Coverage Analysis for GUI Testing

By

Abdul Rauf, ms (cs), Msc (Cs)

A thesis submitted in partial fulfillment of the requirements for the degree of Doctor of

Philosophy to the FAST National University of Computer & Emerging Sciences

Department of Computer Science
National University of Computer & Emerging Sciences, Islamabad, Pakistan.

(July 2010)

Coverage Analysis for GUI Testing -

Coverage Analysis for GUI Testing -

Dedicated to my family, my teachers and
everyone who helped and prayed for my

Success.

Coverage Analysis for GUI Testing -

Acknowledgements

| would like to bend myself before Allah, the Almighty, the Most Gracious, and the
Most Merciful, whose blessings bestowed upon me to undertake and carry out this research

work.

| would not have reached this stage without the support, love and prayers of my family

and friends.

This dissertation describes research undertaken at the department of Computer Science;
National University of Computer & Emerging Sciences, Islamabad, between January 2005
and August 2010, under the kind supervision of Prof. Dr. Arshad Ali Shahid, whose
encouragement, guidance and support throughout has enlightened me throughout this
research program. His advice, discussion, and effective comments were always a source of
motivation. I am also extremely thankful to Dr. Anwar Majeed Mirza, who managed and
administrated my research activities. | am also extremely thankful to Dr. Aftab A. Maroof,
Dr. Rauf Baig, Dr. Farrukh Hussain and Dr. Waseem lIkram, for supporting me well

throughout my research work.

I would like to pay tribute to my friends Dr. Ayaz, Dr. Mazhar Hussain, Mr. Sajid Anwar,
Mr. Navid Kazim Khan, Mr. M. Ramzan, Dr. Amjad Igbal, Mr. Sana Ullah, Mr. M. Nazir,
Mr. Nawazish Naveed, Mr. Sheeraz Akran, Mr. Aamir Khan, Mr. Zahoor Jan, Mr. Hassan
Mujtaba, Mr. Sohail Masood, Mr. M. Asif Khan, Mr. Atta Ul Waheed, Miss Sadia Batool,
Miss Zunaira Jalil, Miss Hajra Jabeen and Mr. Arif Jamal. | am also very thankful to whole
library staff especially to Mr. Kazim Ali Syed for timely providing me with the resources. |
am also thankful to accounts and networks staff of FAST-NU for their cooperation and

collaboration. Special thanks to my friend Vrushali A. Shedage for proof reading my thesis.

I acknowledge the enabling role of the Higher Education Commission of Pakistan

and appreciate their financial support through its Indigenous PhD Scheme.

Coverage Analysis for GUI Testing -

Table of Contents

Coverage Analysis for GUI TESTNGccccuviiieiiiiiieeeiiiieeeeeiiieeeeeteeeeesireeeeeeireeeeeseneaeeeeeneas i
YN o1 ¢ o1 APPSR X
List Of PUDIICALIONSeeeiiiieiiiie ittt et et e e e e enaee e Xii
CONTETENCE PAPETS ...eiiiiiiiiiiiiiiiiee ettt e e e e e e ettt eeeeeeeesnaeaaeeeaeeeeeannnnnnns x1ii
Chapter 1: INtrodUCHIONuviiiiiiiiiieiieceee e e e e e e e e e e e e e e e e e nneenaeaeeas 14
1.1 Background and MOtIVAtIONceeiiiiiiiiiiiiiiiiee e e e e e 15
1.2 Problem Statementeeiiiiiiiii e 18
1.3 Knowledge Based Software Engineering............cccceeeeveeviiiiiiiiieeeeeeeeeiiieeeeee e 20
1.4 The Goal 0f the TRESISceiiiiiiiiiiii e 21
1.5 ThesisS CONLITDULIONSuveiieiiiiiiie ettt ettt e e et e e e et e e e e eaieeeeeas 22
1.6 Thesis OTganiZatiOn..........ceeeeeeeeiiiiriiieeeeeeeeesieiirrteeeeeeeeessssrrreeeeeeesesssssssreeeeaessessssnsnes 24
Chapter 2 State-of-The-Art Automated GUI TeStING........ccceeeviriiiiieeeieiiiiiiiieee e eee e 26
2.1 SOTIWATE TESTING .eeeeeiiiiiiiieee e e et e e e et e e e e e e et eeeeeeeeessnasnaaeeaaeeeassnnnnens 27
2.1.1 TESEPIAN ... 28
2.1.2 TESE CASE ..ttt 28
2.1.3 LIS T o OSSP PP 28
2.14 TESE BEU.....e ettt 29
2.1.5 TESE OFACIE ...t 29
2.1.6 BIaCK BOX TESEING ..vveeiviie ittt ettt e e e e e aneae e 29
2.1.7 WHIte BOX TESHING ..eevveieiiiee ettt et e e e e e e st e e eeas 29
2.1.8 Gray BOX TESHING ...ccuveieitiie ettt ettt et e st e et e e e e sbaeesrne e 30

2.1.9 (€10 I = [o OSSP RPT PP 30

Coverage Analysis for GUI Testing -

2.1.10 Clean Room Software ENGINEEIINGccouveiiiiiiiiiiieiii et 30
2111 SEALISTICAT TESTING.....eueeeiii et 31
2.2 Automated SOftware TEStINGcccoeuiiiiiiiiiiiiieiiiiee et reree e e eereee s 31
2.3 Measurements in SOftware TESINGcocvvviiriiiiiiiiieeiiiiee et 32
2.4 TSt COVETAZE .eeveeeeeeiiiiiiiiiieeeeeeeeciiitttteeeeeeeesatttteeeeeeeeasneasteeeeesseeasannsssaeaeesesesnnnnnnes 33
2.5 Graphical User INterface TEeSTINGcevreeeriiiiiiiiiiiiieeeeeeiiiiieee e e e eeeeiiirereee e e e e e s 35
2.6 Graphical User Interface Testing TeChniquesccoeevveeiiiiiiiieeeeeeiiiiiiieeee e, 37
2.7 Knowledge Based Software TeStiNgcccceevviiiiiiieieiiiiiiiiieeee e 39
Chapter 3 Modeling GUI {01 TeStINGceviieeieeiiiiiiiieeee e e ee e e e e e e e eeenaeeeeas 46
3.1 Modeling GUI fOr TeSHINGuvvviiiiieieieiiiiiiieee e e e e e e e e e e eeeaaaeeeeas 47
3.2 Role of Modeling in GUI TESHINGcceveeiiiiiiiiiiieeeeeeciiiieeee e e e e e e e e e e 48
3.3 EXISting UML EXEENSIONS.....cccuuiiiiiiieeeeeiiiiiiiieee e e eeeeiiiteeeeeeeseeseeareeeeeeeeessnnsnnneeeas 50
3.4 Extending UML to Model GUIL...........cooiiiiiiiiiiiiei et 51
34.1 Why EXENSION OF UIML?ooiiiiiiiic et 52
3.4.2 Software DeSIgGN PatternSeciiireiiie e e e rae e erae e 52
3.4.3 New Profile for Modeling GUIoooviiiiiicc e 54
3.5 SUINIMATY ... s 57
Chapter 4 Coverage Optimization for GUI Testingccceeeiviiiiieeieeiiiiiiiiieee e, 58
4.1 Testing Context Free APPlICAtIONSoeeeiiiiiiiiiiiiiie et 59
4.2 TESE COVETAZE .eeeruiiiieiiiiiiie ettt ettt e et e e et e e e et e e e et ee s eanneeeens 60
4.3 Importance 0f Test COVETAZEcovvuiiiiiiiiiiiiiiiieerte et 61
4.4 Coverage Criterion for GUI TeStING.........ccouiiiiiiiiiiieiiiiiie et 62
4.5 Single Objective Evolutionary Algorithms for Coverage Analysiscccoovveeinueene 65
451 GeNEtiC AlGOITENMS ...oeiii e 66

Coverage Analysis for GUI Testing -

45.2 Overview 0f PSO and DiSCrete PSO.......ccuiiiiiieiiiie et 68
4.6 Coverage Analysis for GUI Testing Using Genetic Algorithmcccccveveennne..n. 70

4.6.1 TeSt Data GENEIALIONcccvvieeieiieeeiieeeiee e eee et e et e et e et e et eesnbeeeanneeeaneeas 70
4.6.2 Optimization of Test Paths using Genetic Algorithm..........ccccoooeviiiiiiciee, 74
4.6.3 FIENESS FUNCHIONeiieiiiie ettt et e et e e e e e e aneee e e 75
4.6.4 REProdUCLION OPEIALOTSviiieeiiiieiie ettt 76
4.6.5 A0 =LA o PSSP 77
4.6.6 EXPErimental SETUPuoo i 77
4.6.7 EXPerimental RESUILSooiiiiieieeee s 78
4.7 Coverage Analysis for GUI Testing UsINg PSOccooviiiiiiiiiiiiiiiiiieeeeee e 81

4.7.1 Particle Encoding in PSO (Test Data Generation)cccccevvvverieeneeniieesneeneesnnns 83
4.7.2 SWArmM INITATIZALION ..o rae e ree e 85
4.7.3 POSIEION UPAALE. ... veeeiiiieeiee ettt e et e e e e aneee e 86
4.7.4 QUANILY IMBASUIE. ...t eiee e eiee ettt et e et e e et e e et e e st e e e antaeennteeenntaaeanreneas 86
4.7.5 (000 101 o] [=1u To] @ 41 (= o - OSSR SURPSTSRSTR 86
4.7.6 Working of Proposed Methodology..........cccveiiiiiiiiie i 86
4.1.7 EXperimental RESUILSccvvi it 87
4.8 Comparative ANALYSISuveiiieieiiiiiiiiiiiieeeeeeeereiiteeeeeeeeeeearreeeeeeeeeessnnnaraaeaeeeeeannnnnns 89

4.8.1 RODUSINESS ...ttt e e be et reeanes 90
4.8.2 Speed OF CONVEIGEINCEeeeiviie ettt ettt e et e e sbaa e anee e 90
4.8.3 AACCUTACY ..ttt ettt e ettt e e e e e e s ettt e et e e e e e s s e bbb b e e e e e e e e e s st bbbeeaeeeeeennnns 91
N 101111 11 1) PSPPSR PPPPPRPRION 91

Chapter 5 Multi Objective Coverage OptimiZation............ceevueeerieeeniiieeniieennieeenieeeniee e 92

5.1

GUI Test Coverage Optimization by Multi Objective Algorithmsccccevueernneen. 93

Coverage Analysis for GUI Testing -

5.2 GUI Test Coverage Optimization by MOPSOcccccoiiiiiiiiiiiiiiiiieeiiiieeeeieee e 94
521 Problem Modeling using MOPSOcccoiiiiiiiiieiiee s 95
5.3 GUI Test Coverage Optimization by Multi- Objective GA (MOGA)cccevevvvreennnns 97
531 Problem Modeling using NSGA-I.......ccooiiiiii s 98
5.4 Experimental RESUILS........ccooiiiiiiiiiiiiiiiiiiicc e e 101
5.5 ReESUILS ANALYSIS cooouiiiiiiiiiiie et e e e e e e e e et eeaeeeeeennnees 101
55.1 Comparison of Single Objective and Multi Objective Algorithms 101
55.2 Comparison of NSGA 11 and MOPSO........cccuiiiiiiiiiiiiiie s 103
5.6 SUITIMATY ... s 107
Chapter 6 Coverage Optimization Based GUI Test Frameworkcooovveiiiiiiiieeeeeenncnns 108
6.1 Oracles DeveIOPMENLteeiiiiiiiiiiiiieeee e e e e e e e errrreeeeeeeens 110
6.2 Ontology DeveIOPMENLEcceeeiiiiiiiiiiiee e et e e e e e e e e e e eeeeeeeeeeannees 110
6.3 Ontology Driven Semantic Annotation Based GUI Testing...........cccccceeeeeivvvveeeeeennn. 113
6.4 SUINIMATY .. es 116
Chapter 7 Conclusion and Future Work...........cooooieiiiiiiiiieiiiecciieeee et 117
7.1 Contributions: With Reference to Individual Chapters...........ccccceevveeeeeiiciiiieeneeeenn. 119
7.2 Recommendations for Future Workccooiiiiiiiiiiie e, 120

RETEIEIICES .ot e e e 122

Coverage Analysis for GUI Testing -

List of Abbreviations

Al Artificial Intelligence

AST Automated Software Testing

CFG Control Flow Graph

Cl Computational Intelligence

CLI Command Line Interface

CsP Constraint Satisfaction Problem

EA Evolutionary Algorithms

EFG Event Flow Graph

EIG Event Interaction Graph

FSM Finite State Machine

GA Genetic Algorithm

GAP GUI based Application

GUI Graphical User Interface

KBSE Knowledge Based Software Engineering

MARTE Modeling and Analysis of Real-Time and Embedded
systems

MDD Model Driven Development

MOGA Multi Objective Genetic Algorithm

MOPSO Multi Objective Particle Swarm Optimization

NSGA Non- dominated Sorting Genetic Algorithm

OCL Object Constraint Language

OMG Object Modeling Group

OMMMA-L Object-oriented Modeling of MultiMedia Applications - the
Language

PATHS Planning Assisted Tester for grapHical user interface
Systems

PSO Particle Swarm Optimization

RDF Resource Description Framework

SE Software Engineering

TSP Traveling Salesman Problem

UML Unified Modeling Language

UWE UML based Web Engineering

Coverage Analysis for GUI Testing -

Abstract

Software Testing is one of the most critical phases in development of software. The aim of software
testing is to create quality software products to meet the expectations of an organization. Software
testing is considered as an effort demanding activity and hence it is often neglected to some extent.
Graphical user interface (GUI) is a major contributing factor behind the popularity of software
applications in recent times. Realizing the importance of GUI’s, a lot of research concentrating on
GUI is being carried out. Moreover the importance of ensuring the correctness of GUI is of higher
value. That’s why; a software development organization must have to manage the additional testing
for the GUI. GUIs make testing systems more difficult because they inherit characteristics like event-
driven nature, unsolicited events, and infinite input domain problems. The major benefit of a GUI is

that it hides the complexity from the users and sometimes from programmers as wells.

In the end testing such applications becomes a nightmare for test team. To reduce the effort required
and shorten the duration of testing GUI, automated techniques and tools are being used now. A GUI
model based on event-flow graph is an innovative technique being utilized in the field of automated
GUI testing. The search for utmost quality assurance of software, through the introduction of
automated software testing, raises yet another challenging question, what is the required “amount” of
testing to gain confidence in quality of software? Usually this criterion corresponds to a function
known as “coverage” that measures how much of the software is to be tested? Like procedural and
command based software testing, same measure of coverage can be applied to GUI testing as well. In
the course of the development of the techniques for the automation of the software/GUI testing
procedure, this “coverage” measure can be employed to provide guidance on the quality of an

automatic test suite.

A fully automatic strategy has been developed for the generation of events to exploit the event flow
nature of GUI’s. Proposed methodology provides an analysis of GUI path test coverage based on
these recorded events. A coverage analyzer using evolutionary algorithms optimization is proposed
that performs analysis to maximize the GUI test coverage. The proposed technique uses different
variants of Genetic Algorithms and Particle Swarm Optimization. Initially, the technique has been
optimized with the aim to gain maximum test coverage and then other important attributes like cost

and number of test cases have also been incorporated with the help of multi-objective optimization.

Coverage Analysis for GUI Testing -

Based on the event driven nature of GUI, this thesis presents a GUI testing and coverage analysis
technique centered on evolutionary algorithms. Technique proposes a design pattern based profile of
GUI. This profile is further used to model the GUI and based on this modeling, testing process is
started. Ontology based annotation process is used to generate test cases based on event driven nature
of GUI systems. Test coverage analysis is used to ensure that maximum test coverage has been
achieved. Different evolutionary algorithms have been used to optimize test coverage. Finally a test
oracle based on semantic annotations and working of ontology is used to verify the output of test
cases.

]

Coverage Analysis for GUI Testing -

List of Publications

Book Chapter

Abdul Rauf, Sajid Anwar, Naveed Kazim Khan, Arshad Ali Shahid, “Evolutionary
based Automated Coverage Analvsis for GUI Testing™ Communications in Computer
and Information Science (Springer) ISSN: 1865-0929 (indexed in ISI Proceedings
and Scopus)

Journal Papers

Abdul Rauf, Sajid Anwar, Arfan Jaffar, Arshad Ali Shahid, “Fully Automated GUI
Testing & Coverage Analysis using Genetic Algorithms ~, Intemational Joumal of

Innowvative Computing, Information and Control (IJICIC) (IF=2.93)

Abdul Rauf, Naveed K Khan, Sajid Anwer Khan, Arfan Jaffar, Arshad Ali Shahid,
“Fully Automated GUI Testing & Coverage Analysis using P5SO™, Joumal of the
Chinese Institute of Engineers (IF=0.23) .

Abdul Rauf, Sajid Anwar, Naveed K Khan, Muhammad Famzan, Arfan Jaffar,
Arshad Ali Shahid, “Using Multi Objective Algonthms for GUI Test Coverage
Analysis”. Software Quality Journal (IF=0.94) [Under 224 Revision]

Abdul Rauf, M. Arfan Jaffar, Sajid Anwar, Shafiq Ur Rehman, Arshad Ali Shahid
“Multi Objective GUI Testing and Coverage Analvsis™, Special Issue of The Computer
Journal (IF=1.00) [Under 274 Revision]

]

Coverage Analysis for GUI Testing -

Conference Papers

Abdul Rauf, Sajid Anwar, Arfan Jaffar, Arshad Ali Shahid, “Automated GUI Test
Coverage Analysis using GA”, 7th Intemational Conference on Information
Technology New Generations (ITNG 2010) April 12-14, 2010, Las Vegas, Nevada,
USA

Abdul Rauf, M. Abdul Basit, Muhammad Famzan, Arshad Ali Shahid, “Extending
UML to Model GUI: A New Profile™, 2nd Intemational Conference on Computer and
Automation Engineering (ICCAE 2010), Singapore, Feb 26 - 28, 2010

Abdul Rauf, M. Arfan Jaffar, Naveed Fjaz. Arshad Ali Shahid
“PSO based Test Coverage Analysis for Event Driven Software™, Intemational
Conference on Software Engineering and Data Mining (SEDM 2010). Chengdu,
China, June 23-25 2010.

Abdul Rauf, Naveed K Khan, Arshad Ali Shahid, “Evolutionarv based Automated
Coverage Analvsis for GUI Testing”, The Third Intemational Conference on
Contemporary Computing (IC3-2010) NOIDA India, August 9-11, 2010

Abdul Rauf, Naveed Kazim_ Sajid Anwar, Shafig-Ur Eehman, Arshad Ali Shahid

“Maximizing GUI Test Coverage Through PSO™, 19th Intemational Conference on
Software FEngineering and Data Engineering (SEDE-2010), San Francisco,
California, USA, June 16 — 18, 2010.

Abdul Rauf, Muhammad Jamil. Shafiq Ur Rehman. Arshad Ali Shahid. “Search
Based GUI Test Data Generation™, 2nd Intemational Symposium on Search Based

Software Engineering, Benevento, Italv, September 7-2, 2010

Abdul Rauf, Sadia Batool, Shafiq Ur Eehman, Arshad Ali Shahid, “(QQuestionnaire

Based Usabilitv Evaluation Of Ms Word™, 1°! Intemational Conference on User

Science and Engineering, Malavsia, December 13th-15th 2010

Abdul Rauf, 53jid Anwar, Muhammad Famzan, Arshad Ali Shahid, “Ontology

Driven Semantic Annotation Based GUI Testing”, IEEE Intemational Conference on

Emerging Technologies 2010 (ICET 2010) Islamabad, Pakistan, October 18-19, 2010

Coverage Analysis for GUI Testing -

Chapter 1: Introduction

Coverage Analysis for GUI Testing -

1.1 Background and Motivation

Software testing is the most widely used approach for improving software quality in practice
[1]. Software testing has emerged as one of the most important segment of software
development life cycle (SDLC) ever since the evolution of software development. Today
software testing has become a complementary part of any organization having certain
interests vested in software products or services. Besides its importance, perhaps testing is
most costly assignment of a software development as well. More and more budget and
resources are being utilized to make certain the correctness and quality of the software. Many
of the recent well reputed surveys and reports have revealed that more than half of the
software development cost is being utilized for software testing. According to a study [2],
software manufacturers in United States of America mislay around a total of 21.2 billion
dollars because of non-optimized testing and it’s after affects. According to the same study,
total expenses incurred by shipping errors to the customers can rise up to 59.5 billion dollars.
Ever growing competition in the software industry demands software testing process to be
cost effective and efficient. A huge amount (about 22.2 billion dollars) can be saved by

employing optimized testing infrastructure [2].

It is however satirical that, regardless of so much capital and effort, software testing needs
significant amount of improvements especially when we see that a large portion of this cost
and effort is not yielding useful results. Due to the short development schedules, the software
testing activity has been facing a time limitation [3]. Automated testing can be considered as
a possible way out to improve the efficacy of software testing and reducing the budget and
schedule of this critical activity. Software test automation can also assist in getting larger test

coverage.

Software testing is performed actually to get assurance that a system does only and only what
it is supposed to do. Testing a system is a vital practice in software development as it is
impossible to develop an accurate system, thus, a vast covenant of research on software

testing has been carried through several years. Conventionally, software systems have been

Coverage Analysis for GUI Testing -

developed in a command based environment but recently, Graphical User Interface (GUI)

based approach has emerged for system development. In the GUI based development, the
graphical widgets are the building blocks of system development. Most systems comprise a
large Graphical User Interface (GUI) component, in recent times. Graphical user interfaces
are one of the most important components of modern day software and are being considered
as necessary part for most of today’s software. GUIs give user a relatively more ease and
freedom to interact while accessing the system [4]. According to the Industry reports [5]
about half of the code of GUI-based applications is being dedicated to handle the user
interface. Being acquainted with the value of GUIs, software developers are devoting more
effort, up to 50%, to implement GUIs [6]. Despite the said significance of GUIs, testing of
GUI for functional correctness remains an understudied domain. Due to a number of reasons,
testing the appropriateness of a Graphical User Interfaces (GUI) is hard [7]. Many studies
have been conducted recently to identify the problems faced during GUI testing. Some of the
findings of these studies are:

» Each GUI state has a large number of likely interactions; hence space with a GUI to

be properly tested is enormous [8].

» Due to a large number of input permutations emerging from the large number of

possible GUI states, finding out the coverage of a test suite is very complex task [8].

> A very complicated task is to validate the GUI state due to selection of objects and

their properties to be verified [8].

» Events performed on GUI drive it into different states. Not all events are allowed in
each state. Explicit or implicit protocols specify the allowed (and sometimes

disallowed) event sequences [9].

» Testing GUI requires the development and execution of test cases to test the GUI for

invalid input event sequences [9].

> ltis difficult to design robust test oracles (mechanisms to determine whether software

has executed correctly for a test case) for GUI [9].

» The run-time environment in which a GUI executes may change the GUI’s behavior

[9].

Coverage Analysis for GUI Testing -

> Itis difficult to create a representation of GUI. Finite state machine (FSM) models in

addition to representations for conventional software fail to scale for large GUI [7].
Event flow graph (EFG) has emerged recently as a widely accepted technique for this

purpose [7].
> Itis very hard to determine what to test in GUI based applications.
» Generating inputs for GUI test is also a non-trivial task.

» Coverage criteria help to determine rules used to select test cases as well as it
determines how much amount of testing would be sufficient. To determine if the GUI
was adequately tested or not is also one of the challenges being faced in GUI testing
[10].

» Model based representation has assisted software testing in many cases. But it has

been still a problem to have a complete and agreed upon representation of GUI [9].

Large numbers of events, their possible permutation and complex interactions among GUIs
events present novel challenges for GUI testing as have been listed above. While it is a
difficult task to test each event, isolated events testing is never enough; context of an event
must be executed while testing. Another issue of GUI Testing is higher cost of script
maintenance: a change in the GUI requires changes in the replay script. Also GUI testers
mostly take up capture/replay tools [11, 12]. Another alternative for this issue is to
implement techniques that automate the construction (and execution) of new sequences [13].
However, all of these techniques need a lot of effort and besides these huge efforts, these

techniques do not assure complete testing of GUI applications.

This thesis aims to achieve maximum test coverage regardless of the difficulties in GUI
testing. Considering the inter-dependent nature of GUI events, we would try to show that
without considering the strict ordering constraints, we can have very good coverage of GUI
events by using evolutionary algorithms. Also we would expose the opportunities of building
a close relation between semantic annotation and ontology engineering and this close
relationship would be used from test case generation to oracle development. Evolutionary
algorithms based coverage analysis along with ontology based test case generation and

semantic annotation based oracle would constitute a complete framework for GUI testing.

Coverage Analysis for GUI Testing -

1.2 Problem Statement

“What constitutes an adequate test suite?” Goodenough and Gerhart raised this issue, in
1975[7]. Testing software is hard; knowing that software is well tested is even more difficult.
One considerably believed measure is that of coverage determination. In software testing,
coverage is generally referred to as “the ratio of basic code blocks that were exercised
by some test, to the total number of code blocks in the system under test” [14].
Coverage criterion refers to a set of rules to determine adequate testing of a program by a test
suite and hence can be used to guide the testing process. Different techniques i.e., path
coverage, branch coverage, code coverage etc are well in use in software testing. In contrast,
the number of syntactically legal paths in a GUI software is generally enormous and
therefore un-testable in practice to some extent. Most of existing GUI testing tools are based
on capture/replay. But capture/relay tools have many problems like problems of localization
(Language and local formats). These tools can also be considered as slower and expensive
because of manual control. The GUI is not as transparent as the code of a system and hidden
logic behind GUI is very sensitive. Due to this reason, GUI systems react too much against
smaller changes whether applied on them or in the environment where that GUI lies.
Software with a GUI front-end consists of two parts: (1) the underlying code that implements
the business logic and (2) the GUI front-end that facilitates user interaction with the
underlying code. Interaction of a software user with the GUI is possible via different events,
i.e., clicking the buttons, selecting menu options, and text inputs. GUI uses method
invocations and messages to make possible the interaction of input events with the

underlying code [15].

Due to limited number of resources it is quite difficult to execute all code and test all paths
during testing. Moreover no one can assure that all faults have been uncovered in a specific
application or a system [16]. To overcome these limitations, software testers use a bench
mark named adequacy criterion. This criterion basically, is an indicator of sufficient testing
and can be used as a signal to stop execution of further test cases. Also this criterion can be
used to reduce the size of test-suite and to direct the process of test cases generation, if
required [17].

Coverage Analysis for GUI Testing -

Aims of this research include providing a criterion based on computational intelligence for

adequate GUI testing, to define a coverage criterion and to analyze the coverage based on
feedback for optimality of testing. The research presented in this thesis focuses on GUI
modeling, Determining an adequate coverage criterion and analysis of GUIs test coverage
criteria. The coverage analysis will be used to enhance the coverage achieved based on
knowledge based software engineering (computational intelligence techniques) and for
reporting purposes. This thesis also proposes a method based on semantics and annotation for

development of automated test case generation and oracle development for GUI testing.
In order to achieve our desired goal, we have set the subsequent objectives:

Exploring the major segments Dflthe GUI Testing Life Cycle

Understanding of the role of measurements in improving GUI Testing process

Investigation into the awvailable representations of GUI and proposing modeling of

GUI that can help in testing processes.

Investigation into the attributes of Coverage Criterion and Coverage Analvsis

processes those are measurable

Understanding of the current coverage analvsis techniques and to measure the

identified attributes of the GUI coverage.

Analvsis of GUI Test case generation techniques and investigation of new techniques

feasibility based on semantics, annotations and ontology.

The work in this thesis expands in three different directions basically. In the first step, we
have explored literature to sort out different representations of GUI that have been tried so
far, and have presented a unique way of modeling GUI. In the second step, we have reviewed
different coverage criteria for software testing, feasibility of each of these criteria for GUI
testing and proposing a new coverage criterion for GUI testing specifically. This new
coverage criterion is based on Knowledge Based Software Engineering (KBSE), Techniques
like neural networks, evolutionary algorithms, and fuzzy systems are progressively being
used for specific Software Engineering (SE) problems in KBSE [18]. Coverage criterion
proposed for GUI testing uses evolutionary algorithms. This criterion helps in improving the

coverage and ensuring the quality of GUI. Alsmadi et.al presented a GUI model that was

1.3

Coverage Analysis for GUI Testing -

developed from the implementation. GUI test cases are created dynamically and a tool uses

the test cases as input and executes them using some API’s that simulate the user actions.

Each successfully executed control is logged [19]

In this research, we studied GUI model and test results’ optimization. GUI test automation is
not a cure-all that should be taken as the only solution. We automate to save time and
resource and we do not expect everything to be automated. In the last phase of the thesis, an
innovative technique to produce GUI test data as well as test oracle development has been

proposed. This technique uses concepts of semantics and ontology development.

Knowledge Based Software Engineering

The application of artificial intelligence (Al) technology to software engineering (SE) is
known as Knowledge Based Software Engineering (KBSE) [20]. A growing interest can be
seen today to bring research directions of both disciplines (Al and SE) closer and such efforts
are now building new research areas. Knowledge-Based Systems (KBS) are being
investigated for learning software organizations as well as knowledge engineering [20]. With
the application of artificial intelligence technique in software engineering and testing, there
will be emerging the zone of a study which brings near the cross fertilization of the ideas
from these two domains [21]. It is resource consuming and infeasible to adequately test the
graphical user interface. More over it is very difficult and expensive to automate GUI testing.
By employing KBSE, we can make possible the feasible automation the testing process for

GUI and minimize the consumption of resources.

KBSE systems are quite knowledge rich as they are designed for assisting software engineers
in low-level everyday maintenance tasks [22]. KBSE systems require a quite wide body of
knowledge and sometimes use computationally demanding, deductions and other algorithms.
As they have the potential of representing and deducing the relations among components of a
software system [22]. Software testing is a vital, yet very expensive and time-consuming
practice. Hence, automation of any phase of software testing life cycle can reduce costs for
the testing activity. While there are many research directions in testing automation, from

theory through application, the main focus of this thesis is a proposal for implementation of

1.4

Coverage Analysis for GUI Testing -

knowledge based techniques for measuring the activities of GUI testing process and making

it more predictable.

Computational Intelligence (Cl), a branch of Al plays an important role in research about
software testing as well as for software quality assurance in software development. Many
evolutionary algorithms are being used throughout the software testing life cycle.
Evolutionary testing (name given to software testing based on evolutionary algorithms) uses
a kind of meta-heuristic search technique. A number of researchers did the work on software
testing using evolutionary algorithms, i.e., simulated annealing, genetic algorithms, particle
swarm optimization and ant colony optimization. Using evolutionary computations,
researchers have done some work in developing genetic algorithms (GA)-based test data
generators [23, 24, and 25].

In the past few years, there has been an impressive raise in work on Knowledge Based
Software Engineering (KBSE). Of all the areas of Software Engineering activity to which
KBSE techniques have been applied; software testing is both the first area tackled and that
which has received the most widespread study. Although knowledge based GUI testing is not
a well researched area, in this research, we studied using GUI model and test results’

optimization. GUI test automation based on concepts of KBSE.

The Goal of the Thesis

Rapid change in usage profile can ultimately make test suites (written with certain use cases
in mind) look like as inadequate and ineffective ones in testing graphical user interface
applications. Unlike non-GUI applications, a little change in GUI applications changes the
testing scenario completely. Moreover such small changes and increments are frequent.
Handling GUI test process manually, hence poses a complex and daunting task. Computer

assisted applications can reduce the effort required in this task.

Bringing Al and software engineering together in the form of KBSE has resulted in many
well-engineered artificially intelligent systems with a firm software engineering backbone. In
recent years, the application of Al is tremendously very high especially it has provided

advantages in cases when many complex decisions need to be made. A major area in

1.5

Coverage Analysis for GUI Testing -

computer software is adding Al knowledge to increase the correctness and efficiency of the

system. Software testing tools can benefit from such knowledge. There appears to be an
immense opening in using artificial intelligence techniques to abet software engineers in

software testing.

Broadly speaking, the endeavor of this thesis is to consider the application of artificial
intelligence specifically evolutionary algorithms in graphical user interface testing and
coverage analysis. This is the junction of two entirely different research fields, GUI testing
and evolutionary algorithms. Former has been widely ignored by researchers till recent times,
while the later one has been widely accepted and researched from the day of its emergence.
Bearing in mind the impact of testing, and the ripeness of evolutionary algorithms, it seems,
the time has come for Al researchers to stick together with the software testing professionals

for making possible optimal testing of software systems.

Using a variety of evolutionary algorithms and event paths used by GUI test professionals,
we extract what we call event coverage among events in the system under testing. The
expectation is that the event coverage will enlighten the testing professional to understand
existing coverage achieved through current testing practices and will assist to maximize the

test coverage within the target system.

Thesis Contributions

The intention behind this research thesis is to propose visibility into the GUI testing process
on the basis of test measurements, with a focus to possible measurements in GUI test
coverage analysis. Since lack of measurement is considered to be one of the reasons for
unpredictable software development [26], it is expected that the thesis will contribute
towards the efforts of making the software testing and especially GUI testing process more
predictable and measurable. Earlier it was believed that testing is simply execution of tests.
[26], but now days, there are many metrics in software testing based on number of defects
found, time required for software testing, number of defects fixed and coverage gained

during the testing process. While considering the case for GUI, there is a noticeable

Coverage Analysis for GUI Testing -

ignorance related to the metrics for GUI testing. Therefore, by concentrating on the role of

metric support in GUI test coverage; this research will contribute in filling part of this gap.

Following are the contributions of this thesis, i.e., the specific technical issues and whose

solutions presented in this work add to the state of the art in one or more fields of GUI

modeling, GUI Test Data Generation, GUI Test Coverage Analysis, and in GUI Test Oracle

Development:

Vi.

Vii.

viii.

Proposing a model of the GUI based on design patterns so that they can represent

properties of GUI modules [27].

A thorough investigation of the existing coverage measures for GUI testing and

identification of various limitations present in these techniques.

Development and explanation of a new technique that utilizes the concept of event
driven nature of GUI for determining the coverage achieved through different
evolutionary algorithms [28, 29, and 30].

Proposition and implementation of Genetic Algorithm (GA) for coverage analysis of
GUI testing [12, 26].

Proposition and implementation of Particle Swarm Optimization (PSO) for coverage
analysis of GUI testing [28, 31].

Proposition and implementation of Multi Objective Genetic Algorithm to gain
multiple objectives in GUI testing. These multiple objectives include having a

balance between number of test cases and coverage achieved in GUI testing [32].

Proposition and implementation of Multi Objective particle swarm optimization to

have a tradeoff between cost of testing and coverage achieved in testing [33].

Producing a large number of examples from some user generated applications and
some very common built-in GUI applications appropriate for the use of machine

learning tools and techniques.

Developing an ontology based on these semantic information to generate test cases
[34, 35].

Coverage Analysis for GUI Testing -

1.6 Thesis Organization

The primary objective of software testing is to uncover the faulty behavior of underlying
application. Two major techniques used for this purpose are: execution-based testing and
static analysis [36]. In first case, applications are tested by executing and identifying the
incorrect behavior, while in other case, non-execution-based testing, tests applications based
on their observance to requirement specifications. This thesis focuses on execution-based
testing of GUI applications, where a tester performs execution of different test cases to not
only identify the faulty code but also to determine the quantity of testing with respect to that
software (test coverage). Overall, we have tried to provide an outline of different phases of
GUI testing process. Our overview starts from modeling of GUI (to support testing process)
and it continues till the testing through life cycle of GUI testing (e.g. data generation, test
oracle generation, test coverage measurement and evaluation and optimization of our testing
process). We have divided the thesis into 3 parts excluding the first part which is introductory
one. Introductory part consists of Chapter 1 and Chapter 2. This part gives users a brief
overview of software testing and GUI testing and a literature review of GUI modeling, GUI

test data generation and optimization and coverage measurement and optimization.

Part 1: In Part 1, we begin our GUI testing process with GUI modeling in chapter 03. Model
based testing has proven to be a success from a range of prospective in software domain.
With the help of design patterns and using stereo types, modeling has been applied for GUI

systems and applications.

Part 2: Part 2 encloses the second goal of thesis. Coverage criterion is considered as
completion criteria and a measure of software quality in testing. This domain specifically for
GUI testing was not explored thoroughly. This part deals with knowledge based software

engineering to deal the issue of coverage measurement and coverage analysis.

In Chapter 4, we have used evolutionary algorithms to evaluate the coverage achieved while
testing GUI applications and systems. Furthermore, evolutionary algorithms have been used
to maximize the coverage achieved while testing GUI applications. In Chapter 5, continuing
our urge to optimize GUI test coverage, we went one step further to gain multiple objectives.

In Chapter 4, it was quite evident that spending more resources and extending the schedule

Coverage Analysis for GUI Testing -

resulted in increased test coverage. But in Chapter 5, we have applied multi objective

evolutionary algorithms to have a tradeoff between coverage achieved and cost to achieve
this coverage.

Part 3: In the third and the last part, we have used ontology for GUI test process. Semantic
annotations can be used for ontology development and manipulation. This ontology can be
exploited for two specific purposes:

» GUI test data generation and optimization
» GUI test oracle generation
Chapter 6 discusses the above mentioned ideas from different prospective.

Finally in Chapter 7, conclusion has been provided of the thesis.

Coverage Analysis for GUI Testing -

Chapter 2 State-of-The-Art Automated GUI Testing

“A clever person solves a problem. A wise person avoids it.” Albert Einstein

2.1

Coverage Analysis for GUI Testing -

This chapter is intended to focus on two things and hence, has been divided in to two parts.

First part offers preface of an introduction of software testing terminologies, an overview of
software testing, and GUI testing. Software testing techniques, types and levels of software

testing, and GUI testing have been presented in this part.

Second half of this chapter is devoted to explore the state of the art in knowledge based
software testing and in GUI testing. The purpose of this part is to give a brief overview of the
ongoing research in these three areas so that reader can get a familiarity before moving

towards our own research and contributions.

Software Testing

Software testing is an assessment procedure to find out the occurrence of errors in computer
software. Testing is basically an evaluation action which observes outcome for specific
inputs. The software is questioned under various snooping inputs, and its behavior is weighed
up against expected outcomes. To elaborate the concept of software testing, here we present

some definitions of the term software testing.

» According to IEEE (in 1998), software testing can be defined as: “Testing is the
process of analyzing a software item to detect the differences between existing and

required conditions (that is, bugs) and to evaluate the features of the software item”
[37].

» Craig & Jaskiel defined software testing as: “Testing is a concurrent lifecycle process
of engineering, using and maintaining test-ware (i.e., testing artifacts) in order to

measure and improve the quality of the software being tested” [26].

» 1In 1979, Myers presented the following definition of software testing, “The process of

executing a program or system with the intent of finding errors” [3].

» Hetzel (1983) defined software testing as “The measurement of software quality”
[38].

Software testing is conceivably the most costly assignment of software development. In one

estimate, the testing segment consumes over 50% of the project assets [39]. Software

Coverage Analysis for GUI Testing -

manufacturers in United States, according to an estimate, lose about 21.2 billion dollars per

annum due to poor testing and errors uncovered by their clients [2]. Consequently, raising the
excellence of software and effectiveness of the testing procedure can be seen as a
successfully striking way to trim down software costs finally. Some of the major objectives
of software testing are to ensure following attributes in a software project [40]:

» Product’s usability
Satisfaction of customer’s requirements
Reliability of the product

Integrity of the software system

YV V VvV V

Smooth execution of software in the given constraints.

Before going further into details of software testing and its life cycle, here few terms related

to software testing are being explained.

2.1.1 Test Plan

“A test plan is an artifact that expresses the objectives, scope, technique, approach and focus
of a software testing effort” [41]. Test plan helps readers to understand why and how of the
software testing; so, it is recommended that test plan should be thorough enough to be useful

for this purpose.

2.1.2 Test Case

“A test case is an artifact that delineates the input, action and expected output corresponding
to that input” [42]. A test case is considered to be as successful if it reveals some unknown
error(s). On the other hand, in some situation we might design some test cases with intention

to fail, so that we can check the soundness of test cases.

2.1.3 Test Script

“A test script is a combination of test cases to test a particular function or component of the

system” [42].

Coverage Analysis for GUI Testing -

“A collection of test scripts to test all functionality of a complete system” [42].

2.1.4 Test Bed

2.1.5 Test Oracle

A test oracle is an instrument to determine whether the program has went successfully or
unsuccessfully through a test. Oracle can be defined as “A source to determine expected

results to compare with the actual result of the software under test” [42].

Different artifacts can be used as an oracle. These include existing system, a user manual, or
an expert’s knowledge. A test oracle should never be based on the code. According to [43], a

complete oracle would hold following three qualifications completely [43]:
» It would work as a generator to endow with expected results of each test case.
» Works a comparator, between expected and actual results.

» Would work as an evaluator to decide pass or fail of the test cases.

2.1.6 Black Box Testing

The black-box testing technique is based directly on specified functional requirements and
has no concern considering the ultimate program structure [44]. Black box testing is also
known as data-driven testing, input/output driven testing [3], or requirements-based testing
[38]. As in black box testing, no more than the functionality of the software module is of use,
it is also referred as functional testing -- a testing method giving emphasis to execute the
functions and examine their input and output data [44]. Black box testing takes into account
the external view of the test object for the development of test cases. In black box testing, no
internal structure knowledge of application is required. The tester treats the software under
test as a black box, and the functionality is determined by observing the outputs to

corresponding inputs.

2.1.7 White Box Testing

White Box Testing can also be termed as glass box testing, clear box testing and structural

testing [38, 3]. It makes use of an interior viewpoint of the application under testing.

Coverage Analysis for GUI Testing -

Contrary to black-box testing, software is viewed as a white-box or glass-box testing, as the

structure and flow of the software under test are visible to the tester.

2.1.8 Gray Box Testing

It is a new and emerging type of software testing, and is exactly as it sounds-- a mix of Black
Box and White Box. It attempts to adapt the strengths of each type and mould them into a
“whole” testing that is greater than the sum of its parts. Grey Box can take the ease-0f-use,
straightforward approach of Black Box testing and leverage it against the in-depth, code

targeted testing of White Box.

2.1.9 GUI Testing

One agreed upon factor responsible for popularity of software systems is Graphical User
Interface (GUI). The goal of GUI testing is to ensure that the graphical user interface
provides the user with the appropriate access and navigation through the functions of the
application. In addition, GUI testing ensures that the objects within the GUI function is

expected and conform to corporate or industry standards.

2.1.10 Clean Room Software Engineering

The clean room software engineering process is the development process with the intention
that the software product is at certified level of reliability with zero defects. It describes the
external performance of system by formal specifications. The process focuses on defect
avoidance, but not the defect removal. This approach minimizes rework due to earlier found
errors -. The Iterative approach is followed in Clean room development. The model develops
iteratively. The development is done in increments and each increment is tested against the
pre defined standards. Functional specifications and usage specifications help in developing
usage model. Hence, before writing a code, all information for development should be
available. The model helps developers in understanding significance of each function. It also
helps tester in constructing effective test cases. The customer also reviews the usage model.
Statistical experiments and principals are used for software testing in this approach. The
subsets of inputs/outputs are selected on the basis of formal specifications. Test cases are
developed with proper start and end state. The test plan and test environment is designed.

Then these test cases are run on the usage model and each test case guarantees independent

2.2

Coverage Analysis for GUI Testing -

trails. The result of the test cases is found by comparing the real behavior of system with the

required behavior. On the basis of these results decisions are taken;--whether to go for further
testing or stop testing for changes or finalize the product., If certain level of reliability is

gained in clean room software engineering, then testing will stop.

2.1.11 Statistical Testing

It is an investigational way to verify if or not product meets its reliability requirement. In this
testing, usage models are developed and then these models are used for generating test
samples. The testing guarantees that the most frequent failures while using the software will
be uncovered early. The model is based on the specification of the software.

There are precise conditions in this testing followed by a well defined procedure. Each test
case has an independent trail that results in one or more outcomes. The benefits achieved by
statistical testing are that firstly, it is performed on the actual operational environment of
software. Secondly, it uses statistical techniques for calculating the results. In some cases

testing is entirely automated from the generation of test cases to results.

Automated Software Testing

The testing paradigm can be separated into manual testing and automated testing.
Automation is a good way to cut down time and cost. Automation is generally supportive
while managing recurring responsibilities like unit testing and regression testing, where test
cases are carried out whenever modifications are completed [45]. In contrast to manual
testing, automated testing is inappropriate for tasks in which there is little repetition [46],
such as explorative testing or late development verification testing. Manual testing is more
suitable for these activities as building automation is an extensive task and feasible only if
the case is repeated several times [46]. However, the division between automated and manual
testing is not as straightforward in practice as it seems; a large concern is also the testability
of the software [47], because every piece of code can be made feebly enough to be

impossible to test it reliably, therefore, making it ineligible for automation.

Coverage Analysis for GUI Testing -

Overall, it seems that the main drawbacks of testing automation are the costs, which include

implementation costs, maintenance costs, and training costs. Implementation costs include
direct investment costs, time, and human resources. The correlation between these tests
automation costs and the effectiveness of the infrastructures have been discussed in literature
[48]. The application of test automation in test case generation has been studied in [49, 50] as
well as in GUI testing [51, 52].

The prime challenge today for testing software is that customers want more software
functionality to be delivered faster and cheaper. At the same time, they expect the quality
of the software to at least meet if not exceed their expectations. Simply stated, there is
more software to test, increasing complexity, more often with fewer people. The current
manual testing methods cannot keep pace. Automated Software Testing (AST) is a key
technique that addresses some of the challenges software testers face today. Our experience
has shown that if implemented correctly, AST can

» Reduce the time and cost of software testing,
» Improve software quality,

» Enhance manual testing efforts via increased testing coverage and replace the

manually mundane and labor intensive tasks,

» Does what manual testing can hardly accomplish, such as memory leak detection

under specific conditions.

2.3 Measurements in Software Testing

Measu.rements also have to offer benefits to software testing, few of which are being

highlighted below described bv Bumstein [54]:
Identification of testing strengths and weaknesses.
Providing insights into the current state of the testing process.

Ewaluating testing risks.

Benchmarking.

Coverage Analysis for GUI Testing

> tmprmdng testing effectiveness.

Ewaluating and improving product quality.

BSupporting controlling and monitoring of the testing process.
Two very well known metrics in software testing are

a) Complexitv based metrics

b) Coverage based metrics

Complexity based metrics can either be of cvclomatic complixity type or algorithmic
complexity tvpe. Cvclometic complexity measures the number of linearlv independent paths,
while algorithmic complexity emphasis is placed on computatuional difficulity. On the other
hand, coverage based metrics are expressed in terms of a ratio between the metric items

executed or evaluated at least once and the total number of metric items.

IEEE Std. 982.2 - 1988 defines a functional or test coverage metric. It can be used to measure
test coverage prior to software deliverv. It provides a measure of the percentage of the

software tested at anv point during testing [35].
One simple way to calculate test coverage metric is as follows:
Function Test Coverage =FETFT

Where FE is the number of test requirements that are covered bwv test cases that were

executed against the software and FT is the total number of test requirements

2.4 Test Coverage

Software engineering research has two kev objectives: the reduction of costs and the
improvement of the qualitv of products [36]. ifesting is potentially endless. We cannot test
till all the defects are unearthed and removed -- it is simply impossible. At some point, we

have to stop testing and ship the software. The optimistic completion rule of software testing

Coverage Analysis for GUI Testing -

is to stop testing when either reliabilitv meets the requirement, or whenever some or anv of

the allocated resources - time, budget, or test cases -- are exhausted [37, 38].

Another completion criterion can be the “quantity of testing” in terms of coverage achieved
through testing process. But coverage achieved through testing process has emerged as a
challenging question in software testing. On the other hand, looking to ensure software
quality by means of the automated software testing has put forward exigent questions of
determining the “quality” as well as “quantity” of the software testing. To address the first
concern, evolutionary algorithms can be used to evaluate and extend the information about
the quality of a test suite based on some predefined criteria or rules of automated software
testing process. This test criterion usually keeps up a correspondence to a “coverage
function” that quantifies that how much the automatically generated optimization parameters
are satisfying the given test criterion. Hence it addresses our second concern of quantity of

testing process.

Coverage is measured by implementing a program to determine how thoroughly a test suite

exercises it. Test coverage generally focuses on two aspects:
a) Features to be tested
b) Features not to be tested

First aspect highlights the features that are to be tested based on the implicit and explicit
requirements from the customer, while the list of out of scope features is mentioned in

second aspect.

There are two broad classes of coverage measures. Path-based coverage requires the
execution of particular components of the code of the program such as statements, branches,
or complete paths; hence, these techniques are also termed as code coverage techniques as
well. Fault-based coverage requires that the test suite exercise the program in a way that

would reveal likely faults.

100% feasible coverage appears to be a reasonable goal. How should it be achieved? When

coverage is first measured, there will be uncovered conditions. How are they to be handled?

Defining a coverage criterion entails defining a test model, either from specification and

design models or source code. For example, the well-known control flow coverage criteria

Coverage Analysis for GUI Testing -

(e.g., all edges) are based on a control flow graph resulting from static analysis of the source
code.

Coverage

Criterion

SRS

[Requirements

Test Cases

Specification]

Figure 2.1 Role of Coverage Criterion in Software Testing

2.5 Graphical User Interface Testing

A graphical user interface (GUI) (sometimes pronounced as gooev [39]) is a tvpe of user
interface design that allows people to interact with programs in more interactive wayvs than
simply text commands. The first interactive user interface to computer applications was the
text-and-kevboard based user interface, encompassing commands that one has to tvpe in with
kevboard. A GUI offers graphical icons, and wisual indicators, as opposed to text-based
interfaces to fullv represent the information and actions available to a user. First
demonstration of wvisual objects on the screen can be traced back to MIT PhD thesis
‘SketchPad™ of Ivan Sutherland waw back in 1963 [60]. This SketchPad used a light-pen for
the manipulation of objects including grabbing objects, moving them, changing size, and
using constraints. Later on, Reaction Handler created by William Newman at Imperial
College, Lbndan in 1966 introduced "Light Handles" that was probably the first "widget"
[60].

Coverage Analysis for GUI Testing -

All of the most wonderful and powerful code is wasted if it is not available to a user. The
GUI is the simplest way to interact with people who are not computer literate. The graphical
point-and-click interface has opened up the world of computers and computer software to
millions of people all over the world. The interactions that the user can have with software
that are not text-based fall into the realm of GUI. GUI testing is focused on ensuring that the
menus, buttons, icons, etc. perform as designed. GUI testing is making sure that the GUI
conforms to the design requirements. Are the colors, fonts and control placements done
according to the specifications? All of the under-the-hood functionality is useless if the user
is unable to access it. If selecting any onscreen button produces an effect other than what is
intended, that is also no good.

Unfortunately, GUI testing is far more complicated. Just like every other new technology in
the software industry, the development of the graphical user interface has encountered
difficulties of its own. In particular, GUI testing is tedious and difficult to automate. Unlike
textual user interface testing, in which one can practicallv call all the components in one
script, there i1s no method available to stimulate all the graphical components without a
human touch. In other words, testers have to be there to initiate all the actions.
Traditionally, GUI applications have to be tested manually: the testers have to sit in front of a
computer and tvpe in characters, move the mouse, and click on buttons, and so on. This
problem is deeply rooted in the purpose of GUIs™ existence- thev are designed to interact
with humans, not machines. This also gives rise to another problem associated with GUI
application testing— the lack of result-validation ability. Virtually, all non-trivial GUI
applications require a separate batch job to be developed to verify the test results. Worst of
all, changes and modifications made to the applications verv often force re-tests using the
GUI interface, even though most of the changes have no direct impact on the GUI
components. Thus the GUI testing in the software industrv becomes a verv tedious, costly

and error-prone process due to the lack of repeatability.

GUI test automation is a major challenge for test automation activities. Most of the current
GUI test automation tools are partially automated and require the involvement of users or
testers in several stages. Test automation tools are still complex and expensive. Thev don’t

fullv replace testers. They can be usually used to re-execute those repeated tasks. Companies

2.6

Coverage Analysis for GUI Testing -

consider taking the decision to buv (or not), a GUI test automation tool as a tough decision

since thev don’t know how much time it will require upfront for setup [61]. Thev also don’t
know how much of test automation tasks can be fullv or partiallv automated. There is a

common agreement that complete coverage in test automation is impossible.

There are several research publications about GUI testing using the data model [62-68].
Driven by the desire to reduce the cost of testing, some useful GUI testing tools have been
developed bv various companies. Most of the tools are capture-and-replay tvpe applications
having several problems and issues [69]. The need to reapply all test cases when the GUI
changes, the complexity in editing the scripts code, and the lack of error handlings are some
examples of those issues. The reuse of test oracles is not verv useful in the case of using a
capture/replay tool [70]. It is well known that GUI components are modified and redefined
throughout the development process. The generated test scripts are unable to keep up with
design changes. The GUI testing framework described, as a GUI test automation structure, is

generic and should be applied to anv testing or GUI testing model.

Graphical User Interface Testing Techniques

There are many techniques for the graphical user interface testing created by different
researchers. Memon et. al. has created a framework named as Planning Assisted Tester for
grapHical user interface Systems (PATHS) that uses artificial intelligence planning to
generate the test cases. PATHS uses the GUI description and creates the test cases and test
oracle (pre-conditions and post-conditions) from task [62]. The author has proposed a model
for GUI testing which consists of test case generator, test oracle generator, test executor, and
test suite management for regression testing. This framework can be applicable on wide
range of GUI and is also extensible in a sense that many new techniques can be added in it. If
any fault occurs in the GUI of the software, it is recorded on the web many times and then
some test cases are applied according to the bug or fault to fix it. Table 2.1 depicts the role of

PATHS during test case generation.

Coverage Analysis for GUI Testing -

Phase Step Test Designer PATHS
Derive Hierarchical GUI
1
Operators

Setup Define Pre-condition

2 and effects of
Operators
) 3 Identify a task T
Plan Generation

4 Generate Test Cases for T

Table 2.1 Role of Test Designer and PATHS in Test Case Generation [71]

Memon can be considered as pioneer of GUI testing. The work done by him has mainly
centered on modeling which is subsequently used for GUI testing and defining a coverage
criteria for GUI testing. On the other hand, the work undertaken in this thesis centers around
optimization of GUI testing. The work done by Memon in GUI test coverage was
instrumental in development of three techniques: event-coverage, event-flowgraph coverage
and event-interaction graph. While we have used event-graph technique, based on this
technique we further used artificially intelligent algorithms to maximize the test coverage for
GUI testing [7].

The work carried out in this research represents a significant improvement over the existing
GUI testing approaches since they only automate the execution and recording of the test
cases, while our work helps test case execution by finding and selecting optimal test cases. In
summarizing all of this, we can say that work conducted by Memon revolves around
performing model based GUI testing while we have further extended his work in the domain

of GUI testing by optimizing the test coverage with the use of Al techniques [7].

Another technique widely used for GUI testing is based on capture/replay. This technique is
often used for regression test development and automatically determines the test cases that
are useable or unusable after the changes in graphical user interface, and then it determines
that which unusable test cases can be repaired so these becomes usable for the modified GUI.
The alternate method adopted for this is that user created the valuable test cases. Existing test
cases get two states called “Usable” and “Unusable” after making changes in GUI. The
useable test cases cannot be modified and are rerun. Unusable test cases are modified

according to the new changes in requirements. Unusable test cases can be deleted also. For

2.7

Coverage Analysis for GUI Testing -

example a test case written for a button click and client wants to delete that button, and then

the test case written for that button is unusable and can be deleted. Likewise, other test cases
can be modified according to the requirements modification in graphical user interface [68].

Another technique being employed for GUI testing technique is based on program slicing.
This technique is language independent and also allows reverse engineering. In program
slicing components are divided into small parts based on program dependency graph and
then test cases of each component are written [72].

Manual black box testing of GUI based Application is non-trivial, since it contains hundreds
of GUI screens and thousands of GUI objects. By test automation, cost is highly reduced for
testing GUI-based Applications (GAPs). GUI-Directed Test Script is also used for testing
GAPs. In this technique, test engineers manually write test scripts for automation of test
process. This technique needs extra effort from test engineers to re-write test scripts for new
version of GAPs with modified GUI [73]. By using this approach test engineers write
programs using scripting languages (JavaScript, VB Script), and these test scripts are copied
by user for testing of GUI objects under GAP testing framework.

Knowledge Based Software Testing

Knowledge-Based Software Engineering is a new area in research and its roots can be traced
back to Knowledge-Based Software Engineering Assistant (KBSA). Rome Air Development
Center (now Fome Laboratory) published a report emphasizing the need for on KBSA in
1983, According to this report, the development of KBSA would make use of artificial
intelligence techniques in all phases of the software development process [74]. KBSE is the
application of Al technologv to software engineering [73]. According to another literature, it
is an approach that integrates methods from Al and software engineering [76]. The prominent
feature of KBSE technology is the utilization of knowledge-based technologyv along with
explicit coding of the knowledge. Basically, the focal point of Al is dealing with knowledge
in terms of representation, reasoning, and extracting useful information from large amounts

of it [76].

Green has devised following five goals for KBSE [74]:

Coverage Analysis for GUI Testing -

I. Formalization of the artifacts of software development and relevant software

engineering activities.

I[l. To record, organize, and retrieve the knowledge behind the design decisions by

using knowledge representation technology.

1. Production and validation of source code from formal specification using
knowledge-based assistance.

IV. Development and validation of specifications based on produced knowledge-

based assistance.
V. Management of large software projects by producing knowledge-based assistance.

The application of artificial intelligence (Al) techniques in Software Engineering (SE) is an
emerging area of research that brings about the cross-fertilization of ideas across two
domains. A number of published works, for example [77] and [7€], have begun to examine
the effective use of Al for SE related activities which are inherentlv knowledge-intensive and
human-centered. It has been identified that one of the SE areas with a more prolific use of
AT techniques is soffware testing. The application of artificial intelligence methodologies in
software testing have been reported in several accomplished works. The varieties of Al based
tools are applied for test data generation, search, optimization and coverage analvsis and test
management. Automated test data generation [79] has become authentic approach for
software testing. The various forms of this technique have been found with simulated

annealing [80] and other evolutionary algorithms.

Evolutionarv testing is a new ingress in KBSE. Evolutionary testing is a phrase that indicates
the scenarios where an evolutionary algorithm (e.g., genetic algorithms) plays a role to camry
various test automation tasks [81]. The derivation of test cases to stress the response time of a
real-time system [82] is an example of evolutionary testing. As such, it is important to
empiricallv investigate their capacity to achieve the desired objectives (e.g., generate stress
test cases), their scalabilitv in terms of the complexitv of the system under test_ and the inputs

of the search algorithms so these techniques can be considered as heuristics [83]. A genetic

algorithm (GA’s) is especially appropriate to the solution of indefinite problems or nonlinear

complex problems [84]. The critical impression of genetic algorithms (GA's) is to replicate

Coverage Analysis for GUI Testing -

the progression law of nature’s unrefined struggle and natural selection. GA is competent

enough to select the better species from the mother generation and randomly interchanging
gene information in order to produce a better generation [85]. With steady fruition, the track
would grant a generation that is best accustomed to the environment [85]. Among the studies
conducted for software testing, many of them focus on using genetic algorithms (G.A). In
order to generate test-data for branch coverage, Jones et. al., proposed a technique which uses
GA for this purpose [86, 87]. This technique has proven very effective when used with set of
small programs. This technique applies the acyclic control-flow graph (CFG) to guide the
search, and the fitness value is based on the branch value and the branching condition.
Michael et. al., have developed a tool for generating test data on basis of four different
algorithms [88]. Two of these algorithms were based on genetic algorithm. They named this
tool as Gadget. This tool gives good condition/ decision coverage of C/C++ code [88].
Gadget requires that each branch in the code should be taken and that every condition
(atomic part of a control-flow affecting expression) in the code should be true at least once
and false at least once.

Generating a set of basic test cases might be easier to implement and improve the test quality
and efficacv which normally rehu_i.res substantial effort and investment. The test cases_ that
software tester generallv provide easilv cover 30-70% of introduced faults [21].but
improving the score up to 90-100% is complex, time consuming and hence proved to be an
expansive method. Therefore, the optimization of test cases is required and practically

important. This process could be automated and less time consuming with perfection through

hvbrid intelligent technique [21].

A number of published works, for example, [77] have begun to search the effective use of Al
for SE related activities which are inherently knowledge intensive and human centered.
Similarly, the prominent uses of Al in software testing have also been reported in some
significant works through genetic algorithm, AT planner, simulated annealing and even by ant
colony optimization (ACO) [E9][90][91]. Genetic algorithms are well applied in procedural
software testing but a little has been done in testing of GUI software based on genetic
algorithms. Namely Boemer and Gutjahr [90] described an approach involving ACO and a
Markov Software Usage model for deriving a set of test paths for a software svstem. McMinn

and Holcombe [92] reported on the application of ACO as a supplementarv optimization

Coverage Analysis for GUI Testing -

stage for finding sequences of transitional statements in generating test data for evolution:

testing.

A large segment of today’s computer programs are interactive applications with graphical
user interfaces. These applications are written in an event-based style, where the application
needs to handle a diverse set of events representing user inputs. A significant body of work is
concerned about methodologies for testing the correct behavior of such GUI applications.
Existing approaches usually play events sequences generated from a model [93] [94] [95] to
automatically test the GUI of an interactive application. One of the most successful model-
based techniques is based on Event-Flow Graphs (EFGs) [67]. Although EFGs may be used
to generate test cases that detect many GUI faults, these graphs are very large and they yield
an extremely large test suite. They also make it difficult to target testing to select parts of the

GUI, and perform operations such as test selection and prioritization.

Although model based techniques have been used frequently for software testing, but models
are very expensive to create and their applicability is limited as well. For these reasons,
model based techniques are not being used for GUI testing frequently, but in past few years,
efforts have been made for developing different models for GUI testing. Memon and his
team have worked a lot in automated GUI testing [7, 63]. They have used several types of
graph models (e.g., event-flow graphs) to generate specific types of test cases [7, 63]. In [6],
author combines all of the models into one scalable event-flow model and outlines
algorithms to semi-automatically reverse-engineer the model from an implementation.
Memon and Xie also created an event-interaction graph (EIG) [11]. Kasik and George [96]
have a novice idea to resemble novice GUI users. For this purpose, they have used genetic
algorithms. In this approach an expert manually generates a sequence of GUI events, and
then uses the genetic algorithms to modify and lengthen the sequence. This approach relies
on an assumption that novice users take longer “paths” through the input event interaction
space when performing activities; while in contrast, expert users take a bit shorter paths [96].
White et. al., have developed a technique to address the User-based testing of GUI sequences
and their interaction [97]. White et. al., have also given techniques for Generating test cases
for GUI responsibilities using complete interaction sequences [98]. Memon has used goal-
directed search for GUI test case generation [99]. Memon et. al., have proposed some models

and developed some techniques to address the automation of specific aspects of the GUI

Coverage Analysis for GUI Testing -

testing process, test-oracle creation [100], and regression testing [63, 68]). Memon also used

metrics from graph theory to define test coverage criteria for GUIs [101], graph-traversal to
obtain smoke test cases for GUIs that are used to stabilize daily software builds [67,102], and
graph matching algorithms to repair previously unusable GUI test cases for regression testing
[68].

There has been a growing interest in developing models to automate GUI testing. The most
popular models for this purpose are state-machine models that have been proposed to
generate test cases for GUIs [103]. The major inspiration for using these models is that a test
designer simulates a GUI’s behavior as a state machine; each input event may trigger an
abstract state transition in the machine. A path, i.e., sequence of edges followed during
transitions, in the state machine represents a test case [103]. The state machine’s abstract
states may be used to verify the GUI’s concrete state during test case execution [104, 105].
Shehady and Siewiorek [106] have developed variable Finite State Machines (FSMs) that
decrease the number of abstract states by adding variables to the model. They argue that

regularly used FSMs have extension problems for large GUIs [106].

To look for a test data that gives wide (great) coverage, one can use control dependence
graph associated with GA. This idea was given by Pargas et. al [107]. For this purpose they
initialized the GA with original test suite developed for the SUT. They performed random
testing on six small C programs and then compared the results of random testing and GA.
Both the techniques of GA and random testing worked equally well for the smaller programs,
however, for the three large programs, the GA-based method went better than random
testing. Tracey et. al., has proposed a mechanism for test-data generation for structural
testing as well as for functional testing by using optimization algorithms [108]. They evolved
these techniques on a safety-critical system that resides in the real-world [108]. Lu et. al.,
placed event-flow graph modeling as the foundation of their GUI automation test model
[109].

Coverage criteria for GUI testing is scarcely discussed when it comes to literature. In
[101][110], authors have given an idea for coverage criteria based on events. Authors have
described two different categories for coverage criteria i.e., inter-component coverage and

intra-component coverage. Event coverage, Event-interaction coverage, and Length-n event

Coverage Analysis for GUI Testing -

sequence coverage can be used for intra-component coverage, while Invocation coverage,

Invocation-termination coverage and Inter-component length-n coverage can be used for
inter-component coverage. In [101], authors have concluded that for GUI testing, coverage
criterion based on events can be useful. In [101], authors have presented a correlation
between event based coverage of a GUI and statement coverage of its software’s underlying
code. Authors have shown that more than 90% underlying statements were executed by
single events and only a smaller increase could be possible by extending the length of events.

In [111], authors introduced the concept of systematically testing GUI applications using
symbolic execution. Authors also made claim that communication between users and GUIs is
event driven. Authors have shown that randomly generated test suite showed high coverage
only if its size is twenty times larger, and results based on symbolic execution achieve 100%
branch and line coverage. In [112], the structural coverage of UML behavioral diagrams had
been used to measure the adequacy of test coverage. Proposed method had been reported to
work on basis of existence of a mapping between each action and corresponding transition.
In one of our own previous efforts [12], we had used Genetic Algorithm (GA) to optimize
coverage analysis. GA was able to get approximately 85% coverage. In that experiment, we
were using three built in applications. Our current approach has produced better results than

the previous one.

A systematic mapping study was performed by Afzal et. al., which depicts the usage of
search-based optimization techniques to perform non-functional testing [113]. They also
identified the differences between applications of search-based optimization techniques to
different types of non-functional testing. A heuristic search technique called particle swarm
optimization (PSO) was used by Windisch et. al., to find out sufficient test data suite [114]. It
has been shown that genetic algorithm is relatively faster in producing a covering test case
than particle swarm optimization in some cases, in majority of the cases; PSO outperforms
GA for this purpose [114]. In order to prioritize the test cases automatically with respect to
the new best order based on the priority of the modified software units, Khin has proposed
particle swarm optimization (PSO) algorithm [115]. This high priority ordering can be very
useful for regression testing purposes. Kewen Li et. al., also used PSO for test data
generation purpose [116]. In this paper, they have introduced particle swarm optimization

into genetic algorithm to breed software test data automatically. By mixing PSO with GA

Coverage Analysis for GUI Testing -

authors have set up a new strategy to replace the mutation operation in traditional genetic

algorithm. The comparison of proposed technique with ant colony optimization and
traditional genetic algorithm shows that the GPSMA is a good alternative for test data

generation problems [116].

Coverage Analysis for GUI Testing -

Chapter 3 Modeling GUI for Testing

“Perhaps believing in good design is like believing in God; it makes you an optimist”

Terence Conran

Coverage Analysis for GUI Testing -

3.1 Modeling GUI for Testing

Graphical user interfaces (GUIs) are fundamental part of software systems nowadays. This
offers user with a facility to interact with the system. It is very important to clearly specify
and precisely analyze GUI widgets and interactions among them before implementing and
testing any software system. Traditionally, UML is considered as one of the successful
languages to model software specifications and interactions, but UML does not provide a
considerable help for modeling GUI specifications and interactions. Hence there is a
requirement to come through ideas where UML can be used for GUI analysis purpose as
well. Many efforts have already been made in this direction, and this research also makes
such an attempt. Notations for commonly used GUI objects have been revised and interaction
between different GUI objects has also been explained in this chapter.

The main point is to find GUI components to initiate GUI testing of applications. The major
features in identifying GUI components are its name, its class, its hierarchal arrangement,
and the developer-allocated tag or ID. Generally, the developer-allocated characteristics
(label text, button captions, window titles, etc.) are distinctive and can be efficiently used to
recognize a GUI component [117]. After the investigation and the recognition of the GUI
components, application or system should be modeled and after that test scripts should be
created. UML has not the ability to deal with every domain completely and different domains
require different specializations so it is required to expand the modeling of UML to other
domains [118]. Although UML has several limitations for modeling GUI but UML can be
extended by using its lightweight addition mechanism stereotypes, tagged values, and
constraints. Coherent sets of these extensions can be grouped together to form what is called
a profile. Mechanism for extending UML has been shown in figure 3.1. A profile is a
specialized version of UML that may be a subset of the UML as well as an extension and
new notations [119]. Standard UML semantics cannot be violated by extensions and also
implements a consistent core of concepts and semantics for every variation. Meta Model
explosion will be prevented by extensions. The standard UML semantics can be considered

as describing a space of achievable interpretation. UML profiles are package of related

Coverage Analysis for GUI Testing -

extensibility elements that capture domain-specific variations and usage patterns. Profiles

are, in fact, domain-specific analysis of UML. Some of the profiles currently being defined
by the Object Modeling Group (OMG) are

e EDOC
e Real-Time
e CORBA

Standard UML
Profile

Extension

Mechanism

Extended UML Profile | Extended UML Profile Il

Figure 3.1 Methodology for Extending UML

3.2 Role of Modeling in GUI Testing

Our aim is to improve the GUI testing with model-based methods in which test cases are
generated by the models. Also by using models and varying the order of events, there is a
good chance of finding previously unobserved defects. Several papers have been presented
about GUI test automation using the object data model [7] [9] [15] [64] [66] [67] [120] [121].
The framework explained in few of those references is a general GUI test automation
structure that includes test case generation, selection, execution and verification. It can be
useful for any testing or GUI testing model. A generic model used for software testing has

been shown in figure 3.2.

Coverage Analysis for GUI Testing

w Partial Description of (
Model > System
K A
Derived from Can be run pgainst
Model
Software Requirements
Specifications (SRS)
Test Requirements
Test Cases

Figure 3.2 General Model-based Testing Procedure

An event flow graph (EFG) is a detailed representation of the GUI for a particular
application, showing all possible series of actions that a user can perform on that GUL
Vertices in EFG show events or actions, and directed edges represent the flow relationship
between two events. An edge connecting events el and e2 show that event e might be
executed instantaneously after event el. The predicate follows (e2, el) represents this
association and svmbolizes that e2 follows el. EFGs are recurring as events can usually be
executed more than once in a session with an application. For illustration, for finding a word
in a Microsoft Word document user can choose the Edit menu and then by the Find menu
item tvpe the word they want to find in the text box, and select the Find button to perform the
search operation. The next occurrence of the word can be found by selecting Find again
before selecting Cancel to close the dialog box. Each of these actions is shown by a node in

the EFG [122].

Coverage Analysis for GUI Testing -

3.3 Existing UML Extensions

Many researchers have worked for extending UML for specific purposes. Blankenhorn has
presented a standard-conformant extension to UML 2.0 to integrate GUI layout into software
engineering. According to authors, after detailed analysis of the situation both in software
engineering and in GUI design, they found that modeling is a concept common to both of
these fields. Authors have found a way to unify both approaches by creating geometrical
abstractions of designers’ sketches of GUI elements and combining them into models of
complex screen layouts [123]. Boger et. al., have proposed diagram interchange in 2002
[124]. In diagram interchange, every UML element has been assigned a graph element and it
makes UML diagrams layout aware. Designer Scribbles can also be considered as an
extension in which hand written abstractions of a GUI’s design has been used [124].
Interactive sketching has also been used for modeling GUI. On the other hand, DENIM
creates a complete model of user interface. DENIM also uses sketch recognition, but this also
has not been connected to UML [125].

UML based web engineering (UWE) was proposed by Hennicker and Koch in 2001 [126].
UWE is based on UML 1.X version and proposes a design process for hypermedia design
[126]. UWE uses its own notations and can be considered as a best substitute for sketching
[126]. Object-oriented Modeling of MultiMedia Applications - the Language (OMMMA-L)
is visual language for the object-oriented modeling of multimedia applications proposed by
Sauer and Engels in 1999. It can be considered as a heavyweight extension of UML with
static and dynamic elements [127]. Layout information has not been set up in the metamodel
in OMMMA-L [127]. UML.i approach defines different graphical representations for domain
elements and interactive elements [128]. It provides different modeling for interaction objects
and for tasks. UML1’s user interface diagram consists of 6 different constructors. These
constructors are for free-containers, containers, inputters, displayers, editors and action
invokers. For abstract presentation models, UMLIi also provides specialized visualization
[128].

3.4

Coverage Analysis for GUI Testing -

Modeling and Analysis of Real-Time and Embedded system (MARTE) is a new profile
standardized by the OMG. Using the specification of this newly standardized profile--
MARTE-- Sebastien et. al has started the development of a case study related to a real-time
and embedded system [129]. Authors have also investigated that whether this profile can be
used by the Thales current systems and stick to the software engineering practices.
Gherbi and Khendek have also presented a review of many UML profiles for real-time

systems and the research action that turn around these profiles [130].

Extending UML to Model GUI

Software models facilitate us in understanding the software by hiding complicated details of
the system. The selection of what to model has huge consequences on the problem
understanding and figuring out the solution. Major advantages that models provide are
simplifications and communication between problem, design, and its implementation.
Models give different viewpoint to the system. UML is a visual language for representing
software applications. It is used for the analysis and processing of requirements as well as for
the software specifications. UML has been standardized by Object Management Group
(OMG) in 1997. UML provides a number of views (diagrams); UML2 put forwards 13
diagrams [131]. Most popular of these diagrams are use case diagrams, class/object diagram,
sequence diagram, collaboration diagram, activity diagram, state diagram, component
diagram, and deployment diagram. UML is frequently used at software architecture and
design stage and it is well specified and thorough and helps to understand structure and
supports the process. With the emergence of model driven development (MDD), UML has

gained more popularity as in such environment UML drives the entire design.

Almost every software application in use is providing some sort of graphical interface for
interaction, and in most cases they are the only part of the system that is visible to the users
providing them facility of interaction. Hence GUIs are becoming vital for users to interact
with any software system. Also GUIs have a big impact in terms of overall cost and
productivity of software [132, 133]. GUIs are also important in terms of apprehension, as
they make up about 50% of application code [133, 134]. Beside the fact that UML does not

Coverage Analysis for GUI Testing -

present user-interface models, UML is being used for this purpose in some coercive ways

through some extensions. UML offers extensibility mechanisms that can be adopted to
extend UML to new domains, but it is quite evident that such extensions of UML with extra
adornments are consistently confusing rather than helpful. How can a model be completed if
it does not consider an aspect as important as graphical user interfaces?

3.4.1 Why Extension of UML?

The UML designers recognized that UML is not always just right for each aspect of
modeling [135]. Hence, they decided that there would be situations, when the development
process would be better served by capturing additional information or by applying different
semantics to certain modeling elements [135]. UML specification for version 2.1.2 describes
this mechanism as “The Profiles package contains mechanisms that allow meta-classes from
existing meta-models to be extended to adapt them for different purposes” [131, 136]. There
are several ways how UML can be extended by using profiles. An extension can be
developed by using stereo types and additional semantics and constrained syntax to meta-
model [131]. The extension method agrees to the addition of new features, tagged values,
special semantics and further constraints [137]. Previously, stereo types and tagged values
were adopted in UML 1.1 as string-based additions that might be connected to UML model
elements. In succeeding versions of UML, the concept of a profile was explained to facilitate
additional formation and correctness to stereo types and tagged values [138]. The UML2.0
infrastructure and superstructure specifications have defined it as a detailed meta-modeling
technique. Stereo types are exact meta-classes, tagged values are typical meta-characteristics,

and profiles are specific type of packages [138].

3.4.2 Software Design Patterns

Idea of design patterns originated from the work of Alexander et al [139]. Composite pattern
is one of the design patterns in software engineering. A pattern is generally considered as a
recurring solution of a recurring problem in perspective. Research literature about use of
patterns in GUI modeling and testing is not very extensive when compared to the importance
of this area. Laakso has introduced a collection of user interface design patterns [140].
Laakso believes that many design patterns like tree, group and items, double list, editable

52

Coverage Analysis for GUI Testing -

table, master and instances, overview beside detail, and expand in context can be used when

trying to make design based on the user’s goals [141]. Observing GUI design deeply reveals
that GUI elements are commonly a combination of buttons, menus and drop-down lists and
they are connected to each other in a ‘“composition” style. Hence, we opted to use
“Composite” design pattern for GUI design. Figure 3.3 shows a generic composite design

pattern.

The aim to use composite design pattern is to "compile™ objects into tree arrangement to
characterize part-whole hierarchies. To represent repetitive data structures composite patterns
are used. Composite pattern allows users to consider separate objects and compositions of
objects uniformly. This is described as recursive composition. A composite is a collection of
objects, any one of which may be either a composite, or just a primitive object. The repetitive
characteristic of the Composite structure obviously gives way to repetitive code to process
that structure. It is a good choice to use this pattern when developers find that there are
several objects in the same way, and having almost the same code to handle each of them.

[Composite }
\ 4

(N
Leaf Composite Leaf
- /
(N
Leaf Leaf Leaf
~ J

Figure 3.3 Composite Pattern

Many graphic applications use the phenomena of hierarchical nature while drawing
diagrams, i.e., using simple objects to form simple components and building very complex
and large diagrams from these relatively simpler components. A straightforward
implementation could describe classes for graphical primitives such as text, lines and other

classes that act as containers for these primitives.

53

Coverage Analysis for GUI Testing -

A GUI system has window objects that include different GUI components (widgets) such as,

buttons and text areas. A window also contains widget container objects which can include
other widgets. The rationale behind using “Composite Pattern” for GUI modeling lies in the
characteristics of different GUI objects. These characteristics depict the recursive nature of
GUI widgets. Consider the following examples:

Menus containing menu items, each of which could be a menu;
Fow-column GUI lavout managers that contain widgets, each of which could be a
row-column GUI lavout manager;

Directories containing files, each of which could be a directory;

Containers containing components, each of which could be a Container.

In a composite design pattern, different objects are linked to have an object tree structure.
Every object is treated uniformly and can be described in one of three terms. These terms are
single component, composite component, or leaf representation. We have used composite
design pattern to represent GUI objects in terms of a hierarchy of objects. This hierarchy
constitutes set of components combining together to create a composite component. Each of
these objects has a representation and can be accessed in same way as composite object

despite the complexity it has.

The major intention of the composite pattern is to handle group of objects as a single object
and this task is performed with the help of creating an abstraction of these objects. Composite
pattern is one of the ultimate choices, when there is a need to overlook the dissimilarity
between individual objects and compositions of objects (group of separate objects)
[142]. Composite pattern reduces complexity by treating crude and compound objects

uniformly.

3.4.3 New Profile for Modeling GUI

UML is a popular language, being used for analysis and requirements specifications purposes
[27,118]. It is a standardized diagramming language by Object Management Group. UML

provides a number of diagrams to model proposed system from different perspectives, but it

54

Coverage Analysis for GUI Testing -

is not that much supportive while modeling GUI interactions. GUIs are vital to the users of

any software system as they are the only part of the system that is visible to the users and
they provide facility of interaction with the system. In this thesis effort, we have tried to
present some new notations for commonly used GUI objects and proposed a method to

interact with simple single components in complex composite objects.

In this thesis, we have designed a novel profile for GUI layout that helps in representation of
GUIs in UML-based software development processes. A profile is a type of package that
expands a reference meta-model [138]. Our approach provides new objects for GUI. These
are most commonly used objects and most of our interaction with GUI is based on these
objects. Each object has its own stereo type and with the help of these objects developer can
create user interface. Our profile provides access to each object of GUI in different UML
diagrams, while it also provides an abstract representation of these objects following
composite design pattern. The basic addition construct is the stereo type, which is a trimming
that helps us in defining new semantic implications of a modeling element. Key value
couples called tagged values are linked with a modeling element which allows "tagging™ any
value onto a modeling element. [143]. Constraints are rules and can be expressed as free
form text or with the more formal Object Constraint Language (OCL) [143]. Our diagrams
can be used as an alternative of sketches as have been shown in table 3.1, or can be used as
basis for a basic model of layout [figure 3.4]. Expressing visual ideas with written language
is often difficult and can cause inconsistency between the writer and the reader’s
understandings of the text [144]. So we need to express visual interactions with visual
diagrams in such a way that a reader has no miscommunication and inconsistency regarding
the semantic of the objects. For this purpose we have to modify such diagrams for visual

interactions which are simple, non-confusing and meaningful as well.

Due to limitation for GUI designing of existing UML, new diagrams for some objects are
being introduced. These diagrams help the designer to design GUI and provide access to
individual objects in different diagrams. The responsibility of each GUI can be shown by
defining boundaries for each GUI object. The objects that are most frequently used while
designing GUI can be used with UML for the purpose of modeling GUI as well. For this

purpose, we have chosen 12 visual objects and then defined their diagrammatic icons and

55

Coverage Analysis for GUI Testing -

stereo types. These twelve objects are check box, combo box, command box, frame,

horizontal scroll, vertical scroll, label, list box, picture box, radio button, text box and timer.

Table 3.1 shows these objects in the form of diagrams.

@ = = ax
Check Box Contho Box Comsmand Bution Frame Horizental Scroll
A & = a0l
Label List Box Picture Box Radio Bution Text Box
a] .3
3

Vertical Scroll oTT

Table 3.1 GUI objects for modified profile

In figure 3.4, the GUI diagram shows that simpler GUI objects have been combined using
composite pattern to form relatively complex dialogue component. Participants of composite

in this case are forms, leaf objects, and composition object.

Form can be considered as a single component that provides an interface for accessing and
organization its child components, while all child objects are being considered as leaf and

composite is implementing child parent relationship between form and leaf objects.

56

3.5

Coverage Analysis for GUI Testing -

Form

4<> Component Container

Text Box Buttons Choices Scrolls Picture Box

Fig. 3.4 GUI Objects in Composite Pattern Model

Summary

In this chapter, we have presented a novel profile for GUI layout that helps in representation
of GUIs in UML-based software development processes. We have also introduced new
notations for commonly used GUI objects and given diagrams to show the interaction
between these objects. The interaction between different objects is based on direct interaction
of a single component from composite components. Composition based profile for modeling
of GUI elements supports this direct interaction and facilitates repeated interaction with same
objects. So each composite component can be tackled as a single component and hence can

be interacted directly.

This modeling profile is not only supporting the sequence based generation of events for
testing GUI, but we can also use this profile to generate code from different diagrams like
sequence diagrams and hierarchical representation of different objects. Code generated from

diagrams will include all properties, methods and conditions applied at design time.

57

58

Coverage Analysis for GUI Testing -

Chapter 4 Coverage Optimization for GUI
Testing

Coverage Analysis for GUI Testing -

4.1 Testing Context Free Applications

More and more complex applications are being developed in context free fashion — a context
free application is one which follows context free development. In such applications, the
sequence of instructions does not matter. The context independent nature makes functionality
easy to be executed and easier to implement and update. From simple drawing and text tools
to complex kernel management and parsing applications, context free applications horizon is
expanding at a good encouraging pace. One such effort is the development of "Improptue”
development tool [183] which is in practice since 2005 and is now being used to develop as
complex applications as indy games on experimental basis. Diagram shows screenshots of
two well known indy games, i.e., Outpost Kaloki X and Cogs respectively.

F

)

| =
J 00135] TS T

. 4

L 01:00 (T — L_
-‘ - | | M ‘

e o

| l‘
moﬁ ‘,

9\

Fig 4.1 Screenshots of Indy Games (Outpost Kaloki X and Cogs)

As discussed above, context free applications abound the market. It is also no surprise then
that several established and market leader products are actually context free. In such an
environment, our proposed technique can be of particularly significant benefit. Several such
products can be cited in this context. | shall present just a few of these. These applications are
in various domains such as Picture and Video Editing Tools. Much of the functionality of MS

Paint can be considered as context free. So is another product developed by Microsoft, i.e.,

59

4.2

Coverage Analysis for GUI Testing -

Calculator which can be considered as a partially context free product. The context free

nature of calculator can be understood by the division of responsibilities. Calculators
arithmetic tasks such as addition, subtraction, division are context based because to perform
such operations, we need a logical sequence of steps. On the other hand, features or
functionalities such as numbers or symbols testing is context free. Any number can be
checked at any time, there is no logical sequence for this operation. Other partially context
free products include Notepad and WordPad. Taking the example of WordPad, we can see
that in case of operations such as copy/paste, a logical sequence is maintained. We cannot
paste anything without first copying it. So any such function is context based. On the other
hand, opening any file, closing it, or opening any drop down menu is context free since these
actions do not require any particular order. So these actions are context free in their nature.
These kinds of applications are partially context free. Several games have also been
developed as context free products. To name a few, games like Armada Assault ETC [184].
We can easily deduce that any modern application can be partially context free quite easily.

With such a wide application array of context free development, there is no viable strategy
which uses this particular nature of certain programming segments and delivers a more
efficient testing strategy. It is quite evident that if context based testing strategy is adopted
for context free programs; it will result in significant wastage of resources. In this thesis,
effort has been made to devise testing strategy for context free programs thereby saving a

significant amount of resources and effort.

Test Coverage

According to Dijkstra, measurement is one of the key elements of a mature software testing
process [145]. The software testing aims to improve software quality and increases
confidence in software’s proper functioning. Measurements in software testing not only helps
in improving the software testing methods, tools and activities but these measurements can
also be utilized to assess the quality and effectiveness of the testing process as well as to

assess the productivity of testing activities.

60

4.3

Coverage Analysis for GUI Testing -

Two very well known metrics in software testing are:

» Complexity based metrics
» Coverage based metrics

First type of metrics have the intention to examine the complexity of software systems,
while the second type of metrics are all about how systematically your tests work out your
software system. Though complexity based metrics are important, the majority of these are
inappropriate, or have not been practical to the problem of testing [146]. On the other hand
coverage based metrics provide good judgment that what piece of the code is executed when
the tests are run. Coverage based metrics are valuable in the sense that they help us to find
the answers of following questions.

» How to find code that is not tested or, in other words, not so far examined by a

test?
» How completeness for testing can be measured?

In addition, test coverage can be regarded as an indirect measure of quality, indirect in a

sense that we discuss about the degree to what extent our tests cover the quality of tests.

Importance of Test Coverage

Quality of the delivered software depends heavily on the systematic activity of software
testing. Testing related activities go on with the entire development life cycle and may use a
great portion of the effort vital for developing software [1]. Objective of software testing is to
improve software quality and increases confidence in software’s proper functioning. This
purpose is achieved with support of software testing activities [2]; these activities include
gathering test data, generation and execution of test cases, filtration and reduction of test
cases, coverage analysis, and reporting. Software testing is an exhaustive process and
literature shows that more than 50% of the development cost allocated to software is
dedicated to testing [2]. Moreover this percentage increases if the software being developed

is more critical. Many efforts have been made to reduce this cost and software test

61

4.4

Coverage Analysis for GUI Testing -

automation is one such major attempt. Software automation has been focused a lot in recent

times and results are quite convincing that it has a big effect on saving resources such as

labor, time, and money.

According to Craig & Jaskiel [26], in the past the traditional approach for testing was noticed
as only execution of tests. Today, testing measurements are based on test execution stage and
on the basis of errors found during tests execution. Measurements can help to predict the
outcome and assessment of a process as well as to take well-read decisions. Therefore,
knowing and calculating what is being done is more essential for an efficient testing process.
But still there is a lacking of measurements and metrics when we have concerned about test
planning, test design and test completeness procedures. Coverage criterion can be a useful
measurement in this regard. Briand and Pfahl explain that this relationship does not indicate
that there is a causal connection between high test coverage and better software consistency
[147]. Regardless of the mixed results in its history, code coverage has been incorporated
into reliability estimation models [148], and used to prioritize certain parts of a system for
testing [149]. Although, the opinions regarding test coverage as a predictor of software
quality are still not conclusive and bit conflicting but an estimate of the software testing
practices of the majority of professionals reveals that test coverage is being used very

effectively.

Coverage Criterion for GUI Testing

A GUI by its name is a graphical front-end of a software system that accepts user inputs as
well as system generated actions from a predefined set of actions and generates deterministic
output in graphical form. A GUI has graphical objects; all objects have preset properties/
attributes. During the GUI execution, these attributes have distinct and discrete values, the set

of which represent the GUI state.

Common practice of GUI test designers is to produce and carry out test cases to traverse parts
of GUI application. These test cases need to center on a subspace to maximize fault detection

in an efficient manner. Graphical user interfaces (GUIs) can be considered as a group of

62

Coverage Analysis for GUI Testing -

widgets linked with event handlers where event handlers are assigned the task of responding

to individual events. This response can differ due to the existing state of the GUI, which is
found by previous actions and their execution order. The degree of freedom offered by GUIs
to end users can be visualized as acceptable number of variations of GUI input events that are
tremendously very large in the majority of nontrivial applications. We also have to be
mindful of the fact that GUIs events comprises of complicated connections. A situation to
elaborate on this fact is that "a user interacting with a GUI may execute an event sequence X
that puts the GUI in such a state that a subsequent event sequence Y causes erroneous
execution”. The thing to understand is that unless a context was set up by the event sequence
X, the event sequence Y may not have direct to the error. Our experimentation with GUI has
shown that many GUI events may or may not exhibit similar behavior. These events are
source of error in the GUI in one perspective but not in another perspective [4]. How much to
test? Or determining the coverage criteria for software testing and especially for GUI testing
has always been a challenging question. Any test designer must be assured that its test suit is
sufficient to test a software or GUI component. Not like CLI (command line interface)
system, a GUI has a lot of actions that are subject to test. A very small application for
instance Microsoft WordPad has 325 probable GUI functions [1]. The number of operations
increases with the size of applications. Automated GUI testing has been facing this problem.
To overcome this problem, Kasik and George introduced a remarkable process of generating
GUI test cases. The process uses the theory that high-quality GUI test coverage can be
achieved by simulating a beginner [96]. According to their theory, one can hypothesize that
an expert of a system will go after a very straight and usual path all the way through a GUI

and a beginner user would go after a comparatively random path.

To analyze the coverage of graphical user interface system, we have proposed a process
based upon evolutionary algorithms and event coverage. Initially, we conducted
experimentation with various number of test cases as well as varying number of generations
to determine the performance of genetic algorithms vis-a-vis event coverage and event
sequence coverage. The experiments showed that for event coverage, generally performance

of genetic algorithms improved as the number of generations increased. However, same

63

Coverage Analysis for GUI Testing -

pattern was not observed with increasing the number of test cases as the GA achieved best

performance with even fewer numbers of test cases for event coverage.

However, the results for event sequence coverage were not good in any means. It was
observed that performance of proposed GA was merely 3% when used with event sequence
mechanism. The performance neither increased by increasing the number of generations or
by increasing the number of test cases. This can be attributed to the fact that unlike context
free nature of event coverage, the event sequence coverage constrains us to test only those

paths which obey the given sequence.

[—
of Generations
25 50 75 100
of Test Casesﬂ

30 80 95 100 100
60 90 100 100 100
80 90 100 100 100
100 100 100 100 100

Table 4.1 Events Coverage for Genetic Algorithm

of Generations 25 50 75 100
of Test Casesﬂ
30 1 2 3 3
60 1 2 3 3
80 2 2 3 3
100 2 3 3 3

Table 4.2 Event Sequence Coverage for Genetic Algorithm

64

4.5

Coverage Analysis for GUI Testing -

The experimental results for various numbers of test cases/generations using event sequence

coverage and event coverage have been shown in Table 4.1 and Table 4.2. The results clearly
highlight the supremacy of using event coverage as against event sequence coverage for
better test coverage optimization purposes. This is the reason that for subsequent

experimentation, we have based our work on event coverage.
We have used two different types of evolutionary algorithms for event coverage analysis.

e Single objective evolutionary algorithms (Having objective of maximizing event

coverage only)

e Multi objective evolutionary algorithms (Having objectives to maximize event

coverage and minimize test cases)

Moreover to have more experimentation we used two different techniques for each of single
objective evolutionary algorithm based coverage analysis for GUI testing and for multi
objective evolutionary algorithm based coverage analysis for GUI testing. Detail of these
techniques is as follows. For single objective of test coverage analysis and optimization we
used two of the mostly used algorithms, Genetic Algorithm (GA) and Particle Swarm
Optimization (PSO). Similarly for multi-objective analysis and optimization, we chosen two
commonly used multi-objective evolutionary algorithms. These were Non- dominated
Sorting Genetic Algorithm for multi-objective optimization (NSGA-11) and Multi Objective
Particle Swarm Optimization (MOPSO).

Single Objective Evolutionary Algorithms for Coverage Analysis

As have been mentioned in the last section that we have used two different single objective
evolutionary algorithms (GA and PSO) for GUI test coverage analysis and optimization.
Before explaining our proposed experimental approach, let’s explain the working of the
genetic algorithm in general. Later, we will draw the steps of genetic algorithm for the

working of test coverage experiment in section.

65

Coverage Analysis for GUI Testing -

Genetic algorithms are stimulated by Darwin's theory regarding evolution. Algorithm begins

4.5.1 Genetic Algorithms

with a set of solutions (represented by chromosomes) called population. One population’s
solutions are used to form a new population. There is an expectation that the new population
will be better than the old one. On the basis of fitness value solutions are selected for new
solution (offspring). The process kept on repeating till some ending condition (for example
number of populations or no further progress of the best solution after certain iterations) is
fulfilled.

Genetic algorithms are known because of their parallel nature of their exploration and
basically due to their ability to efficiently solve non-linear, multi-modal problems. They can
deal with discrete as well as continuous variables even without gradient data. Generally, GA

has four phases that are evaluation, selection, crossover and mutation.

4.5.1.1 Evaluation

The fitness of each individual (called as chromosome) is measured by the evaluation method.
Its uses fitness functions for calculating this value. The fitness function calculates how good

the chromosome satisfies the test criterion.

4.5.1.2 Selection

The selection is the process that randomly picks individuals from the existing population for
creation of the next generation. Different methods exist but all have the same idea that fittest
have a more probability of survival. Selection chooses the chromosomes that will combine

and transformed out of this initial population.

4.5.1.3 Reproduction (Crossover)

Recombination reproduces the chosen individuals and pair wise information will be
exchanged that result in new population. It is named as crossover. The crossover method gets
two elected individuals and joined them at a crossover point thus producing two new

individuals.

66

Coverage Analysis for GUI Testing -

In one-point (or single) crossover, two input data elected as parents by selection process

swap substring information at a random arrangement in the data to make two novel figures.
Crossover takes place in accordance with a crossover probability pc that can be a variable
factor. For every parent elected, produce an arbitrary real number r in the range [0, 1]; if r <
pc then parent will be selected for crossover. Then the selected data is arranged at random.

Each parent pair will results in two new trails named as offspring. In this method, one
parent’s right half bits are exchanged with the subsequent right half of the second parent.

4.5.1.4 Mutation

Mutation brings in a little variation to every recently produced individual. It is a bit-by bit
process. Each bit have same probability to mutate (change from ‘0’ to ‘1’ or from ‘1’ to ‘0’),
and it happens in accordance with a mutation probability pm that is an adaptable factor. To
do mutation, produce an arbitrary real number r in the range [0, 1] for each bit. If r < pm then
mutate the bit. All these method and fitness function will mature test data to improved ones,
to find a nominee that reach the target path. The crossover method seeks to make improved
test data, at the same time as mutation set up variety into population, avoiding getting trapped

at local optima results.

A basic algorithm for a GA has been shown in the figure 4.2:

Initialize (population)

Evaluate (population)

While (stopping condition not satisfied) do
{

Selection (population)

Crossover (population)

Mutate (population)

Evaluate (population)

}

Fig 4.2 Basic algorithm for a Genetic Algorithm

67

Coverage Analysis for GUI Testing -

45.2 Overview of PSO and Discrete PSO

Particle Swarm Optimization (PSO) [113] is a simple model of social learning whose
emergent behavior has found popularity in solving difficult optimization problems. The
primary symbol had two known features, individual learning and learning from a social
group. Particle Swarm Optimization (PSO) Algorithm is able to discover optimized test suite
for GUI testing. PSO works on the basis of ‘particles’ that are formed arbitrarily and
subsequently are subjected to some task. Particles with superior concert are set aside for next
phases, while others are discarded. In testing, PSO seeks for best possible test parameter
arrangement that suits already defined test criterion. The test criterion is showed through a
“coverage function” that calculates how much of the automatically generated optimization
parameters satisfy the given test criterion. Particles optimizing the coverage function will
survive and others will be discarded, the process is repeated again and again with optimized
particles being replicated and more random particles will take place of discarded particles.
Ultimately one particle (or a small group of particles) will be in the set and is logically the

greatest fit for coverage function.

PSO is a population-based evolutionary computation practice, originally designed for
constant optimization problems. The searching agents called particles are 'flown' in the n-
dimensional search space. Every particle updates its arrangement considering its own
experience as well as of other particles. Every particle is estimated using a fitness function.
Closer the position of the particle to the optimal position, fitter is the particle. The

optimization process is iterative and works on the following equations.

The position and velocity of every particle will be updated by the following equations [150]:
Xi(t) = Xi (t-1) + vi(t) --------- (4.1)

Vi (t) =W #v, (t =) + ¢, (X,” = X; (1)) +C,1, (X,® = X, (1))
where Xi(t) and Vi(t) are the position of a particle Pi at time t and the velocity of particle
Pi at time t respectively. The inertia factor is represented by w in equation; while self

confidence of the particle is shown by<: and its confidence in its social order or group is

represented bycz . rl and r2 are constants and there values are chosen at random in the range

68

Coverage Analysis for GUI Testing -

of Dand 1. %I~ is the i dimension of the own best position reached until now by the particle

. yab, by 3 . .
under observation. £; is the i dimension of the global best position reached up to now by

the entire group. The first term in equation 4.2 W = V.<r — 1} is the present movement of the
particle, while the second term “*"* (*77 = ¥:¢) shows particle’s memory influence and last

term =72 (#77 — X.¢) shows the influence of group on the particle.

The PSO algorithm was initially projected for continuous problems. Kennedy and Eberhart
designed the initial discrete PSO to work on binary search spaces [151]. They used the
standard velocity update equation but changed the standard position update equation. They
considered new position component to be 1 with a likelihood acquired by applying a sigmoid
function to the corresponding velocity component. This Binary PSO is a more specialized
version of general discrete PSO. To attain a general discrete PSO, the simplest and easiest
way is to use standard continuous PSO with the same conventional velocity and position
update equation but by rounding the elements of position vectors to the nearest valid discrete
value. This approach assumes that elements in the position vector do not take on the values
which are outside the extremes of search space [152]. Another approach is to discretize the
continuous space by making intervals and to assign each interval to one of the discrete values
[153]. A more sophisticated approach is to redefine standard arithmetic operators used in
position and velocity equations to be more suitable for applying to discrete space. For
example in [154], PSO was adapted to be applicable to Constraint Satisfaction Problem
(CSP) by overloading the arithmetic operators used in position and velocity update equations.
So in this case, particles represent positions with dimensions that are not dependent on each

other and the changed position and velocity equations are:

X, (1) = Xt~ @V, (1)

Where®, © and @ are redefined arithmetic operators. Moreover, a mutation operator was also
used which changes each element of velocity vector based on certain probability. Similarly,
Clerc redefined arithmetic operators to develop discrete PSO to solve Traveling Salesman

Problem (TSP) [155]. Here particles represent permutations.

69

Coverage Analysis for GUI Testing -

4.6 Coverage Analysis for GUI Testing Using Genetic Algorithm

To examine GUI and explore the coverage, we come up with a technique based upon genetic
algorithms. We made three main blocks of our proposed system.

e Test data generation
e Path Coverage Analysis
e Optimization of Test Paths

With the help of a block diagram we try to explain working of genetic algorithm for coverage
analysis of an event based system in figure 4.3.

Event based Test data

(;-— generation

Lo Calculate Fitness based .
Initialize i \ Selection based upon
Population Raen Required Test Roulette wheel
Coverage to be achieved
Modify Population |4 Apply Mutation with some 1 Apply Crossover
probability
[Genetic Algorithm Block]

Figure 4.3 Block diagram of Genetic Algorithm for Coverage Analysis of an Event Based System

4.6.1 Test Data Generation

Using events to produce data for GUIs testing is now becoming a common practice. For test
data generation, we have also used event based techniques. A user developed calculator that

accepts inputs from mouse and from the keyboard and has been used as the first application

70

Coverage Analysis for GUI Testing -

to test our approach. Interface of calculator has been shown in figure 4.4. For each event,
there is a unique event ID as shown in figure 4.5. As an event takes place with a mouse or a
key stroke, respective event 1D will be added into event recorder.

Calculator @@@
Selection
& Input from mouse and keyboard 1278964
) Input fram mouse only
Operations CE
v
Addition
Subtraction /
Multiplication 1 2 3 /
Division
4 5 [¥
7 8 9 =
0= +

Figure 4.4 Interface of Calculator Application

1000: CE BUTTON
1001: C Button

2000:
2001:
2002:
2003:
2004+
2005:
2006:
2007:
2008:
2009:
20105

3000
3001:
3002:
3003:
3004: /

4000 check hox for input from mouse and keyhoard
4001: check hox for input only from mouse only

(U< BN e SR B SN PN SO S ey

=1+ 0

Figure 4.5 Event ID’s of Calculator Application

71

Coverage Analysis for GUI Testing -

After input s completed, a sequence of events is devised, this is passed to next phase for
additional analysis. Sequence of produced events has been shown in figure 4.6.

Figure 4.6 Sequence of Generated Events

Another application that was used for experimentation was a user developed Notepad. This
application also works on same principles as discussed above i.e., events recording on the
basis of unique ID’s and formulating sequences from these events. A user can interact with
the application in same way as Microsoft’s notepad. Somehow the added functionality was
that, each interaction of user is being recorded and a unique code is being generated for each

mouse clicks or keyboard button being pressed. Interface of notepad is shown in figure 4.7.

Format Views Help

Figure 4.7 Interface of user defined Notepad

72

Coverage Analysis for GUI Testing -

Having good results from our efforts with two user developed applications, we tried to
generalize our approach. For this purpose we have selected Microsoft’s Notepad as an off the
shelf GUI product for testing. We have decomposed GUI into hierarchy modal that consists
of nodes which represents different GUI objects (Widgets) like file is a GUI object that have
been represented as a node in our hierarchy model. Connection between nodes represents the
path between different GUI widgets e.g. To print a document we have to follow a sequence
of events like first of all click file then it displays different GUI object, selecting print option
from those objects. So to print a document we have to follow a sequence of events. In this
way a hierarchy has been designed that represents the sequences of paths between different
objects. Table 4.3 depicts possible path sequences from each tab in notepad and unique code
defined against each of these tab options. Figure 4.8 shows path generation for Notepad on

the basis of possible sequences of events.

10 New 20 Open 1. Save 40 Print
101 RT Document 201 Location 301 File location | 401 Select Printer
104 OK 203 File Selections 302 File Name | 402 Preferences
105 Cancel 204 Cancel . .
102 Text 202 File Type 303 File Type 403 Find Printer
104 OK 203 File Selection 404 Page Range
105_ Cancel 204 Cancel 304 Save 405 Number of Copies
103 Unicode 203 File Selection
104 OK 305 Cancel 406 Print
105 Cancel
104 Ok 2030 Open 302 File Name 407 Cancel
204 Cancel 303 File Type 408 Apply
105 Cancel
204 Cancel 304 Save
305 Cancel

Table 4.3 Path Generation for Notepad

73

Coverage Analysis for GUI Testing -

203 File
Selection

204 Cancel

2030 Open

202 File
Type

Figure 4.8 Path Generations for OPEN in Notepad

4.6.2 Optimization of Test Paths using Genetic Algorithm
Following are steps of GA for GUI test coverage optimization:

[Start] Produce arbitrary population of n chromosomes. Length of our chromosome is the
longest path. We have initialized these chromosomes between 1 and maximum length, like

shown in the example below.

[Fitness] Assess the fitness f(x) of each chromosome x in the population. We have calculated
fitness of chromosome based upon the coverage analysis (How paths have been covered by a

chromosome).

74

Coverage Analysis for GUI Testing -

[New population] produce a new population by replicating subsequent steps until the new

population is complete.

[Selection] Choose two parent chromosomes from a population on the basis of their fitness
(the more fitness, the greater possibility to be chosen)

[Crossover] Cross over the parents to form a new offspring (children) on basis of certain
crossover likelihood. If no crossover was carried out, offspring will be the same copy of
parents.

[Mutation] On the basis of mutation probability change, new offspring at every point

(position in chromosome).
[Accepting] arrange this new offspring in the existing population.
[Replace] Use new arrangement of population for a next run of algorithm

[Test] If the end state is met, discontinue the process, and return the best solution in present
population

[Loop] Go to step 2

4.6.3 Fitness Function

Given an input program, the fitness function returns a number indicating the acceptability of
the program. The fitness function will decide which variants stay to the next iteration
(generation), and it is used as a stopping criterion for the search. Our fitness function

measures how many test cases have successfully been validated?
Accuracy of a chromosome= Test Paths covered by chromosome/ Total number of test paths----------- (4.5)

Let us explain the working of genetic algorithm with the help of one example. Table 4.4
represents some of the available test paths and lengths of these test paths, we have to check
that how many events are being covered by our chosen chromosomes. This will tell us fitness

function of each of the chosen chromosome.

Coverage Analysis for GUI Testing -

Test

No Length
Path

1 1,2 2

2 1,9,2 3

3 18,2 3

4 18,42 4

5 1,8,3,4,2 5

Table 4.4 Test Paths with Length

Let us take a chromosome in which genes represent the sequence of path.

Fitness of above chromosome is evaluated using equation 4.5. Table 4.4 shows that total
number of test paths are 5. Out of these 5 test paths, path 1, path 3 and path 4 are covered by

the chromosome so the fitness or accuracy of this chromosome is 3/5 = 0.6

4.6.4 Reproduction operators

There are two reproduction operators available in genetic algorithm: Cross over and
Mutation. Crossover has two different types, one point cross over and two points cross over.

But we will apply these reproduction operators to increase the coverage efficiency.

Now we take the second chromosome;

Its fitness function according to equation 4.5 using table 4.4 can be calculated as = 1/5 = 0.2

Now we will generate a random number to find the cross over point.

Coverage Analysis for GUI Testing -

As random number is 5, so we will cut chromosome 1 after 5 genes and will combine it 2™

Let’s suppose Rand = 5

chromosome to generate a child chromosome.

Now fitness function of the child chromosome = 4/5 = 0.8

Which is much better than fitness function of chromosome 1 (which was 0.4) and also of
chromosome 2 (0.2).

4.6.5 Mutation

After applying reproduction operators, we have the following new chromosome.

Rand = 3 for position
Rand = 3 [The value to replace the existing value at 3 genes i.e., 7]

So the new chromosome will be look like as

18I42192

And its fitness function according to equation 4.5 using table 4.4 will be 5/5 =1

4.6.6 Experimental Setup

The proposed application for coverage analysis was designed and developed in MATLAB.
The application has undergone extensive experimentation in order to determine its
effectiveness. Five sample applications were selected to experiment with, included two user
developed applications of calculator and notepad while three built-in products MS Notepad,
MS WordPad, and MS Word were chosen from Microsoft family of software products. These

built-in applications were selected keeping in mind the following criteria:

Coverage Analysis for GUI Testing -

» Universal Applicability of Applications: Applications have universal applicability.

Our working on these applications demonstrates the capability of our approach to
handle such applications which are complex in their nature and affect a larger
population of end-users. This also means that interpretation of experiments and

results is easier for larger research community.

» Rich GUI: These applications come with extensive GUI which provides us with ideal
environment to execute and monitor effectiveness of our technique. The GUI of
Notepad and WordPad is relatively simple yet effective. GUI of both these
applications conforms to variety of usability engineering standards. Successful
performance of our proposed approach can demonstrate the vitality of various

usability engineering and HCI protocols from testing perspective.

» Wider applicability: These applications are part of a larger application domain. By
testing our technique on these applications, we can also replicate the generated test
cases on several other applications to broaden the scope of our exploration.

» Long Term Perspective: Notepad, WordPad and MS Word are part of the
application domains which have a long term perspective i.e., we can expect many
future versions of both of these applications. Having such quality products as our test
applications means that we have an opportunity to evolve our techniques as the

applications evolve incorporating new concepts of GUI.

» Highly structured applications: The applications are highly structured which
provide us with an opportunity to design chromosomes comprising of varying length

and complexity for various tests quite efficiently.

4.6.7 Experimental Results

The test data was generated by clicking on various GUI elements and tailoring the course of
click-events. This proved to be a laborious task as significant manual effort was required to
generate an appropriate number of test cases. In all, 45 test cases were produced per
application. These test cases manipulated various aspects of product interface i.e., menus,
toolbars, drop-down bars etc. The composition of test suite was tried to represent a balance

set of test suite such that it evenly covered all of these aspects of each product. Each test case

Coverage Analysis for GUI Testing -

was of variable length depending upon the sequence of events involved to perform that
specific task.

Coverage analysis has shown that system was able to achieve more than 85% coverage after
executing 195 test cases. Fitness function was able to yield high coverage which shows its
utility in the case of GUI testing. This coverage percentage shows that we still have
significant room for improvement. Still, achieving such a high coverage makes our technique
competitive w.r.t. other existing approaches. The details of parameters used in
experimentation during testing each application are shown in table 4.5.

Parameters Values
Population size 100
Number of generations 300-500
Mutation rate 0.2
Crossover rate 0.8
Termination criteria Coverage>83% or Generation=500

Table 4.5Parameter Used

The outcome have also revealed that increase in the number of generations resulted in
enhanced coverage. To determine optimal number of generations, we experimented with our
technique using generations between 300 and 500. Our experiments have shown that increase
in number of generations above this range generates a flat bed scenario. It means that with
increase in number of generations, the performance doesn’t deteriorate but becomes stable at
the highest coverage achieved. The effect of enhancing the number of generations is shown
in table 4.6.

Coverage Analysis for GUI Testing -

Coverage achieved
Number of
) User Defined Average
Generations MS Notepad MS WordPad | MS Word Calculator

Notepad Coverage

300 65% 68% 59% 71% 76% 68%

325 68% 68% 67% 75% 7% 71%

350 69% 69% 76% 7% 7% 74%

375 2% 69% 80% 7% 84% 76%

400 73% 71% 84% 84% 85% 79%

425 79% 76% 84% 84% 89% 82%

450 85% 7% 86% 88% 89% 85%

475 85% 84% 86% 88% 89% 86%

500 85% 84% 86% 88% 89% 86%

Table 4.6 Coverage According to Number of Generations

The graphical representation of this improvement achieved in coverage is shown in figure
4.9. This has shown gradual improvement until it reaches a saturation point. After reaching

this saturation point, it becomes stable and adopts a flat bath instead of deteriorating.

4.7

Coverage Analysis for GUI Testing -

100%
90%
80%

3370%
34360%

&
@ 50%

3
0 40%
30%
20%
10%
0%

—4— MS Notepad

—l— MS Wordpad

== MS Word

== Jser Defined Notepad

=== Calculator

300 325 350 375 400 425 450 475 500
No. of Generations

Figure 4.9 Path Coverage Analysis using GA

The results have exposed the effectiveness and progress that our proposed technique has

gained in valuable coverage analysis. We can further producer test cases for the same

applications to further examine the performance of our approach for coverage analysis.

Coverage Analysis for GUI Testing Using PSO

Working of Particle Swarm Optimization (PSO) has been explained with a block diagram in

figure 4.10.

Coverage Analysis for GUI Testing

Event based Automah

Data Generation

-

Initialize Population |:> Calculate fitness based upon coverage
analysis

ii< '
Calculate Global

Best <:: Update Personal Best of Each Particle

Update Velocity of each Particle Update Position of each Particle using Position

using Velocity Equation Equation

<1

Round Off Position of Each Particle

Calculate Fitness based upon coverage analysis

<

Figure 4.10 Block Diagram of Particle Swarm Optimizer for GUI Test Coverage Analysis of an Even
Based System

Coverage Analysis for GUI Testing -

4.7.1 Particle Encoding in PSO (Test Data Generation)

For test data generation, we have used same event based techniques that has been used for
test data generation of genetic algorithm described in above sections. For this reason we have
designed a calculator that receives inputs from mouse and keyboard. Also, we used the same
five applications for test data generation and experimentation.

We have designed software for automation generation of events on the basis of this sequence
of clicks. This software records the events generated by clicks and generates corresponding
sequence path based on event numbers. We have designated unique ID to every event and
sequence path is based on these events as have been shown in the table 4.1. Each particle
corresponds to a particular sequence path and each dimension of the particle represents an

event in the corresponding sequence path.

To illustrate the working of our algorithm to optimize the coverage function, Let us take an
easy run of single objective PSO to our work. This example is to show the working of PSO
evolutionary algorithm to problem of GUI test coverage. Dataset of event sequences, we

have chosen for simple run is being shown in table 4.7.

-
]
%]

._.
il
[

Table 4.7 Dataset of Event Sequences

To make it simple, we suppose inertia w =0.1; and cjrj= carz =02

We have taken three particles, pl,. p2, p3 having event II1)'s as dimensions and fitness of each
particle is calculated based on number of event sequences (shown in table 4.7) being

followed bv each particle. .

Coverage Analysis for GUI Testing -

P3=1.4513 0/5

Everv particle is showing its local best and let’s supposes that P1 is the global best for the
given iteration. To keep things simple, velocitv of each dimension of everv particle is being

initialized from 1 as shown below:
Vi=[11111]
Va=[11.1.1.1]
Va=[11111]

After updating the wvelocity of each particle, we will get following updated velocitv for

particle 1.
Vi=[01,0101,01 01]

With the change in velocity of particlel, its position will be updated according to the

following:
Pi=[21,11,51,41, 31]
As we got continuous values, we will round off the position of each particle and it will be:

Py =1[2.1. 53,4, 3] as there is no change in dimensions of P; (comparing to initial dimensions
of P1), so its fitness function will remain 0/5, hence, local best for particle one will remain

the previous local best.

After velocity and position updating of particle?, we will have these results:
V:=03,-05,03, 0.1, 0.5 [Velocity Update]

P;=13,35 43409 1.5 [Position update]

P:=1.4 4 5 2 [Position Round Off]

Updated particle P2 has fitness function of 2/5, as it is covering 2 paths of test data. Having

better fitness than previous iteration, local best of P2 will be updated.

Similarly updating particle 3, we will get following:

Coverage Analysis for GUI Testing -

V3=0.3,-035, 01, 0.7, 0.1 [Velocity Update]
P:=13,3551, 1.7, 3.1 [Position update]
P:=1.4, 5, 2, 3 [Position Round Off]

P: has an updated fitness function of 2/5 so it will be the local best for P;. As P; and P31, both
have fitness function 2/3 so anv of them can be global best. Let’s sav Pz is having the global

best.

Similarly after having one more iteration, we will get the following updated values.

V1 =-0.19,061, -0.19 021, -0.19 [Velocity Update]
P1=181 161 481 421 281 [Position update]
Py=2.2 5 4, 3 [Position Found Off]

V2 =0.03, -0.05, 0.03,-0.01, 0.05 [Velocity Update]
P>=103, 395 403, 499 205 [Position update]
P;=1.44 5, 2 [Position Round Off]

Vi =003, -05,-0.19 067, -0.19 [Velocity Update]
P:=13,395 481,267, 28] [Position update]
P:=1.4 5 3,3 [Position Round Off]

P has a fitness function of /5, P; has a fitness function of 2/5 and P has a fitness function
of 0/5. So these will be no change in local best or global best of anv particle. In the same way
the trial will carry on, until stopping criterion came or desirable coverage (fitness function) is

attained.

4.7.2 Swarm Initialization

Produce arbitrary population of n particles. Size of the position vector for each particle is the
longest path. We have initialized each dimension of the position vector between 1 and
maximum length. For example in our proposed technique a randomly generated particle
looks like this:

Coverage Analysis for GUI Testing -

4.7.3 Position Update

We did not change the standard continuous velocity and position update equations used in
original PSO (Equation 4.1 and 4.2). But we rounded off the elements of position vectors to
the nearest valid discrete value.

4.7.4 Quality Measure

Given an input program, the fitness function returns a number indicating the acceptability of
the program. The fitness function is used by the selection algorithm to determine personal
best and global best in swarm and it is used as a termination criterion for the search. Our
fitness function is how many test cases have been successfully validated as have been shown

in equation 4.5 (Same as for genetic algorithms).

Accuracy of a chromosome= Test Paths covered by chromosome/ Total number of test paths----------- (4.5)

4.7.5 Completion Criteria
There are two different types of completion criteria
» Maximum number of generations
» No improvement in the global fitness of the swarm for certain number of
generations
4.7.6 Working of Proposed Methodology

To test GUI and examine the coverage, we have proposed a technique based upon particle
swarm optimization (PSO). In our proposed algorithm, each particle represents the data paths

consisting of unique event sequences. Following is the working of our proposed method:

[Start] Produce random population of n particles. Size of the position vector for each particle
is the longest path. We have initialized each dimension of the position vector between 1 and

maximum length as have been shown in the particle below.

Coverage Analysis for GUI Testing -

[Fitness Evaluation] Assess the fitness f(x) of each particle x in the population. We have

calculated fitness of particle based upon the coverage analysis.

For every particle in the population we see whether its current fitness is better than its
previous personal best? If yes, we set its personal best to its current position vector,
otherwise we do not change its personal best.

Once we have updated all the personal best positions, we will determine which particle has
the highest fitness among whole population [Global Best]. If this global best is having better
fitness [higher] than previous global best, we declare this particle to be the global best

otherwise we do not change the global best.

After determining the personal best and the global best, we have changed the current velocity
of each particle using equation 1. After having updated velocities for each particle, we now

calculate the new position of each particle using equation 2.

After adding continuous valued velocity component to the position, we now have continuous

values in the position vector of each particle. e.g.

21]148(34|10|22

So we round off the position vector of each particle to the nearest integer.

If end condition is fulfilled, stop and return the global best of the population.

Otherwise go to step of fitness evaluation.

4.7.7 Experimental Results

Just like our experimentation with genetic algorithm based coverage analysis, the test data
was generated manually by clicking on various GUI elements and tailoring the course of
click-events in this experiment as well. Again, we used 45 test cases per application. These
were same test cases, we generated for genetic algorithm. Test case operated over various
aspects of product interface like menus, toolbars, drop-down bars etc to cover all aspects of
each product. Each test case was of variable length depending upon the sequence of events

involved to perform that specific action.

Coverage Analysis for GUI Testing -

Same like our first experiment, coverage optimization algorithms helped to achieve more
than we have in case of our first experimentation. Although we still have room for
improvement to maximize the coverage but still, achieving such a high coverage gives a
feeling that it would increase the confidence in quality of GUI testing. The detailed
parameters used during testing are shown in table 4.8 and the effect of enhancing the number
of generations is shown in table 4.9. While the graphical representation of this improvement
achieved in coverage is shown in figure 4.11.

Parameters Values
Population size 100
Number of generations 500

Termination criteria Coverage>85% or Generation=500

Table 4.8 Parameter Used

Number of Coverage achieved
Generations MS Notepad MS WordPad | MS Word User Defined Calculator Average
250 65% 55% 63% 71% 70% 65%
275 68% 62% 65% 74% 73% 68%
300 70% 68% 68% 71% 75% 70%
325 2% 69% 71% 75% 76% 73%
350 76% 73% 76% 78% 7% 76%
375 79% 75% 80% 78% 82% 79%
400 84% 7% 84% 82% 87% 83%
425 87% 79% 86% 88% 90% 86%
450 87% 83% 86% 88% 90% 87%
475 87% 83% 86% 88% 90% 87%

Coverage Analysis for GUI Testing -

500 87% 83% 86% 88% 90% 87%

Table 4.9 Coverage According to Number of Generations

Coverage Analysis
100%0
90% »
| ar e
80% /./’;/.-/'
% 0% _%& —e— MS Notepad
% 60% ./ —=— MS Wordpad
% MS Word
o,
% 50% User Defined Notepad
g 40% Calculator
g 309%
(&) (o)
20%
10%0
0% T T T T
o [Yo) o Lo o Lo o Lo o Lo o
[re ~ o al o ~ o l o ~ o
N N o o o o <+ < < <t [Ye)
Number of Generations

Figure 4.11 Path Coverage Analysis using PSO

4.8 Comparative Analysis

In GA, the concept of memory depends on superiority, but the PSO algorithm appears as a
dominant stochastic optimization method encouraged by the social performance of organisms
in which individuals have memory and collaborate to go towards a region having the global

or a near-optimal solution.

The results presented in this research were obtained using uniform random sampling of the
initial parameter space. The initial sample is subsequently iteratively improved using the
various algorithmic steps in the both evolutionary algorithms. It is however possible to
significantly improve the efficiency and vigor of these evolutionary algorithms. We are
presenting here a comparison of both approaches used on basis of robustness, accuracy and

speed of convergence.

Coverage Analysis for GUI Testing -

The term “robustness” is used to describe the probability a point mutation will fail to reduce

4.8.1 Robustness

the fitness of a solution. Evolution and robustness are thought to be intimately connected.
This obvious capability of an evolutionary algorithm to choose a more vigorous solution
when strength is not a fitness criterion has the potential not only to reveal the behavior of
evolution. But when it comes to noisy data, where the fitness is difficult to define,
evolutionary algorithms might evolve with more robust solutions. Our experimentation was
based on non-noisy data but to check the robustness we changed the mutation rate. Both GA
and PSO worked well with the changed mutation rate as well.

4.8.2 Speed of Convergence

In evolutionary algorithms, the speed at which a convergent sequence approaches its limit is
called the rate (speed) of convergence. Swarm intelligence inspired by the natural world is
popular due to its rapid convergence capability. Following table shows that convergence rate
of PSO is bit faster than GA.

Average Average
Number of Generations
Coverage of GA Coverage of PSO
250 - 65%
275 - 68%
300 68% 70%
325 71% 73%
350 74% 76%
375 76% 79%
400 79% 83%
425 82% 86%
450 85% 87%
475 86% 87%
500 86% 87%

Table 4.10 Comparison of GA and PSO on Convergence Speed

Coverage Analysis for GUI Testing -

Although both techniques worked well for achieving higher coverage in testing GUI, but

4.8.3 Accuracy

particle swarm optimization achieved a bit more in average coverage. Particle Swarm

Optimization achieved higher coverage throughout the experiment.

Coverage Comparision of PSO and GA
100%
a0%
80% —
o 70% L
8 som Average
S Coverage With
E 50% GA
D 40%
o
o 30%
j=2]
T 20%
—
2 10w
)
O 0%
2 & 8 2 8 & 8 8 2
o [ap] [ap] o =t =+ =+ _‘?I' Ly
Number of Generations

Figure 4.12 Path Coverage Comparison

4.9 Summary

In this chapter, we have shown that without considering the strict ordering constraints, we
can have very good coverage of events in GUI testing. For this purpose we have used two
different single objective evolutionary algorithms. The techniques have been subjected to
extensive testing. Prior to this work, there is no evidence from literature that test coverage
has been optimized using evolutionary algorithms. Thus proposed method suggests a thrilling
new area of research which can be helpful using different other artificial intelligence
techniques. The results have revealed the overall efficacy and improvement that our proposed
technique has attained in efficient coverage analysis. This innovative idea to work on
maximizing test coverage by exploiting event driven nature of GUI can bring a revolutionary
boost in working of GUI widgets and elements. Also there will be a huge reduction in terms

of time required to test GUI applications.

Coverage Analysis for GUI Testing -

Chapter 5 Multi Objective Coverage Optimization

5.1

Coverage Analysis for GUI Testing -

There are two major types of evolutionary algorithms that have been used for software

testing: single objective evolutionary algorithms and multiple objective evolutionary
algorithms. A general single-objective optimization problem is defined as minimizing (or
maximizing) f(x) subject to gi(x) <0,i={1,2,3...,m}, and hj(x)=0,j={1,2,3 ..., p}
X € Q. A solution minimizes (or maximizes) the scalar f(x) where x is a n-dimensional
decision variable vector x = (x1,x2. . . , xn) from some universe Q [156]. While the multi
objective optimization problem can be defined as “a vector of decision variables which
satisfies constraints and optimizes a vector function whose elements represent the objective
functions. These functions form a mathematical description of performance criteria which is
usually to resolve each objective function. Therefore, the term "optimize" means finding such
a solution that can give the value of all objective functions acceptable to the manufacturer's
decision [157].

GUI Test Coverage Optimization by Multi Objective Algorithms

In the last chapter, we have seen encouraging results from single objective optimization. In
single objective evolutionary algorithms based test coverage optimization, our focus was
totally to boost the confidence in our testing effort by maximizing the test path coverage. To
test GUI and analyze the coverage, we have proposed a method based upon multi objective
optimization. In multi-objective optimization (as the name reveals the functionality of these

kind of algorithms), we have set multiple objectives for our optimization effort.

We have used two well known multi objective optimization algorithms, multi objective
particle swarm optimization (MOPSO) based upon the concept of maintaining dominated
tree and NSGA-II (A non-domination based version of Multi Objective Genetic Algorithm
(MOGA)) to analyze and optimize the coverage of the path generated on the basis of event
flow nature of GUI. We have set following objectives for our multi-objective optimization

problem:
» To minimize the number of event based GUI test cases

» To maximize the coverage of event based GUI test cases

5.2

Coverage Analysis for GUI Testing -

In multi-objective optimization problem, we have multiple functions to optimize, so the

concept of optimizing function changes and we have to find a good transaction between
function values. In our case, we have two objectives, which are inversely proportional to
each other; i.e., maximizing one objective results in the minimization of the other objective
function. Our objective functions are number of test cases and required coverage. So we have
to find a good compromise in between optimization of both objectives. The most commonly

accepted term for finding this optimum solution is Pareto optimum. A solution x € Q is said

!
to be Pareto Optimal with respect to (w.r.t.) Q if and only if (iff) there is no X € for which
v=F(X)=(f,(X)c.. . (X)) . U=F(x)=(f(X).....

GUI Test Coverage Optimization by MOPSO

To test GUI and analyze the coverage and to achieve the objectives set in previous section,
we started our experimentation based upon Multi Objective Particle Swarm Optimization
(MOPSO). For this purpose we have used a multi objective PSO based upon the concept of
maintaining dominated tree. Dominated tree is constructed in such a way that final composite
point dominates all other composite points. The selection of the global best for an individual
in the swarm is based upon its closeness to an individual in the non dominated set. For any
member of the swarm, X;, a composite point c; is chosen such that c; is not dominated by Xx;
and x; dominates cj-1. The global best for an individual x; is that archive member of c;
contributing the vertex which is less than or equal to the corresponding objective in x;. A set
of local best solutions L is also maintained for each swarm member. Local best position for

each member is selected uniformly from this set.

The used MOPSO algorithm has been explained with the help of a block diagram in figure

5.1. We have divided our proposed system into two major blocks.
» Test data [Test Cases] generation

» Optimization [minimization] of test paths [cases] using MOPSO

Coverage Analysis for GUI Testing -

5.2.1 Problem Modeling using MOPSO

Following are steps of MOPSO that we followed for analysis and optimization of test path
coverage. The block diagram of working of MOPSO for GUI test path coverage analysis and

optimization is being shown in figure 5.1.

5.2.1.1 Initialize the population

Generate random population of n particles. For test data generation, we have used same event
based technique that was used for single objective optimization algorithms (chapter 4). For
this purpose we developed a calculator (shown in figure 4.3), used unique event IDs for
every event and event recorder (shown in figure 4.4) to generate sequence of events (shown
in figure 4.5). Also we developed another application similar to notepad and named it as user
developed notepad (Figure 4.6). We also experimented with MS Word, WordPad and
Notepad as well. Length of position vector of our particle is the longest path (Longest test
case). We have initialized these chromosomes between 1 and maximum length of the test

case.

5.2.1.2 Build two repositories for local best L and global best Z

In this case we have stored the non dominated solutions found so far during the search
process in Z (globally). Dominated tree is constructed from this set Z so that we may select
the global leader efficiently. A set L (related to local search) is also maintained for each
member. Currently each L has just one member namely the initial position of the

corresponding particle.

Population is initialized with random values which are within the specified range. Each
particle consists of the decision variables. Our fitness function is how many test cases have

successfully validated?

Coverage Analysis for GUI Testing

Event based

Initialize Calculate Fitness based
Automated Test Data - Population upon Coverage Analysis
Generation

Determine Global Best Determine Update Z and L
Personal
Best

Calculate Velocity DeiEriie Pasiian of Calculate Fitness based
Each Particle upon coverage analysis

Met Required

Fitness?

Figure 5.1 Block Diagram of MOPSO for GUI Test Coverage Optimization

5.3

Coverage Analysis for GUI Testing -

5.2.1.3 Update the Velocity and Position of each particle.

Determine the new position and velocity for each particle according to equation no 4.1 and
4.2 respectively for each generation. Since the position vector in continuous PSO usually
consists of real values, we have rounded off the values to the nearest integer. In this way the
algorithm was made to work on discrete data. We have also made it sure that the resulting
position is in the specified interval for each dimension.

5.2.1.4 Update non dominated global set Z.

If the solution found is non dominated with respect to members of Z, add it to Z. If the
solution dominates any member of Z, then we have to delete that member from Z and
included the current solution in Z. The composite points in dominated tree will also be
updated if an updating occurs in Z. By using dominated tree, we have selected the global

best for each particle based upon its closeness to non dominated members stored in Z.

5.2.1.5 Update local set L of each particle.

Since there is comparatively small number of Pareto solutions stored locally than globally, so
the local best position for each particle is selected uniformly from the corresponding updated
L.

GUI Test Coverage Optimization by Multi- Objective GA (MOGA)

NSGA is a popular non-domination based genetic algorithm for multi-objective optimization.
A modified version, NSGA-Il was developed, which has a better sorting algorithm,
incorporates elitism and no sharing parameter needs to be chosen a priori. To test GUI and

analyze the coverage, we have proposed a method based upon NSGA-I1.
Working of NSGA-I11 has been explained with the help of a block diagram in figure 5.2.

We have divided our proposed system into two major blocks, similar to those we have used

for our experimentation with multi objective PSO.
e Test data [test cases] generation

e Optimization [minimization] of test paths [cases] using NSGA-II

Coverage Analysis for GUI Testing -

5.3.1 Problem Modeling using NSGA-II

Genetic algorithms are inspired by Darwin's theory about evolution. Solution to problem
solved by genetic algorithms starts with a set of solutions (represented by chromosomes)
called population. Solutions from the population are sampled and used to form a new
population. Following are steps of NSGA-II that we followed for analysis of test path
coverage analysis:

5.3.1.1 Initialize the population

The process of test data generation was the same as had been followed in experimentation
with MOPSO. As have been explained earlier, event based path generation technique was
used for test data generation. We have generated random population of n chromosomes.
Chromosomes have been formed from the captured events sequences. Length of our
chromosome is the longest path (Longest test case). We have initialized these chromosomes

between 1 and maximum length of the test case.

5.3.1.2 Sort the population using non-domination-sort

In this case we have sorted the population using non-domination-sort. This returns two
vectors for each individual which are the rank and the crowding distance corresponding to
their position in the front they belong. At this stage the rank and the crowding distance for

each chromosome is added to the chromosome vector for ease of computation.

5.3.1.3 Start the evolution process

Population is initialized with random values which are within the specified range. Each
chromosome consists of the decision variables. Our fitness function is the same, we used for

genetic algorithm based experimentation represented through equation 4.5.

Accuracy of a chromosome= Test Paths covered by chromosome/ Total number of test paths----------- (4.5)

5.3.1.4 Reproduction operators

For each generation select the parents which are fit for reproduction. Also select two parent
chromosomes from a population according to higher fitness. Perform crossover and Mutation

operator on the selected parents. We have applied these reproduction operators to increase

Coverage Analysis for GUI Testing -

the coverage efficiency. Also we have generated a random number to find the mutation point

in chromosome.

5.3.1.5 Create Intermediate Population

Create intermediate population. Intermediate population is the combined population of
parents and off-springs of the current generation.

Coverage Analysis for GUI Testing

Generate Initial Population within Specified Range

A 4

Decision
Variables

v
v
Value of
L Rank
Objective
Function

A

y

Crowding
Distance

\ 4
Initialize Population g Calculate Fitness
A\ 4
Sort Based upon Rank
Sort Based upon Crowding Distance —_—) Select Using Tournament
Selection
Sort Population Selection
Number of
End
Generations>500
A 4
T Crossover »| Mutation

Create Intermediate Population

Reproduction Operator

Figure 5.2 Block Diagram of NSGA 11 for GUI Test Optimization

Coverage Analysis for GUI Testing -

5.4 Experimental Results

9.5

We had designed and developed two multi-objective techniques (NSGA 11, and MOPSO) in
MATLAB. Two applications were developed to experiment with. These applications include
a simple calculator and a customized notepad. While three built-in sample applications were
selected to experiment with, this included Notepad, WordPad, and MS WORD. The
applications have undergone extensive experimentation in order to determine their

effectiveness.

Our experimentation completed in two phases.
1: Experimentation with MOPSO

2: Experimentation based on NSGAII

In first phase, we have used a multi objective PSO based upon the concept of maintaining
dominated tree. Our system generates multiple solutions in the origin and optimizes the
solution using multi objective PSO. The solutions are then checked against the many

predefined quality measures. Solutions are selected to build Pareto Front.

In 2nd phase, our proposed method resolves the multi-objective problem by using non-
dominance based selection. Our technique initially generates multiple solutions and then

optimizes the solutions using crowding distance and ranking.

Results Analysis

In this section, we are presenting results of our study from two different perspectives. In first
phase, results showing comparison between single objective and multi objective algorithms
have been presented while in second phase, comparison between MOPSO and NSGA Il has

been analyzed.

5.5.1 Comparison of Single Objective and Multi Objective Algorithms

In previous chapter, we have used GA to analyze the test coverage of GUI tests for a user

developed calculator application [Chapter 4]. While in this chapter, we have enhanced the

Coverage Analysis for GUI Testing -

level of experimentation. In this section we are going to present comparison of performance

of GA and NSGA 11 on the application of user developed calculator.

In experimentation with GA, coverage analysis has shown that the system was able to
achieve 85% coverage. The results have also shown that an increase in the number of
generations resulted in enhanced coverage. In order to determine the optimal number of
generations, we experimented with our technique using generations between 300 and 500
(inclusive). In comparison, when same calculator application was experimented with multi
Objective GA (NSGA I1) than we were able to achieve more coverage relatively. NSGA 11
showed better performance and was able to select test cases that were enough to test 91% of
test paths in calculator application. Comparison of both algorithms has been shown in table
5.1 given below. The effect of enhancing the number of generations helped each algorithm to

enhance the coverage but as results of table 5.1 shows, that NSAGA 11 outperformed GA.

Number of Generations | Coverage achieved through GA | Coverage achieved through NSGA II
300 65% 70%
325 68% 74%
350 69% 79%
375 2% 81%
400 73% 84%
425 79% 88%
450 85% 90%
475 85% 90%
500 85% 91%

Table 5.1 Test Path Coverage Comparison for Calculator application

Coverage Analysis for GUI Testing -

5.5.2 Comparison of NSGA Il and MOPSO

For experimentation with multi objective evolutionary algorithms, the test data was generated
manually by clicking on various GUI elements and tailoring the course of click-events. This
was really a difficult task to generate an appropriate number of test cases especially in case of
built-in applications, where we had to generate and record all event sequences (path of
events) manually. In contrast, for user defined applications we just had to generate event
sequences by mouse clicks and using key board. Because these applications were designed to
automatically generate the sequence of events (events path). In all, 120 test cases were
generated per application. The test cases manipulated various aspects of product interface
i.e., menus, toolbars, drop-down bars etc. The composition of test suite was such that it
evenly covered all of these aspects of each product. Each test case was of variable length
depending upon the sequence of events involved to perform that specific action.

Coverage analysis has shown that system was able to achieve more than 85% coverage in
MOPSO and NSGA II. Fitness function was able to yield high coverage which shows its
utility in the case of GUI testing. On the other hand, achieved coverage percentage shows
that we still have significant room for improvement. Coverage achieved on each application
using MOPSO and NSGA Il by executing 120 cases for each application has been shown in
table 5.2 and table 5.3 respectively.

Coverage Analysis for GUI Testing

Coverage achieved
Number of Generations
MS Notepad | MS WordPad | MSWord | User Defined Notepad | Calculator | Average Coverage
300 68% 74% 63% 75% 70% 70%
325 70% 74% 68% 79% 73% 73%
350 7% 79% 76% 80% 79% 78%
375 84% 81% 79% 84% 81% 82%
400 87% 83% 84% 87% 85% 85%
425 89% 88% 89% 94% 89% 90%
450 90% 89% 91% 94% 92% 91%
475 90% 89% 91% 94% 92% 91%
500 90% 89% 91% 94% 92% 91%

Table 5.2 Coverage According to Number of Generations [NSGA 11]

Coverage achieved
Number of Generations
MS Notepad | MS Wordpad | MS Word | User Defined Notepad | Calculator | Average Coverage
300 66% 61% 60% 71% 68% 65%
325 70% 68% 66% 73% 2% 70%
350 75% 75% 2% 79% 7% 76%
375 79% 81% 7% 83% 84% 81%
400 84% 82% 82% 88% 87% 85%
425 87% 86% 84% 91% 92% 88%
450 91% 89% 86% 93% 95% 91%
475 91% 91% 88% 94% 95% 92%
500 92% 91% 88% 94% 95% 92%

Table 5.3 Coverage According to Number of Generations [MOPSO]

Coverage Analysis for GUI Testing -

Performance of both the multi-objective evolutionary algorithms has been compared in a

graph shown in figure 5.3. There is not a big difference in performance of both algorithms
but the important thing is that both algorithms were able to cover more than 90% of test
paths. MOPSO started with bit bad performance but with the increase in number of test
cases, MOPSO started to show better performance than NSGA II. In the end both algorithms
were successful in attaining more than 90% test path coverage. On the other hand, test path

coverage by single objective GA was much lesser than coverage of multi-objective GA.

Performance Comparision of NSGA Il and MOPSO
100
95
T 90 = —
Q e ——
2 85 o
£ #0 /"/
PRE
g 70 — ——NSGAII
Q Ly
2 65 MOPSO
o 60
55
50
O = 00 ™~ WD O = o0 ™~ WD O s 0 W O = o0
[I o T I T W T W T e e R =# I v o T o 0 R o T o T e T e R T I |
=~ =~ =~ —~ -
Number of Test Cases

Figure 5.3 Test Path Coverage Achieved Through Multi-Objective Algorithms

Another important aspect of multi objective evolutionary algorithm is formation of Pareto
front. Pareto front, most commonly accepted term for finding an acceptable solution for
problems having conflicting objectives. We have seen that with the increase in number of test
cases, path coverage for GUI testing is also increasing. So we have to find a good
compromise in between optimization of these both objectives. Pareto front for NSGA 1l and
MOPSO are shown in figure 5.4 and figure 5.5 respectively. Depending upon the constraints
in terms of available resources for test case execution and required test coverage, Pareto front

will help to pick a desired solution.

Coverage Analysis for GUI Testing -

Coverage Achieved

95
90
85
80
75
70
65

MOGA Based GUI Test Coverage Analysis

Number of Test Cases

Figure 5.4 Pareto Front for NSGA 11 based GUI Test Coverage Analysis

Coverage Achieved

100
90
80
70
60
50
40
30
20
10

0

MOPSO GUI Test Coverage Analysis

PP VP AOAAY VP B P P, PO W

Number of Test Cases

Figure 5.5 Pareto Front for MOPSO based GUI Test Coverage Analysis

Coverage Analysis for GUI Testing -

5.6 Summary

This chapter reveals that we can achieve optimized test coverage of GUI events not only on
the basis of events covered but with respect to number of test cases as well. For this purpose
we have used two multi-objective evolutionary algorithms. The motivation behind choosing
these two algorithms was the success we gained by having a good coverage through single
objective evolutionary algorithms. Although there is not an immense difference in
performance of both algorithms but the important thing is that both algorithms were able to
cover more than 90% of test paths. We have set following objectives for our multi-objective

test coverage optimization problem:
» To minimize the number of event based GUI test cases
» To maximize the coverage of event based GUI test cases
By having multi-objective optimization, we can have as much coverage as required

depending on the number of test cases to be executed. Thus, it gives a freedom to achieve

coverage according to the available constraints of cost and schedule.

Coverage Analysis for GUI Testing -

Chapter 6 Coverage Optimization Based GUI Test

Framework

Coverage Analysis for GUI Testing -

Every development organization is eager to ensure the maximum quality in its products, but

testing a graphical user interface comprehensively, is still a lurid, as GUI testing has proved
to be a labor-intensive effort. As have been mentioned earlier that most important
advancement in automation of manual GUI testing process is to model GUI elements and
interaction among these widgets (Normally referred as events). Event-flow graph (EFG) is
comparatively an unsullied and positive addition to handle automation of GUI testing. In this
chapter, we are presenting a framework based on coverage optimization techniques that we
have evaluated in previous two chapters. Along with coverage optimization techniques based
on evolutionary algorithms, ontology based test data generation and test oracle development
are the major parts of this GUI test framework. Our framework works in three steps as have

been shown in figure 6.1.

Ontology Driven Test Execution and Test

Semantic Ao >
q ™ A ™ F
SUTetCme |1 aumtatons e[| € Optinizatin g
: Test Oracle ag ays
Development

Figure 6.1 Coverage Optimization Based GUI Test Framework

This ontology theoretically works on the foundation led by semantics of feasible actions
(events) and then annotations can be used to generate the test cases and work as an oracle for

verification of the output of testing effort.

By annotation process, the tester indicates what GUI elements are important in terms of the
following: First, which values can a GUI element hold (i.e., a new set of values or a range),
and thus should be tested; second, what constraints should be met by a GUI element at a
given time (i.e., validation rules), and thus should be validated. The result of this process is a
set of annotated GUI elements which will be helpful during the test case auto-generation
process in order to identify the elements that represent a variation point, and the constraints
that have to be met for a particular element or set of elements. From now on, this set will be

called Annotation Test Case.

Coverage Analysis for GUI Testing -

6.1 Oracles Development

A test oracle is an instrument to assess the tangible outcome of a test case either as pass or
fail by producing an anticipated end result for an input and checking the actual results against
this projected result [161], as shown in Figure 6.2. Conventionally the development of
oracles has proved to be hard and expensive in software testing [161][162][163][164] Efforts
to replace manual test oracles with automated and partially automated oracles involve
specification based oracle development, program simulations or a trustworthy
implementation use [161]. Several researchers recommend using domain-specific, model-
based oracles [100][165][166][167].

Actual

Test Results \
oracle Pass/MNo Pass
st case comparator
input

Expected /
| oracle

Test Results

Figure 6.2 General Framework for Oracle

6.2 Ontology Development

Because of ease and suppleness provided by graphical user interfaces (GUIs), they are
becoming most vital modules of software systems. On the other hand, a lot of research work
is being carried out in software testing field but subfield of GUI testing is still not getting its
due attention. Freedom offered by GUI can be presumed by the fact that a user can access a
particular component in a software system by following multiple itineraries of events. This

freedom stimulates the interest of end user in software system but becomes a nuisance for

Coverage Analysis for GUI Testing -

testers of the application. Large numbers of permutations of events and complex event

interactions of GUIs present new challenges for this kind of testing.

Ontology defines the basic terms and relations constituting the vocabulary of a specific
domain area as well as the rules concerning that specific domain. Ontologies have been
applied to describe a variety of knowledge domains [168]. Ontology is a formal explicit
description of concepts in a domain of discourse, properties of each concept describing
various features and attributes of the concept, and restrictions on these concepts [169]. The
ontology is the means for capturing domain knowledge in a generic way that provides a
commonly agreed understanding of a domain. The solitary purpose behind building up
ontologies is to share widespread understanding of the structure of information among people
or software agents [170]. Knowledge gathered through different ontologies may be reused
and shared within communities or applications. A growing interest on the establishment of
ontologies has been observed for the most different knowledge domains. This work presents
an ontology of GUI testing, which has been developed to support test case generation and

oracle development on basis of the domain knowledge.

Annotation of textual or graphical documents relating to software systems is a common and
important software engineering activity. Computerized development tools incorporating
annotation have become available in recent years. They are used in diverse areas such as
annotating source code to explain design rationale [171]. In GUI testing, the annotation
process is the process by which the tester indicates what GUI elements are important in terms
of the values GUI element holding (i.e., a new set of values or a range), and constraints that

GUI element has to meet at a given time (i.e., validation rules) [172].

Semantics is the study of explanation of symbols as used by group of people surrounded by
scrupulous circumstances and contexts. Semantic Annotation is a fundamental knowledge
being used for the development and usage of intelligent contents. A broad range of different
software domains are using semantic annotation for intelligence oriented products and
processes. Semantics-based fact retrieval is one fundamental use of semantic annotations
[173]. Annotations are being used to reveal the design decisions and rationale behind these

design decisions, although these decisions are normally documented ones [174]. An

Coverage Analysis for GUI Testing -

annotator is defined as an analysis agent that can be written to process each entity of a certain

type independently [175].

An imperative attribute of GUI systems is that their behavior is very much dependent on the
context in which they are being used. [176]. Besides the functionality of a GUI element,
response of GUI element to an event may be different depending on the perspective
established by preceding events and their execution order [176]. Another important fact
about event driven nature of GUI is that longer test sequences are better than shorter
sequences in identifying defects. In [6], authors have presented an algorithm to find out the
follows of an event. This algorithm helps to determine the subsequent events following an
event. Authors also have classified these events depending upon their functionality. This
classification is based on domain knowledge, but is currently being done manually [176].

In this chapter, we are presenting an approach to automate the test case generation process
for GUI testing based on semantic annotation and ontology. Our approach uses the concepts
from GetFollows algorithm [176], semantic annotations and ontology. Our proposed
ontology can also be used to remove the manual effort required in grouping events based on
functionality described in [176]. The results of our study show that by increasing event
combination strength and controlling starting and ending positions of events, our test cases
are able to detect a large number of faults, not detected by exhaustive test suites of short tests
[176]. In [176], Memon et. al relates a GUI’s response with context and says that response of
a GUI to an event may vary depending on the context established by preceding events and
their execution order. In previous efforts, our work on coverage analysis using GA [169] and
work on coverage analysis using PSO [30] have shown that without considering the strict

ordering constraints, we can have very good coverage of GUI events.

A number of annotation approaches exit for producing semantic annotations. OntoAnnotate,
a framework for the semantic web, includes tools for both manual and semi-automatic
annotation of pages [177]. Not unlike Knuth’s literate programming, Decker et.al has used
semantic annotation for embedding in the semantic tags of ordinary hyper text markup
language (HTML) [178]. Knuth’s approach basically uses few semantically relevant and

formal statements that are embedded in unstructured prose text. McMaster also believes that

6.3

Coverage Analysis for GUI Testing -

defining GUI element invariants in annotations would make it possible to generate test cases

that cover the invariant conditions [169].

A number of ontology modeling methods have been proposed in the literature. Knowledge
Interchange Format, description logic, and object oriented modeling, such as in UML are
among the most widely used traditional approaches [180]. XML supports customizability,
extensibility, and simplicity. Due to these reasons, XML is most commonly being used as the
format to represent ontology and as a format of agent communication languages. For these
reasons, XML is used in our system to codify the ontology for computer processing.
However, an XML representation of ontology is at a rather low level of abstraction. It does
not support the validation of the ontology by domain experts [181]. In another work, Huo et
al. investigated the development of ontology of testing as a support for a multi-agent

software environment which tests web-based applications [168].

Ontology Driven Semantic Annotation Based GUI Testing

Coverage analysis using evolutionary algorithms like GA and PSO has shown that without
considering the strict ordering constraints, we can have very good coverage of GUI events
[12, 30]. In [6], one method of modeling a GUI for testing creates a representation of events
within windows (or components) called an event-flow-graph (EFG) [6]. Memon et al.
explained how a GUI’s response varies with the change in the context of its use. According

to [5], the absolute position of the event within the sequence affects fault detection.

In this chapter, we have made an attempt to expose the opportunities of building a close
relation between semantic annotation and ontology engineering. Annotation can help a lot in
GUI testing from test case generation to oracle development as has been proposed by
McMaster [179]. Adding semantics to these annotations can help in capturing the context of
events. Concepts and relations are contained in the ontology and as concepts keeps on

growing, so proposed ontology for this work must also be evolving with the passage of time.

Coverage Analysis for GUI Testing

GUI Event Flow
Model [17]

Vertex X

Set of follows for X

Vertex Y

Figure 6.3 GetFollows from GUI Event Flow Model [17]

Calculate Set of
predecessor for
Event (X->Y)

Assert Widget’s

Calculate Set of

semantic Follows for Event

(X>Y)

GUI Testing

Framework

Report the GUI element

Expert Opinion

"©3/11/1978~ ox

Specificatio
Ontology ns

Set\of Events

GUI Event
Flow Model
[17]

Figure 6.4 Proposed framework for Automatic Generation of GUI tests

Coverage Analysis for GUI Testing -

Proposed approach describes a GUI test case auto generation process based on ontology and

the annotations relevant to the GUI elements. All the promising test cases are created
automatically depending on the values defined during the annotation process [6].

As we can see in figure 6.3, GUI event flow model produces the list of follows of each event.
Incorporating this follows set into ontology can produce the list of predecessors and follows
of each event. Event flow graph is being used to build ontology as have been shown in figure
6.4. This GetFollows algorithm of this model helps ontology to grow with ordered list of
events. Document specification can also be used as a useful tool in evolving this as well as
expert opinion. For each GUI element, when GUI testing framework interacts, it reports the
ontology name of the element and event. Ontology extracts the follows set and set of
predecessors for each event. Ontology, annotates the widget on semantics basis. Relationship

between semantic annotations with ontologies is the core of our proposed method.

For ontology implementation, OWL 2 has been used as ontology language. The OWL 2 Web
Ontology Language, informally OWL 2, is an ontology language for the Semantic Web with
formally defined meaning. OWL 2 ontologies provide classes, properties, individuals, and
data values and are stored as Semantic Web documents. OWL 2 ontologies can be used along
with information written in RDF (Resource Description Framework), and OWL 2 ontologies
themselves are primarily exchanged as RDF documents. RDF is a representation format for
meta data defined by the W3C. It is used for representing metadata for describing the
semantics of information in a machine accessible way. Figure 6.5 shows an ontological
implementation of GUI hierarchy. This implementation is based on the relationship that
exists between different GUI widgets (objects). This relationship has been shown in form of
a graph in figure 6.6.
.C) owl:Thing

(L) Actions

(C) Cammand

¢ (C)MenuBar
(2 MainMenultemn

(C) Operation

Figure 6.5 Ontological Implementation of GUI Hierarchy

6.4

Coverage Analysis for GUI Testing -

Has command

\ Action)
Hasmenu item — — \
B __/ Z Command)
Menu ltem)

Has action

Operation

Has operation

Figure 6.6 Ontological Relationships between GUI Widgets

The RDF along with RDF graph and RDF vocabulary description language (RDF schema)
could take a central part in this development, since RDF graph consists of concepts and
relations. The relations denote the semantic associations between concepts and the RDF
vocabulary description language (RDF schema) extends RDF to include the basic features
needed to define ontologies. The most important reason that makes us adopt RDF graph in
our work is the structure similarity between event flow graphs and RDF graph, as RDF graph
consists of concepts and relations and event flow models provides elements and possible
interactions between these elements. RDF is a simple language with a labeled directed graph
as its underlying data structure and its only syntactic construct is the triple, which consists of
three components, referred to as subject, predicate, and object [182]. A triple represents a
single edge (labeled with the predicate) connecting two nodes (labeled with the subject and
object); it describes a binary relationship between the subject and object via the predicate
[182].

Summary

In preceding chapter, we have shown that coverage analysis using evolutionary algorithms
without considering the strict ordering constraints; we can have excellent coverage of GUI
events. In this chapter, we have tried to use test coverage optimization for building a GUI test
framework. Semantic annotations based test case generation was suggested by more than one
researcher in literature. In this chapter, we have made an effort to blend the concept of

ontology development with semantic annotations to generate test cases.

Coverage Analysis for GUI Testing -

Chapter 7 Conclusion and Future Work

Coverage Analysis for GUI Testing -

Software testing is a decisive field of software engineering playing a significant role in

success or failure of software developments. However, software testing fails to meet its
desired objectives due to several reasons. One major reason is that software testing, in
general, operates in traditional environment. Consequently, it is very hard for software
testing practitioners to cope up with the significant changes in software development
environment. This creates an extra operating cost to trounce software tester errors resulting in

a lot of problems for ensuring error free and quality software products.

Aspiration of this thesis was to come up with a framework for Graphical User Interface
(GUI) testing. Looking at the success of model based testing; we opted to model GUI before
testing. UML is very popular language, being used for analysis and requirements
specifications purposes. It is a standardized diagramming language by Object Management
Group. UML provides a number of diagrams to model proposed software from different
perspectives but it is not as helpful while modeling GUI interactions. On the other hand,
GUIs are vital to the users of any software system as they are the only part of the system that
is visible to the users and they provide facility of interaction to users. In this research, we
have strived to present some new notations for commonly used GUI objects and proposed a

method to interact with simple single components in complex composite objects.

In this research, we have proposed evolutionary algorithms based techniques for coverage
analysis of GUI testing. The techniques have been subjected to extensive testing. Many
applications were selected for experimentation which included Notepad, WordPad and MS
WORD. The experiments showed encouraging results. There was an enhancement in results
w.r.t. coverage achieved as we increased the number of generations. The results of this
technique present an exciting and innovative area of research. Using different Al techniques,

this methodology can be applied for different other similar problems.

An imperative attribute of GUI systems is that their behavior is very much dependent on the
application area. Besides the functionality of a GUI element, response of GUI element to an
event may be different depending on the perspective established by preceding events and
their execution order. An added important fact about event driven nature of GUI is that
longer test sequences are better than shorter sequences in identifying defects. Memon et. al.,

has presented an algorithm to find out the follows of an event [6, 176]. This algorithm helps

7.1

Coverage Analysis for GUI Testing -

to determine the subsequent events following an event. In this research, we also have used

NSGA Il and MOPSO; multi objective algorithm techniques for coverage analysis of GUI
testing. The experiments have shown very inspiring results. The outcomes of experiments
have shown enhancement in coverage with increase in parameters of number of generations

and number of test cases.

Also in this thesis, we have proposed an approach to automate the test case generation
process for GUI testing based on semantic annotation and ontology. Our approach uses the
concepts from GetFollows algorithm [176], semantic annotations and ontology. Our
proposed ontology can also be used to remove the manual effort required in grouping events
based on functionality described in [182]. In this effort we used manual test case generation,
we are now in the process of developing an automated test generation tool for supporting our

approach which will further increase its utility.

Contributions: With Reference to Individual Chapters

A number of developments in the field of GUI modeling and GUI testing have been made in
this thesis. The most significant contribution of this thesis is that we have investigated the use
of evolutionary algorithms towards measurement of coverage analysis for event based
models of GUI. Another major contribution is proposal for generation of test cases and oracle
development in intelligent manner. Following contributions have been made by thesis in the

GUI testing and GUI modeling with reference to individual chapters.

In Chapter 3, we have presented a detailed review of modeling techniques for GUI. After
giving this review, a new modeling technique has been presented and its merits have been
discussed. Chapter 4 gives novel evolutionary algorithms based intelligent coverage analysis

techniques which have been presented targeting specifically event driven nature of GUI.

An extension of the concepts presented in chapter 04 incorporated in the form of a coverage
analysis based on multi objective algorithms has been given in chapter 05. In this technique
we have given value to cost and time parameters along with test coverage. Quantitative
analysis of all the proposed techniques is performed in terms of their individual performance

as well.

7.2

Coverage Analysis for GUI Testing -

In chapter 6, we have presented a novel idea based on ontology based testing framework.

Ontology has been proposed to help automation of test case generation and coverage has
been used to optimize the testing process.

Recommendations for Future Work

A future area of work is to develop an efficient algorithm which ensures 100% test coverage
along with minimization of the number of test cases. One future extension of this technique is
possible in such a way that it automatically generates correct test data for the complete test
coverage. One possible extension in this direction can be to use Design for Multi-Objective
Six Sigma (DFMOSS). There might be some margins of errors like noise and other
uncertainties on design and in observation so DFMOSS can help in overcoming these issues.
A number of recent studies have discovered that two different species can co-evolve with
each other. This mechanism is called co-evolution and this has yielded encouraging
outcomes in developments of GA and GP. We also plan to use co-evolution to optimize our
results. Another area of interest will be complex human social behaviors inspired

optimization algorithms.

In this research, we have presented a new profile for GUI layout to support modeling of
GUIs in UML-based software development processes. We have also introduced new
notations for commonly used GUI and given diagrams to show the interaction between these

objects. But all this work needs a lot of manual effort.

Despite the above mentioned contributions our research effort has few limitations. As our

work evolves, we are hopeful in overcoming these limitations.
Some of the future works are:
e Design the process for extracting semantics from ontology.
e Complete specification of ontology needs to be provided.
e Appending semantics with annotations needs to be explored.

e Extensive experimentation is required.

[1]

2]

[3]

[4]

[3]

[6]

[7]

[8]

[®]

Coverage Analysis for GUI Testing -

References

T. Xie. Improving Automation in Developer Testing: State of the Practice, North
Carolina State University Department of Computer Science Technical Report TR-2009-6,
February 20, 2009,

(G. Tassey, The Economic Impacts of Inadequate Infrastructure for Software
Testing, RTI Project 7007.011, U.5. National Institute of Standards and Technologv,
Gaithersburg, Md, USA_2002.

G. J. Myers. The Art of Software Testing, John Willey & Sons, Inc., New York, USA,
1979.

ClLff Wilding, Practical GUI Screen Design: Making it Usable. In CHT 08 conference
summary on Human factors in computing systems (CHI'98). ACM, New York, NY, USA
1998, 125-126. DOI=10.1145/286498 286574 http-/doi.acm org/10.1145/286498 286574

B. A Myers, M. B. Fosson, Survey on User Interface Programming. Proc. CHI'92
Human Factors in Computing Svystems (May 1992), ACM Press, 195-202.

A M Memon, An Event-Flow Model of GUI-Based Applications for Testing.
Software Testing, Verification and Feliability, vol. 17, no. 3, 2007, pp. 137-1537, John
Wilev and Sons Ltd.

A M Memon, A Comprehensive Framework for Testing Graphical User Interfaces.

Ph D. thesis, Department of Computer Science, Universitv of Pittsburgh, Julv 2001.

P. LM Navarro, D. 5. Ruiz, G.M Perez, A Proposal for Automatic Testing of GUIs
Based on Annotated Use Cases, Advances in Software Engineering Volume 2010

(2010), Article ID 671284, € pages doi:10.1155/2010/671284

A M Memon, Developing Testing Techmiques for Event-Drivem Pervasive
Computing Applications, OOPSLA 2004 workshop on Building Software for Pervasive
Computing (BSPC 2004), Oct. 2004

[10]

[11]

[13]

[14]

[16]

[17]

[18]

[19]

[20]

Coverage Analysis for GUI Testing -

A M Memon, GUI Testing: Pitfalls and Process, Computer, vol. 35, no. §, pp. 87-8E,
Aug. 2002, doi:10.1109/MC.2002.1023793

Q. Xie and A. M Memon, Using a Pilot Study to Derive a GUI Model for Automated
Testing, ACM Transactions on Software Engineering and Methodology Volume 18 |
Issue 2 (November 2008) Article No. 7 Year of Publication: 2008 ISSN:1049-331X

A Rauf 5. Anwar, A Jaffer, A A Shahid, Automated GUI Test Coverage Analyvsis
Using GA, ITNG, pp.1057-1062, 2010 Seventh International Conference on Information
Technologw, 2010, http://doi.ieeecomputersocietv.org/10. 1109 TTNG.2010.95

C. Bertolini, A Mota, A Framework for GUI Testing Based on Use Case Design,
ICSTW, pp.252-259, 2010 Third Intemational Conference on Software Testing,
Verification, and Validation Workshops, 2010

I. D. Baxter, Branch Coverage for Arbitrarv Languages Made Easy

(httpwww_semanticdesigns.com/Company/Publications,/ TestCoverage pdf)

Q. Xie, Developing Cost-effective Model-based Technigques for GUI testing, 28th
ternational Conference on Software Engineering (Shanghai, China, Mav 20 - 2§,
2006). ICSE '06. ACM, New York, NY, 997-1000. DOI=
http://doi.acm.org/10.1145/1134285.1134473

B Beizer, Software Testing Techniques, Intemnational Thomson Computer Press, 1990,

H. Zhu, A.V. H. Patrick, and H. E. M. John, Software Unit Test Coverage and
Adequacy, ACM Comput. Surv., 29(4):366—427, 1997,

J. Fech and K. Althoff, Artificial Inteligence and Software Engineering: Status and
Future Trends, KI, vol. 18, no. 3, pp. 5--11, 2004.

I. Alsmadi and K. Magel, Using Lightweight Formal Methods in User Interface
Verification, Intemational Conference on Communication, Computer and Power

(ICCCP), Oman, 2009

M. Lowrv and F.. Duran. Knowledge-based Software Engineering. The Handbook of
Artificial Intelligence Vol. 4. Addison-Weslev Publishing Companyw, Inc. 1989.

[23]

[24]

[26]

[27]

[29]

[30]

[31]

Coverage Analysis for GUI Testing -

M. Al-Favoumi, P. Mahanti. 5. Banerjee: OptiTest: Optimizing Test Case Using
Hybrid Intellisence. World Congress on Engineering 2007.

J. 5. Shirabad. Ph.D. thesis. Supporting Software Maintenance by Mining Software
Update Records, School of Information Technology and Engineering, University of
Ottawa, May 2003.

B. Korel. Automated Sofiware Test Data Generation, IEEE Transactions on Software
Engineering, 16(8), August 1990,

BF. Jones, H-H. 5Sthamer and D.E. Evres. Automatic Structural Testing Using

Genetic Algorithms_ Software Engineering Journal, pages 299-306_ September, 1996

P. E. Srhvastava and T.H.- Kim. Application of Genetic Algorithm in Software

Testing, Intemational Joumal of Software Engineering and Its Applications, 3(4),
October 2009,

Craig. D. Rick. and J.P. Stefan . Systematic Software Testing, 536, Artech House
Publishers, Boston. 2002

A Rauf, M. A Basit. M. Eamzan, A A Shahid, Extending UML to Model GUI: A

New Profile, ?nd Intemational Conference on Computer and Automation Engineering

(ICCAE 2010), Singapore, Feb 26 - 28,2010
A Rauf 5. Anwar, A Jaffar. A A Shahid, Fu!'l}' Automated GUI Testing & Coverage

Amnalysis using Genetic Algorithms, Intemational Journal of Innowvative Computing,

Information and Control (IJTICIC) Vol.7, No.3 March 2011 ISSN 13494198 (IF=2.93)

A Rauf, S. Anwar, N K. Khan, A A Shahid, Evolutionary based Automated Coverage
Analyvsis for GUI Testing, Communications in Computer and Information Science

(Springer) ISSN: 1865-0929

A Rauf. N. K. Khan, 5. Anwar, S.U. Echman. A A Shahid, Maximizing GUI Test
Coverage Through PSO, 19th Intemational Conference on Software Engineering and

Data Engineering (SEDE-2010), San Francisco, California, USA, June 16 — 18_2010.

A Rauf, M. A Jaffar. N. Ejaz. AA. Shahid

PSO based Test Coverage Amnalysis for Event Drivem Software, Intemational

Coverage Analysis for GUI Testing -

[33]

[34]

[36]

[37]

[38]

[3%]

[40]

[41]

[43]

Conference on Software Engineering and Data Mining (SEDM 2010), Chengdu, China,

June 23-25 2010.

A Fauf, M. A. Jaffar. Sajid Anwar. Shafig Ur Eechman. A A. Shahid Multi Objective
GUI Testing and Coverage Amnalysis, Special Issue of The Computer Journal (TF=1.00)

[Under 2nd Fevision]

A FRauf. 5. Anwar, A Jaffar. A A Shahid. Using Mulfi Objective Algorithms for GUI
Test Coverage Analysis, Software Qualitv Joumal (IF=0.94) [Under 2nd Eevision]

A FRauf. 5. Anwar, M. Ramzan A A Shahid. Ontology Driven Semantic Annotation
Based GUI Testing, [EEE Intemational Conference on Emerging Technologies 2010
(ICET 2010) Islamabad, Pakistan, October 18-19, 2010

A. Rauf, 5. Anwar, M. Ramzan. A. A Shahid. Knowledge Based GUI Testing,
National Software Engineering Conference, 2010, WUST, Pakistan

Stephen R. Schach. Testing: Principles and Practice. ACM Computing Surveys,
28(1):277-279, 1996

IEEE 5td. 829, IEEE Standard for Software Test Documentation, 1998,

W. C. Hetzel, The Complete Guide to Software Testing, 2nd ed. Publication info:
Wellesley, Mass.: QED Information Sciences, 1988. ISBN: 0894352423

E. Kit, Software Testing in the Real World: Improving the Process, Addison-Wesley,
Reading, Mass, USA, 1995,

D. Gallin. Software Quality Assurance: From Theory to Implementation. Pearson

Education Limited 2004.

R. T. Futrell. L. I. Shafer, ., and D. F. Shafer. . Quality Software Project Management,
Prentice Hall PTE., 2001

A_Ahmed. Software Testing as a Service, Auerbach Publications. New York: 2009.

C. Kaner. A Course in Black Box Software Testing. available at

http:/www.testingeducation. org/ BBST/index html Accessed on: January 15, 2010

[44]

[46]

[47]

[48]

[49]

[>0]

[~1]

[43]

Coverage Analysis for GUI Testing -

M. Eumari. A. Sharma and V. Kamboj, Replacement of S/W Inspection with S/W
Testing, Intemnational Journal of Information Technology and Enowledge Management

July-December 2009, Volume 2, No. 2, pp. 257-261

Z. Huang and L. Carter, Automated Solutions: Improving the Efficiency of Software
Testing, The Intemational Association for Computer Information Systems (TACIS)

Conference_ (IACIS 2003) Las Vegas October 4, 2003.

S Bemer., R Weber and E K Keller., Observations and Lessons Learned From

Automated Testing, in Pmceedings of the 27th Intemational Conference on Software

Engineering (ICSE "03), pp. 371-579, 5t. Louis, Mo, USA, May 2005

J. A Whittaker, What is Software Testing? And why is it so Hard? IEEE Software,
vol. 17, no. 1, pp. 70-79, 2000.

J. Kasurinen. O. Taipale. and K. Smolander. Software Test Automation in Practice:

Empirical Observations, Advances in Software Engineering, vol. 2010, Aricle ID
620836, 18 pages, 2010. doi:10.1155/2010/620836

M. Auguston. . B Michael, andM.-T. Shing, Test Automation and Safety Assessment

in Rapid Systems Prototyping, Proceedings of the 16th IEEE Intemational Workshop
on Rapid Svstem Prototvping (BSP "05), pp. 188-194 Montreal, Canada, June 2005,

A Cavarra, J. Davies, T. Jeron. L. Mournier. A. Hartman, and S. Olvovsky, Using UML

for Automatic Test Generation, Proceedings of the Intemational Symposium on

Software Testing and Analvsis (ISSTA "02), Roma, Italy, July 2002,

M. Vieira. J. Leduc. R. Subramanvan. and J. Kazmeier. Automation of GUI Testing
Using a Model-driven Approach, Proceedings of the Intemational Workshop on
Automation of Software Testing, pp. 9-14, Shanghai, China, Mav 2006.

Z. Xiaochun. Z. Bo. L. Juefeng. and G. Qiu. A Test Automation Solution on GUI
Functional Test, Proceedings of the 6th [EEE Intemational Conference on Industrial

Informatics (INDIN'08). pp. 1413-1418, Daejeon. Korea, July 2008.

D. J Paulish, A. D. Carleton, Case Studies of Software-Process-Improvement
Measurement, Computer , Vol.27. No.9, pp.30-57, Sep 1994 doi: 10.1109/2.312039

[>4]

[>6]

[>7]

[>8]

[>9]

[60]

[61]

Coverage Analysis for GUI Testing -

I. Bumstein. T. Suwhnassart. R. Carlson. Developing a Testing Maturity Model for

Software Test Process Evaluation and Improvement, ITC, pp. 581, Intemational Test

Conference 1996 (ITC'96), 1996

IEEE 5td 982.2-1988, IEEE Guide for the Use of IEEE Standard Dictionary of
Measures to Produce Reliable Software, pp.0 1, 1989
doi:10.1109TEEESTD . 1989.122630

URL: http:/ieeexplore.ieece org/stamp/stamp.jsp tp=&amumb er=264 79& isnumber=983

Proceedings of the 19th IEEE Intemational Conference on Software Engineering, pp.

340548, Boston, Mass, USA, Mav 1997,

K. Karhu T. Repo. O. Taipale. and K. Smolander, Empirical Observations on Software
Testing Automation, in Proceedings of the 2nd Intemational Conference on Software
Testing., Verification, and Validation (ICST "09), pp. 201-209. Denver, Colo, USA, April
2009

O. Taipale and K. Smolander. Improving Software Testing by Observing Causes,
Effects, and Associations From Practice, in Proceedings of the Intemational

Symposium on Empirical Software Engineering (ISESE "06), Fio de Janeiro, Brazil,
Santambar MNA

Definition of GUI Retrieved from Dictionary.com.

http://dictionarv reference com/browse/GUI Retrieved January 11, 2010,

B. A Myes. A Brief History of Human-Computer Interaction Techmology.
Interactions 5, 2, 1998, 4434, DOI= http./doi.acm.org/10.1145/274430.274436

I. Alsmadi and K. Magel. Building a User Interface Test Automation Framework,
International Joumnal of Software Engineering (JSE), Vol 1. No. 2. University of Lahore,
Pakistan

Q. Xie. Developing Cost-Effective Model-Based Techmnigues for GUI Testing,
Proceedings of the Intemational Conference of Software Engineering 2006 (ICSE™06).
2006.

[63]

[64]

[68]

[69]

[70]

[71]

[73]

Coverage Analysis for GUI Testing -

L. White, Regression Testing of GUI Event Interactions. Proceedings of the
International Conference on Software Maintenance, 4-8 November 1996. IEEE

Computer Society Press: Piscataway, NI, 1996; 350-358.

A M. Memom, I Banerejee, and A. Nagarajan, GUI Ripping: Reverse Engineering Of

Graphical User Interfaces For Testing, In Proceedings of the 10th Working
Conference on Reverse Engineering { WCEE'03), 1095-1350/03. 2003.

A M. Memon, Developing Testing Techniques for Event-driven Pervasive

Computing Applications, Department of Computer Science. University of Maryland.

A M. Memon, GUI testing: Pitfall and Process. Software Technologies. August 2002
Pages 87-88.

A M Memon and Q. Xie. Studving the Fault-Detection Effectiveness of GUI Test
Cases for Rapidly Evolving Software. IEEE Transactions on Software Engineering,
31{10), 2005, 884-896.

A M Memon, and M. Soffa. Regression Testing of GUIs, Proceedings of
ESEC/FSE 03. Sep. 2003.

S. Godase, An Introduction to Software Automation,
http:/www.qthreads.com/articles/testing/an_introduction to_software test automation.h

tml. 2005.

B. Marick. When Should a Test Be Automated, Presented at Quality Week, 1998.

http//www testing. com/writings/automate. pdf

A M Memon, M. E. Pollock and M. Lou Soffa. Plan Generation for GUI Testing,
Proceedings of the Fifth Intemational Conference on Artificial Intelligence Planning and

Scheduling, AAAT Press, 226-235, 2000

5. Horwits and T. Feps, The Use of Program Dependence Graphs in Software

Engineering, 14® Intemational Conference on Software Engineering, pages 392-411,

Melbourne, Australia, 1992,

M. Grechanik, Q. Xie, and C. Fu. Maintaining and Evolving GUI-directed Test

Scripts. 31st Intemational Conference on Software Engineering. IEEE Computer

[74]

[75]

[76]

[77]

[78]

[79]

[80]

[81]

[83]

Coverage Analysis for GUI Testing -

Society, Washington, 2009, 408418, DOI=
http://dx.doi.org/10.1109/ICSE.2009.5070540

C. Green, D. Luckham, R Balzer, T. Cheatham, and C. Rich, Report on a Knowledge-

Based Software Assistant, Readings in Artificial Intelligence and Software Engineering,

M. Lowry, E. Duran, Knowledge-based Software Engineering: The Handbook of
Artificial Intelligence, Vol 4. Addison-Wesley Publishing Company, Inc., 1989,

E. MeCartnev, Knowledge-Based Software Engineering: Where We Are and Where
We Are Going. Automated Software Design. Edited by M. R. Lowry and E. D.
McCartnev, AAAT Press. 1991

L.C. Briland, On the Many Ways Software Engineering can Benefit from Knowledge
Engineering, 14% SEKE, Italy, 2002 , 3-6

W. Pedrvcz, 1. F. Peters, Computational Intelligence in Software Engineering, World
Scientific Publishers, 1998.

N. Tracey. J. Clark. K. Mander. and J. McDermid. An Automated Framework for
Structural Test-Data Generation, Intemational Conference on Automated Software

Engineering, Hawaii, TSA, 1998 pp. 285— 28E.

P. Tonella. Evolutionary Testing of Classes, ISSTA July 11-14, 2004, 2004.

M. Harman. The Current State and Future of Search-Based Software Engineering.
ICSE 2007, 2007.

L. Briand. Y. Labiche. M. Shousha. Using Genetic Algorithms for Early
Schedulability Amnalysis and Stress Testing in Real-Time Systems, Genetic
Programming and Evolvable Machines, vol. 7 (2), Springer, 2006. pp 145-170

L. C. Brand ., A Critical Analyvsis of Empirical Research in Software Testing First
international Syvmposium on Empirical Software Engineering and Measurement,
Washington, DC, 1-8. September 20 - 21, 2007 DOI=
http-//dx doi.org/10. 1109/ ESEM 2007 8

[84]

[83]

[86]

[87]

[88]

[89]

[90]

[#1]

[#3]

[#4]

Coverage Analysis for GUI Testing -

Y. Wang, Fuzzy Clustering Analysis by Using Genetic Algorithm, ICIC Express
Letters, vol.2, no 4, pp.331-337, 2008.

J. F. Chang. A Performance Comparison between Genetic Algorithms and Particle
Swarm Optimization Applied in Constructing Equity Portfolios, Intemational Journal

of Innovative Computing, Information and Control, vol.5, no.12(B). 2009, pp.2069-5080.

BF. Jones. DE. Eyres. HH. Sthamer. A Strategy for using Genetic Algorithms to
Automate Branch and Fault-Based Testing, The Computer Journal 41(2), 1998, 98-
107.

BF. Jones. HH. Sthamer. D.E. Evers. Automatic Structural Testing Using Genetic
Algorithms, The Software Engineering Joumnal 11{3), 1996, 299-306.

G. Michael, McGraw, M. Schatz, Generating Software Test Data by Evolution, [EEE

Transactions on Software Engineering 27(12), 2001, 1085-1110

A E. Howe, A. V. Mavthauser, . T. Mraz. . Test Case Generation as an AI Planning
Problem, Automated Software Engineening vol. 4, 1997, pp 77-106.

K. Doemer. W.J. Gutjahr. Extracting test sequences from a Markov software usage
model by ACO, LNCS, vol. 2724, Springer Verlag, 2003, pp-2465-2476.

P. McMinn, M. Harman. D. Binkelev and P. Tonella. The Species per Path Approach
to Search Based Test Data Generation, ISSTA, ACM 2006.

P. McMinn, M. Holcombe, The State Problem for Evolutionary Testing, GECCO,
LNCS Wol. 2724, Springer Verlag. 2003, pp. 2488-2500.

Y. Sun and E. L. Jones, Specification -driven Automated Testing of GUI-based Java
Programs. Proceedings of the 42nd Annual Southeast Regional Conference (ACM-SE
42). New York, NY, USA: ACM, 2004, pp. 140-145.

A C.R. Paiva, N. Tillmann. J. C.P. Faria. and R. F.A. M. Vidal, Modeling and Testing

Hierarchical GUls, Proceedings of the 12th Intemational Workshop on Abstract State
Machines, 2005.

A Paiva, J. C. P. Fara. N. Tillmann. and R. F. A. M. Vidal, A Model-To-
Implementation Mapping Tool for Automated Model-Based GUI Testing,

[96]

[97]

[98]

[99]

[100]

[101]

[102]

Coverage Analysis for GUI Testing -

Proceedings of the 7® Intemational Conference on Formal Engineering Methods, 2005,

pp. 450464

D. I EKasik . H. G. George, Toward Automatic Generation of Novice User Test
Scripts, Proceedings of the SIGCHI conference on Human factors in computing svstems:
common ground, Vancouver, British Columbia, Canada, Aprl 13-18, 1996, p.244-
251, [dei=10.1145/238386.238519]

L. White, H. Almezen N. Alzeidi, User-based Testing of GUI Sequences and their

Interaction. Proceedings of the Intermational Symposium on Software Reliability
Engineering, 8—11 November 2001. IEEE Computer Society Press: Piscataway, NI,
2001; 54-63.

L. White. H. Almezen, Generating Test Cases for GUI Responsibilities Using
Complete Interaction Sequences, Proceedings of the Intemational Syvmposium on
Software Reliability Engineering, 8-11 October 2000. IEEE Computer Society Press:
Piscataway, NJ, 2000; 110-121.

A M Memon. ME. Pollack, M. L Soffa. Using a Goal-Driven Approach ao Generate
Test Cases for GUlIs, Proceedings of the 21 International Conference on Software

Engineering, May 1999 ACM Press: New York, 1999; 257-266.

A M Memon, M. E. Pollack, ML Soffa, Automated Test Oracles for GUls,
Proceedings of the ACMSIGSOFT Bth International Syvmposium on the Foundations of
Software Engineering (FSE-8), 8-10 November 2000. ACM Press: New York, 2000; 30—
39.

A. M Memon, M. E. Pollack, M. L. 5Soffa. Coverage Criteria for GUI Testing,
Proceedings of the 8th European Software Engineering Conference (ESEC) and Sth
ACM SIGSOFT International Svmposium on the Foundations of Software Engineering
(FSE-9), September 2001. ACM Press: New York, 2001; 256-267.

A. M. Memon. A. Nagargjan. Q. Xie. Automating Regression Testing for Evolving
GUI Software, Journal of Software Maintenance and Evolution: Fesearch and Practice

2005; 17(1):27-64.

Coverage Analysis for GUI Testing -

[103]

[104]

[105]

[106]

[107]

[108]

[109]

[110]

[111]

[112]

T. S. Chow, Testing Software Design Modeled by Finite-State Machines, IEEE
Transactions on Software Engineering 1978; 4(3):178-187.

I. M. Clarke, Automated Test Generation from a Behavioral Model, Proceedings of
Pacific Northwest Software Quality Conference, PNSQC: Portland, OF., 1998.

P. J. Bemhard. A Reduced Test Suite for Protocol Conformance Testing. ACM

Transactions on Software Engineering and Methodology 1994; 3(3):201-220.

R. K. Shehady, D. P. Siewiorek. A Method to Automate User Interface Testing Using
Variable Finite State Machines, Proceedings of the 27th Annual International
Syvmposium on Fault-Tolerant Computing (FTCS97), June 1997. IEEE Computer
Society Press: Piscataway, INJ, 1997; 80-88.

R. Pargas. M. J. Hamold. and R. Peck. Test-Data Generation Using Genetic
Algorithms, Joumal of Software Testing, Verification and Reliability, 9(4):263-282,
1999,

N. Tracey, J. Clark, K. Mander, . McDemmid. Automated Test-Data Generation For

Exception Conditions, Software Practice And Experience, 30{1) (2000} 61-79

Y. Lu. D. Yan, 5. Nie. and C. Wang, Development of an Improved GUI Automation
Test System Based om Event-Flow Graph. Intemational Conference on Computer

Science and Software Engineering, Date: 12-14 Dec. 2008

A M. Memon, Determining the Adequacy of GUI Test Case, Poster session presented
at the Research Feview Day, University of Marvland, USA. 2002,

5. Ganov, C. Killmar, 5. Ehurshid, D. Perrv. Test Generation for Graphical User

Interfaces Based on Symbolic Execution, Third Intemational Workshop on Automation

bf Software Testing (AST), Leipzig, Germany 2008

A Paiva, C. Joao. P. Faria. F. Raul. A. M. Vidal: Towards the Integration of Visual
and Formal Models for GUI Testing. Electr. Notes Theor. Comput. Sci. 190(2): 99-111
(2007)

[113]

[114]

[115]

[116]

[117]

[118]

[119]

[120]

[121]

Coverage Analysis for GUI Testing -

W. Afzal R Torkar. and R. Feldt. A Systematic Review of Search-Based Testing for
Non-Functional System Properties. Inf Softw. Technol 51, 6 (Jun. 2009), 957-976.
DOI= http://dx.doi.org/10.1016/.infsof.2008.12.005

A Windisch, 5. Wappler, J. Wegener, Applyving Particle Swarm Optimization to

Boftware Testing, GECCO °07: Proceedings of the 9th annual conference on Genetic
and evolutionary computation, ACM: New York, NY, USA, 2007; 1121-1128,
doi:http://doi.acm.org/10.1145/1276958.1277178.

Ehin Havmar Saw Hla. YoungSik Choi. Jong Sou Park, Applyving Particle Swarm

Optimization to Prioritizing Test Cases for Embedded Real Time Software
Retesting, Computer and Information Technologv, IEEE 8th Intemational Conference
on, 2008 pp. 527-532.

K. Li, Z. Zhang, J. Kou Breeding Software Test Data with Genetic-Particle Swarm

Mixed Algorithm, Journal Of Computers, Vol. 5, No. 2, February 2010.

L. Kanglin W. Menggi. Effective GUI Testing Automation: Developing an
Automated GUI Testing Tool. ISBN: 978-0-7821-4351-5, John Wilev & Sons, Inc,
November 2004

Eamran Latif. Abdul Basit. Abdul Rauf, Ammir Nadeem. Evaluation of UML- Real
Time Profiles for Industrial Control Systems, ICIET, Karachi, August 9-11, 2010

D.. Dobb’s, UML System for Industrial ESL Design : Basic Principles And
Applications, IEEE/ACM international conference on Computer-aided design, Sep. 2006

A. K. Ames and H Jie. Critical Paths for GUI Regression Testing. University of

California. Santa Cruz. http:/www._cse.ucsc.edu/~sasha/ proj/ gui_testing pdf. 2004.

Q. Xie and A. M. Memon, Model-based testing of community-driven open-source
GUI applications, The Intemational Conference on Software Maintenance 2006
(ICSM'06), Philadelphia, PA USA, Sept. 2006

P. A Brooks and A. M. Memon. Automated GUI Testing Guided By Usage Profiles,

K. Blankenhom, A UML Profile for GUI Lavout, Master's Thesis, Department of
Digital Media. University of Applied Sciences Furtwangen. 2004

[124]

[127]

[128]

[129]

[130]

[131]

[132]

[133]

[134]

[135]

Coverage Analysis for GUI Testing -

Boger. Diagram Interchange for UML. The Unified Modeling Language 5th

International Conference, Dresden, Germanv, September 30-October 4, 2002.

Lin, DENIM: Finding a Tighter Fit between Tools and Practice for Web Site Design,
CHI Letters: Human Factors in Computing Systems., CHI 2000, pp. 510-317.

Hennicker. Koch. Modeling the User Interface of Web Applications with UML,
Workshop of the pUML-Group at the UML 2001. Gesellschaft fiir Informatik. Kéllen

Druck+Verlag, October 2001, pp. 158-172.

Sauer, Engels Extending UML for Modeling of Multimedia Applications, [EEE
Symposium on Visual Languages, Tokvo, September 13-16, 1999,

P. P da Silva, N. W. Paton, User Interface Modeling in UML1, [EEE Software Jul.
2003, 62-69. DOI=http:/dx.doi.org/10.1109/MS . 2003.1207457

S. Demathien. F. Thomas, C. Andreé, S. Gerard, and F. Tenier. First Experiments Using
the UML Profile for MARTE, 11th IEEE Svmposium on Object Oriented Eeal-Time
Distributed Computing, ISORC. IEEE Computer Societv, Washington, DC, May 03 - 07,
2008, 50-57. DOI= http://dx.doi.org/10.1109/1SORC.2008.36

A Gherbi and F. Khendek. Uml Profiles for Real-Time Systems and their
Applications, Journal of Object Technology, volume 6, pages 149--169, Mav-June 2006

OMG 2003a: UML 2_0 Infrastructure Final Adopted Specification

B. A Myers, Why are Human-Computer Interfaces Difficult to Design and
Implement? Camegie Mellon University Technical Report CMU-CS-93-183, July 1993,

Galitz, The Essential Guide to User Interface Design, Second Edition, John Wiley &
Sons, New York, 2002.

V. D. Veer. V. Vliet. A Plea for a Poor Man's HCI Component in Software
Engineering and Computer Science Curricula, Computer Science Education, Vol. 13,

no 3 {Special Issue on Human-Computer Interaction), 2001, pp. 207-226.

H. Zoummba Automating Management Tasks within a Distributed Network
Computing Environment, Diploma Thesis, Fachgebiet Offene Kommunikationssystem
(OKS) Franklinstrasse. Berlin, 1999,

[136]

[137]

[138]

[139]

[140]

[141]

[142]

[143]

[144]

[145]

[146]

[147]

Coverage Analysis for GUI Testing -

ID}IG 2003b Unified Modeling Language: Diagram Interchange, Version 2.0. Final
Adopted Specification (ptc/03-09-01).

J. Conallen. Modeling Web Application Design with UML, itemweb. § Oct. 2009 <

http:/www itmweb_ com/essav546 htm>=.

TUML 2.1.2 Superstructure Specification, Object Management Group, Nov. 2007;

www.omg.org/spec/UML/2.1.2.

C. Alexander, 5. Ishikawa, M. Silverstein, M. Jacobson, I. Fiksdahl-King, 5. A Angel,
Pattern Language. Oxford University Press, New York, 1977.

CHI 2000 Workshop, Hague, Netherlands, April 1-6, 2000

5. A Laakso, Collection of User Interface Desicn Patterns
University of Helsinki, Dept. of Computer Science, September 16, 2003.

httpwrerer.cs helsinld fi'n/salaalkso/pattems/

P. 5. C. Alencar. D. D. Cowan, C. . P. Lucena, A Formal Approach to Architectural
Design Patterns, FME 1996: 576-594

J. Conallen. Modeling Web Application Architectures with UML, Communication of
ACM. Oct. 1999, 63-70. DOI= http://doi.acm.org/10.1145/317665.317677

K. Blankenhom .W. Walter, Extending UML to GUI Modeling, Mensch & Computer,
pp. 307-308, 2004.

E. W. Dijkstra. Structured Programming, in Software Engineering Techniques,
Brussels, Belgium, NATO Science Committee, 1970.

W. E. ADRION, M. A BRANSTAD, 0. C. CHERENIAVSKY, Validation,
Verification, and Testing of Computer Software, ACM Computing Survevs, Vol. 14,
No. 2. June 1982

L. Briand. D. Pfahl. Using Simulation for Assessing the Real Impact of Test Coverage
on Defect Coverage, 10th Intemational Svmposium on Software Feliabilitv Engineering,

pp. 148-157, 1999.

Coverage Analysis for GUI Testing -

[148] M. H. Chen. M. K. Lyn. W. E. Wong. An Empirical Study of the Correlation Between
Code Coverage and Reliability Estimation, Proceedings of the 3rd Intemational

Svmposium on Software Metrics: From Measurement to Empirical Results, 1996

[149] M. Gittens, K. Romanufa, D. Godwin, J. Racicot, All Code Coverage is not Created

Equal: a Case Study in Prioritized Code Coverage, Conference of the Center for

Advanced Studies on Collaborative research, Toronto, Ontario, Canada, 2006. pp. 1-15.

[150] J. Kennedy, R. C. Eberhart. Particle Swarm Optimization. Intemational Conference on
Neural Networks, pp. 1942-1948, 1995.

[151] I. Kennedy and R. C. Ebethart, A Discrete Binary Version of the Particle Swarm
Algorithm, World Multiconferenceon Swstemics, Cvbemetics and Informatics, pages

4104-4109, 1997,

[152] EC. Laskari, KE. Parsopoulos, M.N. Vriahatis. Particle Swarm Optimization for
Integer programming, [EEE Congress on Evolutionary Computation, volume 2, pages
1582-1587, May 2002.

[153] H. Yoshida, K. Kawata, Y. Fukuvama, Y. Nakanishi, A Particle Swarm Optimization
for Reactive Power and Voltage Control Considering Voltage Stability, Intemational

Conference on Intelligent System Application to Power Svstem, pages 117-121, 1999

[154] L. Schoofs. B. Naudts., Swarm Intelligence on the Binary Comnstraint Satisfaction

Problem, IEEE Congress on Evolutionary Computation, volume 2, pages 1444-1449,
Mayv 2002.
[135] M. Clerc. Discrete Particle Swarm Optimization Illustrated by the Traveling

Salesman Problem, Technical report, http://clerc mauricelree fr/pso/, 2000

[136] C. A Coello. G. B. Lamont. D. A. Veldhuizen. Evolutionary Algorithms for Solving
Multi-Objective Problems (Genetic and Evolutionary Computation). Springer-Verlag
New Yorlk, Inc. 2006.

[157] A. Osvczka., Multi-criteria Optimization for Engineering Design, J. 5. Gero. editor,

Design Optimization, pages 193-227. Academic Press, 1985.

Coverage Analysis for GUI Testing -

[158] C. A Ceello Coello, G. B. Lamont, editors, Applications of Multi-Objective
Evolutionary Algorithms, World Scientific, Singapore, 2004. ISBN 981-256-106-4.

[159] E. Gamma, E. Helm, E. Johnson, J. M. Vlissides, Design Patterms: Elements of
Reusable Object-Oriented Software, Addison-Wesley. 1993, pp. 395.

[160] C. A Coelo Coello, G B. Lamont, editors, Applications of Multi-Objective

Evolutionary Algorithms, World Scientific, Singapore, 2004 ISBN 981-256-106-4.
[161] R. Binder, Testing Object-Oriented Systems, Addison Weslewv, 2000

[162] L. Baresi. M. Young, Test oracles, Technical Report CIS-TR01-02, Universitv of
Oregon, 2001.

[163] D.J Richardson, TAOS: Testing with Analysis and Oracle Support. Intemational
Symposium on Software Testing and Analysis (ISSTA), pages 138-133, New York, NY,
USA, 1994 ACM Press.

[164] E Wevuker Om Testing Non-Testable Programs The Computer Journal, 25{4)-465—
70, 1982

[165] A Andrews, J. Offutt. K. Alexander, Testing Web Applications v Modeling with
FSMs. Software Svstems and Modeling, 4(2):326-345, April 2005.

[166] J. Callahan, F. Schneider, 5. Easterbrook, Automated Software Testing Using Model-
Checking, In 1996 SPIN Workshop, August 1996,

[167] 5. D, BStoller, Model-checking multi-threaded distributed Java programs,
International Journal on Software Tools for Technologv Transfer, 4(1):71-91, October
2002.

[168] E. F. Barbosa, E. Y. Nakagawa,]. C. Maldonado, Towards the Establishment of an
Ontologyv of Software Testing. SEKE 2006: 322-525

[169] N.F. Nov, D. L. McGuinness. Ontology Development 101: A Guide to Creating Your
First Ontology. Stanford Knowledge Swstems Laboratory Technical Report KSL-01-
05 and Stanford Medical Informatics Technical Eeport SMI-2001-0880, March 2001

[170] M. A Musen, Dimensions of Knowledge Sharing and Reuse. Computers and

Biomedical Research 25, 1992: 435-467.

[171]

[172]

[173]

[174]

[175]

[176]

[177]

[178]

[179]

[180]

Coverage Analysis for GUI Testing -

M.. Heimdahl M. P.. J. Riedl. A General Framework for Interconmecting
Annotations of Software Systems, ?2nd intemational Computer Software and

Applications Conference, Washington, DC, August 1998 pp: 421429

P. L. Navarro, A Proposal for Automatic Testing of GUIs Based on Annotated Use
Cases, Advances in Software Engineering, vol. 2010, Article ID 671284,

M. Erdmann, A Maedche. H. Schnurr. S. Staab. From Manual to Semi-Automatic
Semantic Annotation: About Ontologyv-Based Text Annotation Tools, COLING 2000

workshop on semantic annotation and intelligent content. Luxembourg, 2000.

I. Foster, Improving Software Quality with Static Analyvsis and Amnnotations for
Software, 7th ACM SIGPLAN-SIGSOFT Workshop on Program Analysis for Software
Tools and Engineering, San Diego, California, June 13-14, 2007

McCurley, S. Rajagopalan, A. Tomkins, J. Tomlin, J. Zien A Case for Automated

Large Scale Semantic Annotation, Journal of Web Semantics, Elsevier Press, vol. 1, no.
1. pp. 115-132, 2003 (invited paper)
X. Yuan, MB. Cohen, AM. Memon, GUI Interaction Testing: Incorporating Event
Context, [EEE Transactions on Software Engineering, [EEE Computer Societv.Los

Alamitos, CA, USA 2010

5. Handschuh. S. Staab. F. Ciravegna, S-CREAM - Semi-automatic CREAtion of
Metadata. In EKAW, pages 358372, 2002.

Decker, M. Erdmann, D. Fensel, E. Studer. Onto-broker: Ontology Based Access to
Disiributed and Semi-Structured Information. In E. Meersman et al.. editors,

Database Semantics: Semantic Issues in Multimedia Svstems, pages 351-369.

Scott McMaster. Advances in Coverage based Test Suite Reduction, PowerPoint
Presentation For Mathematical And Computational Sciences Division Seminar, National

Institute Of Standards And Technology.. April 24, 2009, Gaithersburg.

5. Cranefield. S. Haustein. M. Purvis. UML-Based Ontology Modelling for Software

Agents. Proceedings of Ontologies in Agent Svstems Workshop, August 2001, Montreal,

21-28.

[181]

[182]

[183]

[184]

Coverage Analysis for GUI Testing -

Growth Environment of Web-Based Applications. In Software Evolution with UML
and XML. Idea Group, 2004.

Ian Homrocks. Ontologies and the Semantic Web, Communications of the ACM, vol.
51, no. 12 December 2008

impromptu 2.1 Awvailable at http:/www apple com/downloads macosx/development tools impromptu htm]
[Accessed on March 08, 2011]

Armada Assault ETC Awvailable at htpowww mefunzens com/cnline semes/srmada zszault shiml
[Accessed on March 08, 2011]

