
SUBCONTRACTORS SCHEDULING ON RESIDENTIAL
BUILDINGS CONSTRUCTION SITES

Thierry Benoist, Antoine Jeanjean, Guillaume Rochart

e-lab – Bouygues SA – 1 av. Eugène Freyssinet
F-78061 St Quentin en Yvelines, France

{tbenoist, ajeanjean, grochart}@bouygues.com
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Abstract

Erecting a residential construction is a complex project
which implies many actors and strong deadline require-
ments. The aim of this paper is to present a case study about
schedules of subcontractor’s tasks on residential buildings.
Directly after the end of structural works, start not only tasks
like electricity, plumbing, cover, water circuit installation,
but also paintings, furniture, wallpapers, etc. which are of-
ten executed by subcontractors. Solving this problem con-
sists in finding for each elementary task its starting date, its
ending date and its volume executed each day between these
two dates. A constraint programming based solution is pre-
sented in this paper.

1. Introduction

Bouygues Habitat Ŕesidentielis a subsidiary of Bouygues
Construction specialized in the construction of private resi-
dential buildings. Its methods department is focused on or-
ganization, scheduling and optimization. It must deal with
teams and resources within the framework of a tight plan-
ning to set up: the edifice must be delivered on time. Erect-
ing a residential construction is a complex project which im-
plies many actors and offers multiple opportunities to imple-
ment scientific solutions of scheduling.

Bouygues’Direction of new technologies, e-lab, has been
working for several years with the Methods department of
Bouygues Habitat to develop decision-support solutions in
building sites scheduling. The operational researcher must
accompany decision makers in their response to complexity.
The goal is to reduce global cost by optimizing the schedule.
Engineers from methods department use these softwares to
plan and follow the construction project at each stage. At the
beginning of the project, they estimate the global charge in
terms of working days per resource and build a Gantt chart.
During the actual construction, they change the planning to
fit with the real life situation.

The aim of this paper is to present a case study concern-

ing schedules of subcontractor’s tasks on residential build-
ings. Directly after the end of structural works, start not only
tasks like electricity, plumbing, cover, water circuit installa-
tion, but also paintings, furniture, wallpapers... All of these
tasks are included in the scope of the study at that time. All
tasks executed outside the building are not taken into ac-
count (like earthworks, roof, sealing ...). Solving this prob-
lem consists in finding for each elementary task its starting
date, its ending date and its volume executed each day be-
tween these two dates. The main objective is to minimize
the capacity overload for each resource (represented by sub-
contractors). Subsidiary criteria are to minimize the number
of breaks in their schedules and the global makespan (in the
later the makespan will be considered as a hard constraint).
A set of precedences, occupancy and rank constraints have
to be respected.

We first define this Resource Constrained Project
Scheduling Problem (RCPSP) in the next section. This de-
scription is enriched with a constraint formulation in Sec-
tion 3. Section 4 explains how a pattern recognition could
help saving some time during the assignment of tasks in our
greedy algorithm. Section 5 presents some first results. Fi-
nally, we show in Section 6 that using a special feature of
constraint programming,explanations, would help the deci-
sion makers to set the system.

2. Problem description

2.1 The scheduling of subconstractor Model

2.1.1 Variables description

Let us consider a building composed ofM apartments,
and involvingK subcontractors. This construction has to
be erected in less thanT days. To each apartment is as-
signed a set of tasks to be performed (plumbing, electricity,
painting, wallpapers, tiling and so on). Each task is given
a unique indexi and domains for associated start, end and
duration variables are respectively (Smin

i ,Smax
i ), (Emin

i ,Emax
i )



Fig. 1 Precedence graph

and (Dmin
i ,D2

i max). The total number of tasks on the site is
N. The set of tasks for an apartmentj (denoted byA( j)) is
subject to generalized precedence constraints defined by a
precedence graphG(V,E) (see figure 1 for an example).

2.1.2 A constraint model

The objective function is:

min ∑
k<K
t<T

dkt (1)

In addition to precedence constraints, the following con-
straints are set:

∀ i < N Dmin
i ≤ Ei −Si ≤ Dmax

i (2)

∀k < K,(i, j) ∈ R(k)2
,L j < Li −Wk, si > ej +Wk (3)

∀ (X,Y,δ) ∈ P X ≥Y+ δ (4)

∀ i < N,t < T (t < si ∨ t ≥ ei) ⇒ (cit = 0∧xit = 0) (5)

∀ j < M, t < T ∑
i∈A( j)

Fixit ≤ Z j (6)

∀ i < N ∑
t<T

cit = Vi (7)

∀k < K, t < T ∑
i∈R(k)

cit ≤ Bk +dkt (8)

maxi<N(ei) < makespan (9)

2.1.3 A constraint description

Generalized precedences correspond toTask A must
start/end after/before the start/end of task B plusδ days i.e.
X ≥Y + δ whereX andY stand for start or end variables of
different tasks andδ is a (not necessarily positive) integer.
They are defined via a setP of triples(X,Y,δ) whereX and
Y denotes starts or ends of two different tasks (see constraint
4). Moreover, the (weighted) number of simultaneous tasks
processed in the apartment is limited: this limit (denotedZ j )
depends on the size of apartmentj, and the occupancy co-
efficient (Fi) attached to each task is usually either 1 orZ j

(some tasks are incompatible with all others) (see constraint
6).

Each task uses a single resourcek, consuming a total
amountVi of this resource. Depending on the resource, this
value can be expressed in square meters (30 m2 of tiling) or
in abstract unit (one shower). This consumption can be dis-
patched freely among the processing days of the task with a

Fig. 2 Global daily charge of work for a resourcek

maximum daily consumption bounded by someCmax
i . The

capacity of resourcek is denoted byBk (constraint 8). This
limit can be exceeded but the objective function for the prob-
lem is to minimize the sum of these excesses (see Figure 2).

Tasks consuming the same resourcek (denoted byR(k))
are subject to so called rank constraints, stating that workers
of the same resource cannot be dispatched in too distant ar-
eas in the construction site. More precisely each apartment
j is given a rankL j (usually equal to the storey of the apart-
ment) and a maximum widthWk is given for each resource:
tasks of a given rankr cannot start before all tasks (of the
same resourcek) of ranks smaller thanr−Wk are completed.
Those constraints correspond to precedence constraints (see
constraint 3).

To summarize, the following integer variables are used to
defined the problem:

• ∀ i < N : si andei are the start and end variables of
taski such thatSmin

i ≤ si ≤ Smax
i andEmin

i ≤ ei ≤ Emax
i .

• ∀ k < K, t < T : dkt is the overload for resourcek on
dayt with dkt ≥ 0.

• ∀ k < K, i ∈ R(k), t < T : cit is the consumption of
resourcek by taski on dayt so that 0≤ cit ≤Cmax

i (cit

does not depend onk as each task is associated to a
single resource), andxit ∈ {0,1} is equal to 1 if taski
is active on day t (0 otherwise).

2.2 Task Volume management

Each resource works on zone for executing a specific task
corresponding to a quantity of work in adequacy with the
power of the associated resource. The originality of the
model is to consider here task as a volume instead of a length
i.e. The limitation on the resource is not anymorewe dispose
of 3 paintersbut we are able to make a maximum of 90 m2

a day. For a given task, it is then necessary to determine
not only its starting date and its completion date but also the
distribution of its usage over the selected days:

For example, let us consider the following Problem 1 with
3 tasks:

• T1: starting day 2, ending day 2, surface = 30 m2



Fig. 3 A solution for the introduction problem
(75m2+60m2+90m2+90m2+60m2).

• T2: starting day 5, ending day 5, surface = 30 m2

• T3: starting day 1, ending day 5, surface = 375 m2

In this instance, the resource is painting and the daily
maximum is 90 m2 per day. A solution for this problem
consists in distributing surfaces ofT3 over its 5 days of exe-
cution (see Figure 3). This peculiar way of considering the
workload attached to each task allows reasoning at the scale
of days while avoiding rounding problems. Indeed, specify-
ing starting times in hours for instance would be costly and
meaningless since delays in the precedence graph usually
represent drying duration (and count the required number
of nights between two tasks). On the contrary if all tasks
taking 1.5 days for one worker were considered as utilizing
this worker for 2 full days, resource consumption would be
overestimated.

The resource constraint would not be expressed any more
as human beings but in m2. The min/max durations imposed
on the resources have also an impact on daily volume: in-
deed, the smaller the duration, the larger the average daily
resource consumption.

3. Constraints formulation

The model presented in section 2 is solved with the
choco constraint solver by constraint programming imple-
mented with Choco1. To respect precedences and rank con-
straints, a PERT (Malcolm et al. 1959) is set up using in-
equality constraints. For each resource, a flow constraint
ensures capacities of the subcontractor. Finally, to be sure
that occupancy will be respected on each apartment, a cu-
mulative constraint is implemented.

3.1 Precedence constraints

Some precedence constraints are imposed on the model:
within an apartment, some tasks must comply with prece-
dence rules (for example, it could be more judicious to in-
stall the bath-tub before posing earthenware). The graph in

1choco-solver.net

Fig. 4 The flow

Figure 1 represents a portion of the graph we can set us-
ing precedence constraint provided by methods office. This
constraint is modeled using a set of simple inequalities be-
tween starting / ending dates.

In addition, by assigning a rank to each stage, an approx-
imate order of realization can be specified by the user. For
each subcontractor, no task from the stages of rankN can
start before all the tasks of the stage ofN− x rank are not
completed (x would be the number of ranks which one can
open at the same time).

3.2 Flow constraints

For each resource of the problem (most of our instances
concern studies with approximately 50 different resources),
we can set up a flow constraint (Gaudin et al. 2004) regard-
ing the ressource consumption. We know the volume re-
quired by each task of the resource. All of these tasks have
a certain domain, meaning a time window where it can be
executed. Therefore, the amount of flow going through an
edge(i, j) between a task nodei and a day nodej corre-
sponds to aci j variable (the volume of taski completed on
day j). The total flow on days should not exceed the capac-
ity of the resourceBk. If it does, we configure a pre-sink that
will accept the excess of flow coming from these days. The
aim of the flow constraint is to measure the overload of the
ressource capacity. This overload has to be minimized.

Such a flow helps to reduce the time windows of tasks: the
flow between a task and the days it is not realized will be null
(ensured by constraint 5). It is really important to decrease
the idle time of the subcontractor on the building site. If
one of them has important variation in the volume of work
each day, it will have difficulties to decide how many teams
to assign to this site and its efficiency could be affected. It
is necessary to avoid inactivity days for each subcontractor.
This constraint optimizes the total work of this resource for
each day.

3.3 The cumulative constraint

In addition to resource constraints, limited space in each
zone implies that only few subcontractors can work in the
same place at the same time. In order to model this con-
straint, a space capacity is associated to each zone and a



space occupancy is associated to each subcontractor (theFi

constants in the model of section 2).
With this model, acumulative constraint (Beldiceanu

and Carlsson 2002) is used in order to ensure that at each
instant, tasks affectation respect this rule.

4. Resolution

Section 3 introduced a constraint model including flow,
precedences, ranks and occupancy constraints. The de-
fault complete tree search resolution provided by constraint
solvers could not scale up for our problem. It is indeed im-
possible to apply the previous model on a problem of 2500
tasks scattered on fifty different areas. Moreover we were
not interested by an optimal solution but a good solution
within a 30 seconds time limit. The constraint model is
however very valuable for its propagation abilities. We over-
come this difficulty by solving the problem with a heuristic
approach implemented in two steps while keeping advan-
tage of the strong propagation mechanisms of the flow, cu-
mulative, and pert-related constraints:

• First of all, identical patterns of tasks on the different
apartments are identified and the corresponding sub-
problems are solved to optimality (section 4.1 explains
how these patterns are used to decrease computational
time).

• Optimal solutions of previous sub-problems are used
to extract a set of precedence constraints which can re-
place the cumulative constraint. The cumulative is re-
moved from the complete formulation (to scale up) and
the model is then solved by a greedy approach (with
propagation) and a pragmatic management of contra-
diction (section 4.2).

4.1 Pattern search

Using pattern recognition helps the solver to save time
during propagation. A pattern is a sequence of tasks. The
similarity of two patterns is defined according few criteria.
First of all, both patterns of elementary tasks have to be
defined on zones with the same occupancy capacity. Sec-
ondly, two corresponding tasks on two similar patterns have
to be similar. How the similarity is defined between two
tasks? The minimum and the maximum amounts of daily
work have to be the same. Futhermore, theirs parents and
children have to be similar.

In the exemple presented on figure 5, Pattern 1 and Pat-
tern 2 will be similar if they represent a sequence of tasks
executed on two apartment of the same capacity and each
couple of tasks are similar. For instance, task 4 and task 10
are similar, if they respect the work extrema constraint, if
Task 3 and 10 are similar and if couples of tasks 5-11 and
6-12 are similar.

When this pattern recognition has been processed, we are
ready to set up a smaller model on a specific zone. We se-
lect a zone, a pattern of tasks and we solve as many prob-

Fig. 5 Pattern 1 and 2 will be similar if each task are
similar and if they are defined on zones with the
same capacity

lems as number of zones. The strategy consists in adding a
cumulative constraint to the set of constraints already effec-
tive. It ensures the respect of occupancy on each apartment.
These smaller problems are much smaller than the prece-
dent global one: 50 tasks on average to schedule on one
zone. Then, solving them to optimality is possible.

Which information can be extracted from these resolu-
tions? Scheduling a pattern of tasks on a zone by focus-
ing the attention only on the occupancy generates some new
precedence constraints. In the global problem, we add the
the corresponding set of constraints for each similar pattern.
Propagation will make new domain cuts: this first step in
our greedy algorithm is an important diminution of compu-
tational time.

4.2 Pragmatic filtering

As explained in section 2.1.1, the operational context led
to a model where the capacity of a resource can be ex-
ceeded. Precedence constraints are strict on a construction
site (shortening delays between tasks may result in quality
or safety defects). On the contrary the workforce can be
adjusted through the use of temp workers or extra work-
ing hours. Such adjustments are costly but often feasible.
From the customer point of view a solution with overloaded
resources on a few days is more informative than aNo so-
lution pop-up. On the contrary suggesting a solution with
wallpaper tasks preceding plaster application would make
no sense. The main advantage of our model from an opera-
tional point of view is that as soon as the set of preferences
is consistent (including pattern preferences defined in the
previous section), a solution can easily be computed. For
instance earliest scheduling may exceed resources capac-
ity on many days but it is still a (costly) feasible solution.
This specificity allows designing a robust greedy algorithm
whose objective is to find a solution minimizing resource
consumption excesses.

However this choice degrades the efficiency of a con-
straint programming approach, since resources limitations



are not strict, hence cannot propagate. Even after a first
solution has been found, propagating the maximum excess
remains inefficient because it induces no limitation on any
specific day.

A first idea would consist in solving the problem with
increasing resource capacities until a solution is found.
However in addition to requiring several solving procedure
(hence increasing total solving time), this approach would
yield poor results since failures of the first step would give
no hint about which resource capacity should be increased,
on which days, and by which amount. Finally we would
probably need to uniformly increase resource capacities,
missing our objective of highlightingdifficult days.

In order to overcome this intrinsic limitation of our model
we introduce the notion pragmatic filtering. The principle
of this heuristic approach is to consider our relaxation of re-
sources capacity constraints as a mere error recovering strat-
egy. The problem that we actually want to solve is the one
with resources limitations enabled, and allowing resources
overload is merely a way to make sure that a (possibly de-
graded) solution will be returned even when this original
problem is too difficult to be solved in 30 seconds (if not
impossible). A pragmatic filtering algorithm is a classical
filtering algorithm for a variable or a set of variables imple-
mented as follows.

let D1, . . . ,Dn := filteredDomains(V1, . . . ,Vn)
if (∃i,Di = /0) forgetIt()
else fori in (1..n) domain(Vi) := Di

In our case we implemented a function
filteredDomains(Si) computing the earliest start
(Smin

i ) that would be computed for taski if its resource was
actually limited. This filtering is classically based on the
current consumption profile for this resource and on the
height of taski. If it does not empty the domain ofSi we
are sure thatcommitting these changes cannot make the
problem infeasible, since restricting a single domain in a
consistent PERT cannot make the PERT infeasible. On
the contrary if it empties the domain ofSi it means that no
start date for taski can avoid generating resource overload:
instead of just ignoring the filtering, we setSi to the
value generating the smallest amount of resource overload
(forgetIt()). We also implemented the symmetrical
function refining the latest end of taski (Ei).

Contrary to real filtering the result may depend on order-
ing issues. Consider, for example, tasksi and j (both with
duration = 1, consumption = 10) using the same resource
R, with remaining capacity only on two days: 10 on dayt1
and 5 on dayt2. The first filtered task will see its domain
restricted to dayt1 (successful pragmatic filtering) and the
second one will be assigned to dayt2 (minimum overload
day).

The advantage of this approach is that it performs efficient
filtering as if resource limitation were enabled while avoid-
ing generating contradictions for the few days on which the
constraint cannot be satisfied.

5. Results

The algorithm has already been used to solve a real life
problem. One of the instance was a residential building of
65 apartments. On each of them, 38 different elementary
tasks were scheduled. These 2470 tasks had to be organized
in a schedule of 130 days. We found 3 different patterns of
38 tasks. The software provides a solution of this problem
in less than one minute. The user is able to establish a Gantt
chart for the whole planning horizon, with a starting/ending
date per task and the volume executed each day. We will see
in section 6 that explanations is also an important part of the
results that the user is expecting.

6. Explanations to help decision makers

We focused in this article on a way to find solutions to
the described problem: planning subcontractor tasks. How-
ever, final users do not only need to find these solutions.
Designing an interactive application is mandatory since the
user does not know how the solving is working and cannot
accept an application that only answers no if no solution is
found or which cannot incrementally modify the description
on order to catch problem evolutions.

6.1 Explanations

An important point is the need of explanations. Indeed,
even when the problem is static, the user (the building site
coordinator) needs to know why there is no solution or why
the solution is not the expected one (for instance to prove to
his hierarchy that he really need more time than the expected
one).

This is another feature which can benefit from
explanation-based constraint programming (as its name sug-
gests) (Jussien 2003). Explanations (search and filtering-
related information) stored on the fly (while solving the
problem) can give some valuable information to the user to
know why the achieved state is not valid and so why in the
given time, the algorithm did not find valid solutions.

6.2 Interactive solving

Another need is interactivity. Indeed, planning must be
easily updatable, since a subcontractor can be late for a
given task, bad weather can disturb the planning and so on.

However whenever the problem changes, the user do
not want to search a completely new solution: planning
modifications can be expensive in terms of organization,
team managements and so on. This implies that the prob-
lem needs to be resolved dynamically: when a constraint
changes, only dependant instantiation should be modified.

As shown recently, explanation-based constraint pro-
gramming (Elkhyari et al. 2004) is a good candidate for such
a task. The idea is to maintain search-related information in
order to be able to quickly determine what can be kept as



is when handling a modification of the problem. This tech-
nique will be applied in our context.

6.3 Explanations for the PERT constraint

Our constraint solver,choco, provides some explana-
tion capabilities thanks to thepalm extension. All the con-
straints used in our model do possess an explained version.
However, in order to improve the interest of the explana-
tions provided to the user, we plan to develop a specific
global constraint for handling the precedence graph of the
problem. Indeed, it is important to encapsulated as much
as possible global information into constraints in order to
provide valuable explanations (Gaudin et al. 2004).

We are currently developing such a PERT constraint
based on incremental versions of the well-known pert res-
olution algorithms (Beldiceanu et al. 2005).

7. Conclusion

We presented in this paper a real-life problem encoun-
tered in residence buildings construction sites. The prob-
lem of scheduling subcontractors is a difficult yet interest-
ing task. We sketched out in this paper our solution that
meets the tight time limits set by the final user for solving
the problem.

Has often in designing decision-support systems, meeting
the original requirements of the final user is not sufficient.
Providing new and efficient optimization tools introduces
new needs: interactive solving, explanations, etc. We are
therefore currently working on these additions to the origi-
nal problem.
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04-INFO,École des Mines de Nantes, Nantes, France,
2003.

D. G. Malcolm, J. H. Roseboom, C. E. Clark, and W. Fazar.
Application of a technique for research and devel-
opment program evaluation.Operations Research,
7(5):646–669, 1959.


