UML to Model GUI .. 51

3.4.1 Why Extension of UML? .. 52

3.4.2 Software Design Patterns .. 52

3.4.3 New Profile for Modeling GUI ... 54

3.5 Summary ... 57

Chapter 4 Coverage Optimization for GUI Testing ... 58

4.1 Testing Context Free Applications ... 59

4.2 Test Coverage ... 60

4.3 Importance of Test Coverage ... 61

4.4 Coverage Criterion for GUI Testing... 62

4.5 Single Objective Evolutionary Algorithms for Coverage Analysis 65

4.5.1 Genetic Algorithms ... 66

vii
Coverage Analysis for GUI Testing

 4.5.2 Overview of PSO and Discrete PSO .. 68

4.6 Coverage Analysis for GUI Testing Using Genetic Algorithm 70

4.6.1 Test Data Generation .. 70

4.6.2 Optimization of Test Paths using Genetic Algorithm ... 74

4.6.3 Fitness Function .. 75

4.6.4 Reproduction operators ... 76

4.6.5 Mutation ... 77

4.6.6 Experimental Setup ... 77

4.6.7 Experimental Results .. 78

4.7 Coverage Analysis for GUI Testing Using PSO ... 81

4.7.1 Particle Encoding in PSO (Test Data Generation) ... 83

4.7.2 Swarm Initialization .. 85

4.7.3 Position Update ... 86

4.7.4 Quality Measure.. 86

4.7.5 Completion Criteria .. 86

4.7.6 Working of Proposed Methodology... 86

4.7.7 Experimental Results .. 87

4.8 Comparative Analysis ... 89

4.8.1 Robustness .. 90

4.8.2 Speed of Convergence .. 90

4.8.3 Accuracy ... 91

4.9 Summary ... 91

Chapter 5 Multi Objective Coverage Optimization ... 92

5.1 GUI Test Coverage Optimization by Multi Objective Algorithms 93

viii
Coverage Analysis for GUI Testing

 5.2 GUI Test Coverage Optimization by MOPSO ... 94

5.2.1 Problem Modeling using MOPSO ... 95

5.3 GUI Test Coverage Optimization by Multi- Objective GA (MOGA) 97

5.3.1 Problem Modeling using NSGA-II .. 98

5.4 Experimental Results... 101

5.5 Results Analysis .. 101

5.5.1 Comparison of Single Objective and Multi Objective Algorithms 101

5.5.2 Comparison of NSGA II and MOPSO ... 103

5.6 Summary ... 107

Chapter 6 Coverage Optimization Based GUI Test Framework ...108

6.1 Oracles Development .. 110

6.2 Ontology Development ... 110

6.3 Ontology Driven Semantic Annotation Based GUI Testing 113

6.4 Summary ... 116

Chapter 7 Conclusion and Future Work ... 117

7.1 Contributions: With Reference to Individual Chapters ... 119

7.2 Recommendations for Future Work ... 120

References ..122

ix
Coverage Analysis for GUI Testing

List of Abbreviations

AI Artificial Intelligence

AST Automated Software Testing

CFG Control Flow Graph

CI Computational Intelligence

CLI Command Line Interface

CSP Constraint Satisfaction Problem

EA Evolutionary Algorithms

EFG Event Flow Graph

EIG Event Interaction Graph

FSM Finite State Machine

GA Genetic Algorithm

GAP GUI based Application

GUI Graphical User Interface

KBSE Knowledge Based Software Engineering

MARTE Modeling and Analysis of Real-Time and Embedded

systems

MDD Model Driven Development

MOGA Multi Objective Genetic Algorithm

MOPSO Multi Objective Particle Swarm Optimization

NSGA Non- dominated Sorting Genetic Algorithm

OCL Object Constraint Language

OMG Object Modeling Group

OMMMA-L Object-oriented Modeling of MultiMedia Applications - the

Language

PATHS Planning Assisted Tester for grapHical user interface

Systems

PSO Particle Swarm Optimization

RDF Resource Description Framework

SE Software Engineering

TSP Traveling Salesman Problem

UML Unified Modeling Language

UWE UML based Web Engineering

x
Coverage Analysis for GUI Testing

Abstract

Software Testing is one of the most critical phases in development of software. The aim of software

testing is to create quality software products to meet the expectations of an organization. Software

testing is considered as an effort demanding activity and hence it is often neglected to some extent.

Graphical user interface (GUI) is a major contributing factor behind the popularity of software

applications in recent times. Realizing the importance of GUI‟s, a lot of research concentrating on

GUI is being carried out. Moreover the importance of ensuring the correctness of GUI is of higher

value. That‟s why; a software development organization must have to manage the additional testing

for the GUI. GUIs make testing systems more difficult because they inherit characteristics like event-

driven nature, unsolicited events, and infinite input domain problems. The major benefit of a GUI is

that it hides the complexity from the users and sometimes from programmers as wells.

In the end testing such applications becomes a nightmare for test team. To reduce the effort required

and shorten the duration of testing GUI, automated techniques and tools are being used now. A GUI

model based on event-flow graph is an innovative technique being utilized in the field of automated

GUI testing. The search for utmost quality assurance of software, through the introduction of

automated software testing, raises yet another challenging question, what is the required “amount” of

testing to gain confidence in quality of software? Usually this criterion corresponds to a function

known as “coverage” that measures how much of the software is to be tested? Like procedural and

command based software testing, same measure of coverage can be applied to GUI testing as well. In

the course of the development of the techniques for the automation of the software/GUI testing

procedure, this “coverage” measure can be employed to provide guidance on the quality of an

automatic test suite.

A fully automatic strategy has been developed for the generation of events to exploit the event flow

nature of GUI‟s. Proposed methodology provides an analysis of GUI path test coverage based on

these recorded events. A coverage analyzer using evolutionary algorithms optimization is proposed

that performs analysis to maximize the GUI test coverage. The proposed technique uses different

variants of Genetic Algorithms and Particle Swarm Optimization. Initially, the technique has been

optimized with the aim to gain maximum test coverage and then other important attributes like cost

and number of test cases have also been incorporated with the help of multi-objective optimization.

xi
Coverage Analysis for GUI Testing

 Based on the event driven nature of GUI, this thesis presents a GUI testing and coverage analysis

technique centered on evolutionary algorithms. Technique proposes a design pattern based profile of

GUI. This profile is further used to model the GUI and based on this modeling, testing process is

started. Ontology based annotation process is used to generate test cases based on event driven nature

of GUI systems. Test coverage analysis is used to ensure that maximum test coverage has been

achieved. Different evolutionary algorithms have been used to optimize test coverage. Finally a test

oracle based on semantic annotations and working of ontology is used to verify the output of test

cases.

xii
Coverage Analysis for GUI Testing

List of Publications

xiii
Coverage Analysis for GUI Testing

Conference Papers

14
Coverage Analysis for GUI Testing

Chapter 1: Introduction

15
Coverage Analysis for GUI Testing

1.1 Background and Motivation

Software testing is the most widely used approach for improving software quality in practice

[1]. Software testing has emerged as one of the most important segment of software

development life cycle (SDLC) ever since the evolution of software development. Today

software testing has become a complementary part of any organization having certain

interests vested in software products or services. Besides its importance, perhaps testing is

most costly assignment of a software development as well. More and more budget and

resources are being utilized to make certain the correctness and quality of the software. Many

of the recent well reputed surveys and reports have revealed that more than half of the

software development cost is being utilized for software testing. According to a study [2],

software manufacturers in United States of America mislay around a total of 21.2 billion

dollars because of non-optimized testing and it‟s after affects. According to the same study,

total expenses incurred by shipping errors to the customers can rise up to 59.5 billion dollars.

Ever growing competition in the software industry demands software testing process to be

cost effective and efficient. A huge amount (about 22.2 billion dollars) can be saved by

employing optimized testing infrastructure [2].

It is however satirical that, regardless of so much capital and effort, software testing needs

significant amount of improvements especially when we see that a large portion of this cost

and effort is not yielding useful results. Due to the short development schedules, the software

testing activity has been facing a time limitation [3]. Automated testing can be considered as

a possible way out to improve the efficacy of software testing and reducing the budget and

schedule of this critical activity. Software test automation can also assist in getting larger test

coverage.

Software testing is performed actually to get assurance that a system does only and only what

it is supposed to do. Testing a system is a vital practice in software development as it is

impossible to develop an accurate system, thus, a vast covenant of research on software

testing has been carried through several years. Conventionally, software systems have been

16
Coverage Analysis for GUI Testing

 developed in a command based environment but recently, Graphical User Interface (GUI)

based approach has emerged for system development. In the GUI based development, the

graphical widgets are the building blocks of system development. Most systems comprise a

large Graphical User Interface (GUI) component, in recent times. Graphical user interfaces

are one of the most important components of modern day software and are being considered

as necessary part for most of today‟s software. GUIs give user a relatively more ease and

freedom to interact while accessing the system [4]. According to the Industry reports [5]

about half of the code of GUI-based applications is being dedicated to handle the user

interface. Being acquainted with the value of GUIs, software developers are devoting more

effort, up to 50%, to implement GUIs [6]. Despite the said significance of GUIs, testing of

GUI for functional correctness remains an understudied domain. Due to a number of reasons,

testing the appropriateness of a Graphical User Interfaces (GUI) is hard [7]. Many studies

have been conducted recently to identify the problems faced during GUI testing. Some of the

findings of these studies are:

 Each GUI state has a large number of likely interactions; hence space with a GUI to

be properly tested is enormous [8].

 Due to a large number of input permutations emerging from the large number of

possible GUI states, finding out the coverage of a test suite is very complex task [8].

 A very complicated task is to validate the GUI state due to selection of objects and

their properties to be verified [8].

 Events performed on GUI drive it into different states. Not all events are allowed in

each state. Explicit or implicit protocols specify the allowed (and sometimes

disallowed) event sequences [9].

 Testing GUI requires the development and execution of test cases to test the GUI for

invalid input event sequences [9].

 It is difficult to design robust test oracles (mechanisms to determine whether software

has executed correctly for a test case) for GUI [9].

 The run-time environment in which a GUI executes may change the GUI‟s behavior

[9].

17
Coverage Analysis for GUI Testing

 It is difficult to create a representation of GUI. Finite state machine (FSM) models in

addition to representations for conventional software fail to scale for large GUI [7].

Event flow graph (EFG) has emerged recently as a widely accepted technique for this

purpose [7].

 It is very hard to determine what to test in GUI based applications.

 Generating inputs for GUI test is also a non-trivial task.

 Coverage criteria help to determine rules used to select test cases as well as it

determines how much amount of testing would be sufficient. To determine if the GUI

was adequately tested or not is also one of the challenges being faced in GUI testing

[10].

 Model based representation has assisted software testing in many cases. But it has

been still a problem to have a complete and agreed upon representation of GUI [9].

Large numbers of events, their possible permutation and complex interactions among GUIs

events present novel challenges for GUI testing as have been listed above. While it is a

difficult task to test each event, isolated events testing is never enough; context of an event

must be executed while testing. Another issue of GUI Testing is higher cost of script

maintenance: a change in the GUI requires changes in the replay script. Also GUI testers

mostly take up capture/replay tools [11, 12]. Another alternative for this issue is to

implement techniques that automate the construction (and execution) of new sequences [13].

However, all of these techniques need a lot of effort and besides these huge efforts, these

techniques do not assure complete testing of GUI applications.

This thesis aims to achieve maximum test coverage regardless of the difficulties in GUI

testing. Considering the inter-dependent nature of GUI events, we would try to show that

without considering the strict ordering constraints, we can have very good coverage of GUI

events by using evolutionary algorithms. Also we would expose the opportunities of building

a close relation between semantic annotation and ontology engineering and this close

relationship would be used from test case generation to oracle development. Evolutionary

algorithms based coverage analysis along with ontology based test case generation and

semantic annotation based oracle would constitute a complete framework for GUI testing.

18
Coverage Analysis for GUI Testing

1.2 Problem Statement

“What constitutes an adequate test suite?” Goodenough and Gerhart raised this issue, in

1975[7]. Testing software is hard; knowing that software is well tested is even more difficult.

One considerably believed measure is that of coverage determination. In software testing,

coverage is generally referred to as “the ratio of basic code blocks that were exercised

by some test, to the total number of code blocks in the system under test” [14].

Coverage criterion refers to a set of rules to determine adequate testing of a program by a test

suite and hence can be used to guide the testing process. Different techniques i.e., path

coverage, branch coverage, code coverage etc are well in use in software testing. In contrast,

the number of syntactically legal paths in a GUI software is generally enormous and

therefore un-testable in practice to some extent. Most of existing GUI testing tools are based

on capture/replay. But capture/relay tools have many problems like problems of localization

(Language and local formats). These tools can also be considered as slower and expensive

because of manual control. The GUI is not as transparent as the code of a system and hidden

logic behind GUI is very sensitive. Due to this reason, GUI systems react too much against

smaller changes whether applied on them or in the environment where that GUI lies.

Software with a GUI front-end consists of two parts: (1) the underlying code that implements

the business logic and (2) the GUI front-end that facilitates user interaction with the

underlying code. Interaction of a software user with the GUI is possible via different events,

i.e., clicking the buttons, selecting menu options, and text inputs. GUI uses method

invocations and messages to make possible the interaction of input events with the

underlying code [15].

Due to limited number of resources it is quite difficult to execute all code and test all paths

during testing. Moreover no one can assure that all faults have been uncovered in a specific

application or a system [16]. To overcome these limitations, software testers use a bench

mark named adequacy criterion. This criterion basically, is an indicator of sufficient testing

and can be used as a signal to stop execution of further test cases. Also this criterion can be

used to reduce the size of test-suite and to direct the process of test cases generation, if

required [17].

19
Coverage Analysis for GUI Testing

 Aims of this research include providing a criterion based on computational intelligence for

adequate GUI testing, to define a coverage criterion and to analyze the coverage based on

feedback for optimality of testing. The research presented in this thesis focuses on GUI

modeling, Determining an adequate coverage criterion and analysis of GUIs test coverage

criteria. The coverage analysis will be used to enhance the coverage achieved based on

knowledge based software engineering (computational intelligence techniques) and for

reporting purposes. This thesis also proposes a method based on semantics and annotation for

development of automated test case generation and oracle development for GUI testing.

In order to achieve our desired goal, we have set the subsequent objectives:

The work in this thesis expands in three different directions basically. In the first step, we

have explored literature to sort out different representations of GUI that have been tried so

far, and have presented a unique way of modeling GUI. In the second step, we have reviewed

different coverage criteria for software testing, feasibility of each of these criteria for GUI

testing and proposing a new coverage criterion for GUI testing specifically. This new

coverage criterion is based on Knowledge Based Software Engineering (KBSE), Techniques

like neural networks, evolutionary algorithms, and fuzzy systems are progressively being

used for specific Software Engineering (SE) problems in KBSE [18]. Coverage criterion

proposed for GUI testing uses evolutionary algorithms. This criterion helps in improving the

coverage and ensuring the quality of GUI. Alsmadi et.al presented a GUI model that was

20
Coverage Analysis for GUI Testing

 developed from the implementation. GUI test cases are created dynamically and a tool uses

the test cases as input and executes them using some API‟s that simulate the user actions.

Each successfully executed control is logged [19]

In this research, we studied GUI model and test results‟ optimization. GUI test automation is

not a cure-all that should be taken as the only solution. We automate to save time and

resource and we do not expect everything to be automated. In the last phase of the thesis, an

innovative technique to produce GUI test data as well as test oracle development has been

proposed. This technique uses concepts of semantics and ontology development.

1.3 Knowledge Based Software Engineering

The application of artificial intelligence (AI) technology to software engineering (SE) is

known as Knowledge Based Software Engineering (KBSE) [20]. A growing interest can be

seen today to bring research directions of both disciplines (AI and SE) closer and such efforts

are now building new research areas. Knowledge-Based Systems (KBS) are being

investigated for learning software organizations as well as knowledge engineering [20]. With

the application of artificial intelligence technique in software engineering and testing, there

will be emerging the zone of a study which brings near the cross fertilization of the ideas

from these two domains [21]. It is resource consuming and infeasible to adequately test the

graphical user interface. More over it is very difficult and expensive to automate GUI testing.

By employing KBSE, we can make possible the feasible automation the testing process for

GUI and minimize the consumption of resources.

KBSE systems are quite knowledge rich as they are designed for assisting software engineers

in low-level everyday maintenance tasks [22]. KBSE systems require a quite wide body of

knowledge and sometimes use computationally demanding, deductions and other algorithms.

As they have the potential of representing and deducing the relations among components of a

software system [22]. Software testing is a vital, yet very expensive and time-consuming

practice. Hence, automation of any phase of software testing life cycle can reduce costs for

the testing activity. While there are many research directions in testing automation, from

theory through application, the main focus of this thesis is a proposal for implementation of

21
Coverage Analysis for GUI Testing

 knowledge based techniques for measuring the activities of GUI testing process and making

it more predictable.

Computational Intelligence (CI), a branch of AI plays an important role in research about

software testing as well as for software quality assurance in software development. Many

evolutionary algorithms are being used throughout the software testing life cycle.

Evolutionary testing (name given to software testing based on evolutionary algorithms) uses

a kind of meta-heuristic search technique. A number of researchers did the work on software

testing using evolutionary algorithms, i.e., simulated annealing, genetic algorithms, particle

swarm optimization and ant colony optimization. Using evolutionary computations,

researchers have done some work in developing genetic algorithms (GA)-based test data

generators [23, 24, and 25].

In the past few years, there has been an impressive raise in work on Knowledge Based

Software Engineering (KBSE). Of all the areas of Software Engineering activity to which

KBSE techniques have been applied; software testing is both the first area tackled and that

which has received the most widespread study. Although knowledge based GUI testing is not

a well researched area, in this research, we studied using GUI model and test results‟

optimization. GUI test automation based on concepts of KBSE.

1.4 The Goal of the Thesis

Rapid change in usage profile can ultimately make test suites (written with certain use cases

in mind) look like as inadequate and ineffective ones in testing graphical user interface

applications. Unlike non-GUI applications, a little change in GUI applications changes the

testing scenario completely. Moreover such small changes and increments are frequent.

Handling GUI test process manually, hence poses a complex and daunting task. Computer

assisted applications can reduce the effort required in this task.

Bringing AI and software engineering together in the form of KBSE has resulted in many

well-engineered artificially intelligent systems with a firm software engineering backbone. In

recent years, the application of AI is tremendously very high especially it has provided

advantages in cases when many complex decisions need to be made. A major area in

22
Coverage Analysis for GUI Testing

 computer software is adding AI knowledge to increase the correctness and efficiency of the

system. Software testing tools can benefit from such knowledge. There appears to be an

immense opening in using artificial intelligence techniques to abet software engineers in

software testing.

Broadly speaking, the endeavor of this thesis is to consider the application of artificial

intelligence specifically evolutionary algorithms in graphical user interface testing and

coverage analysis. This is the junction of two entirely different research fields, GUI testing

and evolutionary algorithms. Former has been widely ignored by researchers till recent times,

while the later one has been widely accepted and researched from the day of its emergence.

Bearing in mind the impact of testing, and the ripeness of evolutionary algorithms, it seems,

the time has come for AI researchers to stick together with the software testing professionals

for making possible optimal testing of software systems.

Using a variety of evolutionary algorithms and event paths used by GUI test professionals,

we extract what we call event coverage among events in the system under testing. The

expectation is that the event coverage will enlighten the testing professional to understand

existing coverage achieved through current testing practices and will assist to maximize the

test coverage within the target system.

1.5 Thesis Contributions

The intention behind this research thesis is to propose visibility into the GUI testing process

on the basis of test measurements, with a focus to possible measurements in GUI test

coverage analysis. Since lack of measurement is considered to be one of the reasons for

unpredictable software development [26], it is expected that the thesis will contribute

towards the efforts of making the software testing and especially GUI testing process more

predictable and measurable. Earlier it was believed that testing is simply execution of tests.

[26], but now days, there are many metrics in software testing based on number of defects

found, time required for software testing, number of defects fixed and coverage gained

during the testing process. While considering the case for GUI, there is a noticeable

23
Coverage Analysis for GUI Testing

 ignorance related to the metrics for GUI testing. Therefore, by concentrating on the role of

metric support in GUI test coverage; this research will contribute in filling part of this gap.

Following are the contributions of this thesis, i.e., the specific technical issues and whose

solutions presented in this work add to the state of the art in one or more fields of GUI

modeling, GUI Test Data Generation, GUI Test Coverage Analysis, and in GUI Test Oracle

Development:

i. Proposing a model of the GUI based on design patterns so that they can represent

properties of GUI modules [27].

ii. A thorough investigation of the existing coverage measures for GUI testing and

identification of various limitations present in these techniques.

iii. Development and explanation of a new technique that utilizes the concept of event

driven nature of GUI for determining the coverage achieved through different

evolutionary algorithms [28, 29, and 30].

iv. Proposition and implementation of Genetic Algorithm (GA) for coverage analysis of

GUI testing [12, 26].

v. Proposition and implementation of Particle Swarm Optimization (PSO) for coverage

analysis of GUI testing [28, 31].

vi. Proposition and implementation of Multi Objective Genetic Algorithm to gain

multiple objectives in GUI testing. These multiple objectives include having a

balance between number of test cases and coverage achieved in GUI testing [32].

vii. Proposition and implementation of Multi Objective particle swarm optimization to

have a tradeoff between cost of testing and coverage achieved in testing [33].

viii. Producing a large number of examples from some user generated applications and

some very common built-in GUI applications appropriate for the use of machine

learning tools and techniques.

ix. Developing an ontology based on these semantic information to generate test cases

[34, 35].

24
Coverage Analysis for GUI Testing

1.6 Thesis Organization

The primary objective of software testing is to uncover the faulty behavior of underlying

application. Two major techniques used for this purpose are: execution-based testing and

static analysis [36]. In first case, applications are tested by executing and identifying the

incorrect behavior, while in other case, non-execution-based testing, tests applications based

on their observance to requirement specifications. This thesis focuses on execution-based

testing of GUI applications, where a tester performs execution of different test cases to not

only identify the faulty code but also to determine the quantity of testing with respect to that

software (test coverage). Overall, we have tried to provide an outline of different phases of

GUI testing process. Our overview starts from modeling of GUI (to support testing process)

and it continues till the testing through life cycle of GUI testing (e.g. data generation, test

oracle generation, test coverage measurement and evaluation and optimization of our testing

process). We have divided the thesis into 3 parts excluding the first part which is introductory

one. Introductory part consists of Chapter 1 and Chapter 2. This part gives users a brief

overview of software testing and GUI testing and a literature review of GUI modeling, GUI

test data generation and optimization and coverage measurement and optimization.

Part 1: In Part 1, we begin our GUI testing process with GUI modeling in chapter 03. Model

based testing has proven to be a success from a range of prospective in software domain.

With the help of design patterns and using stereo types, modeling has been applied for GUI

systems and applications.

Part 2: Part 2 encloses the second goal of thesis. Coverage criterion is considered as

completion criteria and a measure of software quality in testing. This domain specifically for

GUI testing was not explored thoroughly. This part deals with knowledge based software

engineering to deal the issue of coverage measurement and coverage analysis.

In Chapter 4, we have used evolutionary algorithms to evaluate the coverage achieved while

testing GUI applications and systems. Furthermore, evolutionary algorithms have been used

to maximize the coverage achieved while testing GUI applications. In Chapter 5, continuing

our urge to optimize GUI test coverage, we went one step further to gain multiple objectives.

In Chapter 4, it was quite evident that spending more resources and extending the schedule

25
Coverage Analysis for GUI Testing

 resulted in increased test coverage. But in Chapter 5, we have applied multi objective

evolutionary algorithms to have a tradeoff between coverage achieved and cost to achieve

this coverage.

Part 3: In the third and the last part, we have used ontology for GUI test process. Semantic

annotations can be used for ontology development and manipulation. This ontology can be

exploited for two specific purposes:

 GUI test data generation and optimization

 GUI test oracle generation

Chapter 6 discusses the above mentioned ideas from different prospective.

Finally in Chapter 7, conclusion has been provided of the thesis.

26
Coverage Analysis for GUI Testing

Chapter 2 State-of-The-Art Automated GUI Testing

“A clever person solves a problem. A wise person avoids it.” Albert Einstein

27
Coverage Analysis for GUI Testing

 This chapter is intended to focus on two things and hence, has been divided in to two parts.

First part offers preface of an introduction of software testing terminologies, an overview of

software testing, and GUI testing. Software testing techniques, types and levels of software

testing, and GUI testing have been presented in this part.

Second half of this chapter is devoted to explore the state of the art in knowledge based

software testing and in GUI testing. The purpose of this part is to give a brief overview of the

ongoing research in these three areas so that reader can get a familiarity before moving

towards our own research and contributions.

2.1 Software Testing

Software testing is an assessment procedure to find out the occurrence of errors in computer

software. Testing is basically an evaluation action which observes outcome for specific

inputs. The software is questioned under various snooping inputs, and its behavior is weighed

up against expected outcomes. To elaborate the concept of software testing, here we present

some definitions of the term software testing.

 According to IEEE (in 1998), software testing can be defined as: “Testing is the

process of analyzing a software item to detect the differences between existing and

required conditions (that is, bugs) and to evaluate the features of the software item”

[37].

 Craig & Jaskiel defined software testing as: “Testing is a concurrent lifecycle process

of engineering, using and maintaining test-ware (i.e., testing artifacts) in order to

measure and improve the quality of the software being tested” [26].

 In 1979, Myers presented the following definition of software testing, “The process of

executing a program or system with the intent of finding errors” [3].

 Hetzel (1983) defined software testing as “The measurement of software quality"

[38].

Software testing is conceivably the most costly assignment of software development. In one

estimate, the testing segment consumes over 50% of the project assets [39]. Software

28
Coverage Analysis for GUI Testing

 manufacturers in United States, according to an estimate, lose about 21.2 billion dollars per

annum due to poor testing and errors uncovered by their clients [2]. Consequently, raising the

excellence of software and effectiveness of the testing procedure can be seen as a

successfully striking way to trim down software costs finally. Some of the major objectives

of software testing are to ensure following attributes in a software project [40]:

 Product‟s usability

 Satisfaction of customer‟s requirements

 Reliability of the product

 Integrity of the software system

 Smooth execution of software in the given constraints.

Before going further into details of software testing and its life cycle, here few terms related

to software testing are being explained.

2.1.1 Test Plan

“A test plan is an artifact that expresses the objectives, scope, technique, approach and focus

of a software testing effort” [41]. Test plan helps readers to understand why and how of the

software testing; so, it is recommended that test plan should be thorough enough to be useful

for this purpose.

2.1.2 Test Case

“A test case is an artifact that delineates the input, action and expected output corresponding

to that input” [42]. A test case is considered to be as successful if it reveals some unknown

error(s). On the other hand, in some situation we might design some test cases with intention

to fail, so that we can check the soundness of test cases.

2.1.3 Test Script

“A test script is a combination of test cases to test a particular function or component of the

system” [42].

29
Coverage Analysis for GUI Testing

2.1.4 Test Bed

“A collection of test scripts to test all functionality of a complete system” [42].

2.1.5 Test Oracle

A test oracle is an instrument to determine whether the program has went successfully or

unsuccessfully through a test. Oracle can be defined as “A source to determine expected

results to compare with the actual result of the software under test” [42].

Different artifacts can be used as an oracle. These include existing system, a user manual, or

an expert‟s knowledge. A test oracle should never be based on the code. According to [43], a

complete oracle would hold following three qualifications completely [43]:

 It would work as a generator to endow with expected results of each test case.

 Works a comparator, between expected and actual results.

 Would work as an evaluator to decide pass or fail of the test cases.

2.1.6 Black Box Testing

The black-box testing technique is based directly on specified functional requirements and

has no concern considering the ultimate program structure [44]. Black box testing is also

known as data-driven testing, input/output driven testing [3], or requirements-based testing

[38]. As in black box testing, no more than the functionality of the software module is of use,

it is also referred as functional testing -- a testing method giving emphasis to execute the

functions and examine their input and output data [44]. Black box testing takes into account

the external view of the test object for the development of test cases. In black box testing, no

internal structure knowledge of application is required. The tester treats the software under

test as a black box, and the functionality is determined by observing the outputs to

corresponding inputs.

2.1.7 White Box Testing

White Box Testing can also be termed as glass box testing, clear box testing and structural

testing [38, 3]. It makes use of an interior viewpoint of the application under testing.

30
Coverage Analysis for GUI Testing

 Contrary to black-box testing, software is viewed as a white-box or glass-box testing, as the

structure and flow of the software under test are visible to the tester.

2.1.8 Gray Box Testing

It is a new and emerging type of software testing, and is exactly as it sounds-- a mix of Black

Box and White Box. It attempts to adapt the strengths of each type and mould them into a

“whole” testing that is greater than the sum of its parts. Grey Box can take the ease-of-use,

straightforward approach of Black Box testing and leverage it against the in-depth, code

targeted testing of White Box.

2.1.9 GUI Testing

One agreed upon factor responsible for popularity of software systems is Graphical User

Interface (GUI). The goal of GUI testing is to ensure that the graphical user interface

provides the user with the appropriate access and navigation through the functions of the

application. In addition, GUI testing ensures that the objects within the GUI function is

expected and conform to corporate or industry standards.

2.1.10 Clean Room Software Engineering

The clean room software engineering process is the development process with the intention

that the software product is at certified level of reliability with zero defects. It describes the

external performance of system by formal specifications. The process focuses on defect

avoidance, but not the defect removal. This approach minimizes rework due to earlier found

errors -. The Iterative approach is followed in Clean room development. The model develops

iteratively. The development is done in increments and each increment is tested against the

pre defined standards. Functional specifications and usage specifications help in developing

usage model. Hence, before writing a code, all information for development should be

available. The model helps developers in understanding significance of each function. It also

helps tester in constructing effective test cases. The customer also reviews the usage model.

Statistical experiments and principals are used for software testing in this approach. The

subsets of inputs/outputs are selected on the basis of formal specifications. Test cases are

developed with proper start and end state. The test plan and test environment is designed.

Then these test cases are run on the usage model and each test case guarantees independent

31
Coverage Analysis for GUI Testing

 trails. The result of the test cases is found by comparing the real behavior of system with the

required behavior. On the basis of these results decisions are taken;--whether to go for further

testing or stop testing for changes or finalize the product., If certain level of reliability is

gained in clean room software engineering, then testing will stop.

2.1.11 Statistical Testing

It is an investigational way to verify if or not product meets its reliability requirement. In this

testing, usage models are developed and then these models are used for generating test

samples. The testing guarantees that the most frequent failures while using the software will

be uncovered early. The model is based on the specification of the software.

There are precise conditions in this testing followed by a well defined procedure. Each test

case has an independent trail that results in one or more outcomes. The benefits achieved by

statistical testing are that firstly, it is performed on the actual operational environment of

software. Secondly, it uses statistical techniques for calculating the results. In some cases

testing is entirely automated from the generation of test cases to results.

2.2 Automated Software Testing

The testing paradigm can be separated into manual testing and automated testing.

Automation is a good way to cut down time and cost. Automation is generally supportive

while managing recurring responsibilities like unit testing and regression testing, where test

cases are carried out whenever modifications are completed [45]. In contrast to manual

testing, automated testing is inappropriate for tasks in which there is little repetition [46],

such as explorative testing or late development verification testing. Manual testing is more

suitable for these activities as building automation is an extensive task and feasible only if

the case is repeated several times [46]. However, the division between automated and manual

testing is not as straightforward in practice as it seems; a large concern is also the testability

of the software [47], because every piece of code can be made feebly enough to be

impossible to test it reliably, therefore, making it ineligible for automation.

32
Coverage Analysis for GUI Testing

 Overall, it seems that the main drawbacks of testing automation are the costs, which include

implementation costs, maintenance costs, and training costs. Implementation costs include

direct investment costs, time, and human resources. The correlation between these tests

automation costs and the effectiveness of the infrastructures have been discussed in literature

[48]. The application of test automation in test case generation has been studied in [49, 50] as

well as in GUI testing [51, 52].

The prime challenge today for testing software is that customers want more software

functionality to be delivered faster and cheaper. At the same time, they expect the quality

of the software to at least meet if not exceed their expectations. Simply stated, there is

more software to test, increasing complexity, more often with fewer people. The current

manual testing methods cannot keep pace. Automated Software Testing (AST) is a key

technique that addresses some of the challenges software testers face today. Our experience

has shown that if implemented correctly, AST can

 Reduce the time and cost of software testing,

 Improve software quality,

 Enhance manual testing efforts via increased testing coverage and replace the

manually mundane and labor intensive tasks,

 Does what manual testing can hardly accomplish, such as memory leak detection

under specific conditions.

2.3 Measurements in Software Testing

33
Coverage Analysis for GUI Testing

2.4 Test Coverage

34
Coverage Analysis for GUI Testing

Another completion criterion can be the “quantity of testing” in terms of coverage achieved

through testing process. But coverage achieved through testing process has emerged as a

challenging question in software testing. On the other hand, looking to ensure software

quality by means of the automated software testing has put forward exigent questions of

determining the “quality” as well as “quantity” of the software testing. To address the first

concern, evolutionary algorithms can be used to evaluate and extend the information about

the quality of a test suite based on some predefined criteria or rules of automated software

testing process. This test criterion usually keeps up a correspondence to a “coverage

function” that quantifies that how much the automatically generated optimization parameters

are satisfying the given test criterion. Hence it addresses our second concern of quantity of

testing process.

Coverage is measured by implementing a program to determine how thoroughly a test suite

exercises it. Test coverage generally focuses on two aspects:

a) Features to be tested

b) Features not to be tested

First aspect highlights the features that are to be tested based on the implicit and explicit

requirements from the customer, while the list of out of scope features is mentioned in

second aspect.

There are two broad classes of coverage measures. Path-based coverage requires the

execution of particular components of the code of the program such as statements, branches,

or complete paths; hence, these techniques are also termed as code coverage techniques as

well. Fault-based coverage requires that the test suite exercise the program in a way that

would reveal likely faults.

100% feasible coverage appears to be a reasonable goal. How should it be achieved? When

coverage is first measured, there will be uncovered conditions. How are they to be handled?

Defining a coverage criterion entails defining a test model, either from specification and

design models or source code. For example, the well-known control flow coverage criteria

35
Coverage Analysis for GUI Testing

 (e.g., all edges) are based on a control flow graph resulting from static analysis of the source

code.

Figure 2.1 Role of Coverage Criterion in Software Testing

2.5 Graphical User Interface Testing

SRS

[Requirements

Specification]

Test

Model

Coverage

Criterion

Test Cases

36
Coverage Analysis for GUI Testing

 All of the most wonderful and powerful code is wasted if it is not available to a user. The

GUI is the simplest way to interact with people who are not computer literate. The graphical

point-and-click interface has opened up the world of computers and computer software to

millions of people all over the world. The interactions that the user can have with software

that are not text-based fall into the realm of GUI. GUI testing is focused on ensuring that the

menus, buttons, icons, etc. perform as designed. GUI testing is making sure that the GUI

conforms to the design requirements. Are the colors, fonts and control placements done

according to the specifications? All of the under-the-hood functionality is useless if the user

is unable to access it. If selecting any onscreen button produces an effect other than what is

intended, that is also no good.

37
Coverage Analysis for GUI Testing

2.6 Graphical User Interface Testing Techniques

There are many techniques for the graphical user interface testing created by different

researchers. Memon et. al. has created a framework named as Planning Assisted Tester for

grapHical user interface Systems (PATHS) that uses artificial intelligence planning to

generate the test cases. PATHS uses the GUI description and creates the test cases and test

oracle (pre-conditions and post-conditions) from task [62]. The author has proposed a model

for GUI testing which consists of test case generator, test oracle generator, test executor, and

test suite management for regression testing. This framework can be applicable on wide

range of GUI and is also extensible in a sense that many new techniques can be added in it. If

any fault occurs in the GUI of the software, it is recorded on the web many times and then

some test cases are applied according to the bug or fault to fix it. Table 2.1 depicts the role of

PATHS during test case generation.

38
Coverage Analysis for GUI Testing

Phase Step Test Designer PATHS

Setup

1
Derive Hierarchical GUI

Operators

2

Define Pre-condition

and effects of

Operators

Plan Generation
3 Identify a task T

4 Generate Test Cases for T

Table 2.1 Role of Test Designer and PATHS in Test Case Generation [71]

Memon can be considered as pioneer of GUI testing. The work done by him has mainly

centered on modeling which is subsequently used for GUI testing and defining a coverage

criteria for GUI testing. On the other hand, the work undertaken in this thesis centers around

optimization of GUI testing. The work done by Memon in GUI test coverage was

instrumental in development of three techniques: event-coverage, event-flowgraph coverage

and event-interaction graph. While we have used event-graph technique, based on this

technique we further used artificially intelligent algorithms to maximize the test coverage for

GUI testing [7].

The work carried out in this research represents a significant improvement over the existing

GUI testing approaches since they only automate the execution and recording of the test

cases, while our work helps test case execution by finding and selecting optimal test cases. In

summarizing all of this, we can say that work conducted by Memon revolves around

performing model based GUI testing while we have further extended his work in the domain

of GUI testing by optimizing the test coverage with the use of AI techniques [7].

Another technique widely used for GUI testing is based on capture/replay. This technique is

often used for regression test development and automatically determines the test cases that

are useable or unusable after the changes in graphical user interface, and then it determines

that which unusable test cases can be repaired so these becomes usable for the modified GUI.

The alternate method adopted for this is that user created the valuable test cases. Existing test

cases get two states called “Usable” and “Unusable” after making changes in GUI. The

useable test cases cannot be modified and are rerun. Unusable test cases are modified

according to the new changes in requirements. Unusable test cases can be deleted also. For

39
Coverage Analysis for GUI Testing

 example a test case written for a button click and client wants to delete that button, and then

the test case written for that button is unusable and can be deleted. Likewise, other test cases

can be modified according to the requirements modification in graphical user interface [68].

Another technique being employed for GUI testing technique is based on program slicing.

This technique is language independent and also allows reverse engineering. In program

slicing components are divided into small parts based on program dependency graph and

then test cases of each component are written [72].

Manual black box testing of GUI based Application is non-trivial, since it contains hundreds

of GUI screens and thousands of GUI objects. By test automation, cost is highly reduced for

testing GUI-based Applications (GAPs). GUI-Directed Test Script is also used for testing

GAPs. In this technique, test engineers manually write test scripts for automation of test

process. This technique needs extra effort from test engineers to re-write test scripts for new

version of GAPs with modified GUI [73]. By using this approach test engineers write

programs using scripting languages (JavaScript, VB Script), and these test scripts are copied

by user for testing of GUI objects under GAP testing framework.

2.7 Knowledge Based Software Testing

Green has devised following five goals for KBSE [74]:

40
Coverage Analysis for GUI Testing

 I. Formalization of the artifacts of software development and relevant software

engineering activities.

II. To record, organize, and retrieve the knowledge behind the design decisions by

using knowledge representation technology.

III. Production and validation of source code from formal specification using

knowledge-based assistance.

IV. Development and validation of specifications based on produced knowledge-

based assistance.

V. Management of large software projects by producing knowledge-based assistance.

algorithm (GA‟s) is especially appropriate to the solution of indefinite problems or nonlinear

complex problems [84]. The critical impression of genetic algorithms (GA's) is to replicate

41
Coverage Analysis for GUI Testing

 the progression law of nature‟s unrefined struggle and natural selection. GA is competent

enough to select the better species from the mother generation and randomly interchanging

gene information in order to produce a better generation [85]. With steady fruition, the track

would grant a generation that is best accustomed to the environment [85]. Among the studies

conducted for software testing, many of them focus on using genetic algorithms (G.A). In

order to generate test-data for branch coverage, Jones et. al., proposed a technique which uses

GA for this purpose [86, 87]. This technique has proven very effective when used with set of

small programs. This technique applies the acyclic control-flow graph (CFG) to guide the

search, and the fitness value is based on the branch value and the branching condition.

Michael et. al., have developed a tool for generating test data on basis of four different

algorithms [88]. Two of these algorithms were based on genetic algorithm. They named this

tool as Gadget. This tool gives good condition/ decision coverage of C/C++ code [88].

Gadget requires that each branch in the code should be taken and that every condition

(atomic part of a control-flow affecting expression) in the code should be true at least once

and false at least once.

42
Coverage Analysis for GUI Testing

A large segment of today‟s computer programs are interactive applications with graphical

user interfaces. These applications are written in an event-based style, where the application

needs to handle a diverse set of events representing user inputs. A significant body of work is

concerned about methodologies for testing the correct behavior of such GUI applications.

Existing approaches usually play events sequences generated from a model [93] [94] [95] to

automatically test the GUI of an interactive application. One of the most successful model-

based techniques is based on Event-Flow Graphs (EFGs) [67]. Although EFGs may be used

to generate test cases that detect many GUI faults, these graphs are very large and they yield

an extremely large test suite. They also make it difficult to target testing to select parts of the

GUI, and perform operations such as test selection and prioritization.

Although model based techniques have been used frequently for software testing, but models

are very expensive to create and their applicability is limited as well. For these reasons,

model based techniques are not being used for GUI testing frequently, but in past few years,

efforts have been made for developing different models for GUI testing. Memon and his

team have worked a lot in automated GUI testing [7, 63]. They have used several types of

graph models (e.g., event-flow graphs) to generate specific types of test cases [7, 63]. In [6],

author combines all of the models into one scalable event-flow model and outlines

algorithms to semi-automatically reverse-engineer the model from an implementation.

Memon and Xie also created an event-interaction graph (EIG) [11]. Kasik and George [96]

have a novice idea to resemble novice GUI users. For this purpose, they have used genetic

algorithms. In this approach an expert manually generates a sequence of GUI events, and

then uses the genetic algorithms to modify and lengthen the sequence. This approach relies

on an assumption that novice users take longer “paths” through the input event interaction

space when performing activities; while in contrast, expert users take a bit shorter paths [96].

White et. al., have developed a technique to address the User-based testing of GUI sequences

and their interaction [97]. White et. al., have also given techniques for Generating test cases

for GUI responsibilities using complete interaction sequences [98]. Memon has used goal-

directed search for GUI test case generation [99]. Memon et. al., have proposed some models

and developed some techniques to address the automation of specific aspects of the GUI

43
Coverage Analysis for GUI Testing

 testing process, test-oracle creation [100], and regression testing [63, 68]). Memon also used

metrics from graph theory to define test coverage criteria for GUIs [101], graph-traversal to

obtain smoke test cases for GUIs that are used to stabilize daily software builds [67,102], and

graph matching algorithms to repair previously unusable GUI test cases for regression testing

[68].

There has been a growing interest in developing models to automate GUI testing. The most

popular models for this purpose are state-machine models that have been proposed to

generate test cases for GUIs [103]. The major inspiration for using these models is that a test

designer simulates a GUI‟s behavior as a state machine; each input event may trigger an

abstract state transition in the machine. A path, i.e., sequence of edges followed during

transitions, in the state machine represents a test case [103]. The state machine‟s abstract

states may be used to verify the GUI‟s concrete state during test case execution [104, 105].

Shehady and Siewiorek [106] have developed variable Finite State Machines (FSMs) that

decrease the number of abstract states by adding variables to the model. They argue that

regularly used FSMs have extension problems for large GUIs [106].

To look for a test data that gives wide (great) coverage, one can use control dependence

graph associated with GA. This idea was given by Pargas et. al [107]. For this purpose they

initialized the GA with original test suite developed for the SUT. They performed random

testing on six small C programs and then compared the results of random testing and GA.

Both the techniques of GA and random testing worked equally well for the smaller programs,

however, for the three large programs, the GA-based method went better than random

testing. Tracey et. al., has proposed a mechanism for test-data generation for structural

testing as well as for functional testing by using optimization algorithms [108]. They evolved

these techniques on a safety-critical system that resides in the real-world [108]. Lu et. al.,

placed event-flow graph modeling as the foundation of their GUI automation test model

[109].

Coverage criteria for GUI testing is scarcely discussed when it comes to literature. In

[101][110], authors have given an idea for coverage criteria based on events. Authors have

described two different categories for coverage criteria i.e., inter-component coverage and

intra-component coverage. Event coverage, Event-interaction coverage, and Length-n event

44
Coverage Analysis for GUI Testing

 sequence coverage can be used for intra-component coverage, while Invocation coverage,

Invocation-termination coverage and Inter-component length-n coverage can be used for

inter-component coverage. In [101], authors have concluded that for GUI testing, coverage

criterion based on events can be useful. In [101], authors have presented a correlation

between event based coverage of a GUI and statement coverage of its software‟s underlying

code. Authors have shown that more than 90% underlying statements were executed by

single events and only a smaller increase could be possible by extending the length of events.

In [111], authors introduced the concept of systematically testing GUI applications using

symbolic execution. Authors also made claim that communication between users and GUIs is

event driven. Authors have shown that randomly generated test suite showed high coverage

only if its size is twenty times larger, and results based on symbolic execution achieve 100%

branch and line coverage. In [112], the structural coverage of UML behavioral diagrams had

been used to measure the adequacy of test coverage. Proposed method had been reported to

work on basis of existence of a mapping between each action and corresponding transition.

In one of our own previous efforts [12], we had used Genetic Algorithm (GA) to optimize

coverage analysis. GA was able to get approximately 85% coverage. In that experiment, we

were using three built in applications. Our current approach has produced better results than

the previous one.

A systematic mapping study was performed by Afzal et. al., which depicts the usage of

search-based optimization techniques to perform non-functional testing [113]. They also

identified the differences between applications of search-based optimization techniques to

different types of non-functional testing. A heuristic search technique called particle swarm

optimization (PSO) was used by Windisch et. al., to find out sufficient test data suite [114]. It

has been shown that genetic algorithm is relatively faster in producing a covering test case

than particle swarm optimization in some cases, in majority of the cases; PSO outperforms

GA for this purpose [114]. In order to prioritize the test cases automatically with respect to

the new best order based on the priority of the modified software units, Khin has proposed

particle swarm optimization (PSO) algorithm [115]. This high priority ordering can be very

useful for regression testing purposes. Kewen Li et. al., also used PSO for test data

generation purpose [116]. In this paper, they have introduced particle swarm optimization

into genetic algorithm to breed software test data automatically. By mixing PSO with GA

45
Coverage Analysis for GUI Testing

 authors have set up a new strategy to replace the mutation operation in traditional genetic

algorithm. The comparison of proposed technique with ant colony optimization and

traditional genetic algorithm shows that the GPSMA is a good alternative for test data

generation problems [116].

46
Coverage Analysis for GUI Testing

Chapter 3 Modeling GUI for Testing

“Perhaps believing in good design is like believing in God; it makes you an optimist”

Terence Conran

47
Coverage Analysis for GUI Testing

3.1 Modeling GUI for Testing

Graphical user interfaces (GUIs) are fundamental part of software systems nowadays. This

offers user with a facility to interact with the system. It is very important to clearly specify

and precisely analyze GUI widgets and interactions among them before implementing and

testing any software system. Traditionally, UML is considered as one of the successful

languages to model software specifications and interactions, but UML does not provide a

considerable help for modeling GUI specifications and interactions. Hence there is a

requirement to come through ideas where UML can be used for GUI analysis purpose as

well. Many efforts have already been made in this direction, and this research also makes

such an attempt. Notations for commonly used GUI objects have been revised and interaction

between different GUI objects has also been explained in this chapter.

The main point is to find GUI components to initiate GUI testing of applications. The major

features in identifying GUI components are its name, its class, its hierarchal arrangement,

and the developer-allocated tag or ID. Generally, the developer-allocated characteristics

(label text, button captions, window titles, etc.) are distinctive and can be efficiently used to

recognize a GUI component [117]. After the investigation and the recognition of the GUI

components, application or system should be modeled and after that test scripts should be

created. UML has not the ability to deal with every domain completely and different domains

require different specializations so it is required to expand the modeling of UML to other

domains [118]. Although UML has several limitations for modeling GUI but UML can be

extended by using its lightweight addition mechanism stereotypes, tagged values, and

constraints. Coherent sets of these extensions can be grouped together to form what is called

a profile. Mechanism for extending UML has been shown in figure 3.1. A profile is a

specialized version of UML that may be a subset of the UML as well as an extension and

new notations [119]. Standard UML semantics cannot be violated by extensions and also

implements a consistent core of concepts and semantics for every variation. Meta Model

explosion will be prevented by extensions. The standard UML semantics can be considered

as describing a space of achievable interpretation. UML profiles are package of related

48
Coverage Analysis for GUI Testing

 extensibility elements that capture domain-specific variations and usage patterns. Profiles

are, in fact, domain-specific analysis of UML. Some of the profiles currently being defined

by the Object Modeling Group (OMG) are

 EDOC

 Real-Time

 CORBA

Figure 3.1 Methodology for Extending UML

3.2 Role of Modeling in GUI Testing

Our aim is to improve the GUI testing with model-based methods in which test cases are

generated by the models. Also by using models and varying the order of events, there is a

good chance of finding previously unobserved defects. Several papers have been presented

about GUI test automation using the object data model [7] [9] [15] [64] [66] [67] [120] [121].

The framework explained in few of those references is a general GUI test automation

structure that includes test case generation, selection, execution and verification. It can be

useful for any testing or GUI testing model. A generic model used for software testing has

been shown in figure 3.2.

Standard UML

Extended UML Profile I Extended UML Profile II

Profile

Extension

Mechanism

49
Coverage Analysis for GUI Testing

Figure 3.2 General Model-based Testing Procedure

Can be run against

Partial Description of

Derived from

Model

Test Cases

Test Requirements

Software Requirements

Specifications (SRS)

Model System

50
Coverage Analysis for GUI Testing

3.3 Existing UML Extensions

Many researchers have worked for extending UML for specific purposes. Blankenhorn has

presented a standard-conformant extension to UML 2.0 to integrate GUI layout into software

engineering. According to authors, after detailed analysis of the situation both in software

engineering and in GUI design, they found that modeling is a concept common to both of

these fields. Authors have found a way to unify both approaches by creating geometrical

abstractions of designers‟ sketches of GUI elements and combining them into models of

complex screen layouts [123]. Boger et. al., have proposed diagram interchange in 2002

[124]. In diagram interchange, every UML element has been assigned a graph element and it

makes UML diagrams layout aware. Designer Scribbles can also be considered as an

extension in which hand written abstractions of a GUI‟s design has been used [124].

Interactive sketching has also been used for modeling GUI. On the other hand, DENIM

creates a complete model of user interface. DENIM also uses sketch recognition, but this also

has not been connected to UML [125].

UML based web engineering (UWE) was proposed by Hennicker and Koch in 2001 [126].

UWE is based on UML 1.X version and proposes a design process for hypermedia design

[126]. UWE uses its own notations and can be considered as a best substitute for sketching

[126]. Object-oriented Modeling of MultiMedia Applications - the Language (OMMMA-L)

is visual language for the object-oriented modeling of multimedia applications proposed by

Sauer and Engels in 1999. It can be considered as a heavyweight extension of UML with

static and dynamic elements [127]. Layout information has not been set up in the metamodel

in OMMMA-L [127]. UMLi approach defines different graphical representations for domain

elements and interactive elements [128]. It provides different modeling for interaction objects

and for tasks. UMLi‟s user interface diagram consists of 6 different constructors. These

constructors are for free-containers, containers, inputters, displayers, editors and action

invokers. For abstract presentation models, UMLi also provides specialized visualization

[128].

51
Coverage Analysis for GUI Testing

Modeling and Analysis of Real-Time and Embedded system (MARTE) is a new profile

standardized by the OMG. Using the specification of this newly standardized profile--

MARTE-- Sebastien et. al has started the development of a case study related to a real-time

and embedded system [129]. Authors have also investigated that whether this profile can be

used by the Thales current systems and stick to the software engineering practices.

Gherbi and Khendek have also presented a review of many UML profiles for real-time

systems and the research action that turn around these profiles [130].

3.4 Extending UML to Model GUI

Software models facilitate us in understanding the software by hiding complicated details of

the system. The selection of what to model has huge consequences on the problem

understanding and figuring out the solution. Major advantages that models provide are

simplifications and communication between problem, design, and its implementation.

Models give different viewpoint to the system. UML is a visual language for representing

software applications. It is used for the analysis and processing of requirements as well as for

the software specifications. UML has been standardized by Object Management Group

(OMG) in 1997. UML provides a number of views (diagrams); UML2 put forwards 13

diagrams [131]. Most popular of these diagrams are use case diagrams, class/object diagram,

sequence diagram, collaboration diagram, activity diagram, state diagram, component

diagram, and deployment diagram. UML is frequently used at software architecture and

design stage and it is well specified and thorough and helps to understand structure and

supports the process. With the emergence of model driven development (MDD), UML has

gained more popularity as in such environment UML drives the entire design.

Almost every software application in use is providing some sort of graphical interface for

interaction, and in most cases they are the only part of the system that is visible to the users

providing them facility of interaction. Hence GUIs are becoming vital for users to interact

with any software system. Also GUIs have a big impact in terms of overall cost and

productivity of software [132, 133]. GUIs are also important in terms of apprehension, as

they make up about 50% of application code [133, 134]. Beside the fact that UML does not

52

52
Coverage Analysis for GUI Testing

 present user-interface models, UML is being used for this purpose in some coercive ways

through some extensions. UML offers extensibility mechanisms that can be adopted to

extend UML to new domains, but it is quite evident that such extensions of UML with extra

adornments are consistently confusing rather than helpful. How can a model be completed if

it does not consider an aspect as important as graphical user interfaces?

3.4.1 Why Extension of UML?

The UML designers recognized that UML is not always just right for each aspect of

modeling [135]. Hence, they decided that there would be situations, when the development

process would be better served by capturing additional information or by applying different

semantics to certain modeling elements [135]. UML specification for version 2.1.2 describes

this mechanism as “The Profiles package contains mechanisms that allow meta-classes from

existing meta-models to be extended to adapt them for different purposes” [131, 136]. There

are several ways how UML can be extended by using profiles. An extension can be

developed by using stereo types and additional semantics and constrained syntax to meta-

model [131]. The extension method agrees to the addition of new features, tagged values,

special semantics and further constraints [137]. Previously, stereo types and tagged values

were adopted in UML 1.1 as string-based additions that might be connected to UML model

elements. In succeeding versions of UML, the concept of a profile was explained to facilitate

additional formation and correctness to stereo types and tagged values [138]. The UML2.0

infrastructure and superstructure specifications have defined it as a detailed meta-modeling

technique. Stereo types are exact meta-classes, tagged values are typical meta-characteristics,

and profiles are specific type of packages [138].

3.4.2 Software Design Patterns

Idea of design patterns originated from the work of Alexander et al [139]. Composite pattern

is one of the design patterns in software engineering. A pattern is generally considered as a

recurring solution of a recurring problem in perspective. Research literature about use of

patterns in GUI modeling and testing is not very extensive when compared to the importance

of this area. Laakso has introduced a collection of user interface design patterns [140].

Laakso believes that many design patterns like tree, group and items, double list, editable

53

53
Coverage Analysis for GUI Testing

 table, master and instances, overview beside detail, and expand in context can be used when

trying to make design based on the user‟s goals [141]. Observing GUI design deeply reveals

that GUI elements are commonly a combination of buttons, menus and drop-down lists and

they are connected to each other in a “composition” style. Hence, we opted to use

“Composite” design pattern for GUI design. Figure 3.3 shows a generic composite design

pattern.

The aim to use composite design pattern is to "compile" objects into tree arrangement to

characterize part-whole hierarchies. To represent repetitive data structures composite patterns

are used. Composite pattern allows users to consider separate objects and compositions of

objects uniformly. This is described as recursive composition. A composite is a collection of

objects, any one of which may be either a composite, or just a primitive object. The repetitive

characteristic of the Composite structure obviously gives way to repetitive code to process

that structure. It is a good choice to use this pattern when developers find that there are

several objects in the same way, and having almost the same code to handle each of them.

Figure 3.3 Composite Pattern

Many graphic applications use the phenomena of hierarchical nature while drawing

diagrams, i.e., using simple objects to form simple components and building very complex

and large diagrams from these relatively simpler components. A straightforward

implementation could describe classes for graphical primitives such as text, lines and other

classes that act as containers for these primitives.

Composite

Composite Leaf
Leaf

Leaf Leaf Leaf

54

54
Coverage Analysis for GUI Testing

 A GUI system has window objects that include different GUI components (widgets) such as,

buttons and text areas. A window also contains widget container objects which can include

other widgets. The rationale behind using “Composite Pattern” for GUI modeling lies in the

characteristics of different GUI objects. These characteristics depict the recursive nature of

GUI widgets. Consider the following examples:

In a composite design pattern, different objects are linked to have an object tree structure.

Every object is treated uniformly and can be described in one of three terms. These terms are

single component, composite component, or leaf representation. We have used composite

design pattern to represent GUI objects in terms of a hierarchy of objects. This hierarchy

constitutes set of components combining together to create a composite component. Each of

these objects has a representation and can be accessed in same way as composite object

despite the complexity it has.

The major intention of the composite pattern is to handle group of objects as a single object

and this task is performed with the help of creating an abstraction of these objects. Composite

pattern is one of the ultimate choices, when there is a need to overlook the dissimilarity

between individual objects and compositions of objects (group of separate objects)

[142]. Composite pattern reduces complexity by treating crude and compound objects

uniformly.

3.4.3 New Profile for Modeling GUI

UML is a popular language, being used for analysis and requirements specifications purposes

[27,118]. It is a standardized diagramming language by Object Management Group. UML

provides a number of diagrams to model proposed system from different perspectives, but it

55

55
Coverage Analysis for GUI Testing

 is not that much supportive while modeling GUI interactions. GUIs are vital to the users of

any software system as they are the only part of the system that is visible to the users and

they provide facility of interaction with the system. In this thesis effort, we have tried to

present some new notations for commonly used GUI objects and proposed a method to

interact with simple single components in complex composite objects.

In this thesis, we have designed a novel profile for GUI layout that helps in representation of

GUIs in UML-based software development processes. A profile is a type of package that

expands a reference meta-model [138]. Our approach provides new objects for GUI. These

are most commonly used objects and most of our interaction with GUI is based on these

objects. Each object has its own stereo type and with the help of these objects developer can

create user interface. Our profile provides access to each object of GUI in different UML

diagrams, while it also provides an abstract representation of these objects following

composite design pattern. The basic addition construct is the stereo type, which is a trimming

that helps us in defining new semantic implications of a modeling element. Key value

couples called tagged values are linked with a modeling element which allows "tagging" any

value onto a modeling element. [143]. Constraints are rules and can be expressed as free

form text or with the more formal Object Constraint Language (OCL) [143]. Our diagrams

can be used as an alternative of sketches as have been shown in table 3.1, or can be used as

basis for a basic model of layout [figure 3.4]. Expressing visual ideas with written language

is often difficult and can cause inconsistency between the writer and the reader‟s

understandings of the text [144]. So we need to express visual interactions with visual

diagrams in such a way that a reader has no miscommunication and inconsistency regarding

the semantic of the objects. For this purpose we have to modify such diagrams for visual

interactions which are simple, non-confusing and meaningful as well.

Due to limitation for GUI designing of existing UML, new diagrams for some objects are

being introduced. These diagrams help the designer to design GUI and provide access to

individual objects in different diagrams. The responsibility of each GUI can be shown by

defining boundaries for each GUI object. The objects that are most frequently used while

designing GUI can be used with UML for the purpose of modeling GUI as well. For this

purpose, we have chosen 12 visual objects and then defined their diagrammatic icons and

56

56
Coverage Analysis for GUI Testing

 stereo types. These twelve objects are check box, combo box, command box, frame,

horizontal scroll, vertical scroll, label, list box, picture box, radio button, text box and timer.

Table 3.1 shows these objects in the form of diagrams.

 Form

Table 3.1 GUI objects for modified profile

In figure 3.4, the GUI diagram shows that simpler GUI objects have been combined using

composite pattern to form relatively complex dialogue component. Participants of composite

in this case are forms, leaf objects, and composition object.

Form can be considered as a single component that provides an interface for accessing and

organization its child components, while all child objects are being considered as leaf and

composite is implementing child parent relationship between form and leaf objects.

57

57
Coverage Analysis for GUI Testing

Fig. 3.4 GUI Objects in Composite Pattern Model

3.5 Summary

In this chapter, we have presented a novel profile for GUI layout that helps in representation

of GUIs in UML-based software development processes. We have also introduced new

notations for commonly used GUI objects and given diagrams to show the interaction

between these objects. The interaction between different objects is based on direct interaction

of a single component from composite components. Composition based profile for modeling

of GUI elements supports this direct interaction and facilitates repeated interaction with same

objects. So each composite component can be tackled as a single component and hence can

be interacted directly.

This modeling profile is not only supporting the sequence based generation of events for

testing GUI, but we can also use this profile to generate code from different diagrams like

sequence diagrams and hierarchical representation of different objects. Code generated from

diagrams will include all properties, methods and conditions applied at design time.

1

Container

Form

Component

Scrolls Text Box Buttons Choices Picture Box

58

58
Coverage Analysis for GUI Testing

Chapter 4 Coverage Optimization for GUI

Testing

59

59
Coverage Analysis for GUI Testing

4.1 Testing Context Free Applications

More and more complex applications are being developed in context free fashion – a context

free application is one which follows context free development. In such applications, the

sequence of instructions does not matter. The context independent nature makes functionality

easy to be executed and easier to implement and update. From simple drawing and text tools

to complex kernel management and parsing applications, context free applications horizon is

expanding at a good encouraging pace. One such effort is the development of "Improptue"

development tool [183] which is in practice since 2005 and is now being used to develop as

complex applications as indy games on experimental basis. Diagram shows screenshots of

two well known indy games, i.e., Outpost Kaloki X and Cogs respectively.

Fig 4.1 Screenshots of Indy Games (Outpost Kaloki X and Cogs)

As discussed above, context free applications abound the market. It is also no surprise then

that several established and market leader products are actually context free. In such an

environment, our proposed technique can be of particularly significant benefit. Several such

products can be cited in this context. I shall present just a few of these. These applications are

in various domains such as Picture and Video Editing Tools. Much of the functionality of MS

Paint can be considered as context free. So is another product developed by Microsoft, i.e.,

60

60
Coverage Analysis for GUI Testing

 Calculator which can be considered as a partially context free product. The context free

nature of calculator can be understood by the division of responsibilities. Calculators

arithmetic tasks such as addition, subtraction, division are context based because to perform

such operations, we need a logical sequence of steps. On the other hand, features or

functionalities such as numbers or symbols testing is context free. Any number can be

checked at any time, there is no logical sequence for this operation. Other partially context

free products include Notepad and WordPad. Taking the example of WordPad, we can see

that in case of operations such as copy/paste, a logical sequence is maintained. We cannot

paste anything without first copying it. So any such function is context based. On the other

hand, opening any file, closing it, or opening any drop down menu is context free since these

actions do not require any particular order. So these actions are context free in their nature.

These kinds of applications are partially context free. Several games have also been

developed as context free products. To name a few, games like Armada Assault ETC [184].

We can easily deduce that any modern application can be partially context free quite easily.

With such a wide application array of context free development, there is no viable strategy

which uses this particular nature of certain programming segments and delivers a more

efficient testing strategy. It is quite evident that if context based testing strategy is adopted

for context free programs; it will result in significant wastage of resources. In this thesis,

effort has been made to devise testing strategy for context free programs thereby saving a

significant amount of resources and effort.

4.2 Test Coverage

According to Dijkstra, measurement is one of the key elements of a mature software testing

process [145]. The software testing aims to improve software quality and increases

confidence in software‟s proper functioning. Measurements in software testing not only helps

in improving the software testing methods, tools and activities but these measurements can

also be utilized to assess the quality and effectiveness of the testing process as well as to

assess the productivity of testing activities.

61

61
Coverage Analysis for GUI Testing

 Two very well known metrics in software testing are:

 Complexity based metrics

 Coverage based metrics

First type of metrics have the intention to examine the complexity of software systems,

while the second type of metrics are all about how systematically your tests work out your

software system. Though complexity based metrics are important, the majority of these are

inappropriate, or have not been practical to the problem of testing [146]. On the other hand

coverage based metrics provide good judgment that what piece of the code is executed when

the tests are run. Coverage based metrics are valuable in the sense that they help us to find

the answers of following questions.

 How to find code that is not tested or, in other words, not so far examined by a

test?

 How completeness for testing can be measured?

In addition, test coverage can be regarded as an indirect measure of quality, indirect in a

sense that we discuss about the degree to what extent our tests cover the quality of tests.

4.3 Importance of Test Coverage

Quality of the delivered software depends heavily on the systematic activity of software

testing. Testing related activities go on with the entire development life cycle and may use a

great portion of the effort vital for developing software [1]. Objective of software testing is to

improve software quality and increases confidence in software‟s proper functioning. This

purpose is achieved with support of software testing activities [2]; these activities include

gathering test data, generation and execution of test cases, filtration and reduction of test

cases, coverage analysis, and reporting. Software testing is an exhaustive process and

literature shows that more than 50% of the development cost allocated to software is

dedicated to testing [2]. Moreover this percentage increases if the software being developed

is more critical. Many efforts have been made to reduce this cost and software test

62

62
Coverage Analysis for GUI Testing

 automation is one such major attempt. Software automation has been focused a lot in recent

times and results are quite convincing that it has a big effect on saving resources such as

labor, time, and money.

According to Craig & Jaskiel [26], in the past the traditional approach for testing was noticed

as only execution of tests. Today, testing measurements are based on test execution stage and

on the basis of errors found during tests execution. Measurements can help to predict the

outcome and assessment of a process as well as to take well-read decisions. Therefore,

knowing and calculating what is being done is more essential for an efficient testing process.

But still there is a lacking of measurements and metrics when we have concerned about test

planning, test design and test completeness procedures. Coverage criterion can be a useful

measurement in this regard. Briand and Pfahl explain that this relationship does not indicate

that there is a causal connection between high test coverage and better software consistency

[147]. Regardless of the mixed results in its history, code coverage has been incorporated

into reliability estimation models [148], and used to prioritize certain parts of a system for

testing [149]. Although, the opinions regarding test coverage as a predictor of software

quality are still not conclusive and bit conflicting but an estimate of the software testing

practices of the majority of professionals reveals that test coverage is being used very

effectively.

4.4 Coverage Criterion for GUI Testing

A GUI by its name is a graphical front-end of a software system that accepts user inputs as

well as system generated actions from a predefined set of actions and generates deterministic

output in graphical form. A GUI has graphical objects; all objects have preset properties/

attributes. During the GUI execution, these attributes have distinct and discrete values, the set

of which represent the GUI state.

Common practice of GUI test designers is to produce and carry out test cases to traverse parts

of GUI application. These test cases need to center on a subspace to maximize fault detection

in an efficient manner. Graphical user interfaces (GUIs) can be considered as a group of

63

63
Coverage Analysis for GUI Testing

 widgets linked with event handlers where event handlers are assigned the task of responding

to individual events. This response can differ due to the existing state of the GUI, which is

found by previous actions and their execution order. The degree of freedom offered by GUIs

to end users can be visualized as acceptable number of variations of GUI input events that are

tremendously very large in the majority of nontrivial applications. We also have to be

mindful of the fact that GUIs events comprises of complicated connections. A situation to

elaborate on this fact is that "a user interacting with a GUI may execute an event sequence X

that puts the GUI in such a state that a subsequent event sequence Y causes erroneous

execution". The thing to understand is that unless a context was set up by the event sequence

X, the event sequence Y may not have direct to the error. Our experimentation with GUI has

shown that many GUI events may or may not exhibit similar behavior. These events are

source of error in the GUI in one perspective but not in another perspective [4]. How much to

test? Or determining the coverage criteria for software testing and especially for GUI testing

has always been a challenging question. Any test designer must be assured that its test suit is

sufficient to test a software or GUI component. Not like CLI (command line interface)

system, a GUI has a lot of actions that are subject to test. A very small application for

instance Microsoft WordPad has 325 probable GUI functions [1]. The number of operations

increases with the size of applications. Automated GUI testing has been facing this problem.

To overcome this problem, Kasik and George introduced a remarkable process of generating

GUI test cases. The process uses the theory that high-quality GUI test coverage can be

achieved by simulating a beginner [96]. According to their theory, one can hypothesize that

an expert of a system will go after a very straight and usual path all the way through a GUI

and a beginner user would go after a comparatively random path.

To analyze the coverage of graphical user interface system, we have proposed a process

based upon evolutionary algorithms and event coverage. Initially, we conducted

experimentation with various number of test cases as well as varying number of generations

to determine the performance of genetic algorithms vis-à-vis event coverage and event

sequence coverage. The experiments showed that for event coverage, generally performance

of genetic algorithms improved as the number of generations increased. However, same

64

64
Coverage Analysis for GUI Testing

 pattern was not observed with increasing the number of test cases as the GA achieved best

performance with even fewer numbers of test cases for event coverage.

However, the results for event sequence coverage were not good in any means. It was

observed that performance of proposed GA was merely 3% when used with event sequence

mechanism. The performance neither increased by increasing the number of generations or

by increasing the number of test cases. This can be attributed to the fact that unlike context

free nature of event coverage, the event sequence coverage constrains us to test only those

paths which obey the given sequence.

 # of Generations

 # of Test Cases
25 50 75 100

30 80 95 100 100

60 90 100 100 100

80 90 100 100 100

100 100 100 100 100

Table 4.1 Events Coverage for Genetic Algorithm

 # of Generations

 # of Test Cases

25 50 75 100

30 1 2 3 3

60 1 2 3 3

80 2 2 3 3

100 2 3 3 3

Table 4.2 Event Sequence Coverage for Genetic Algorithm

65

65
Coverage Analysis for GUI Testing

 The experimental results for various numbers of test cases/generations using event sequence

coverage and event coverage have been shown in Table 4.1 and Table 4.2. The results clearly

highlight the supremacy of using event coverage as against event sequence coverage for

better test coverage optimization purposes. This is the reason that for subsequent

experimentation, we have based our work on event coverage.

We have used two different types of evolutionary algorithms for event coverage analysis.

 Single objective evolutionary algorithms (Having objective of maximizing event

coverage only)

 Multi objective evolutionary algorithms (Having objectives to maximize event

coverage and minimize test cases)

Moreover to have more experimentation we used two different techniques for each of single

objective evolutionary algorithm based coverage analysis for GUI testing and for multi

objective evolutionary algorithm based coverage analysis for GUI testing. Detail of these

techniques is as follows. For single objective of test coverage analysis and optimization we

used two of the mostly used algorithms, Genetic Algorithm (GA) and Particle Swarm

Optimization (PSO). Similarly for multi-objective analysis and optimization, we chosen two

commonly used multi-objective evolutionary algorithms. These were Non- dominated

Sorting Genetic Algorithm for multi-objective optimization (NSGA-II) and Multi Objective

Particle Swarm Optimization (MOPSO).

4.5 Single Objective Evolutionary Algorithms for Coverage Analysis

As have been mentioned in the last section that we have used two different single objective

evolutionary algorithms (GA and PSO) for GUI test coverage analysis and optimization.

Before explaining our proposed experimental approach, let‟s explain the working of the

genetic algorithm in general. Later, we will draw the steps of genetic algorithm for the

working of test coverage experiment in section.

66

66
Coverage Analysis for GUI Testing

4.5.1 Genetic Algorithms

Genetic algorithms are stimulated by Darwin's theory regarding evolution. Algorithm begins

with a set of solutions (represented by chromosomes) called population. One population‟s

solutions are used to form a new population. There is an expectation that the new population

will be better than the old one. On the basis of fitness value solutions are selected for new

solution (offspring). The process kept on repeating till some ending condition (for example

number of populations or no further progress of the best solution after certain iterations) is

fulfilled.

Genetic algorithms are known because of their parallel nature of their exploration and

basically due to their ability to efficiently solve non-linear, multi-modal problems. They can

deal with discrete as well as continuous variables even without gradient data. Generally, GA

has four phases that are evaluation, selection, crossover and mutation.

4.5.1.1 Evaluation

The fitness of each individual (called as chromosome) is measured by the evaluation method.

Its uses fitness functions for calculating this value. The fitness function calculates how good

the chromosome satisfies the test criterion.

4.5.1.2 Selection

The selection is the process that randomly picks individuals from the existing population for

creation of the next generation. Different methods exist but all have the same idea that fittest

have a more probability of survival. Selection chooses the chromosomes that will combine

and transformed out of this initial population.

4.5.1.3 Reproduction (Crossover)

Recombination reproduces the chosen individuals and pair wise information will be

exchanged that result in new population. It is named as crossover. The crossover method gets

two elected individuals and joined them at a crossover point thus producing two new

individuals.

67

67
Coverage Analysis for GUI Testing

 In one-point (or single) crossover, two input data elected as parents by selection process

swap substring information at a random arrangement in the data to make two novel figures.

Crossover takes place in accordance with a crossover probability pc that can be a variable

factor. For every parent elected, produce an arbitrary real number r in the range [0, 1]; if r <

pc then parent will be selected for crossover. Then the selected data is arranged at random.

Each parent pair will results in two new trails named as offspring. In this method, one

parent‟s right half bits are exchanged with the subsequent right half of the second parent.

4.5.1.4 Mutation

Mutation brings in a little variation to every recently produced individual. It is a bit-by bit

process. Each bit have same probability to mutate (change from „0‟ to „1‟ or from „1‟ to „0‟),

and it happens in accordance with a mutation probability pm that is an adaptable factor. To

do mutation, produce an arbitrary real number r in the range [0, 1] for each bit. If r < pm then

mutate the bit. All these method and fitness function will mature test data to improved ones,

to find a nominee that reach the target path. The crossover method seeks to make improved

test data, at the same time as mutation set up variety into population, avoiding getting trapped

at local optima results.

A basic algorithm for a GA has been shown in the figure 4.2:

Fig 4.2 Basic algorithm for a Genetic Algorithm

Initialize (population)

Evaluate (population)

While (stopping condition not satisfied) do

{

 Selection (population)

 Crossover (population)

 Mutate (population)

 Evaluate (population)

}

68

68
Coverage Analysis for GUI Testing

4.5.2 Overview of PSO and Discrete PSO

Particle Swarm Optimization (PSO) [113] is a simple model of social learning whose

emergent behavior has found popularity in solving difficult optimization problems. The

primary symbol had two known features, individual learning and learning from a social

group. Particle Swarm Optimization (PSO) Algorithm is able to discover optimized test suite

for GUI testing. PSO works on the basis of „particles‟ that are formed arbitrarily and

subsequently are subjected to some task. Particles with superior concert are set aside for next

phases, while others are discarded. In testing, PSO seeks for best possible test parameter

arrangement that suits already defined test criterion. The test criterion is showed through a

“coverage function” that calculates how much of the automatically generated optimization

parameters satisfy the given test criterion. Particles optimizing the coverage function will

survive and others will be discarded, the process is repeated again and again with optimized

particles being replicated and more random particles will take place of discarded particles.

Ultimately one particle (or a small group of particles) will be in the set and is logically the

greatest fit for coverage function.

PSO is a population-based evolutionary computation practice, originally designed for

constant optimization problems. The searching agents called particles are 'flown' in the n-

dimensional search space. Every particle updates its arrangement considering its own

experience as well as of other particles. Every particle is estimated using a fitness function.

Closer the position of the particle to the optimal position, fitter is the particle. The

optimization process is iterative and works on the following equations.

The position and velocity of every particle will be updated by the following equations [150]:

xi(t) = xi (t-1) + vi(t) --------- (4.1)

1 1 2 2() (1) (()) (())pb gb

i i i i i iv t W v t c r X X t c r X X t
--------- (4.2)

where Xi(t) and Vi(t) are the position of a particle Pi at time t and the velocity of particle

Pi at time t respectively. The inertia factor is represented by w in equation; while self

confidence of the particle is shown by and its confidence in its social order or group is

represented by . r1 and r2 are constants and there values are chosen at random in the range

69

69
Coverage Analysis for GUI Testing

The PSO algorithm was initially projected for continuous problems. Kennedy and Eberhart

designed the initial discrete PSO to work on binary search spaces [151]. They used the

standard velocity update equation but changed the standard position update equation. They

considered new position component to be 1 with a likelihood acquired by applying a sigmoid

function to the corresponding velocity component. This Binary PSO is a more specialized

version of general discrete PSO. To attain a general discrete PSO, the simplest and easiest

way is to use standard continuous PSO with the same conventional velocity and position

update equation but by rounding the elements of position vectors to the nearest valid discrete

value. This approach assumes that elements in the position vector do not take on the values

which are outside the extremes of search space [152]. Another approach is to discretize the

continuous space by making intervals and to assign each interval to one of the discrete values

[153]. A more sophisticated approach is to redefine standard arithmetic operators used in

position and velocity equations to be more suitable for applying to discrete space. For

example in [154], PSO was adapted to be applicable to Constraint Satisfaction Problem

(CSP) by overloading the arithmetic operators used in position and velocity update equations.

So in this case, particles represent positions with dimensions that are not dependent on each

other and the changed position and velocity equations are:

() (1) ()i i ix t x t v t
------------ (4.3)

vi (t) = w vi (t 1) c1r1 (xi
pb xi

(t)

)
 c2r2 (xi

gb xi

(t)

)
 ------------ (4.4)

Where , and are redefined arithmetic operators. Moreover, a mutation operator was also

used which changes each element of velocity vector based on certain probability. Similarly,

Clerc redefined arithmetic operators to develop discrete PSO to solve Traveling Salesman

Problem (TSP) [155]. Here particles represent permutations.

70

70
Coverage Analysis for GUI Testing

4.6 Coverage Analysis for GUI Testing Using Genetic Algorithm

To examine GUI and explore the coverage, we come up with a technique based upon genetic

algorithms. We made three main blocks of our proposed system.

 Test data generation

 Path Coverage Analysis

 Optimization of Test Paths

With the help of a block diagram we try to explain working of genetic algorithm for coverage

analysis of an event based system in figure 4.3.

Figure 4.3 Block diagram of Genetic Algorithm for Coverage Analysis of an Event Based System

4.6.1 Test Data Generation

Using events to produce data for GUIs testing is now becoming a common practice. For test

data generation, we have also used event based techniques. A user developed calculator that

accepts inputs from mouse and from the keyboard and has been used as the first application

Event based Test data

generation

Initialize

Population

Calculate Fitness based

upon Required Test

Coverage to be achieved

Genetic Algorithm Block

Selection based upon

Roulette wheel

Apply Mutation with some

probability

Apply Crossover Modify Population

71

71
Coverage Analysis for GUI Testing

 to test our approach. Interface of calculator has been shown in figure 4.4. For each event,

there is a unique event ID as shown in figure 4.5. As an event takes place with a mouse or a

key stroke, respective event ID will be added into event recorder.

Figure 4.4 Interface of Calculator Application

Figure 4.5 Event ID’s of Calculator Application

72

72
Coverage Analysis for GUI Testing

 After input s completed, a sequence of events is devised, this is passed to next phase for

additional analysis. Sequence of produced events has been shown in figure 4.6.

Figure 4.6 Sequence of Generated Events

Another application that was used for experimentation was a user developed Notepad. This

application also works on same principles as discussed above i.e., events recording on the

basis of unique ID‟s and formulating sequences from these events. A user can interact with

the application in same way as Microsoft‟s notepad. Somehow the added functionality was

that, each interaction of user is being recorded and a unique code is being generated for each

mouse clicks or keyboard button being pressed. Interface of notepad is shown in figure 4.7.

Figure 4.7 Interface of user defined Notepad

73

73
Coverage Analysis for GUI Testing

 Having good results from our efforts with two user developed applications, we tried to

generalize our approach. For this purpose we have selected Microsoft‟s Notepad as an off the

shelf GUI product for testing. We have decomposed GUI into hierarchy modal that consists

of nodes which represents different GUI objects (Widgets) like file is a GUI object that have

been represented as a node in our hierarchy model. Connection between nodes represents the

path between different GUI widgets e.g. To print a document we have to follow a sequence

of events like first of all click file then it displays different GUI object, selecting print option

from those objects. So to print a document we have to follow a sequence of events. In this

way a hierarchy has been designed that represents the sequences of paths between different

objects. Table 4.3 depicts possible path sequences from each tab in notepad and unique code

defined against each of these tab options. Figure 4.8 shows path generation for Notepad on

the basis of possible sequences of events.

10 New

101 RT Document

104 OK

105 Cancel

102 Text

104 OK

105 Cancel

103 Unicode

104 OK
105 Cancel

104 Ok

105 Cancel

20 Open

201 Location

203 File Selections

204 Cancel

202 File Type

203 File Selection

204 Cancel

203 File Selection 203 File Selection

2030 Open

204 Cancel

204 Cancel

1. Save

301 File location

302 File Name

303 File Type

304 Save

305 Cancel

 302 File Name

303 File Type

304 Save

305 Cancel

40 Print

401 Select Printer

402 Preferences

403 Find Printer

404 Page Range

405 Number of Copies

406 Print

407 Cancel

408 Apply

Table 4.3 Path Generation for Notepad

74

74
Coverage Analysis for GUI Testing

Figure 4.8 Path Generations for OPEN in Notepad

4.6.2 Optimization of Test Paths using Genetic Algorithm

Following are steps of GA for GUI test coverage optimization:

[Start] Produce arbitrary population of n chromosomes. Length of our chromosome is the

longest path. We have initialized these chromosomes between 1 and maximum length, like

shown in the example below.

2 4 3 1 2

[Fitness] Assess the fitness f(x) of each chromosome x in the population. We have calculated

fitness of chromosome based upon the coverage analysis (How paths have been covered by a

chromosome).

2030 Open

201File Loc

203 File

Selection

20 Open

204 Cancel

1 File

202 File

Type

75
Coverage Analysis for GUI Testing

 [New population] produce a new population by replicating subsequent steps until the new

population is complete.

[Selection] Choose two parent chromosomes from a population on the basis of their fitness

(the more fitness, the greater possibility to be chosen)

[Crossover] Cross over the parents to form a new offspring (children) on basis of certain

crossover likelihood. If no crossover was carried out, offspring will be the same copy of

parents.

[Mutation] On the basis of mutation probability change, new offspring at every point

(position in chromosome).

[Accepting] arrange this new offspring in the existing population.

[Replace] Use new arrangement of population for a next run of algorithm

[Test] If the end state is met, discontinue the process, and return the best solution in present

population

[Loop] Go to step 2

4.6.3 Fitness Function

Given an input program, the fitness function returns a number indicating the acceptability of

the program. The fitness function will decide which variants stay to the next iteration

(generation), and it is used as a stopping criterion for the search. Our fitness function

measures how many test cases have successfully been validated?

Accuracy of a chromosome= Test Paths covered by chromosome/ Total number of test paths----------- (4.5)

Let us explain the working of genetic algorithm with the help of one example. Table 4.4

represents some of the available test paths and lengths of these test paths, we have to check

that how many events are being covered by our chosen chromosomes. This will tell us fitness

function of each of the chosen chromosome.

76
Coverage Analysis for GUI Testing

No
Test

Path
Length

1 1,2 2

2 1,9,2 3

3 1,8,2 3

 4 1,8,4,2 4

5 1,8,3,4,2 5

Table 4.4 Test Paths with Length

Let us take a chromosome in which genes represent the sequence of path.

1 8 7 4 2 9 6 8

Fitness of above chromosome is evaluated using equation 4.5. Table 4.4 shows that total

number of test paths are 5. Out of these 5 test paths, path 1, path 3 and path 4 are covered by

the chromosome so the fitness or accuracy of this chromosome is 3/5 = 0.6

4.6.4 Reproduction operators

There are two reproduction operators available in genetic algorithm: Cross over and

Mutation. Crossover has two different types, one point cross over and two points cross over.

But we will apply these reproduction operators to increase the coverage efficiency.

Now we take the second chromosome;

6 3 2 7 2 1 9 2

 Its fitness function according to equation 4.5 using table 4.4 can be calculated as = 1/5 = 0.2

Now we will generate a random number to find the cross over point.

77
Coverage Analysis for GUI Testing

 Let‟s suppose Rand = 5

As random number is 5, so we will cut chromosome 1 after 5 genes and will combine it 2
nd

chromosome to generate a child chromosome.

1 8 7 4 2 1 9 2

Now fitness function of the child chromosome = 4/5 = 0.8

Which is much better than fitness function of chromosome 1 (which was 0.4) and also of

chromosome 2 (0.2).

4.6.5 Mutation

After applying reproduction operators, we have the following new chromosome.

1 8 7 4 2 1 9 2

Rand = 3 for position

Rand = 3 [The value to replace the existing value at 3
rd

 genes i.e., 7]

So the new chromosome will be look like as

1 8 3 4 2 1 9 2

And its fitness function according to equation 4.5 using table 4.4 will be 5/5 = 1

4.6.6 Experimental Setup

The proposed application for coverage analysis was designed and developed in MATLAB.

The application has undergone extensive experimentation in order to determine its

effectiveness. Five sample applications were selected to experiment with, included two user

developed applications of calculator and notepad while three built-in products MS Notepad,

MS WordPad, and MS Word were chosen from Microsoft family of software products. These

built-in applications were selected keeping in mind the following criteria:

78
Coverage Analysis for GUI Testing

 Universal Applicability of Applications: Applications have universal applicability.

Our working on these applications demonstrates the capability of our approach to

handle such applications which are complex in their nature and affect a larger

population of end-users. This also means that interpretation of experiments and

results is easier for larger research community.

 Rich GUI: These applications come with extensive GUI which provides us with ideal

environment to execute and monitor effectiveness of our technique. The GUI of

Notepad and WordPad is relatively simple yet effective. GUI of both these

applications conforms to variety of usability engineering standards. Successful

performance of our proposed approach can demonstrate the vitality of various

usability engineering and HCI protocols from testing perspective.

 Wider applicability: These applications are part of a larger application domain. By

testing our technique on these applications, we can also replicate the generated test

cases on several other applications to broaden the scope of our exploration.

 Long Term Perspective: Notepad, WordPad and MS Word are part of the

application domains which have a long term perspective i.e., we can expect many

future versions of both of these applications. Having such quality products as our test

applications means that we have an opportunity to evolve our techniques as the

applications evolve incorporating new concepts of GUI.

 Highly structured applications: The applications are highly structured which

provide us with an opportunity to design chromosomes comprising of varying length

and complexity for various tests quite efficiently.

4.6.7 Experimental Results

The test data was generated by clicking on various GUI elements and tailoring the course of

click-events. This proved to be a laborious task as significant manual effort was required to

generate an appropriate number of test cases. In all, 45 test cases were produced per

application. These test cases manipulated various aspects of product interface i.e., menus,

toolbars, drop-down bars etc. The composition of test suite was tried to represent a balance

set of test suite such that it evenly covered all of these aspects of each product. Each test case

79
Coverage Analysis for GUI Testing

 was of variable length depending upon the sequence of events involved to perform that

specific task.

Coverage analysis has shown that system was able to achieve more than 85% coverage after

executing 195 test cases. Fitness function was able to yield high coverage which shows its

utility in the case of GUI testing. This coverage percentage shows that we still have

significant room for improvement. Still, achieving such a high coverage makes our technique

competitive w.r.t. other existing approaches. The details of parameters used in

experimentation during testing each application are shown in table 4.5.

Parameters Values

Population size 100

Number of generations 300-500

Mutation rate 0.2

Crossover rate 0.8

Termination criteria Coverage>83% or Generation=500

Table 4.5Parameter Used

The outcome have also revealed that increase in the number of generations resulted in

enhanced coverage. To determine optimal number of generations, we experimented with our

technique using generations between 300 and 500. Our experiments have shown that increase

in number of generations above this range generates a flat bed scenario. It means that with

increase in number of generations, the performance doesn‟t deteriorate but becomes stable at

the highest coverage achieved. The effect of enhancing the number of generations is shown

in table 4.6.

80
Coverage Analysis for GUI Testing

Number of

Generations

Coverage achieved

Average

Coverage
MS Notepad MS WordPad MS Word

User Defined

Notepad

Calculator

300 65% 68% 59% 71% 76% 68%

325 68% 68% 67% 75% 77% 71%

350 69% 69% 76% 77% 77% 74%

375 72% 69% 80% 77% 84% 76%

400 73% 71% 84% 84% 85% 79%

425 79% 76% 84% 84% 89% 82%

450 85% 77% 86% 88% 89% 85%

475 85% 84% 86% 88% 89% 86%

500 85% 84% 86% 88% 89% 86%

Table 4.6 Coverage According to Number of Generations

The graphical representation of this improvement achieved in coverage is shown in figure

4.9. This has shown gradual improvement until it reaches a saturation point. After reaching

this saturation point, it becomes stable and adopts a flat bath instead of deteriorating.

81
Coverage Analysis for GUI Testing

Figure 4.9 Path Coverage Analysis using GA

The results have exposed the effectiveness and progress that our proposed technique has

gained in valuable coverage analysis. We can further producer test cases for the same

applications to further examine the performance of our approach for coverage analysis.

4.7 Coverage Analysis for GUI Testing Using PSO

Working of Particle Swarm Optimization (PSO) has been explained with a block diagram in

figure 4.10.

82
Coverage Analysis for GUI Testing

Figure 4.10 Block Diagram of Particle Swarm Optimizer for GUI Test Coverage Analysis of an Even

Based System

Round Off Position of Each Particle

Event based Automated Test

Data Generation

Initialize Population
Calculate fitness based upon coverage

analysis

Update Personal Best of Each Particle

Update Velocity of each Particle

using Velocity Equation

Calculate Global

Best

Update Position of each Particle using Position

Equation

No Yes

Achieved Required

Coverage?

Stop

Calculate Fitness based upon coverage analysis

83
Coverage Analysis for GUI Testing

4.7.1 Particle Encoding in PSO (Test Data Generation)

For test data generation, we have used same event based techniques that has been used for

test data generation of genetic algorithm described in above sections. For this reason we have

designed a calculator that receives inputs from mouse and keyboard. Also, we used the same

five applications for test data generation and experimentation.

We have designed software for automation generation of events on the basis of this sequence

of clicks. This software records the events generated by clicks and generates corresponding

sequence path based on event numbers. We have designated unique ID to every event and

sequence path is based on these events as have been shown in the table 4.1. Each particle

corresponds to a particular sequence path and each dimension of the particle represents an

event in the corresponding sequence path.

To illustrate the working of our algorithm to optimize the coverage function, Let us take an

easy run of single objective PSO to our work. This example is to show the working of PSO

evolutionary algorithm to problem of GUI test coverage. Dataset of event sequences, we

have chosen for simple run is being shown in table 4.7.

Table 4.7 Dataset of Event Sequences

84
Coverage Analysis for GUI Testing

85
Coverage Analysis for GUI Testing

4.7.2 Swarm Initialization

Produce arbitrary population of n particles. Size of the position vector for each particle is the

longest path. We have initialized each dimension of the position vector between 1 and

maximum length. For example in our proposed technique a randomly generated particle

looks like this:

86
Coverage Analysis for GUI Testing

2 4 3 1 2

4.7.3 Position Update

We did not change the standard continuous velocity and position update equations used in

original PSO (Equation 4.1 and 4.2). But we rounded off the elements of position vectors to

the nearest valid discrete value.

4.7.4 Quality Measure

Given an input program, the fitness function returns a number indicating the acceptability of

the program. The fitness function is used by the selection algorithm to determine personal

best and global best in swarm and it is used as a termination criterion for the search. Our

fitness function is how many test cases have been successfully validated as have been shown

in equation 4.5 (Same as for genetic algorithms).

Accuracy of a chromosome= Test Paths covered by chromosome/ Total number of test paths----------- (4.5)

4.7.5 Completion Criteria

There are two different types of completion criteria

 Maximum number of generations

 No improvement in the global fitness of the swarm for certain number of

generations

4.7.6 Working of Proposed Methodology

To test GUI and examine the coverage, we have proposed a technique based upon particle

swarm optimization (PSO). In our proposed algorithm, each particle represents the data paths

consisting of unique event sequences. Following is the working of our proposed method:

[Start] Produce random population of n particles. Size of the position vector for each particle

is the longest path. We have initialized each dimension of the position vector between 1 and

maximum length as have been shown in the particle below.

2 4 3 1 2

87
Coverage Analysis for GUI Testing

 [Fitness Evaluation] Assess the fitness f(x) of each particle x in the population. We have

calculated fitness of particle based upon the coverage analysis.

For every particle in the population we see whether its current fitness is better than its

previous personal best? If yes, we set its personal best to its current position vector,

otherwise we do not change its personal best.

Once we have updated all the personal best positions, we will determine which particle has

the highest fitness among whole population [Global Best]. If this global best is having better

fitness [higher] than previous global best, we declare this particle to be the global best

otherwise we do not change the global best.

After determining the personal best and the global best, we have changed the current velocity

of each particle using equation 1. After having updated velocities for each particle, we now

calculate the new position of each particle using equation 2.

After adding continuous valued velocity component to the position, we now have continuous

values in the position vector of each particle. e.g.

2.1 4.8 3.4 1.0 2.2

So we round off the position vector of each particle to the nearest integer.

2 5 3 1 2

If end condition is fulfilled, stop and return the global best of the population.

Otherwise go to step of fitness evaluation.

4.7.7 Experimental Results

Just like our experimentation with genetic algorithm based coverage analysis, the test data

was generated manually by clicking on various GUI elements and tailoring the course of

click-events in this experiment as well. Again, we used 45 test cases per application. These

were same test cases, we generated for genetic algorithm. Test case operated over various

aspects of product interface like menus, toolbars, drop-down bars etc to cover all aspects of

each product. Each test case was of variable length depending upon the sequence of events

involved to perform that specific action.

88
Coverage Analysis for GUI Testing

 Same like our first experiment, coverage optimization algorithms helped to achieve more

than we have in case of our first experimentation. Although we still have room for

improvement to maximize the coverage but still, achieving such a high coverage gives a

feeling that it would increase the confidence in quality of GUI testing. The detailed

parameters used during testing are shown in table 4.8 and the effect of enhancing the number

of generations is shown in table 4.9. While the graphical representation of this improvement

achieved in coverage is shown in figure 4.11.

Table 4.8 Parameter Used

Number of

Generations

Coverage achieved

Average

Coverage

MS Notepad MS WordPad MS Word User Defined

Notepad

Calculator

250 65% 55% 63% 71% 70% 65%

275 68% 62% 65% 74% 73% 68%

300 70% 68% 68% 71% 75% 70%

325 72% 69% 71% 75% 76% 73%

350 76% 73% 76% 78% 77% 76%

375 79% 75% 80% 78% 82% 79%

400 84% 77% 84% 82% 87% 83%

425 87% 79% 86% 88% 90% 86%

450 87% 83% 86% 88% 90% 87%

475 87% 83% 86% 88% 90% 87%

Parameters Values

Population size 100

Number of generations 500

Termination criteria Coverage>85% or Generation=500

89
Coverage Analysis for GUI Testing

500 87% 83% 86% 88% 90% 87%

Table 4.9 Coverage According to Number of Generations

Coverage Analysis

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

25
0

27
5

30
0

32
5

35
0

37
5

40
0

42
5

45
0

47
5

50
0

Number of Generations

C
ov

er
ag

e
Pe

rc
en

ta
ge MS Notepad

MS Wordpad

MS Word

User Defined Notepad

Calculator

Figure 4.11 Path Coverage Analysis using PSO

4.8 Comparative Analysis

In GA, the concept of memory depends on superiority, but the PSO algorithm appears as a

dominant stochastic optimization method encouraged by the social performance of organisms

in which individuals have memory and collaborate to go towards a region having the global

or a near-optimal solution.

The results presented in this research were obtained using uniform random sampling of the

initial parameter space. The initial sample is subsequently iteratively improved using the

various algorithmic steps in the both evolutionary algorithms. It is however possible to

significantly improve the efficiency and vigor of these evolutionary algorithms. We are

presenting here a comparison of both approaches used on basis of robustness, accuracy and

speed of convergence.

90
Coverage Analysis for GUI Testing

4.8.1 Robustness

The term “robustness” is used to describe the probability a point mutation will fail to reduce

the fitness of a solution. Evolution and robustness are thought to be intimately connected.

This obvious capability of an evolutionary algorithm to choose a more vigorous solution

when strength is not a fitness criterion has the potential not only to reveal the behavior of

evolution. But when it comes to noisy data, where the fitness is difficult to define,

evolutionary algorithms might evolve with more robust solutions. Our experimentation was

based on non-noisy data but to check the robustness we changed the mutation rate. Both GA

and PSO worked well with the changed mutation rate as well.

4.8.2 Speed of Convergence

In evolutionary algorithms, the speed at which a convergent sequence approaches its limit is

called the rate (speed) of convergence. Swarm intelligence inspired by the natural world is

popular due to its rapid convergence capability. Following table shows that convergence rate

of PSO is bit faster than GA.

Number of Generations

Average

Coverage of GA

Average

Coverage of PSO

250 - 65%

275 - 68%

300 68% 70%

325 71% 73%

350 74% 76%

375 76% 79%

400 79% 83%

425 82% 86%

450 85% 87%

475 86% 87%

500 86% 87%

Table 4.10 Comparison of GA and PSO on Convergence Speed

91
Coverage Analysis for GUI Testing

4.8.3 Accuracy

Although both techniques worked well for achieving higher coverage in testing GUI, but

particle swarm optimization achieved a bit more in average coverage. Particle Swarm

Optimization achieved higher coverage throughout the experiment.

Figure 4.12 Path Coverage Comparison

4.9 Summary

In this chapter, we have shown that without considering the strict ordering constraints, we

can have very good coverage of events in GUI testing. For this purpose we have used two

different single objective evolutionary algorithms. The techniques have been subjected to

extensive testing. Prior to this work, there is no evidence from literature that test coverage

has been optimized using evolutionary algorithms. Thus proposed method suggests a thrilling

new area of research which can be helpful using different other artificial intelligence

techniques. The results have revealed the overall efficacy and improvement that our proposed

technique has attained in efficient coverage analysis. This innovative idea to work on

maximizing test coverage by exploiting event driven nature of GUI can bring a revolutionary

boost in working of GUI widgets and elements. Also there will be a huge reduction in terms

of time required to test GUI applications.

92
Coverage Analysis for GUI Testing

Chapter 5 Multi Objective Coverage Optimization

93
Coverage Analysis for GUI Testing

There are two major types of evolutionary algorithms that have been used for software

testing: single objective evolutionary algorithms and multiple objective evolutionary

algorithms. A general single-objective optimization problem is defined as minimizing (or

maximizing) f(x) subject to gi(x) ≤ 0, i = {1, 2, 3 . . . , m}, and hj(x) = 0, j = {1, 2, 3 . . . , p}

x Ω. A solution minimizes (or maximizes) the scalar f(x) where x is a n-dimensional

decision variable vector x = (x1,x2. . . , xn) from some universe Ω [156]. While the multi

objective optimization problem can be defined as “a vector of decision variables which

satisfies constraints and optimizes a vector function whose elements represent the objective

functions. These functions form a mathematical description of performance criteria which is

usually to resolve each objective function. Therefore, the term "optimize" means finding such

a solution that can give the value of all objective functions acceptable to the manufacturer's

decision [157].

5.1 GUI Test Coverage Optimization by Multi Objective Algorithms

In the last chapter, we have seen encouraging results from single objective optimization. In

single objective evolutionary algorithms based test coverage optimization, our focus was

totally to boost the confidence in our testing effort by maximizing the test path coverage. To

test GUI and analyze the coverage, we have proposed a method based upon multi objective

optimization. In multi-objective optimization (as the name reveals the functionality of these

kind of algorithms), we have set multiple objectives for our optimization effort.

We have used two well known multi objective optimization algorithms, multi objective

particle swarm optimization (MOPSO) based upon the concept of maintaining dominated

tree and NSGA-II (A non-domination based version of Multi Objective Genetic Algorithm

(MOGA)) to analyze and optimize the coverage of the path generated on the basis of event

flow nature of GUI. We have set following objectives for our multi-objective optimization

problem:

 To minimize the number of event based GUI test cases

 To maximize the coverage of event based GUI test cases

94
Coverage Analysis for GUI Testing

 In multi-objective optimization problem, we have multiple functions to optimize, so the

concept of optimizing function changes and we have to find a good transaction between

function values. In our case, we have two objectives, which are inversely proportional to

each other; i.e., maximizing one objective results in the minimization of the other objective

function. Our objective functions are number of test cases and required coverage. So we have

to find a good compromise in between optimization of both objectives. The most commonly

accepted term for finding this optimum solution is Pareto optimum. A solution x ε Ω is said

to be Pareto Optimal with respect to (w.r.t.) Ω if and only if (iff) there is no x for which

1() (()...... ())nv F x f x f x
 dominates 1() (()...... ())nu F x f x f x

[158][159[160]

5.2 GUI Test Coverage Optimization by MOPSO

To test GUI and analyze the coverage and to achieve the objectives set in previous section,

we started our experimentation based upon Multi Objective Particle Swarm Optimization

(MOPSO). For this purpose we have used a multi objective PSO based upon the concept of

maintaining dominated tree. Dominated tree is constructed in such a way that final composite

point dominates all other composite points. The selection of the global best for an individual

in the swarm is based upon its closeness to an individual in the non dominated set. For any

member of the swarm, xi, a composite point cj is chosen such that cj is not dominated by xi

and xi dominates cj-1. The global best for an individual xi is that archive member of cj

contributing the vertex which is less than or equal to the corresponding objective in x i. A set

of local best solutions L is also maintained for each swarm member. Local best position for

each member is selected uniformly from this set.

The used MOPSO algorithm has been explained with the help of a block diagram in figure

5.1. We have divided our proposed system into two major blocks.

 Test data [Test Cases] generation

 Optimization [minimization] of test paths [cases] using MOPSO

95
Coverage Analysis for GUI Testing

5.2.1 Problem Modeling using MOPSO

Following are steps of MOPSO that we followed for analysis and optimization of test path

coverage. The block diagram of working of MOPSO for GUI test path coverage analysis and

optimization is being shown in figure 5.1.

5.2.1.1 Initialize the population

Generate random population of n particles. For test data generation, we have used same event

based technique that was used for single objective optimization algorithms (chapter 4). For

this purpose we developed a calculator (shown in figure 4.3), used unique event IDs for

every event and event recorder (shown in figure 4.4) to generate sequence of events (shown

in figure 4.5). Also we developed another application similar to notepad and named it as user

developed notepad (Figure 4.6). We also experimented with MS Word, WordPad and

Notepad as well. Length of position vector of our particle is the longest path (Longest test

case). We have initialized these chromosomes between 1 and maximum length of the test

case.

5.2.1.2 Build two repositories for local best L and global best Z

In this case we have stored the non dominated solutions found so far during the search

process in Z (globally). Dominated tree is constructed from this set Z so that we may select

the global leader efficiently. A set L (related to local search) is also maintained for each

member. Currently each L has just one member namely the initial position of the

corresponding particle.

Population is initialized with random values which are within the specified range. Each

particle consists of the decision variables. Our fitness function is how many test cases have

successfully validated?

96
Coverage Analysis for GUI Testing

Figure 5.1 Block Diagram of MOPSO for GUI Test Coverage Optimization

No

Yes

Calculate Velocity Determine Position of

Each Particle

Met Required

Fitness?

Calculate Fitness based

upon coverage analysis

Event based

Automated Test Data

Generation

Initialize

Population

Calculate Fitness based

upon Coverage Analysis

Update Z and L Determine

Personal

Best

Determine Global Best

Stop

97
Coverage Analysis for GUI Testing

 5.2.1.3 Update the Velocity and Position of each particle.

Determine the new position and velocity for each particle according to equation no 4.1 and

4.2 respectively for each generation. Since the position vector in continuous PSO usually

consists of real values, we have rounded off the values to the nearest integer. In this way the

algorithm was made to work on discrete data. We have also made it sure that the resulting

position is in the specified interval for each dimension.

5.2.1.4 Update non dominated global set Z.

If the solution found is non dominated with respect to members of Z, add it to Z. If the

solution dominates any member of Z, then we have to delete that member from Z and

included the current solution in Z. The composite points in dominated tree will also be

updated if an updating occurs in Z. By using dominated tree, we have selected the global

best for each particle based upon its closeness to non dominated members stored in Z.

5.2.1.5 Update local set L of each particle.

Since there is comparatively small number of Pareto solutions stored locally than globally, so

the local best position for each particle is selected uniformly from the corresponding updated

L.

5.3 GUI Test Coverage Optimization by Multi- Objective GA (MOGA)

NSGA is a popular non-domination based genetic algorithm for multi-objective optimization.

A modified version, NSGA-II was developed, which has a better sorting algorithm,

incorporates elitism and no sharing parameter needs to be chosen a priori. To test GUI and

analyze the coverage, we have proposed a method based upon NSGA-II.

Working of NSGA-II has been explained with the help of a block diagram in figure 5.2.

We have divided our proposed system into two major blocks, similar to those we have used

for our experimentation with multi objective PSO.

 Test data [test cases] generation

 Optimization [minimization] of test paths [cases] using NSGA-II

98
Coverage Analysis for GUI Testing

5.3.1 Problem Modeling using NSGA-II

Genetic algorithms are inspired by Darwin's theory about evolution. Solution to problem

solved by genetic algorithms starts with a set of solutions (represented by chromosomes)

called population. Solutions from the population are sampled and used to form a new

population. Following are steps of NSGA-II that we followed for analysis of test path

coverage analysis:

5.3.1.1 Initialize the population

The process of test data generation was the same as had been followed in experimentation

with MOPSO. As have been explained earlier, event based path generation technique was

used for test data generation. We have generated random population of n chromosomes.

Chromosomes have been formed from the captured events sequences. Length of our

chromosome is the longest path (Longest test case). We have initialized these chromosomes

between 1 and maximum length of the test case.

5.3.1.2 Sort the population using non-domination-sort

In this case we have sorted the population using non-domination-sort. This returns two

vectors for each individual which are the rank and the crowding distance corresponding to

their position in the front they belong. At this stage the rank and the crowding distance for

each chromosome is added to the chromosome vector for ease of computation.

5.3.1.3 Start the evolution process

 Population is initialized with random values which are within the specified range. Each

chromosome consists of the decision variables. Our fitness function is the same, we used for

genetic algorithm based experimentation represented through equation 4.5.

Accuracy of a chromosome= Test Paths covered by chromosome/ Total number of test paths----------- (4.5)

5.3.1.4 Reproduction operators

For each generation select the parents which are fit for reproduction. Also select two parent

chromosomes from a population according to higher fitness. Perform crossover and Mutation

operator on the selected parents. We have applied these reproduction operators to increase

99
Coverage Analysis for GUI Testing

 the coverage efficiency. Also we have generated a random number to find the mutation point

in chromosome.

5.3.1.5 Create Intermediate Population

Create intermediate population. Intermediate population is the combined population of

parents and off-springs of the current generation.

100
Coverage Analysis for GUI Testing

Figure 5.2 Block Diagram of NSGA II for GUI Test Optimization

Create Intermediate Population

 Crossover Mutation

Reproduction Operator

End

 Sort Based upon Rank

 Sort Based upon Crowding Distance

Sort Population

 Select Using Tournament

Selection

Selection

 Number of

Generations>500

Initialize Population Calculate Fitness

Generate Initial Population within Specified Range

Start

Rank Decision

Variables

Value of

Objective

Function

Crowding

Distance

101
Coverage Analysis for GUI Testing

5.4 Experimental Results

We had designed and developed two multi-objective techniques (NSGA II, and MOPSO) in

MATLAB. Two applications were developed to experiment with. These applications include

a simple calculator and a customized notepad. While three built-in sample applications were

selected to experiment with, this included Notepad, WordPad, and MS WORD. The

applications have undergone extensive experimentation in order to determine their

effectiveness.

Our experimentation completed in two phases.

1: Experimentation with MOPSO

2: Experimentation based on NSGAII

In first phase, we have used a multi objective PSO based upon the concept of maintaining

dominated tree. Our system generates multiple solutions in the origin and optimizes the

solution using multi objective PSO. The solutions are then checked against the many

predefined quality measures. Solutions are selected to build Pareto Front.

In 2nd phase, our proposed method resolves the multi-objective problem by using non-

dominance based selection. Our technique initially generates multiple solutions and then

optimizes the solutions using crowding distance and ranking.

5.5 Results Analysis

In this section, we are presenting results of our study from two different perspectives. In first

phase, results showing comparison between single objective and multi objective algorithms

have been presented while in second phase, comparison between MOPSO and NSGA II has

been analyzed.

5.5.1 Comparison of Single Objective and Multi Objective Algorithms

In previous chapter, we have used GA to analyze the test coverage of GUI tests for a user

developed calculator application [Chapter 4]. While in this chapter, we have enhanced the

102
Coverage Analysis for GUI Testing

 level of experimentation. In this section we are going to present comparison of performance

of GA and NSGA II on the application of user developed calculator.

In experimentation with GA, coverage analysis has shown that the system was able to

achieve 85% coverage. The results have also shown that an increase in the number of

generations resulted in enhanced coverage. In order to determine the optimal number of

generations, we experimented with our technique using generations between 300 and 500

(inclusive). In comparison, when same calculator application was experimented with multi

Objective GA (NSGA II) than we were able to achieve more coverage relatively. NSGA II

showed better performance and was able to select test cases that were enough to test 91% of

test paths in calculator application. Comparison of both algorithms has been shown in table

5.1 given below. The effect of enhancing the number of generations helped each algorithm to

enhance the coverage but as results of table 5.1 shows, that NSAGA II outperformed GA.

Number of Generations Coverage achieved through GA Coverage achieved through NSGA II

300 65% 70%

325 68% 74%

350 69% 79%

375 72% 81%

400 73% 84%

425 79% 88%

450 85% 90%

475 85% 90%

500 85% 91%

Table 5.1 Test Path Coverage Comparison for Calculator application

103
Coverage Analysis for GUI Testing

5.5.2 Comparison of NSGA II and MOPSO

For experimentation with multi objective evolutionary algorithms, the test data was generated

manually by clicking on various GUI elements and tailoring the course of click-events. This

was really a difficult task to generate an appropriate number of test cases especially in case of

built-in applications, where we had to generate and record all event sequences (path of

events) manually. In contrast, for user defined applications we just had to generate event

sequences by mouse clicks and using key board. Because these applications were designed to

automatically generate the sequence of events (events path). In all, 120 test cases were

generated per application. The test cases manipulated various aspects of product interface

i.e., menus, toolbars, drop-down bars etc. The composition of test suite was such that it

evenly covered all of these aspects of each product. Each test case was of variable length

depending upon the sequence of events involved to perform that specific action.

Coverage analysis has shown that system was able to achieve more than 85% coverage in

MOPSO and NSGA II. Fitness function was able to yield high coverage which shows its

utility in the case of GUI testing. On the other hand, achieved coverage percentage shows

that we still have significant room for improvement. Coverage achieved on each application

using MOPSO and NSGA II by executing 120 cases for each application has been shown in

table 5.2 and table 5.3 respectively.

104
Coverage Analysis for GUI Testing

Number of Generations

Coverage achieved

Average Coverage MS Notepad MS WordPad MS Word User Defined Notepad Calculator

300 68% 74% 63% 75% 70% 70%

325 70% 74% 68% 79% 73% 73%

350 77% 79% 76% 80% 79% 78%

375 84% 81% 79% 84% 81% 82%

400 87% 83% 84% 87% 85% 85%

425 89% 88% 89% 94% 89% 90%

450 90% 89% 91% 94% 92% 91%

475 90% 89% 91% 94% 92% 91%

500 90% 89% 91% 94% 92% 91%

Table 5.2 Coverage According to Number of Generations [NSGA II]

Number of Generations

Coverage achieved

Average Coverage MS Notepad MS Wordpad MS Word User Defined Notepad Calculator

300 66% 61% 60% 71% 68% 65%

325 70% 68% 66% 73% 72% 70%

350 75% 75% 72% 79% 77% 76%

375 79% 81% 77% 83% 84% 81%

400 84% 82% 82% 88% 87% 85%

425 87% 86% 84% 91% 92% 88%

450 91% 89% 86% 93% 95% 91%

475 91% 91% 88% 94% 95% 92%

500 92% 91% 88% 94% 95% 92%

Table 5.3 Coverage According to Number of Generations [MOPSO]

105
Coverage Analysis for GUI Testing

 Performance of both the multi-objective evolutionary algorithms has been compared in a

graph shown in figure 5.3. There is not a big difference in performance of both algorithms

but the important thing is that both algorithms were able to cover more than 90% of test

paths. MOPSO started with bit bad performance but with the increase in number of test

cases, MOPSO started to show better performance than NSGA II. In the end both algorithms

were successful in attaining more than 9o% test path coverage. On the other hand, test path

coverage by single objective GA was much lesser than coverage of multi-objective GA.

Figure 5.3 Test Path Coverage Achieved Through Multi-Objective Algorithms

Another important aspect of multi objective evolutionary algorithm is formation of Pareto

front. Pareto front, most commonly accepted term for finding an acceptable solution for

problems having conflicting objectives. We have seen that with the increase in number of test

cases, path coverage for GUI testing is also increasing. So we have to find a good

compromise in between optimization of these both objectives. Pareto front for NSGA II and

MOPSO are shown in figure 5.4 and figure 5.5 respectively. Depending upon the constraints

in terms of available resources for test case execution and required test coverage, Pareto front

will help to pick a desired solution.

106
Coverage Analysis for GUI Testing

Figure 5.4 Pareto Front for NSGA II based GUI Test Coverage Analysis

Figure 5.5 Pareto Front for MOPSO based GUI Test Coverage Analysis

107
Coverage Analysis for GUI Testing

5.6 Summary

This chapter reveals that we can achieve optimized test coverage of GUI events not only on

the basis of events covered but with respect to number of test cases as well. For this purpose

we have used two multi-objective evolutionary algorithms. The motivation behind choosing

these two algorithms was the success we gained by having a good coverage through single

objective evolutionary algorithms. Although there is not an immense difference in

performance of both algorithms but the important thing is that both algorithms were able to

cover more than 90% of test paths. We have set following objectives for our multi-objective

test coverage optimization problem:

 To minimize the number of event based GUI test cases

 To maximize the coverage of event based GUI test cases

By having multi-objective optimization, we can have as much coverage as required

depending on the number of test cases to be executed. Thus, it gives a freedom to achieve

coverage according to the available constraints of cost and schedule.

108
Coverage Analysis for GUI Testing

Chapter 6 Coverage Optimization Based GUI Test

Framework

109
Coverage Analysis for GUI Testing

 Every development organization is eager to ensure the maximum quality in its products, but

testing a graphical user interface comprehensively, is still a lurid, as GUI testing has proved

to be a labor-intensive effort. As have been mentioned earlier that most important

advancement in automation of manual GUI testing process is to model GUI elements and

interaction among these widgets (Normally referred as events). Event-flow graph (EFG) is

comparatively an unsullied and positive addition to handle automation of GUI testing. In this

chapter, we are presenting a framework based on coverage optimization techniques that we

have evaluated in previous two chapters. Along with coverage optimization techniques based

on evolutionary algorithms, ontology based test data generation and test oracle development

are the major parts of this GUI test framework. Our framework works in three steps as have

been shown in figure 6.1.

Figure 6.1 Coverage Optimization Based GUI Test Framework

This ontology theoretically works on the foundation led by semantics of feasible actions

(events) and then annotations can be used to generate the test cases and work as an oracle for

verification of the output of testing effort.

By annotation process, the tester indicates what GUI elements are important in terms of the

following: First, which values can a GUI element hold (i.e., a new set of values or a range),

and thus should be tested; second, what constraints should be met by a GUI element at a

given time (i.e., validation rules), and thus should be validated. The result of this process is a

set of annotated GUI elements which will be helpful during the test case auto-generation

process in order to identify the elements that represent a variation point, and the constraints

that have to be met for a particular element or set of elements. From now on, this set will be

called Annotation Test Case.

110
Coverage Analysis for GUI Testing

6.1 Oracles Development

A test oracle is an instrument to assess the tangible outcome of a test case either as pass or

fail by producing an anticipated end result for an input and checking the actual results against

this projected result [161], as shown in Figure 6.2. Conventionally the development of

oracles has proved to be hard and expensive in software testing [161][162][163][164] Efforts

to replace manual test oracles with automated and partially automated oracles involve

specification based oracle development, program simulations or a trustworthy

implementation use [161]. Several researchers recommend using domain-specific, model-

based oracles [100][165][166][167].

Figure 6.2 General Framework for Oracle

6.2 Ontology Development

Because of ease and suppleness provided by graphical user interfaces (GUIs), they are

becoming most vital modules of software systems. On the other hand, a lot of research work

is being carried out in software testing field but subfield of GUI testing is still not getting its

due attention. Freedom offered by GUI can be presumed by the fact that a user can access a

particular component in a software system by following multiple itineraries of events. This

freedom stimulates the interest of end user in software system but becomes a nuisance for

111
Coverage Analysis for GUI Testing

 testers of the application. Large numbers of permutations of events and complex event

interactions of GUIs present new challenges for this kind of testing.

Ontology defines the basic terms and relations constituting the vocabulary of a specific

domain area as well as the rules concerning that specific domain. Ontologies have been

applied to describe a variety of knowledge domains [168]. Ontology is a formal explicit

description of concepts in a domain of discourse, properties of each concept describing

various features and attributes of the concept, and restrictions on these concepts [169]. The

ontology is the means for capturing domain knowledge in a generic way that provides a

commonly agreed understanding of a domain. The solitary purpose behind building up

ontologies is to share widespread understanding of the structure of information among people

or software agents [170]. Knowledge gathered through different ontologies may be reused

and shared within communities or applications. A growing interest on the establishment of

ontologies has been observed for the most different knowledge domains. This work presents

an ontology of GUI testing, which has been developed to support test case generation and

oracle development on basis of the domain knowledge.

Annotation of textual or graphical documents relating to software systems is a common and

important software engineering activity. Computerized development tools incorporating

annotation have become available in recent years. They are used in diverse areas such as

annotating source code to explain design rationale [171]. In GUI testing, the annotation

process is the process by which the tester indicates what GUI elements are important in terms

of the values GUI element holding (i.e., a new set of values or a range), and constraints that

GUI element has to meet at a given time (i.e., validation rules) [172].

Semantics is the study of explanation of symbols as used by group of people surrounded by

scrupulous circumstances and contexts.

Semantic Annotation is a fundamental knowledge

being used for the development and usage of intelligent contents. A broad range of different

software domains are using semantic annotation for intelligence oriented products and

processes. Semantics-based fact retrieval is one fundamental use of semantic annotations

[173]. Annotations are being used to reveal the design decisions and rationale behind these

design decisions, although these decisions are normally documented ones [174]. An

112
Coverage Analysis for GUI Testing

 annotator is defined as an analysis agent that can be written to process each entity of a certain

type independently [175].

An imperative attribute of GUI systems is that their behavior is very much dependent on the

context in which they are being used. [176]. Besides the functionality of a GUI element,

response of GUI element to an event may be different depending on the perspective

established by preceding events and their execution order [176]. Another important fact

about event driven nature of GUI is that longer test sequences are better than shorter

sequences in identifying defects. In [6], authors have presented an algorithm to find out the

follows of an event. This algorithm helps to determine the subsequent events following an

event. Authors also have classified these events depending upon their functionality. This

classification is based on domain knowledge, but is currently being done manually [176].

In this chapter, we are presenting an approach to automate the test case generation process

for GUI testing based on semantic annotation and ontology. Our approach uses the concepts

from GetFollows algorithm [176], semantic annotations and ontology. Our proposed

ontology can also be used to remove the manual effort required in grouping events based on

functionality described in [176]. The results of our study show that by increasing event

combination strength and controlling starting and ending positions of events, our test cases

are able to detect a large number of faults, not detected by exhaustive test suites of short tests

[176]. In [176], Memon et. al relates a GUI‟s response with context and says that response of

a GUI to an event may vary depending on the context established by preceding events and

their execution order. In previous efforts, our work on coverage analysis using GA [169] and

work on coverage analysis using PSO [30] have shown that without considering the strict

ordering constraints, we can have very good coverage of GUI events.

A number of annotation approaches exit for producing semantic annotations. OntoAnnotate,

a framework for the semantic web, includes tools for both manual and semi-automatic

annotation of pages [177]. Not unlike Knuth‟s literate programming, Decker et.al has used

semantic annotation for embedding in the semantic tags of ordinary hyper text markup

language (HTML) [178]. Knuth‟s approach basically uses few semantically relevant and

formal statements that are embedded in unstructured prose text. McMaster also believes that

113
Coverage Analysis for GUI Testing

 defining GUI element invariants in annotations would make it possible to generate test cases

that cover the invariant conditions [169].

A number of ontology modeling methods have been proposed in the literature. Knowledge

Interchange Format, description logic, and object oriented modeling, such as in UML are

among the most widely used traditional approaches [180]. XML supports customizability,

extensibility, and simplicity. Due to these reasons, XML is most commonly being used as the

format to represent ontology and as a format of agent communication languages. For these

reasons, XML is used in our system to codify the ontology for computer processing.

However, an XML representation of ontology is at a rather low level of abstraction. It does

not support the validation of the ontology by domain experts [181]. In another work, Huo et

al. investigated the development of ontology of testing as a support for a multi-agent

software environment which tests web-based applications [168].

6.3 Ontology Driven Semantic Annotation Based GUI Testing

Coverage analysis using evolutionary algorithms like GA and PSO has shown that without

considering the strict ordering constraints, we can have very good coverage of GUI events

[12, 30]. In [6], one method of modeling a GUI for testing creates a representation of events

within windows (or components) called an event-flow-graph (EFG) [6]. Memon et al.

explained how a GUI‟s response varies with the change in the context of its use. According

to [5], the absolute position of the event within the sequence affects fault detection.

 In this chapter, we have made an attempt to expose the opportunities of building a close

relation between semantic annotation and ontology engineering. Annotation can help a lot in

GUI testing from test case generation to oracle development as has been proposed by

McMaster [179]. Adding semantics to these annotations can help in capturing the context of

events. Concepts and relations are contained in the ontology and as concepts keeps on

growing, so proposed ontology for this work must also be evolving with the passage of time.

114
Coverage Analysis for GUI Testing

Figure 6.3 GetFollows from GUI Event Flow Model [17]

Figure 6.4 Proposed framework for Automatic Generation of GUI tests

Vertex X

Vertex Y

GUI Event Flow

Model [17]
Set of follows for X

Calculate Set of

Follows for Event

(XY)

Calculate Set of

predecessor for

Event (XY)

Event

(XY)

Assert Widget‟s

semantic

Annotation

GUI Testing

Framework

Report the GUI element

 Ontology

Expert Opinion

Domain Expert

Set of Events

Specificatio

ns

GUI Event

Flow Model

[17]

115
Coverage Analysis for GUI Testing

 Proposed approach describes a GUI test case auto generation process based on ontology and

the annotations relevant to the GUI elements. All the promising test cases are created

automatically depending on the values defined during the annotation process [6].

As we can see in figure 6.3, GUI event flow model produces the list of follows of each event.

Incorporating this follows set into ontology can produce the list of predecessors and follows

of each event. Event flow graph is being used to build ontology as have been shown in figure

6.4. This GetFollows algorithm of this model helps ontology to grow with ordered list of

events. Document specification can also be used as a useful tool in evolving this as well as

expert opinion. For each GUI element, when GUI testing framework interacts, it reports the

ontology name of the element and event. Ontology extracts the follows set and set of

predecessors for each event. Ontology, annotates the widget on semantics basis. Relationship

between semantic annotations with ontologies is the core of our proposed method.

For ontology implementation, OWL 2 has been used as ontology language. The OWL 2 Web

Ontology Language, informally OWL 2, is an ontology language for the Semantic Web with

formally defined meaning. OWL 2 ontologies provide classes, properties, individuals, and

data values and are stored as Semantic Web documents. OWL 2 ontologies can be used along

with information written in RDF (Resource Description Framework), and OWL 2 ontologies

themselves are primarily exchanged as RDF documents. RDF is a representation format for

meta data defined by the W3C. It is used for representing metadata for describing the

semantics of information in a machine accessible way. Figure 6.5 shows an ontological

implementation of GUI hierarchy. This implementation is based on the relationship that

exists between different GUI widgets (objects). This relationship has been shown in form of

a graph in figure 6.6.

Figure 6.5 Ontological Implementation of GUI Hierarchy

116
Coverage Analysis for GUI Testing

Figure 6.6 Ontological Relationships between GUI Widgets

The RDF along with RDF graph and RDF vocabulary description language (RDF schema)

could take a central part in this development, since RDF graph consists of concepts and

relations. The relations denote the semantic associations between concepts and the RDF

vocabulary description language (RDF schema) extends RDF to include the basic features

needed to define ontologies. The most important reason that makes us adopt RDF graph in

our work is the structure similarity between event flow graphs and RDF graph, as RDF graph

consists of concepts and relations and event flow models provides elements and possible

interactions between these elements. RDF is a simple language with a labeled directed graph

as its underlying data structure and its only syntactic construct is the triple, which consists of

three components, referred to as subject, predicate, and object [182]. A triple represents a

single edge (labeled with the predicate) connecting two nodes (labeled with the subject and

object); it describes a binary relationship between the subject and object via the predicate

[182].

6.4 Summary

In preceding chapter, we have shown that coverage analysis using evolutionary algorithms

without considering the strict ordering constraints; we can have excellent coverage of GUI

events. In this chapter, we have tried to use test coverage optimization for building a GUI test

framework. Semantic annotations based test case generation was suggested by more than one

researcher in literature. In this chapter, we have made an effort to blend the concept of

ontology development with semantic annotations to generate test cases.

117
Coverage Analysis for GUI Testing

Chapter 7 Conclusion and Future Work

118
Coverage Analysis for GUI Testing

 Software testing is a decisive field of software engineering playing a significant role in

success or failure of software developments. However, software testing fails to meet its

desired objectives due to several reasons. One major reason is that software testing, in

general, operates in traditional environment. Consequently, it is very hard for software

testing practitioners to cope up with the significant changes in software development

environment. This creates an extra operating cost to trounce software tester errors resulting in

a lot of problems for ensuring error free and quality software products.

Aspiration of this thesis was to come up with a framework for Graphical User Interface

(GUI) testing. Looking at the success of model based testing; we opted to model GUI before

testing. UML is very popular language, being used for analysis and requirements

specifications purposes. It is a standardized diagramming language by Object Management

Group. UML provides a number of diagrams to model proposed software from different

perspectives but it is not as helpful while modeling GUI interactions. On the other hand,

GUIs are vital to the users of any software system as they are the only part of the system that

is visible to the users and they provide facility of interaction to users. In this research, we

have strived to present some new notations for commonly used GUI objects and proposed a

method to interact with simple single components in complex composite objects.

In this research, we have proposed evolutionary algorithms based techniques for coverage

analysis of GUI testing. The techniques have been subjected to extensive testing. Many

applications were selected for experimentation which included Notepad, WordPad and MS

WORD. The experiments showed encouraging results. There was an enhancement in results

w.r.t. coverage achieved as we increased the number of generations. The results of this

technique present an exciting and innovative area of research. Using different AI techniques,

this methodology can be applied for different other similar problems.

An imperative attribute of GUI systems is that their behavior is very much dependent on the

application area. Besides the functionality of a GUI element, response of GUI element to an

event may be different depending on the perspective established by preceding events and

their execution order. An added important fact about event driven nature of GUI is that

longer test sequences are better than shorter sequences in identifying defects. Memon et. al.,

has presented an algorithm to find out the follows of an event [6, 176]. This algorithm helps

119
Coverage Analysis for GUI Testing

 to determine the subsequent events following an event. In this research, we also have used

NSGA II and MOPSO; multi objective algorithm techniques for coverage analysis of GUI

testing. The experiments have shown very inspiring results. The outcomes of experiments

have shown enhancement in coverage with increase in parameters of number of generations

and number of test cases.

Also in this thesis, we have proposed an approach to automate the test case generation

process for GUI testing based on semantic annotation and ontology. Our approach uses the

concepts from GetFollows algorithm [176], semantic annotations and ontology. Our

proposed ontology can also be used to remove the manual effort required in grouping events

based on functionality described in [182]. In this effort we used manual test case generation,

we are now in the process of developing an automated test generation tool for supporting our

approach which will further increase its utility.

7.1 Contributions: With Reference to Individual Chapters

A number of developments in the field of GUI modeling and GUI testing have been made in

this thesis. The most significant contribution of this thesis is that we have investigated the use

of evolutionary algorithms towards measurement of coverage analysis for event based

models of GUI. Another major contribution is proposal for generation of test cases and oracle

development in intelligent manner. Following contributions have been made by thesis in the

GUI testing and GUI modeling with reference to individual chapters.

In Chapter 3, we have presented a detailed review of modeling techniques for GUI. After

giving this review, a new modeling technique has been presented and its merits have been

discussed. Chapter 4 gives novel evolutionary algorithms based intelligent coverage analysis

techniques which have been presented targeting specifically event driven nature of GUI.

An extension of the concepts presented in chapter 04 incorporated in the form of a coverage

analysis based on multi objective algorithms has been given in chapter 05. In this technique

we have given value to cost and time parameters along with test coverage. Quantitative

analysis of all the proposed techniques is performed in terms of their individual performance

as well.

120
Coverage Analysis for GUI Testing

 In chapter 6, we have presented a novel idea based on ontology based testing framework.

Ontology has been proposed to help automation of test case generation and coverage has

been used to optimize the testing process.

7.2 Recommendations for Future Work

A future area of work is to develop an efficient algorithm which ensures 100% test coverage

along with minimization of the number of test cases. One future extension of this technique is

possible in such a way that it automatically generates correct test data for the complete test

coverage. One possible extension in this direction can be to use Design for Multi-Objective

Six Sigma (DFMOSS). There might be some margins of errors like noise and other

uncertainties on design and in observation so DFMOSS can help in overcoming these issues.

A number of recent studies have discovered that two different species can co-evolve with

each other. This mechanism is called co-evolution and this has yielded encouraging

outcomes in developments of GA and GP. We also plan to use co-evolution to optimize our

results. Another area of interest will be complex human social behaviors inspired

optimization algorithms.

In this research, we have presented a new profile for GUI layout to support modeling of

GUIs in UML-based software development processes. We have also introduced new

notations for commonly used GUI and given diagrams to show the interaction between these

objects. But all this work needs a lot of manual effort.

Despite the above mentioned contributions our research effort has few limitations. As our

work evolves, we are hopeful in overcoming these limitations.

Some of the future works are:

 Design the process for extracting semantics from ontology.

 Complete specification of ontology needs to be provided.

 Appending semantics with annotations needs to be explored.

 Extensive experimentation is required.

122
Coverage Analysis for GUI Testing

References

123
Coverage Analysis for GUI Testing

124
Coverage Analysis for GUI Testing

125
Coverage Analysis for GUI Testing

126
Coverage Analysis for GUI Testing

127
Coverage Analysis for GUI Testing

128
Coverage Analysis for GUI Testing

129
Coverage Analysis for GUI Testing

130
Coverage Analysis for GUI Testing

131
Coverage Analysis for GUI Testing

132
Coverage Analysis for GUI Testing

133
Coverage Analysis for GUI Testing

134
Coverage Analysis for GUI Testing

135
Coverage Analysis for GUI Testing

136
Coverage Analysis for GUI Testing

137
Coverage Analysis for GUI Testing

138
Coverage Analysis for GUI Testing

139
Coverage Analysis for GUI Testing

