
Wikipedia Workload Analysis

Guido Urdaneta Guillaume Pierre
Maarten van Steen

Dept. of Computer Science, Vrije Universiteit, Amsterdam
Email: {guidou,gpierre,steen}@cs.vu.nl

September 17, 2007

Technical report IR-CS-041, Vrije Universiteit, September 2007.

Abstract

We study an access trace containing a sample of Wikipedia’s traf-
fic over a 107-day period. We perform a global analysis of the whole
trace, and a detailed analysis of the requests directed to the English
edition of Wikipedia. In our study, we classify client requests and ex-
amine aspects such as the number of read and save operations, flash
crowds, and requests for nonexisting pages. We also outline strate-
gies for improving Wikipedia performance in a decentralized hosting
environment.

Keywords: Workload analysis, Wikipedia.

1

1 Introduction

Despite numerous pessimistic predictions, Wikipedia is a blatant success.
As of August 1st 2007, it contains approximately 7.9 million articles in 253
languages, and is considered one of the ten most visited web sites on the
Internet [1]. Its uninterrupted popularity growth has forced its operators to
upgrade the hosting architecture from a single server to a distributed archi-
tecture with more than 250 servers at three locations on different continents.
The current architecture, however, is still subject to scalability issues since
it has centralized components such as a database for each language edition.

For Wikipedia it is particularly important to find economical ways to
make their system more scalable, since its operation depends essentially on
donations and the work of volunteers. There are basically three techniques
that can be used to improve the scalability of any distributed system: dis-
tribution, replication and caching. In contrast with the current architecture
which relies on database replication and Web page caching, we recently pro-
posed an alternative architecture based on data distribution [19]. In this
architecture, each server is responsible for hosting only a small fraction of
the whole Wikipedia content. We believe that this would allow the system
capacity to scale linearly with the number of hosting resources. However, the
extent to which such an architecture may work in practice greatly depends
on the characteristics of the workload addressed to it.

To gain a better understanding of the Wikipedia workload, we obtained
and studied an access trace containing a 10% sample of the total Wikipedia
traffic over a 107-day period. Studying the workload as a whole and clas-
sifying the different request types handled by the site allows us to validate
assumptions on the parts of the load that are critical for overall performance.
We also analyzed the workload of the English-language Wikipedia on a per-
document basis. This analysis allows us to understand the properties of
individual documents and the interaction between the web front end and
the storage system.

Unlike previous workload analysis of systems such as e-commerce sites [4],
P2P file sharing systems [11], static Web sites [7, 5, 2] and multimedia de-
livery systems [12, 16, 9], our study gives insight on the functioning of a
collaborative web site, where most of the content is created and updated by
external users and not the operators.

2

Figure 1: Wikipedia Architecture

2 Wikipedia Operation

Wikipedia is composed of a number of wikis [14]. Each wiki is typically
associated with a different language edition and has a separate DNS name.
For example, en.wikipedia.org refers to the English-language edition of
Wikipedia, and fr.wikipedia.org to the French-language edition. In ad-
dition to Wikipedia, the Wikimedia Foundation, which is responsible for the
hosting of Wikipedia, uses the same infrastructure to host other related wiki
projects, such as Wiktionary (a dictionary) and WikiNews (a news site).

As is shown in Figure 1, the functionality of Wikipedia can be divided
into three parts: page management, control and search. The page manage-
ment part is the most important since most of the information provided by
Wikipedia such as encyclopedic articles, user information, and discussions
is in the form of wiki pages. Each page has a unique identifier consisting of
a character string and an integer representing a name space. Pages can be
created, read, and modified by any user. However, a page update does not
result in the modification of an existing database record, but in the creation
of a new record next to the previous version. It is therefore straightforward
for a user to get a list of all editions of a page, read old versions as well
as reverting a page to a previous state. Privileged users have the option to
rename, delete, and protect pages from being edited. Part of the load gen-

3

erated by page read operations issued by anonymous (not logged-in) users
is handled by a group of external cache servers.

Pages are written using a markup language called “wikitext.” One im-
portant aspect of this language is that it allows for the creation of parame-
terized pages called templates, and the inclusion of one page into another.
For example, there is a template with an information box for soccer play-
ers that takes parameters such as name, nationality and current club. This
template is rarely requested by end users directly, but it is included in the
articles of many soccer players and is thus frequently requested in an indirect
way. A page can also be configured to redirect all its read requests to an-
other page, similarly to a symbolic link. One consequence of these features
is that there is not a one-to-one correspondence between the HTML pages
that users typically read and the wikitext pages stored in the database.

The search part allows users to enter keywords and receive lists of links
to related wiki pages as a result. This part of the system is isolated from the
rest of the application in that it does not access the centralized database,
but instead a separate index file generated periodically from the text of the
pages.

Finally, the control part groups the rest of the functionalities. It en-
compasses: (i) user management, which allows users to authenticate to the
system and have their user names stored in public page history logs instead
of their IP addresses; (ii) user/IP address blocking, which allows adminis-
trators to prevent page updates from certain IP addresses or user accounts;
and (iii) special pages, which are not created by users, but generated by the
execution of server-side logic and provide information about the database
or specific functions such as uploading static files to be referenced in wiki
pages.

3 Wikipedia Traces

To conduct our study of the Wikipedia workload, we were provided by the
Wikimedia Foundation with a sample of 10% of the total traffic directed to
all the wiki projects they operate. The sample used in our study contains
14.9 billion HTTP requests and corresponds to the period February 1st,
2007 to May 16th, 2007. Each request is characterized by a unique ID, a
timestamp, and the requested URL. Starting from March 30th one extra
field was added to indicate if a page request resulted in a save operation.

For privacy reasons, the trace given to us by the Wikimedia Foundation
does not contain any direct or indirect means to identify users, such as client

4

IP address or session cookie. Our study therefore considers only server-side
information.

For some of the analyses we used a publicly available snapshot of the
English Wikipedia database [10], dated May 27th, 2007.

4 Global Analysis

From the URL included in the trace it is possible in most cases to determine
the targeted wiki project and the type of operation issued by the client.
Table 1 shows the different types of requests addressed to Wikipedia, and
their relative frequency.

We can see that most of the traffic is generated by the action of end
users issuing read operations to wiki pages. Since it is common for pages
to include multiple uploaded images and static files, these two types of
requests account for more than 70% of all requests. We can also see that page
editions (at 0.04%) are very infrequent compared to page reads, and image
uploads are even less frequent (0.005%). It is thus clear that a high degree
of caching or replication can be used to improve performance. It should also
be noted that a nontrivial number of page requests are for formats different
from the default HTML, which suggests that in some cases replicating the
wikitext instead of, or in addition to the final HTML would produce further
performance improvements.

Not all wikis in Wikipedia are equally popular or equally used. Table 2
shows the distribution of request load by the wiki projects as well as the
ratio of HTML read requests to save requests. Although Wikipedia contains
more than 800 wikis which received more than 2000 requests in our sample,
almost half of the total traffic is directed to the English Wikipedia. About
90% of the traffic is concentrated in the 10 most popular wikis. This shows
that a strategy of using a separate database for each wiki cannot efficiently
solve the scalability issues since there is a large imbalance in the load. This
also justifies a more comprehensive study of the English Wikipedia in order
to gain a deeper understanding of the issues that affect global Wikipedia
performance. We can also see that the read/save ratio varies significantly
for the different language editions of Wikipedia. This shows that factors such
as culture, size, and geographical distribution of the user base influence the
workload an thus have an effect on how strategies should be selected to
improve performance.

Our next analysis examines the usage of the most popular wikis. Figure 2
shows the request rate for the four most popular Wikipedias during a two-

5

Request Type Description Frequency
Wiki Page Cur-
rent HTML Read

Request for the current version of a wiki page using the
normal HTML rendering.

15.01%

Wiki Page Cur-
rent Other Read

Request for the current version of a wiki page using a
different format.

6.87%

Wiki Page Save
Submit

Request that results in a page update or creation. 0.04%

Wiki Page His-
tory Read

Request for the edition history of a page. 0.07%

Wiki Page Ver-
sion Read

Request for a specific version of a page. It may be a diff
operation, in which case two versions are compared.

0.07%

Wiki Page Other Request in which a page name is specified, but the infor-
mation retrieved is independent from the page’s wikitext.
For example, Wikipedia allows obtaining the Javascript
or CSS used in the rendering of a specified page without
obtaining the page itself.

4.24%

Binary File Nor-
mal Read

Request for a user uploaded binary file, typically an im-
age.

12.71%

Image Thumbnail
Read

Request for a thumbnail of a user uploaded image. 27.40%

Special Upload Request for the possible upload of a binary file. It can be
a new file, an update of an existing file or the retrieval
of a form that allows the user to send an actual upload
request. It is impossible to determine the name of the
uploaded file from our traces nor if it is an actual upload.

0.005%

Special Full Text
Search

Keyword search request handled by the search compo-
nent of the wiki engine.

1.11%

Special Other Request for a special page other than a full text search or
upload. Some of these special pages result in the retrieval
of wiki pages. However, the names of the wiki pages
involved cannot be obtained from the trace.

0.70%

Static File Request for a static file. These are usually files used in
the rendering of wiki pages, such as CSS and Javascript
files as well as generic images such as bullets.

30.04%

API Requests directed to a web service API. Most of these re-
quests result in the retrieval of wiki pages. It is often not
possible to determine the names of the pages involved.

0.05%

Static Wiki Page A static HTML version of Wikipedia is available as an
alternative to the normal one. The static version is up-
dated periodically but is never guaranteed to have the
most current version of a page.

0.009%

OpenSearch Requests that produce search results in a standardized
format.

1.03%

Unidentified Other types of request. 0.64%

Table 1: Wikipedia request types, and their frequencies.
6

Wiki Frequency HTML
Read/Save

Ratio
English Wikipedia 45.5% 480.0
Wikipedia Commons 16.9% -
German Wikipedia 6.3% 504.7
Japanese Wikipedia 6.0% 1081.2
Spanish Wikipedia 4.8% 458.8
French Wikipedia 3.1% 228.1
Mathematical formulas 2.3% -
Italian Wikipedia 1.8% 216.2
Portuguese Wikipedia 1.8% 346.5
Polish Wikipedia 1.8% 363.5
Dutch Wikipedia 1.1% 258.7
Others (< 1% each) 8.6% -

Table 2: Distribution of load and read/save ratios across different wiki
projects

week period. The workload follows typical time-of-day and day-of-week
patterns. However, the load variations differ for each wiki. For example,
within a single day the request rate is expected to change by a factor of
about 3.5 in the English Wikipedia and by a factor that can be as high as
30 in the German Wikipedia. On the other hand, we did not observe any
flash crowds that may affect the normal daily behavior.

5 English Wikipedia

We now focus on the English edition of Wikipedia to conduct a more in-
depth workload analysis. Figure 3 shows the popularity distribution of all
referenced pages in the trace. Pages are ordered by decreasing number of
HTTP requests. As reported for other types of websites, the page popularity
distribution approximately follows a Zipf distribution [4, 5, 13]. However,
the five most requested pages show a popularity two orders of magnitude
higher than any other page. This is an artifact of the structure of Wikipedia
pages: four of these pages contain CSS or Javascript code included in many
other HTML wikipedia pages and the other is the main page, which is the
most popular HTML-rendered page for obvious reasons.

7

(a) English (b) German

(c) Japanese (d) Spanish

Figure 2: Usage of the four most popular Wikipedias over a two-weeks
period.

Figure 3: Page popularity distribution

8

Figure 4: Correlation between HTTP reads and HTML reads

Most requests performed by ordinary users are read operations that nor-
mally result in a default HTML rendering of the requested page. Wikipedia
implements caches for these HTML renderings to reduce the centralized
database load. However, a page can be rendered in many different formats.
Figure 4 shows the correlation between all HTTP page reads, and reads that
result in the default HTML rendering. Each point represents a page, and
pages where all HTTP reads are in the default HTML format appear in the
diagonal. For readability reasons the graph shows a random sample of 10%
of all pages. It can be seen that for a significant number of pages, especially
among the less popular pages, the number of read operations in a non-default
format exceeds the number of default HTML reads. More specifically, this
is the case for 21.8% of all referenced pages in the trace with at least one
read operation involving the most recent version of the page. This suggests
that it is important to consider the caching or replication of wikitext as an
alternative or in addition to HTML caching and replication.

5.1 Save Operations

Now we turn our attention to save operations. Figure 5 shows pages ranked
by the number of save operations. We can see that the popularity of save
operations also follows a Zipf-like distribution. We note that only 2.5% of
the pages referenced in the trace have at least one save operation. However,
these pages represent 56.2% of all HTTP page requests. This forces us to

9

Figure 5: Distribution of page save operations

make a distinction between maintained pages, which have at least one save
operation, and unmaintained pages, which present no save operations in the
trace. Unmaintained pages are effectively read-only and can be treated as
if they were static files. Maintained pages, on the other hand, require more
attention as they are more difficult to host in a scalable way and represent
more than half of all page requests.

Figure 6 shows the correlation between the number of read and save
operations. Each point represents a page. All pages with at least one read
and one save operation are represented in the graph. The line represents the
average number of save operations for pages with a given read popularity.
We observe some correlation between the number of read and save opera-
tions per page, so a popular page will be updated more frequently than an
unpopular one. There is however a lot of variation from page to page.

Now we consider the ratio between the number of save and read op-
erations for a given page. This metric is important because it can help
determine the appropriate replication degree for a maintained page. Fig-
ure 7 shows the correlation between the overall popularity of a page and its
save/read ratio. Each scattered point represents a page, and the line rep-
resents the average save/read ratio for pages with a given read popularity.
All pages with at least one read and one save operation are represented in
the graph.

10

Figure 6: Correlation between the numbers of page read and save operations

Figure 7: Correlation between read requests and save/read ratio

11

Figure 8: Correlation between save requests and save/read ratio

The save/read ratio clearly decreases when the page popularity increases.
This is a good property, as a low save/read ratio means that replication and
caching become easier. The most popular pages can thus be aggressively
replicated, while the least popular pages will rather benefit from distribution,
where very few servers are responsible for each page.

Figure 8 shows the same save/read page ratio, but this time as a function
of the total number of saves of the page. Clearly, the number of page saves
cannot be used as a predictor for the save/read ratio, and thus cannot be
used by itself to define caching and replication strategies.

5.2 Flash crowds

As we saw previously, Wikipedia as a whole does not seem to exhibit flash
crowd behavior. However, individual pages may present spikes of popular-
ity. Such events can potentially have an important impact on a decentralized
hosting infrastructure, since each server may host only a handful of docu-
ments.

We analyzed occurrences where the number of requests that a page re-
ceives in a whole day represents at least a 10-fold increase or decrease with
respect to the previous day. We ignored cases where the daily number of
requests is less than 100 in our trace for both the previous and actual day
of the event. Table 3 shows the number of sudden increases and decreases
that we observed.

12

Request Type Number of events Number of Pages
Increases 16523 14913
Decreases 8895 8549

Table 3: Number of sudden increases and decreases in daily number of
requests by a factor of at least 10

Figure 9: Distribution of flash crowds vs. page popularity

As we can see, page-level flash crowd events are relatively common, as
we noticed on average 157.4 sudden increases per day. Furthermore, it is
uncommon for a page to experience multiple crowds in the studied period.

Figures 9 and 10 relate flash crowd behavior to popularity. In Figure 9
the top curve shows the number of HTTP read requests for all pages ranked
by popularity, while the bottom curve ranks only pages that exhibit at least
one flash crowd event in its daily request rate. We see that flash crowds
commonly happen to pages with a wide range of popularity. Figure 10
shows that the fraction of pages that experience flash crowds is relatively
independent of the initial page popularity. Therefore, popularity cannot be
used to predict flash crowds.

Our trace also shows that 14913 pages experienced at least one flash
crowd event of any type, and that 31.9% of these had at least one save
operation during the whole period. This fraction is significantly greater
than the general fraction of maintained pages with respect to all pages,

13

Figure 10: Fraction of flash-crowded pages by popularity

which means that a maintained page is more likely to experience a flash
crowd than an unmaintained page.

These results demonstrate that page-level flash crowds cannot be ignored
when designing a decentralized hosting architecture. On the other hand,
predicting which page may experience a flash crowd is difficult, since flash
crowds are often related to real-world events external to Wikipedia. One
may thus need to apply more sophisticated flash-crowd warning systems,
such as [6].

5.3 Nonexisting Pages

4% of Wikipedia requests are addressed to pages that do not exist. Such
requests may result from simple typing mistakes by the end users. This could
however be problematic when using a decentralized hosting infrastructure,
as each request may potentially cause a distributed lookup operation.

Figure 11 shows the “popularity” of requested nonexisting pages. This
popularity again closely follows a Zipf distribution. The effects of requests
to non-existing pages can therefore be largely reduced by using negative
caching techniques where front-end servers cache the information that a
page does not exist.

We however also note that certain non-existing pages are requested too
frequently to be attributed to typing mistakes alone. A typical URL corre-
sponding to one of the most requested nonexisting pages is the following:

14

Figure 11: “Popularity” distribution of nonexisting pages

http://en.wikipedia.org/wiki/404 error//skins-1.5/common/iefixes.js?

61//skins-1.5/common/IEFixes.js?61//skins-1.5/common/IEFixes.js?61//skins-1.

5/common/IEFixes.js?61//skins-1.5/common/IEFixes.js?61//w/index.php?title=

-&action=raw&gen=js//w/index.php?title=-&action=raw&gen=

js//skins-1.5/common/wikibits.js?6

This type of URL is clearly not produced by a normal user. In addition,
such pages are among the flash-crowded pages with most requests. For
example, the URL just mentioned is the twelfth most frequently requested
page in the studied period, and the fifth most requested one among pages
with at least one flash-crowd event. Moreover, all the requests for this URL
were carried out over a seven-day period. This suggests that these requests
are generated by malicious users who attempt to attack the normal operation
of Wikipedia. This type of attack is one source of page-level flash crowds.

5.4 Indirect reads and saves

Our last analysis concerns the effect of pages that are read indirectly. As we
explained above, Wikipedia allows one page to include the content of another
page with the inlusion and redirection features. One important implication
of these features is that save operations to included or redirected pages
affect the consistency of replicated or cached HTML renderings of their
master pages. This means, for example, that an otherwise read-only page

15

can become a frequently updated page if it includes a frequently updated
template page.

Our analysis assumes that all direct requests for pages that reference
other pages via inclusion or redirection result in the indirect read of the
referenced pages, and that the maps of inclusions and redirections do not
change over time with respect to the one available in our database snapshot.
These assumptions are unrealistic because requests may be processed by
caches thus reducing the number of database accesses. In addition, page
updates may result in the modification of the inclusion and redirection maps.
This is especially true for newly created pages. However, our main purpose
is to find out the impact of update operations on the ability of other pages
to be cached or replicated. While our indirect popularity measure does not
provide an accurate estimate of indirect database accesses, it does provide
an estimate of the popularity of the master pages that would need to be
updated or invalidated in case of a save operation to the included page.

Our trace shows that 721,764 pages were read indirectly at least once. Of
these, 86.3% were never updated. Figure 12 shows the correlation between
the number of indirect reads and save operations for pages that have at least
one indirect read and one save operation (these represent 13.7% of indirectly
read pages). The graph shows that the most indirectly-read maintained
pages, have a small number of updates. The number of update operations
increases for less popular indirectly read pages. This may be due to the
Wikipedia policy of protecting popular templates from being updated by
unprivileged users. Our conclusion is that indirect save operations have
an impact on caching and replication of master pages, but with the use of
appropriate policies this impact can be reduced significantly in practice.

6 Images

As we have seen in Table 1, read requests for images and other binary files
are read more frequently than pages. This is explained by the fact that wiki
pages often include several images. We do not extend our detailed analysis
to images because they are, on average, updated 7 times less frequently than
pages in the English Wikipedia, so they can in general be regarded as static
files.

16

Figure 12: Correlation between indirect reads and saves

7 Implications

Our study of the Wikipedia workload provides important insight relevant for
improving the performance of Wikipedia hosting, especially in a decentral-
ized and collaborative setting, which is our final goal. The most important
result of our analysis is that we are now able to classify Wikipedia pages
according to their workload and we are able to give some guidelines on how
to exploit the distribution, replication, and caching techniques to improve
performance. We summarize these guidelines in Table 4.

To efficiently handle the workload, a decentralized solution should au-
tomatically determine the appropriate replication and caching policies for
every page and be prepared to handle operational situations such as flash
crowds. Classifying pages and determining per-page replication strategies is
a solvable, yet nontrivial problem [15]. Such a solution must also satisfy a
number of functional requirements such as efficiently detecting if a page ex-
ists or not and implementing relationships among pages such as redirection,
inclusion and edition protection; as well as extra-functional issues such as
load balancing, security, and privacy.

The problem of flash crowds has been studied and several solutions have
been proposed [6, 17, 3, 18, 8]. Some of these solutions may need to be
adapted to a decentralized environment and they must take into account
the daily and weekly access patterns.

17

Type of page Fraction of
requests in
trace

Commentary

Pages that are read-
only in practice and are
mostly read (>75%) in
default HTML format

29% HTML caching or replication seems
to be the most appropriate strategy.
The degree of replication should de-
pend on the popularity of the page.

Pages that are almost
read-only and have
a significant fraction
(≥25%) of reads in
alternate formats

11% Wikitext replication in combination
with HTML caching is a good choice
in this case. The degree of replica-
tion should depend on the popular-
ity of the page.

Maintained pages that
are mostly read (>75%)
in default HTML for-
mat

48% HTML replication with a replication
factor controlled by the popularity
of the page.

Maintained pages that
have a significant frac-
tion (≥25%) of reads in
alternate formats

8% Wikitext replication with a replica-
tion factor controlled by the popu-
larity of the page. HTML caching
can be considered if the read/save
ratio is considerably high.

Nonexisting pages 4% Negative caching combined with at-
tack detection techniques.

Table 4: Wikipedia page characterization according to the workload. The
first four rows of the table consider only pages marked as existent in the
database snapshot.

18

The problem of implementing relationships among pages in a decentral-
ized way is complicated by the fact that the relationships must be kept in a
consistent state in the presence of updates and partial failures. For example,
if a page is modified so that it is protected from editions and the administra-
tor chooses a cascading option for this protection, then all included pages
must be notified of this change. Solving this problem in a decentralized
environment is similar to implementing consistency for replicas, which is a
problem that has to be solved both to improve performance and to achieve
fault tolerance.

The problem of detecting if a page exists or not, given its name, is crucial
for two reasons. First, Wikipedia functionality requires links to nonexisting
pages to be rendered in a different color than links to valid pages. Second,
this is, with little modification, the same problem as locating the node where
a page resides in order to forward requests to it.

However, the most difficult challenge we face when implementing a de-
centralized and collaborative system for hosting Wikipedia is solving all the
aforementioned problems in an environment where mutually untrusted par-
ties participate while at the same time guaranteeing fair resource usage and
privacy for regular Wikipedia users who have nothing to do with the hosting
of the system.

Acknowledgments

We wish to thank the Wikimedia Foundation, especially Gerard Meijssen
and Tim Starling, for making their access trace available for our study.

This work is in part supported by the Programme Alban, the European
Union Programme of High Level Scholarships for Latin America, scholarship
No.E05D052447VE.

References

[1] Alexa Internet. Alexa web search - top 500, 2007. http://www.alexa.
com/site/ds/top sites?ts mode=global.

[2] Virǵılio Almeida, Azer Bestavros, Mark Crovella, and Adriana
de Oliveira. Characterizing reference locality in the WWW. In Proceed-
ings of the IEEE Conference on Parallel and Distributed Information
Systems (PDIS), Miami Beach, FL, 1996.

19

[3] Ismail Ari, Bo Hong, Ethan L. Miller, Scott A. Brandt, and Darrell
D. E. Long. Managing flash crowds on the internet. mascots, 00:246,
2003.

[4] Martin F. Arlitt, Diwakar Krishnamurthy, and Jerry Rolia. Charac-
terizing the scalability of a large web-based shopping system. ACM
Transactions on Internet Technology, 1(1):44–69, 2001.

[5] Martin F. Arlitt and Carey L. Williamson. Web server workload charac-
terization: the search for invariants. In SIGMETRICS ’96: Proceedings
of the 1996 ACM SIGMETRICS international conference on Measure-
ment and modeling of computer systems, pages 126–137, New York,
NY, USA, 1996. ACM Press.

[6] Yuliy Baryshnikov, Ed G. Coffman, Guillaume Pierre, Dan Rubenstein,
Mark Squillante, and Teddy Yimwadsana. Predictability of web-server
traffic congestion. In Proceedings of the Tenth IEEE International
Workshop on Web Content Caching and Distribution, pages 97–103,
September 2005.

[7] L. Bent, M. Rabinovich, G. M. Voelker, and Z. Xiao. Characterization
of a large web site population with implications for content delivery. In
WWW ’04: Proceedings of the 13th international conference on World
Wide Web, pages 522–533, New York, NY, USA, 2004. ACM Press.

[8] Xuan Chen and John Heidemann. Flash crowd mitigation via adaptive
admission control based on application-level observations. ACM Trans.
Inter. Tech., 5(3):532–569, 2005.

[9] Ludmila Cherkasova and Minaxi Gupta. Analysis of enterprise media
server workloads: access patterns, locality, content evolution, and rates
of change. IEEE/ACM Transactions on Networking, 12(5):781–794,
2004.

[10] Wikimedia Foundation. Wikimedia dump service, 2007. http://
download.wikimedia.org/.

[11] Krishna P. Gummadi, Richard J. Dunn, Stefan Saroiu, Steven D. Grib-
ble, Henry M. Levy, and John Zahorjan. Measurement, modeling, and
analysis of a peer-to-peer file-sharing workload. In SOSP ’03: Proceed-
ings of the nineteenth ACM symposium on Operating systems princi-
ples, pages 314–329, New York, NY, USA, 2003. ACM Press.

20

[12] Lei Guo, Songqing Chen, Zhen Xiao, and Xiaodong Zhang. Analysis
of multimedia workloads with implications for internet streaming. In
WWW ’05: Proceedings of the 14th international conference on World
Wide Web, pages 519–528, New York, NY, USA, 2005. ACM Press.

[13] Frank T. Johnsen, Trude Hafsoe, and Carsten Griwodz. Analysis of
server workload and client interactions in a news-on-demand streaming
system. In ISM ’06: Proceedings of the Eighth IEEE International Sym-
posium on Multimedia, pages 724–727, Washington, DC, USA, 2006.
IEEE Computer Society.

[14] Bo Leuf and Ward Cunningham. The Wiki Way: Collaboration and
Sharing on the Internet. Addison-Wesley Professional, April 2001.

[15] Guillaume Pierre, Maarten van Steen, and Andrew S. Tanenbaum. Dy-
namically selecting optimal distribution strategies for Web documents.
IEEE Transactions on Computers, 51(6):637–651, June 2002.

[16] Kunwadee Sripanidkulchai, Bruce Maggs, and Hui Zhang. An analysis
of live streaming workloads on the internet. In IMC ’04: Proceedings of
the 4th ACM SIGCOMM conference on Internet measurement, pages
41–54, New York, NY, USA, 2004. ACM Press.

[17] Angelos Stavrou, Dan Rubenstein, and Sambit Sahu. A lightweight,
robust p2p system to handle flash crowds. Selected Areas in Commu-
nications, 22(1):6–17, 2004.

[18] Zhihong Tian, Binxing Fang, and Xiaochun Yun. Defending against
flash crowds and malicious traffic attacks with an auction-based
method. In WI ’04: Proceedings of the 2004 IEEE/WIC/ACM In-
ternational Conference on Web Intelligence, pages 24–28, Washington,
DC, USA, 2004. IEEE Computer Society.

[19] Guido Urdaneta, Guillaume Pierre, and Maarten van Steen. A decen-
tralized wiki engine for collaborative wikipedia hosting. In Proceedings
of the 3rd International Conference on Web Information Systems and
Technologies, pages 156–163, March 2007.

21

