
A P P E N D I X

■ ■ ■

405

Sample Workflow Project

The sample project provided in the appendix is designed as a review of many of the concepts discussed
in this book. It also demonstrates how the techniques you’ve learned can be combined to build a full-
featured application. Instead of giving you step-by-step instructions for building the solution, the
complete project is available for you to download from http://www.apress.com. As you’ll see, this project
is fairly extensive and this will save you quite a bit of time (and typing).

Project Overview
The application provides a web page in which end users can enter requests, comments, or questions.
Based on the topic selected, the request is placed in one of several queues for individuals to view and
respond to. A second web page is provided to show the contents of these queues. Once a queue is
selected, items are presented to be worked. Each queue can be configured in one of two modes: either
the oldest request is automatically presented to be worked or all requests are displayed for the user to
select one.

After a request has been worked, it might require a QC review step based on rules defined in a
Policy object. (The implementation is very similar to one you created in Chapter 20.) Requests can also
be rerouted to a different queue if necessary. A tracking extension is used to record the various events
(started, assigned, reviewed, rerouted, and so on) so you can see how a particular request made its way
through the workflow.

All the workflow functionality is provided through a web service. The web site uses the native .Net
membership services, which gives the site the capability to “log in.” The operator information is
provided to the workflow so it can track which users worked on each request. Finally, the generic
workflow features and queue logic is provided by a set of workflow activities and extensions that are
implemented in a separate library project. This allows you to reuse this code in other applications.

I’ll explain the solution in more detail later, but first, let’s run the application so you can see what it
does. You’ll need to download the Appendix.zip file and extract this to an appropriate location.

Configuring the Database
The AppendixData folder contains the scripts you’ll need to set up the database schema. First, create a
SQL Server database for this solution. Expand the Create Scripts folder and run the included scripts in
the following order:

APPENDIX ■ SAMPLE WORKFLOW PROJECT

406

• SqlWorkflowInstanceStoreSchema.sql

• SqlWorkflowInstanceStoreLogic.sql

• Config.sql

• Request.sql

• Tracking.sql

The scripts used to create the membership tables and procedures assume that there is a database
named aspnetdb on the server that the connection string is referencing. This is the default database that
the ASP.Net services use. If you do not already have this setup, create a database called aspnetdb and
then run the InstallCommon.sql and InstallMembership.sql scripts (in that order).

■ Caution If you need to modify the database connection for your environment, make sure that you make the
change to the configuration files; there are two places. The web.config file in the root folder of the web site
project defines the connection string for the aspnetdb database used by the .Net services. There is also a
web.config file in the root folder of the ServiceLayer project. This is used to configure the workflow persistence
store as well as the application data that your custom activities will use.

Running the Application
Once your database has been configured, from Visual Studio, press F5 to start the application. The initial
page should look like the one shown in Figure A-1.

Figure A-1. Initial web page

APPENDIX ■ SAMPLE WORKFLOW PROJECT

407

Logging In
Click the Log In link at the top-right corner of the page. The first time you log in, you’ll need to create a
new account by clicking the register link. This will display the page shown in Figure A-2.

Figure A-2. Creating a new account

Enter your name, e-mail address, and a password (the e-mail address is not actually used to send e-
mails so you can enter any text here that you want.) The next time you log in, you’ll want to check the
“Keep me logged in” check box, as shown in Figure A-3. If you do, you won’t need to log in again even if
you restart the application.

Figure A-3. Using the “Keep me logged in” option

APPENDIX ■ SAMPLE WORKFLOW PROJECT

408

Submitting a Request
Click the Submit link at the top of the page. This will display the page used for entering a new
request/comment, which is shown in Figure A-4.

Figure A-4. Entering a new request

If you’ve logged in, the name and e-mail address will be filled in for you. Select the Feedback
category and enter a comment. Then click the Add Item link. Figure A-5 shows a completed submit page.
The comment field is cleared and the unique identifier assigned to this request is displayed at the top of
the page. Enter a couple more requests using the same Feedback category.

APPENDIX ■ SAMPLE WORKFLOW PROJECT

409

Figure A-5. The completed submit page

Processing Requests
Click the Process link at the top of the page. This will display the Process page that is shown in
Figure A-6.

Figure A-6. Displaying the available queues

APPENDIX ■ SAMPLE WORKFLOW PROJECT

410

The grid on this page lists the queues that have requests that need to be responded to. The Feedback
category was assigned to the Marketing queue so all the requests you entered are in this queue. This grid
indicates how many requests are in this queue and the date of the oldest request. Click the Select link
and the page should look like the one shown in Figure A-7.

Figure A-7. Selecting a request

The Marketing queue is configured to allow selection. This means that instead of automatically
assigning the oldest request in the queue, all the requests are listed, and you are allowed to select the
one you want to work on. Click one of the Select links and the request will be displayed, as shown in
Figure A-8.

Figure A-8. Responding to a request

APPENDIX ■ SAMPLE WORKFLOW PROJECT

411

Below the request there is a place to enter the action that was taken. You can also select a queue to
route this request to. You could click the Cancel button if you decided not to work on this request. That
will unassign the request and put it back in the queue for someone else to work. Enter some notes in the
Action Taken field, select the Product queue, and click the Complete button. The page should now look
like the one shown in Figure A-9.

Figure A-9. The updated queue list

Notice that the Product queue is now displayed in the queue list, and there are only two requests to
choose from in the Marketing queue. Click the Select link next to the Product queue. The page should
look like the one shown in Figure A-10.

Figure A-10. Working the request in the Product queue

APPENDIX ■ SAMPLE WORKFLOW PROJECT

412

Because there is only one item in the Product queue, it was automatically assigned. You can edit or
append to the Action Taken field. You can also reroute this request to another queue, if necessary. For
this request, append a note to the Action Taken field and leave the Route Next field blank. Click the
Complete button. The page should look like the one shown in Figure A-11.

Figure A-11. Request moved to QC mode

Notice that this request is still in the Product queue, but the QC column shows “True”. The Product
queue is configured so that all requests in the Product queue must go through a QC review.
Consequently, the request is put back into the queue in QC mode. Select the Product queue again and
the request should be displayed; this time in QC mode, as shown in Figure A-12.

Figure A-12. Performing QC review

APPENDIX ■ SAMPLE WORKFLOW PROJECT

413

In QC review, you can view and modify the Action Taken. Edit this field and click the Complete
button. The request is now complete. Figure A-13 shows the updated queue list with only the remaining
items in the Marketing queue.

Figure A-13. Updated queue list

Tracking the Workflow
Close the web application and go back to Visual Studio. From the Server Explorer, open the contents of
the QueueTrack table. The results should be similar to those shown in Figure A-14.

Figure A-14. Showing the tracking results

The QueueTrack table records the various events that occurred on each of the requests: Started,
Assigned, Route, QC, and so on. The request that you just worked was started in the Marketing queue. It
was then assigned to an operator and then routed to the Product queue. It was again assigned to the
same operator and then put into QC mode. Finally, it was assigned to the operator for a third time this
time in QC mode.

Generic Queue Logic
Using queues for managing human tasks is a common practice that can be used in many applications. I
designed this solution to encapsulate the generic activities in a separate project called UserTasks. This
should help you to reuse this logic more easily in your own applications.

APPENDIX ■ SAMPLE WORKFLOW PROJECT

414

Database Design
Figure A-15 shows the tables used by the UserTasks project. You can also view this diagram by opening
the UserTasks.dbml file in the UserTasks project.

Figure A-15. Database design for the UserTasks project

The database contains both a Queue and a SubQueue table. The queues that you used, such as
Marketing and Product, are really subqueues, and this solution uses a single queue called Request. This
approach allows you to reuse the same tables (and workflow activities) for any number of human-centric
workflow tasks.

The Queue and SubQueue tables provide configuration options such as SupportsQC (at the queue level)
and AllowSelection (at the subqueue level). The SubQueue table includes the Frequency column, which
defines how often requests in this subqueue need to be reviewed. The NumberSinceLastEval is used to
keep track of this to know when it’s time to force another review. The OperatorConfig table provides
other QC-related options (see Chapter 20 for more details.)

The QueueInstance table is the main table that drives the queue logic. A record is created for every
request. It keeps track of what subqueue the request is currently in, whether it’s in QC mode, and who it
is currently assigned to. The QueueTrack table is populated by the tracking extension in response to user-
defined tracking events.

APPENDIX ■ SAMPLE WORKFLOW PROJECT

415

Activities
The UserTasks project is an activity library project that provides activities that can be dropped onto
other workflows. The included activities are listed in Table A-1.

Table A-1. Activities provided in the UserTasks project

Activity Name Description

AssignQueue Moves a QueueInstance to the specified subqueue.

AssignQueueInstance Assigns a QueueInstance to the specified operator.

CompleteInstance Provides QC and rerouting logic.

CreateQueueInstance Creates a new QueueInstance record.

GetQueueInstances Returns the available QueueInstance records in the specified subqueue (if
allow selection is turned off, it returns only the oldest record).

LoadQueueInstance Loads the specified QueueInstance.

LookupQueueStats Returns the number of records in each queue/subqueue.

RequestQC Moves the specified QueueInstance into QC mode.

UnAssignQueueInstance Unassigns the current operator and makes this QueueInstance available to be
assigned to another operator.

All these activities, with the exception of CompleteInstance, are implemented as coded activities. I

won’t take the time to list all the source code here; you can browse the code in Visual Studio. They use a
DBConnection extension to obtain the connections string (see Chapter 12) and use a
PersistQueueInstance extension to save the changes as part of the workflow persistence (see Chapter
15). As with all the other projects in this book, they use LINQ to SQL to access the database tables.

CompleteInstance
The CompleteInstance activity is provides as a designed activity. The workflow design for it is shown in
Figure A-16.

APPENDIX ■ SAMPLE WORKFLOW PROJECT

416

Figure A-16. Design of the CompleteInstance activity

After loading the QueueInstance record, it then checks to see whether this queue supports QC or
whether the QueueInstance is already in QC mode. If not, it invokes the QCPolicy activity, which
determines whether this record should be QC’ed. If QC is required, the RequestQC activity is executed to
update the QueueInstance. The Complete output argument is passed back to the calling workflow to
indicate whether the QueueInstance was actually completed or whether it requires a QC step.

QCPolicy
The QCPolicy activity is an Interop activity that invokes a QCPolicy activity, which is implemented in .Net
3.5. (You might want to refer to Chapter 20 for more details on using the Policy activity.) The design of
the QCPolicy activity is shown in Figure A-17.

APPENDIX ■ SAMPLE WORKFLOW PROJECT

417

Figure A-17. QCPolicy Design (.Net 3.5)

Unlike the implementation in Chapter 20, this QCPolicy activity reads and updates the configuration
data from the database. Because the Policy activity uses the .Net 3.5 version of workflow, it cannot
access the DBConnection extension. Instead, the connection string is passed in as a DependencyProperty.

The ReviewPolicy activity is a Policy that determines whether the QueueInstance needs to be
reviewed. The rule set used is shown in Figure A-18.

Figure A-18. ReviewPolicy rule set

If QC is needed, the PriorityPolicy is executed to determine what priority it should be given. Its
rule set is shown in Figure A-19.

APPENDIX ■ SAMPLE WORKFLOW PROJECT

418

Figure A-19. PriorityPolicy rule set

The Hardcode activity is used for testing only and is normally disabled. It overrides the Review and
Priority properties that were set by the Policy activities. This was provided to make it easier to test both
QC and non-QC scenarios.

■ Note WF 3.0/3.5 provided the ability to disable an activity. When the workflow is executed, disabled activities
are ignored. This feature had limited usefulness and is not provided in WF 4.0. This particular scenario was one of
the useful applications of this feature.

To test the actual Policy implementation, a separate TestQC application is provided. This is a
simple workflow application with the QCPolicy activity dropped onto it.

Tracking
The ability to track workflow events was described in Chapter 13. This project relies on custom tracking
events. The following code (or something similar) is included in several of the custom activities:

CustomTrackingRecord userRecord = new CustomTrackingRecord("Route")
{
 Data =
 {
 {"QueueInstanceKey", qi.QueueInstanceKey},
 {"SubQueueID", qi.CurrentSubQueueID}
 }
};

// Emit the custom tracking record
context.Track(userRecord);

This causes a custom tracking event to be generated, which is received and processed by the

QueueTracking extension. The implementation of the Track method of this extension is shown in
Listing A-1.

APPENDIX ■ SAMPLE WORKFLOW PROJECT

419

Listing A-1. Implementation of the Track Method

protected override void Track(TrackingRecord record, TimeSpan timeout)
{
 CustomTrackingRecord customTrackingRecord =
 record as CustomTrackingRecord;

 if (customTrackingRecord != null)
 {
 if (customTrackingRecord.Name == "Start" ||
 customTrackingRecord.Name == "Route" ||
 customTrackingRecord.Name == "Assign" ||
 customTrackingRecord.Name == "UnAssign" ||
 customTrackingRecord.Name == "QC")
 {
 QueueTrack t = new QueueTrack();

 // Extract all the user data
 if ((customTrackingRecord != null) &&
 (customTrackingRecord.Data.Count > 0))
 {
 foreach (string key in customTrackingRecord.Data.Keys)
 {
 switch (key)
 {
 case "QueueInstanceKey":
 if (customTrackingRecord.Data[key] != null)
 t.QueueInstanceKey =
 (Guid)customTrackingRecord.Data[key];
 break;
 case "SubQueueID":
 if (customTrackingRecord.Data[key] != null)
 t.SubQueueID = (int)customTrackingRecord.Data[key];
 break;
 case "QC":
 if (customTrackingRecord.Data[key] != null)
 t.QC = (bool)customTrackingRecord.Data[key];
 break;
 case "OperatorKey":
 if (customTrackingRecord.Data[key] != null)
 t.OperatorKey =
 (Guid)customTrackingRecord.Data[key];
 break;
 }
 }
 }

 if (t.SubQueueID != null && t.QC == null)
 t.QC = false;

APPENDIX ■ SAMPLE WORKFLOW PROJECT

420

 t.EventType = customTrackingRecord.Name;
 t.EventDate = DateTime.UtcNow;

 // Insert a record into the TrackUser table
 UserTasksDataContext dc =
 new UserTasksDataContext(_connectionString);
 dc.QueueTracks.InsertOnSubmit(t);
 dc.SubmitChanges();
 }
 }
}

This first checks to see whether this is one of the events that should be processed. Specifically, it is

looking for the following:

• Start: A new QueueInstance is created.

• Route: A QueueInstance is placed in a queue.

• Assign: The QueueInstance is assigned to a specific operator.

• UnAssign: The QueueInstance is unassigned.

• QC: The QueueInstance is placed to QC mode.

■ Note As I demonstrated in Chapter 13, the events that should be tracked can be configured instead of written in
code. This is the preferred approach. However, this tracking extension is writing to a database table specifically
designed for these events. It doesn’t know how to track other events. In this case, it is appropriate to put the filter
in code. This still allows you to configure the events that are actually tracked within this set of supported events.

The various data records are extracted from the event to populate the corresponding columns in the
table.

Service Layer
As I mentioned previously, all the workflow functionality is provided by a web service. You created a
fairly simple web service in Chapter 10. This implementation is significantly more complex.

Service Contract
In Chapter 10, you used both the traditional method of defining a service contract and a declarative style
provided by WF. In this project, I used the later method exclusively. On each of the Receive activities, the
OperationName and appropriate input parameters are defined. Similarly, on the SendReply activities the
output parameters are defined.

APPENDIX ■ SAMPLE WORKFLOW PROJECT

421

Also, on the Receive activities, the interface name is specified. You don’t have to define this
interface; just specify the name to use when one is created for you. If you want all the methods on the
same interface, use the same interface name on all the Receive activities. You can also use different
names, which will result in multiple interfaces. For this project, I used IProcessRequest for all the
methods. Figure A-20 shows the methods that are implemented in the IProcessRequest interface.

Figure A-20. Web service methods

When a service reference is added to the web application, all the necessary web service details are
generated for you, including the Web Service Definition Language (.wsdl) file that explicitly defines the
web service and the methods provided. You can open Service1.wsdl and see what this looks like. It’s a
little cryptic for the human reader. It also generates several .xsd files that define the data types and data
contracts that are used in the input and output messages. Figure A-21 shows one of these files displayed
in the XML Schema Explorer.

APPENDIX ■ SAMPLE WORKFLOW PROJECT

422

Figure A-21. XML Schema Explorer

Database Design
Because the queue logic is provided by the UserTasks project, the service layer can focus on request-
specific design elements. Consequently, the data model is quite simple, as shown in Figure A-22.

Figure A-22. Service layer data model

APPENDIX ■ SAMPLE WORKFLOW PROJECT

423

The Request table contains the data, such as name, e-mail, and comment, entered by the user who
submitted the request. It also records the action taken, which is entered by the operator who worked the
request. It has a reference to a QueueInstance record. The QueueInstance record handles all the queue
details such as the current queue, to whom it’s assigned, and so on. This design keeps the Request table
clear of all these “plumbing” details.

Activities
The ServiceLayer project implements some custom activities, which are listed in Table A-2.

Table A-2. Activities provided in the ServiceLayer project

Activity Name Description

BuildRequestList Maps the data returned by GetQueueInstances into a list of Request objects.

CreateRequest Creates a new Request record.

LoadRequest Load the specified Request from the database.

UpdateRequest Updates a Request.

The CreateRequest and UpdateRequest use the PersistRequest extension to perform the database

update when the workflow is persisted. The BuildRequestList activity is the only one that is particularly
interesting. The GetQueueInstances activity (provided in the UserTasks project) handles all the logic to
determine which records are available to be worked, but it knows nothing about requests. It uses only
the QueueInstance table as well as the Queue and SubQueue setup tables. BuildRequestList takes the list of
QueueInstance objects returned by GetQueueInstances and maps them to a list of Request objects. The
implementation is shown in Listing A-2.

Listing A-2. BuildRequestList Implementation

using System;
using System.Collections.Generic;
using System.Linq;
using System.Activities;
using UserTasks;
using UserTasks.Extensions;

namespace ServiceLayer.Activities
{

 public sealed class BuildRequestList : CodeActivity
 {

APPENDIX ■ SAMPLE WORKFLOW PROJECT

424

 public InArgument<UserTasks.QueueInstance[]> QueueInstanceList { get; set;}
 public OutArgument<Request[]> RequestList { get; set; }

 protected override void Execute(CodeActivityContext context)
 {
 // Get the connection string
 DBConnection ext = context.GetExtension<DBConnection>();
 if (ext == null)
 throw new InvalidProgramException("No connection string available");

 RequestDataContext dc = new RequestDataContext(ext.ConnectionString);

 // Get the list of QueueInstances
 UserTasks.QueueInstance[] qiList = QueueInstanceList.Get(context);
 if (qiList != null && qiList.Count() > 0)
 {
 // Build a list of Request objects
 Request[] rList = new Request[qiList.Count()];
 int i = 0;
 foreach (UserTasks.QueueInstance qi in
 QueueInstanceList.Get(context))
 {
 Request r = dc.Requests.SingleOrDefault
 (x => x.QueueInstanceKey == qi.QueueInstanceKey);
 rList[i++] = r;
 }

 RequestList.Set(context, rList);
 }
 }
 }
}

Workflow Design
This web service is implemented using the workflow designer, which produces an .xamlx file. Figure A-23
shows the overall design with some of the activities collapsed to fit the diagram on a page.

APPENDIX ■ SAMPLE WORKFLOW PROJECT

425

Figure A-23. Overall workflow design

The workflow uses the Pick activity that was introduced in Chapter 10. To review, a Pick activity
contains one or more PickBranch activities, in which each contains a Trigger activity and an Action
sequence. When the Trigger is executed, the associated Action sequence is started, and all other
PickBranch activities are cancelled. In this case there are four branches; the Trigger for each one contains
a Receive activity that waits for a specific web service method.

The four methods are as follows:

• SubmitRequest: Initiates a new request.

• GetQueueStats: Gets the number of request in each queue.

• GetRequest: Gets the available request(s) from the specified queue.

• LoadRequest: Returns the request details of the specified request.

The last three are fairly straightforward. They perform a database operation and return the
appropriate results back to the caller using a SendReply activity. When the application wants to get the
current statistics about the queues, it calls the GetQueueStats() method of the web service. This will
create a new workflow instance that is completed as soon as the response is sent back to the application.
This workflow is very short-lived. The instance store is configured to remove the record from the
InstancesTable when the workflow is completed. So using a workflow instance to perform a simple task
does not leave any artifacts behind.

SubmitRequest
When SubmitRequest is called, it first determines the correct subqueue using a Switch activity (see
Chapter 4 for details). It then creates a QueueInstance record and a Request record and returns data back

APPENDIX ■ SAMPLE WORKFLOW PROJECT

426

to the caller using SendReply. So far, this is similar to the other branches. However, the workflow
continues after the SendReply activity. It is followed by a While activity; the design of this is shown in
Figure A-24.

Figure A-24. While activity

The Condition on the While activity is as follows:

queueName <> "None"

This means that the While activity will continue to execute as long as the request is assigned to a

queue. When the request is completed, without forwarding the request to another queue, the queueName
is set to “None”, causing the While activity to complete. The logic inside the While activity starts with a
Receive activity that waits for the AssignOperator method. A request must be assigned to an operator
before it can be worked. This helps ensure that two people are not working on the same request.

APPENDIX ■ SAMPLE WORKFLOW PROJECT

427

Processing a Request
When the AssignOperator() method is called, the QueueInstance associated with that request is updated
to record the assignment and the response is sent back. The workflow then continues with another Pick
activity that is shown in Figure A-25.

Figure A-25. The final Pick activity

When a request has been assigned to an operator, one of three things can happen:

• The request is completed.

• The page is cancelled forcing the request to be unassigned.

• Neither.

The three branches represent these scenarios. The first branch completes the request, and the
second branch unassigns the request so someone else can work it. The third branch uses a Delay activity
to wait for five minutes. If nothing has been done within that time, the request is automatically
unassigned. If an operator has a request assigned to them and they decide to leave for the day and
simply close their browser, the request would be left assigned to them. This means that no one else
could work that request. This third branch was added to take care of that scenario.

If the CompleteRequest() method is called, the first branch updates the request with the data
provided. It then executes the CompleteInstance activity that was described earlier. This activity

APPENDIX ■ SAMPLE WORKFLOW PROJECT

428

determines whether the item in the queue needs to be reviewed in QC mode. It outputs a Complete
argument to indicate whether the item is complete or whether it needs to be reviewed. Figure A-26
shows the sequence that is executed if the request is complete.

Figure A-26. The sequence for completed requests

■ Note When I say the request is complete, I’m referring to that particular task for that request is complete. The
request might need to be worked in other queues before the workflow is completed.

The routeNext variable is specified in the CompleteRequest() method; it is determined by the
operator working the request. This is copied to the queueName variable. If no queue was selected, this will
signal that the workflow is done, and the While activity will complete. The AssignQueue activity is called
to update the current subqueue for the QueueInstance. The UpdateRequest activity will clear the
RouteNext field.

Correlation
The concept of correlation was introduced briefly in Chapter 8. A typical workflow will have hundreds,
perhaps thousands, of workflow instances executing simultaneously. When a workflow design includes
sending messages to (and between) instances, correlation provides the mechanism to ensure that
messages are sent to the correct instance. There are three types of correlation provided by WF 4.0.

The first (and probably easiest) correlation is called request reply correlation. It is used when you
have a two-way communication between workflow activities. For example, you send a request and wait
for the response. You used this in Chapter 8 (and others). By placing the Send and ReceiveReply activities
within a CorrelationScope activity, the workflow took care of the details for you. In this case, correlation
was accomplished through the communication channel that was established between the sender and
the receiver.

APPENDIX ■ SAMPLE WORKFLOW PROJECT

429

The other two types support more complex scenarios in which there are multiple messages between
the workflows. The first is referred to as context correlation. In this case, the client sends a request, and
the server includes a context ID with the response. This context ID must be included with all subsequent
messages from the client. This is used by the server to associate the same instance that responded to the
first message. This approach requires logic on both the client and server. This approach also requires
that the first message be a two-way message; the server has to send back a response that includes the
context ID.

The last approach, query correlation, is accomplished on the server side only. In a sense, this is
actually very similar to context correlation. There is some sort of key that is included with each request
that identifies the corresponding workflow instance. With context correlation, this key is generated by
the server on the initial request. However, with query correlation, this key is based on data included in
the message.

This project uses query correlation and the common key is the RequestKey, which is a Guid
generated by the application. The RequestKey is provided as one of the parameters on every call to the
service. When the first message is received, the RequestKey is mapped to that workflow instance. This is
done through a correlation initializer, which sets up the mapping between the RequestKey and the
associated workflow instance. On subsequent calls, this is extracted (queried) from the data in the
incoming message and the mapping is used to determine the workflow instance.

Query correlation is accomplished through the Receive activity. There are three properties on the
Receive activity that support correlation, as shown in Figure A-27.

Figure A-27. Properties of a Receive activity

The CorrelatesWith property defines the handle, which is specified as a CorrelationHandle type.
This is a workflow variable that is persisted with the workflow. A CorrelationInitializer is then added
to the first Receive activity, as shown in Figure A-28.

APPENDIX ■ SAMPLE WORKFLOW PROJECT

430

Figure A-28. A correlation initializer

The XPath query might seem a little cryptic, but don’t worry; the Visual Studio takes care of this for
you. You only need to select the appropriate property from the drop-down menu. The drop-down menu
lists all the parameters in the incoming message. When the RequestKey is chosen, the query is generated
automatically.

On subsequent Receive activities, instead of setting the CorrelationInitializer, the CorrelatedOn
property is set. This is done by selecting the correct parameter; a query is then generated for you, as
shown in Figure A-29.

Figure A-29. The CorrelatesOn property

Using WorkflowServiceHost
This project uses several workflow extensions that were introduced in previous chapters (persistence in
Chapter 11, sharing configuration data in Chapter 12, tracking in Chapter13, and custom persistence in
Chapter 14). In those projects there was a console or WPF application that configured these extensions
and added them to the workflow instances as they were created. In this project, this is done by the
WorkflowServiceHost.

APPENDIX ■ SAMPLE WORKFLOW PROJECT

431

Writing Extensions
To add extensions when using the WorkflowServiceHost, they must be configured in the web.config or
app.config file. This requires some extra steps when writing the extensions. The modified
implementation of DBConnection.cs is shown in Listing A-3.

Listing A-3. Implementation of the DBConnection Extension

using System;
using System.Collections.Generic;
using System.Collections.ObjectModel;
using System.Collections.Specialized;
using System.Configuration;
using System.Web.Configuration;
using System.ServiceModel;
using System.ServiceModel.Activities;
using System.ServiceModel.Channels;
using System.ServiceModel.Configuration;
using System.ServiceModel.Description;

namespace UserTasks.Extensions
{
 /***/
 // The extension class is used to define the behavior
 /***/
 public class DBConnectionExtension : BehaviorExtensionElement
 {
 public DBConnectionExtension()
 {
 Console.WriteLine("Behavior extension started");
 }

 [ConfigurationProperty("connectionStringName", DefaultValue = "",
 IsKey = false, IsRequired = true)]
 public string ConnectionStringName
 {
 get { return (string)this["connectionStringName"]; }
 set { this["connectionStringName"] = value; }
 }

 public string ConnectionString
 {
 get
 {
 ConnectionStringSettingsCollection connectionStrings =
 WebConfigurationManager.ConnectionStrings;
 if (connectionStrings == null) return null;
 string connectionString = null;
 if (connectionStrings[ConnectionStringName] != null)
 {

APPENDIX ■ SAMPLE WORKFLOW PROJECT

432

 connectionString =
 connectionStrings[ConnectionStringName].ConnectionString;
 }
 if (connectionString == null)
 {
 throw new ConfigurationErrorsException
 ("Connection string is required");
 }
 return connectionString;
 }
 }

 public override Type BehaviorType
 {
 get { return typeof(DBConnectionBehavior); }
 }
 protected override object CreateBehavior()
 {
 return new DBConnectionBehavior(ConnectionString);
 }
 }

 /***/
 // The behavior class is used to create an extension
 // for each new instance
 /***/
 public class DBConnectionBehavior : IServiceBehavior
 {
 string _connectionString;

 public DBConnectionBehavior(string connectionString)
 {
 this._connectionString = connectionString;
 }

 public virtual void ApplyDispatchBehavior
 (ServiceDescription serviceDescription, ServiceHostBase serviceHostBase)
 {
 WorkflowServiceHost workflowServiceHost
 = serviceHostBase as WorkflowServiceHost;
 if (null != workflowServiceHost)
 {
 string workflowDisplayName
 = workflowServiceHost.Activity.DisplayName;

 workflowServiceHost.WorkflowExtensions.Add(()
 => new DBConnection(_connectionString));
 }
 }

 public virtual void AddBindingParameters

APPENDIX ■ SAMPLE WORKFLOW PROJECT

433

 (ServiceDescription serviceDescription,
 ServiceHostBase serviceHostBase,
 Collection<ServiceEndpoint> endpoints,
 BindingParameterCollection bindingParameters)
 {
 }

 public virtual void Validate
 (ServiceDescription serviceDescription,
 ServiceHostBase serviceHostBase)
 {
 }
 }

 /***/
 // This is the actual extension class
 /***/
 public class DBConnection
 {
 private string _connectionString = "";

 public DBConnection(string connectionString)
 {
 _connectionString = connectionString;
 }

 public string ConnectionString { get { return _connectionString; } }
 }
}

There are three classes implemented in this file:

• DBConnectionExtension

• DBConnectionBehavior

• DBConnection

DBConnectionExtension is derived from the BehaviorExtensionElement class. It specifies the
configuration values that are supported. In this case, there is only one: connectionStringName. It also
provides a ConnectionString() method that obtains the connection string from the configuration file
using the connsctionStringName parameter. Finally, it overrides the CreateBehavior() method, which
creates a DBConnectionBehavior object passing in the connection string to the constructor.

The DBConnectionBehavior class implements the IServiceBehavior interface. This interface defines
an ApplyDispatchBehavior() method that creates an extension and adds it to a workflow instance. This is
roughly equivalent to the SetupInstance() method you wrote in Chapter 12. When the
WorkflowServiceHost is started, it looks for all the configured extensions and obtains an
IServiceBehavior interface for each. As each workflow instance is created, it calls the
ApplyDispatchBehavior() method on each of the IServiceBehavior interfaces. The
ApplyDispatchBehavior() method creates a DBConnection class, passing in the connection string to the
constructor and then adds it to the WorkflowExtensions collection.

APPENDIX ■ SAMPLE WORKFLOW PROJECT

434

The DBConnection class in same implementation you created in Chapter 12. It provides a
ConnectionString property that supplies the connection string to any activity that needs it.

Configuring Extensions
A subset of the web.config file is shown in Listing A-4.

Listing A-4. A Portion of the web.config file

<configuration>
 <connectionStrings>
 <add name="Request" connectionString=
 "Data Source=localhost;Initial Catalog=Appendix;Integrated Security=True"
 providerName="System.Data.SqlClient" />
 </connectionStrings>
 <system.serviceModel>
 <extensions>
 <behaviorExtensions>
 <add name="dbConnection"
 type="UserTasks.Extensions.DBConnectionExtension, UserTasks,
 Version=1.0.0.0, Culture=neutral, PublicKeyToken=null" />
 </behaviorExtensions>
 </extensions>
 <behaviors>
 <serviceBehaviors>
 <behavior>
 <dbConnection connectionStringName="Request"/>
 </behavior>
 </serviceBehaviors>
 </behaviors>
 </system.serviceModel>
</configuration>

First, a connection string named “Request” is defined in the connectionStrings section. This allows

you to reference it by name in various places in the web.config file. The advantage to this approach is
that the actual connection string is specified only once. If you need to modify it later, you have to change
it in only one place.

Next, an extension named “dbExtension” is added to the behaviorExtensions section. Note that the
actual class that is referenced is the DBConnectionExtension class, not the DBConnectionBehavior or
DBConnection classes. This extension is then configured in the behaviors section. The extension is
specified by name, dbConnection, and its configuration values are defined. There is only one,
connectionStringName and it is set to “Request” to use the connection string defined earlier.

Configuring Persistence
The persistence extension, SqlWorkflowInstanceStore, is configured in the behavior section as well. You
do not need to add anything to the behaviorExtensions section. The subset of the web.config file is
shown in Listing A-5.

APPENDIX ■ SAMPLE WORKFLOW PROJECT

435

Listing A-5. Configuring Persistence

<behaviors>
 <serviceBehaviors>
 <behavior>
 <sqlWorkflowInstanceStore
 connectionStringName="Request"
 instanceCompletionAction="DeleteAll"
 instanceLockedExceptionAction="NoRetry"
 instanceEncodingOption="GZip"
 hostLockRenewalPeriod="00:00:30" />
 <workflowIdle
 timeToUnload="00:00:10"
 timeToPersist="00:00:05" />
 </behavior>
 </serviceBehaviors>
</behaviors>

Notice that is uses the same connectionStringName. The code in Listing A-5 also configures the

workflowIdle behavior. The timeToUnload property is set to 10 seconds. This will keep the instance in
memory for 10 seconds after it has entered the Idle state.

Configuring Tracking
To add the tracking extension QueueTracking, the entries are added to extensions and behavior sections
just as it was for the DBExtension discussed previously. In addition, a tracking section is added to specify
queries used to define the tracking events that are to be included. Refer to Chapter 13 for more
information about tracking queries. The web.config entries are shown in Listing A-6.

Listing A-6. Configuring Tracking

<configuration>
 <system.serviceModel>
 <extensions>
 <behaviorExtensions>
 <add name="tracking"
 type="UserTasks.Extensions.QueueTrackingExtension, UserTasks,
 Version=1.0.0.0, Culture=neutral, PublicKeyToken=null" />
 </behaviorExtensions>
 </extensions>
 <behaviors>
 <serviceBehaviors>
 <behavior>
 <tracking connectionStringName="Request"/>
 </behavior>
 </serviceBehaviors>
 </behaviors>
 <tracking>
 <profiles>

APPENDIX ■ SAMPLE WORKFLOW PROJECT

436

 <trackingProfile name="Queue_Tracking">
 <workflow>
 <customTrackingQueries>
 <customTrackingQuery name="*" activityName="*" />
 </customTrackingQueries>
 </workflow>
 </trackingProfile>
 </profiles>
 </tracking>
 </system.serviceModel>
</configuration>

The complete web.config file is shown in Listing A-7.

Listing A-7. Complete web.config File

<?xml version="1.0" encoding="utf-8" ?>
<configuration>
 <connectionStrings>
 <add name="Request" connectionString=
 "Data Source=localhost;Initial Catalog=Appendix;Integrated Security=True"
 providerName="System.Data.SqlClient" />
 </connectionStrings>
 <system.web>
 <compilation debug="true" targetFramework="4.0" />
 </system.web>
 <system.serviceModel>
 <extensions>
 <behaviorExtensions>
 <add name="persistRequest"
 type="ServiceLayer.Extensions.PersistRequestExtension, ServiceLayer,
 Version=1.0.0.0, Culture=neutral, PublicKeyToken=null" />
 <add name="persistQueueInstance"
 type="UserTasks.Extensions.PersistQueueInstanceExtension, UserTasks,
 Version=1.0.0.0, Culture=neutral, PublicKeyToken=null" />
 <add name="dbConnection"
 type="UserTasks.Extensions.DBConnectionExtension, UserTasks,
 Version=1.0.0.0, Culture=neutral, PublicKeyToken=null" />
 <add name="tracking"
 type="UserTasks.Extensions.QueueTrackingExtension, UserTasks,
 Version=1.0.0.0, Culture=neutral, PublicKeyToken=null" />
 </behaviorExtensions>
 </extensions>
 <behaviors>
 <serviceBehaviors>
 <behavior>
 <!-- To avoid disclosing metadata information, set the value below to
 false and remove the metadata endpoint above before deployment -->
 <serviceMetadata httpGetEnabled="True"/>
 <!-- To receive exception details in faults for debugging purposes,
 set the value below to true. Set to false before deployment to

APPENDIX ■ SAMPLE WORKFLOW PROJECT

437

 avoid disclosing exception information -->
 <serviceDebug includeExceptionDetailInFaults="True"/>
 <!-- This line configures the persistence service -->
 <sqlWorkflowInstanceStore
 connectionStringName="Request"
 instanceCompletionAction="DeleteAll"
 instanceLockedExceptionAction="NoRetry"
 instanceEncodingOption="GZip"
 hostLockRenewalPeriod="00:00:30" />
 <workflowIdle
 timeToUnload="00:30:00"
 timeToPersist="00:00:05" />
 <!-- Configure the connection string for the persistence extensions-->
 <dbConnection connectionStringName="Request"/>
 <persistRequest connectionStringName="Request"/>
 <persistQueueInstance connectionStringName="Request"/>
 <tracking connectionStringName="Request"/>
 </behavior>
 </serviceBehaviors>
 </behaviors>
 <tracking>
 <profiles>
 <trackingProfile name="Queue_Tracking">
 <workflow>
 <customTrackingQueries>
 <customTrackingQuery name="*" activityName="*" />
 </customTrackingQueries>
 </workflow>
 </trackingProfile>
 </profiles>
 </tracking>
 </system.serviceModel>
 <system.webServer>
 <modules runAllManagedModulesForAllRequests="true"/>
 </system.webServer>
</configuration>

Summary
This sample project is just one way workflow can be used to implement a solution. There are other
approaches, such as the one described in Chapter 7 in which workflow was used to organize a
processing algorithm. My goal throughout this book was to give you a variety of applications. Hopefully
one or more of these will resemble a project you are currently working on.

You now have the tools to use the capabilities provided by Workflow Foundation. I wish you great
success as you add this to your repertoire of software design patterns.

■ ■ ■

439

Index

�A
Action property, 173
Action Taken field, 411, 412, 413
Action<T> class, 219
activities

compound, 11
PerformLookup, 158—161
Pick, 173—174
QCPolicy, 416—418
ReceiveRequest, 155—158
SendResponse, 155—158

Activities member, 26
Activities property, 28
Activity class, 21, 25
activity counters, incrementing, 396—399
Activity template, 397
Activity1 file, 379
ActivityConfig class, 379, 395, 396, 398,

400, 402
ActivityContext class, 27
ActivityData property, 398
ActivityName property, 236
ActivityStateQuery class, 235
ActivityStateRecord class, 232, 245
Add activity, 53, 54
Add Existing Item dialog, 124, 125
Add Existing Project dialog, 60, 61, 70, 80
Add Item link, 408
Add new catch link, 322, 373
Add New Item dialog, 46, 47, 368
Add new parameter link, 164

Add New Project dialog, 362, 363
Add Rule link, 385, 391
AddAssignment() method, 286
AddBindingParameters() method, 302
AddComment activity, 216—218
AddComment class, 216
AddComment() method, 216, 218
AddEvent() method, 128, 131, 232
AddLead class, 239
AddLead() method, 233, 280, 281, 283
AddLead.xaml file, 178
AddLead.xaml.cs, 247, 264, 265, 294
AddNewRequest() method, 141, 145
AddToCollection activity, 348
AllowSelection option, 414
Always value, 389
Amount property, TransactionConfig

class, 379
anonymous class instances, 26
app.config file, 290, 312—313, 431
AppendixData folder, 405
Appendix.zip file, 405
application configuration (app.config) file,

196
Application Configuration File template,

101, 312
ApplicationInterface class, 131, 134, 141,

181, 311
methods, 144—148
static reference, 128—129

■INDEX

440

applications, running in client workflow,
172

ApplyDispatchBehavior() method, 302,
433

appSettings section, 102
App.xaml file, 291
Argument type, 170
arguments

configuring, 400
persisting, 207

arguments, passing, 45—58
creating new solution, 45—48
implementing workflow, 48—56

defining arguments, 49—51
designing workflow, 51
expression activities, 53—56
Switch activity, 51—52

invoking workflow, 56—58
running application, 58

Arguments window, VS 2010 IDE, 5
ArgumentType drop-down menu, VS 2010,

50
aspnetdb database, 406
Assign activity, 11, 21, 22, 28, 83, 110
Assign class, 21, 28
Assign To property, 164
AssignedTo argument, 259, 261
AssignedTo property, 260, 273
AssignLead activity, 259, 261, 262, 273, 283,

287, 308
AssignLead class, 258—260
Assignment class, 257, 262, 294, 313
Assignment record, 308
Assignment table, 256—262, 311, 316

adding LINQ to SQL class, 256—258
AssignLead class, 258—260
CreateAssignment class, 260—262

Assignment.dtq query, 316
AssignOperator() method, 426, 427—428
AssignQueue activity, 415, 428
AssignQueueInstance activity, UserTasks

project, 415
asterisk (*), 235

�B
BeginInvoke() method, 131
BeginOnSave() method, 278, 281
behavior section, 434
BehaviorExtensionElement class, 433
behaviorExtensions section, 434
behaviors, 301
binding WCF endpoint, 100
Blank Solution template, 59, 69, 79, 209
Body activity, 324
Body property, 300, 395
Body section, 12, 323, 324, 325, 326, 327,

329
Body sequence, 325, 327
BookInfo classes, 162
BookInfo objects, 172
BookInfo.cs class, 152
BookInfoList class, 155, 156, 158, 166
BookInventory assembly, 156, 163
BookInventory project, 152, 158, 169
BookInventory2.xamlx file, 163, 166, 167,

174
BookInventory.BookSearch property, 157
BookInventory.xaml file, 152
BookInventory.xamlx file, 155, 160
BookList property, 161
BookLookup class, 168
BookLookup.ServiceReference1.Activities

namespace, 170
BookLookup.ServiceReference1.BookInve

ntory assembly, 170
BookmarkResumptionQuery class, 235
BookmarkResumptionRecord class, 232,

245
BookSearch class, 155
bool type, 27
Branch class, 96, 97, 99, 100, 105
Browse and Select a .Net type dialog, 366,

367
btnAddLead_Click event handler, 210
btnAddLead_Click() method, 211, 215
btnAssign_Click event handler, 210
btnAssign_Click() method, 211, 263, 264
Budget property, 351

■INDEX

441

BuildRequestList activity, ServiceLayer
project, 423

built-in activities, extending, 79—92
custom activities, 80—85

implementing, 80—82
LookupItem activity, 82—85
running application, 85

InvokeMethod activity, 86—92
adding discount, 91
OrderDiscount class, 86—87
Parameters property, 89
Result property, 89—90
running application, 91—92
TargetObject property, 88

reusing chapter 6 project, 79

�C
CacheMetadata method, 217
CallItOffException class, 321, 322
cancellation handler, 336
Cancellation Handler section, 324, 325,

328, 329
Cancellation section, 323
CanCreateInstance property, 108, 164, 311
Catch activity, 76, 323, 373
Catch section, 342
Catches section, TryCatch activity, 70
Category property, CustomerConfig class,

379, 403
chaining feature, 388
Chaining option, 389
Chaining property, 389
CheckStock activity, 70—76

Catch activity, 76
defining exceptions, 70—72
ForEach activity, 72
If activity, 72—73
running application, 76
Throw activity, 73
TryCatch activity, 70

classes
adding to projects, 46
copying from LeadGenerator, 294

defining, 47
ClearCollection activity, 355—360
Click event, 142
_Click event handler, 258
"Click to browse" link, 366
client workflow, 168—172

defining, 170—171
implementing host application, 171—

172
running application, 172

ClientService class, 133—134
Code Activity template, 166, 397
CodeActivity class, 22, 80, 364, 368
CodeActivityContext class, 236
coded workflows, 23—32

creating console application, 23—24
defining workflow, 24—29
running application, 29

Collection property, AddToCollection
activity, 348

collections, 345—360
ClearCollection activity, 355—360
creating, 345—349

AddToCollection activity, 348
defining, 346
initial workflow, 347—348
invoking workflow, 348
running application, 349

printing, 349—351
searching, 353—355

ExistsInCollection activity, 354
overriding Equals() method, 353—

354
RemoveFromCollection activity, 355

sorting, 351—353
CollectionsWF() method, 352, 354
CollectionWF() method, 347, 348, 350
CollectValues() method, 216
CommentExtension class, 215, 216, 278
Comments property, 219
Compare() method, IComparer interface,

352
CompensableActivity object, 323, 324
Compensate activity, 341, 342, 344
compensation

■INDEX

442

customizing, 337—342
handlers, 332—336

Compensation Handler section, 324, 326,
333, 334

Compensation section, 323
CompensationToken class, 337, 338
Complete argument, 428
Complete button, 315, 411, 412, 413
Complete output argument, 416
CompleteAssignment class, 304
Completed event, 219
Completed property, 219
CompleteInstance activity, 427
CompleteInstance activity, UserTasks

project, 415—416
CompleteRequest() method, 427, 428
CompletionCondition property, 331, 332
compound activities, 11
ComputeDiscount() method, 87, 89
Condition action, 384, 387
Condition element, If activity, 11
Condition property, 27, 36, 73, 341, 354,

390
Confirm activity, 339, 340, 344
confirmation

activities, 328—329
customizing, 337—342

Confirmation Handler section, 324, 326,
328, 329

Confirmation section, 323, 328, 329
ConnectionString argument, 214
connectionString attribute, 210, 256
_connectionString member, 302
ConnectionString() method, 433
ConnectionString property, 434
connectionStrings section, 434
connsctionStringName parameter, 433
console application, implementing, 402
Console Application template, 95
Content link, 165
Content property, 104, 107, 108, 110, 157,

308
context correlation, 429
Continue() method, 136
CorrelatedOn property, 430

CorrelatesOn property, 430
CorrelatesWith property, 108, 429
correlation, in workflow project, 428—430
correlation initializer, 429, 430
CorrelationHandle type, 429
CorrelationScope activity, 106, 308, 428
counter variable, 25
Create Argument link, 394
Create New SQL Server Database dialog,

185
Create Scripts folder, 405
Create variable link, 337, 338, 395
CreateAssignment activity, 261, 273, 287,

294, 308, 311
CreateAssignment class, 260—262, 286, 287
CreateAssignment.cs file, 294
CreateBehavior() method, 433
CreateBookmark() method, 136
CreateLead activity, 191—192, 213, 214,

282—283
CreateLead class, 236, 238
CreateQueueInstance, activity, UserTasks

project, 415
CreateRequest activity, 104—106, 141, 423
CreateRequest class, 104
CreateResponse activity, 108—110
CreateSqlTrackingParticipant() method,

246
CreateTrackingParticipant() method, 233,

234
CreateWorkflow() method, 22, 24, 25
custom activities, 80—85

creating workflow application, 393—396
executing (3.5), 367—374

creating custom activity, 368—370
invoking custom activity, 371—373
running application, 374
throwing exception, 370—371

implementing, 80—82
LookupItem activity, 82—85
running application, 85

CustomActivity class, 369, 370
CustomerConfig class, 379, 394, 400, 402
CustomTrackingQuery class, 236

■INDEX

443

CustomTrackingRecord class, 232, 236—
238, 245

�D
data context class, 260
data structures, defining, 376—379
data, using parameters to pass, 162—168

modified PerformLookup activity, 166
second workflow service, 163—165
testing, 167—168

database design, UserTasks project, 414
database, in workflow project

configuring for, 405—406
design of service layer, 422—423
design of UserTasks project, 414

DataContext class, 281
DataElements.cs file, 376, 393
DateTime class, 10
DateTime.Now assembly, 387
DBConnection class, 433, 434
DBConnection extension, 415, 417, 431
dbConnection extension, 434
DBConnectionBehavior class, 433, 434
DBConnection.cs, 431
DBConnectionExtension class, 433, 434
DBExtension class, 212, 259, 302
dbExtension extension, 434
DBExtensionBehavior class, 301—302, 304
DBExtension.cs file, 301
Default property, 9, 338
Delay activity, 13, 110, 173, 174, 273, 325,

327, 328, 336, 339, 427
dependency properties, adding, 380—382
DependencyProperty object, 395
Deposit activity, 333
Design tab, 293
Details tab, Event Viewer application, 240,

241
determining priority, 390
Dictionary object, 58, 141, 172, 197, 215,

216, 402
DisplayName argument, 83
DisplayName property, 6, 323, 400

DoWhile activity, 12
Duration property, 13, 29, 173, 327, 328

�E
Else action, 384, 387, 388, 391
Else element, of If activity, 11
Endpoint property, 300
Enlist() method, 260, 261
EnlistTransaction() method, 281
EnterLead workflow modifications activity,

304—308
Equals() method, overriding, 353—354
Error List, VS 2010 IDE, 4
ETW. See Event Tracing for Windows
EtwTrackingParticipant class, 238—241

running application, 239—241
setting up extension, 238
TrackingProfile class, 239

event handlers, 142—143, 219—220
Event Tracing for Windows (ETW), 238—

241
configuring TrackingProfile class, 239
running application, 239—241
setting up extension, 238

Event Viewer application, running, 239,
240

_eventLog private member, 232
exception handling, 69—78

CheckStock activity, 70—76
Catch activity, 76
defining exceptions, 70—72
ForEach activity, 72
If activity, 72—73
running application, 76
Throw activity, 73
TryCatch activity, 70

exceptions, 77—78
reusing chapter 5 project, 69—70

Exception property, 334, 335, 341
Execute() method, 82, 105, 136, 192, 213,

218, 259, 260, 261, 262, 294, 352,
397

ExecutionPropertyName property, 260

■INDEX

444

ExistsInCollection activity, 354
Explicit Update Only option, 389
Explicit Update Only value, 389
expression activities, 53—56
Expression editor, 9
Expression property, 38, 390
expressions, 9, 27—28
ExpressionServices class, 27
eXtensible Application Markup Language

(xaml), 4
extensions, 209—221

configuring, 212
implementing simple, 211—212
persistence, 215—220

accessing extension from
application, 218—219

AddComment activity, 216—218
creating extension, 215—216
event handler syntax, 219—220
IPersistenceParticipant interface,

216
modifying workflow, 218

running application, 220—221
setting up solution, 209—211

running application, 211
setting up database, 210
SetupInstance class, 210

updating application, 214—215
using in activities, 213—214
in workflow project

configuring, 434
persistence extension, 434—435
tracking extension, 435—437
writing, 431—434

Extensions folder, 294

�F
Facility activity, 333
False branch, FlowDecision activity, 36
FalseLabel property, 36
FaultType property, 370
Feedback category, 408, 410
Finally section, TryCatch activity, 70

Find() method, 260
Flowchart activity, 34
flowchart workflow, 33—42

creating, 33—37
defining connections, 34—35
designing flowchart, 34
FlowDecision activity, 35—37
running application, 37

FlowSwitch activity, 38—40
adding, 38
adding FlowStep activities, 39—40
running application, 40

Parallel activity, 40—42
adding, 40
adding branches, 41—42
running application, 42

Flowchart Workflow Console Application
template, Visual Studio 2010, 33

Flowers activity, 332
FlowStep activities, 39—40
FlowSwitch activity, 38—40
FollowUpLead.xaml.cs file, 291, 294
ForEach activity, 61—64, 72, 77, 78, 400
Frequency column, 414
Frequency property, 385
Frequency rule, 403
FromSeconds() method, 29
Full Chaining value, 389
functional construction, 26

�G
Get() method, Variable class, 27
GetComments activity, 218
Get(env) method, 27, 29
GetEventListBox() method, 129
GetHashCode() method, 354
GetQueueInstances activity, UserTasks

project, 415, 423
GetQueueStats() method, 425
GetRequest method, 425
GetValue() method, 82
Greeting activity, 15

■INDEX

445

�H
Halt command, 384, 385, 389
Hardcode activity, 418
host application

communicating with, 123—150
creating WPF project, 123—127
implementing application, 141—148
implementing workflows, 131—141
running application, 148—150
TextWriter class, 127—131

implementing in client workflow, 171—
172

Hour member, DateTime class, 10

�I, J
IActivityExtensionProvider interface, 218
IBookInventory class, 155
ICollection interface, 352
IComparer interface, 352
Idle state, 435
If activity, 10—11, 72—73, 77, 341, 354, 396,

398
ifReview branch, 390
IfReview value, Name property, 390
if-then-else statement, 387
Implementation property, 106
implementing console application, 402
in FlowDecision activity, 36, 38, 39
InArgument class, 28
InArgument<string> class, 29
InArgument<T> class, 27
IncrementEvalCount() method, 398
InsertOnSubmit() method, 192, 281
InstallCommon.sql, 406
InstallMembership.sql, 406
InstanceData table, 206, 257
InstanceStore extension, 301
integrated development environment

(IDE), VS Studio 2010, 4—5
Interop activity, 365, 366—367, 371, 395, 416
Interop Properties window, 396
interoperability with Workflow 3.5, 361

4.0 Workflow, 361—367

creating 3.5 workflow, 362—365
Interop activity, 366—367
modifying Program class, 362
running application, 367

executing custom 3.5 activity, 367—374
creating custom activity, 368—370
invoking Custom Activity, 371—373
running application, 374
throwing exception, 370—371

InvalidProgramException, 370, 371, 373
Invitations activity, 328—329, 332, 334, 339,

343
invitationsToken variable, 338
Invoke () method, WorkflowInvoker class,

58, 349
InvokeMethod activity, 86—92, 141, 195,

198, 218, 273, 311
adding discount, 91
OrderDiscount class, 86—87
Parameters property, 89
Result property, 89—90
running application, 91—92
TargetObject property, 88

IPersistenceParticipant interface, 216, 278
IProcessRequest interface, 421
ISBN argument, 172
IServiceBehavior interface, 302, 433
Item property, AddToCollection activity,

348

�K
Keep me logged in check box, 407

�L
lambda expressions, 27, 28
lambda operator, 27
Language-Integrated Query (LINQ), 313—

314
Lead class, 257, 263, 273
Lead object, 313
LeadDataDataContext class, 191
LeadDataDataContext constructor, 213

■INDEX

446

LeadData.Designer.cs file, 314
Lead.dtq query, 276
LeadGenerator project, 177, 207, 209—221,

229, 255, 276, 277—287
application changes, 262—264

adding workflow event handlers,
264

removing database updates, 263—
264

updating list of leads, 262—263
Assignment table, 256—262

adding LINQ to SQL class, 256—258
AssignLead class, 258—260
CreateAssignment class, 260—262

configuring, 212
creating application, 177—184

defining window form, 178—180
renaming window, 178
TextWriter class, 181—184

designing workflow, 191—195
CreateLead activity, 191—192
defining workflow activities, 193—

195
WaitForInput activity, 193

EtwTrackingParticipant class, 238—241
running application, 239—241
setting up extension, 238
TrackingProfile class, 239

implementing application, 195—200
app.config file, 196
assigning leads, 198—200
creating leads, 197—198
loading existing leads, 200

implementing simple, 211—212
IPersistenceParticipant interface, 278
ListBoxTrackingParticipant class, 230—

238
configuring, 233—234
CustomTrackingRecord class, 236—

238
overriding Track() method, 232—233
running application, 238
TrackingProfile class, 234—236

PersistAssignment extension, 284—286
persistence, 215—220

accessing extension from
application, 218—219

AddComment activity, 216—218
creating extension, 215—216
event handler syntax, 219—220
IPersistenceParticipant interface,

216
modifying workflow, 218

persisting arguments and variables, 207
PersistLead extension, 278—284

connecting to database, 281
modifying AssignLead activity, 283
modifying CreateLead activity, 282—

283
updates, 281

running application, 204—205, 220—221,
276, 287

setting up database, 185—191
installing schema, 185—188
LINQ to SQL classes, 188—191

setting up solution, 209—211, 229—230,
255—256, 277—278

running application, 211
setting up database, 210, 230
SetupInstance class, 210
tracking participants, 230

SqlTrackingParticipant class, 241—247
configuring, 245—246
implementing, 243—245
running application, 247
setting up database, 241—242

updating application, 214—215
using in activities, 213—214
workflow changes, 272—273

LeadGenerator\Activities folder, 294
LeadGenerator.Assignment class, 314
LeadGeneratorWF class, 193, 273
LeadGeneratorWF.cs file, 214, 305
LeadID argument, 261
leadID parameter, 308
LeadID property, 313, 314
LeadResponse application, 305
LeadResponse folder, 294
LeadResponse project

adding app.config file to, 312—313

■INDEX

447

adding to WorkflowServiceHost, 290—
294

Left property, Add activity, 54
LibraryReservation project, 95—122, 123—

150
creating, 95—102

application configuration, 101—102
defining messages between

applications, 96—101
creating WPF, 123—127
defining workflows, 102—107
implementing application, 114—118,

141—148
ApplicationInterface class methods,

144—148
event handlers, 142—143
maintaining workflow instances,

141—142
WorkflowInvoker class, 116—118
WorkflowServiceHost class, 114—115

implementing workflows, 131—141
bookmarks, 135—136
listening for messages, 132—135
ProcessRequest workflow, 139—141
SendRequest workflow, 137—139

running application, 118—122, 148—150
configuring library branch, 118—120
expected results, 120—122

TextWriter class, 127—131
ListBoxTextWriter class, 129—131
providing static reference, 128—129

LINQ (Language-Integrated Query), 313—
314

LINQ to SQL
classes, 188—191
LINQ to SQL class, 256—258

List class, 352
ListBox control, 232
ListBoxTextWriter class, 128, 129—131, 139,

183
ListBoxTextWriter.cs file, 294
ListBoxTrackingParticipant class, 230—238

configuring, 233—234
CustomTrackingRecord class, 236—238
overriding Track() method, 232—233

running application, 238
TrackingProfile class, 234—236

ListItem class, 346, 348, 353, 354
ListItem object, 354
ListView control, 198, 200, 263
Load operation, 278
Loaded event handler, 135, 212, 233, 238,

245
LoadQueueInstance activity, UserTasks

project, 415
LoadRequest activity, ServiceLayer project,

423
LoadRequest method, 425
Log In link, 407
LookupBook class, 155
LookupBook() method, 155, 161
LookupBook2 activity, 170
LookupBook2() method, 167
LookupItem activity, 82—85
LookupItem class, 82
LookupItem.cs class, 80
LookupQueueStats activity, UserTasks

project, 415
lstEvents control, 131
lstLeads control, 263
lstLeast_SelectionChanged() event

handler, 263

�M
MainWindow.xaml file, 291
Marketing queue, 410, 411, 413
Menu activity, 327
Message data property, 157
Message property, 369, 372, 373
Message type property, 158
MessageBodyMember attribute, 99, 155
MessageContract attribute, 99—100, 155,

162, 168
MessageOut property, 372, 373
MinimumAmount property, ActivityConfig

class, 379
mscorlib assembly, 51, 370, 373
Multiple startup projects radio button, 314

■INDEX

448

MyActivity Properties window, 401
MyActivity sequence, 399
MyActivity.xaml file, 398

�N
Name property, 235, 236, 390, 395, 400
NativeActivity base class, 136
NativeActivityContext class, 259, 260
navigation bar, Workflow, 326
Never value, 389
NewRequest() method, 141
NoPersistScope activity, 311
numberBells variable, 25
NumberSinceLastEval property, 385, 397

�O
Object Relational Designer (O/R

Designer), 189, 190, 242, 256, 257
OnIdle event handler, 198
OperationName class, 164
OperationName property, 104
OperatorConfig class, 379, 395, 396, 398,

400, 402
OperatorConfig table, 414
OperatorData property, 398
O/R Designer (Object Relational

Designer), 189, 190, 242, 256, 257
Order class, 47, 48, 50, 58
Order Flowers activity, 336
Order object, 58
OrderDiscount class, 86—87
OrderItem object processing, 61—68

adding OrderItem object, 65
ForEach activity, 61—64
ParallelForEach activity, 68
running application, 66—68

OrderProcess assembly, 50, 51
OrderProcess project, 59—92

CheckStock activity, 70—76
Catch activity, 76
defining exceptions, 70—72
ForEach activity, 72

If activity, 72—73
running application, 76
Throw activity, 73
TryCatch activity, 70

custom activities, 80—85
implementing, 80—82
LookupItem activity, 82—85
running application, 85

exceptions, 77—78
InvokeMethod activity, 86—92

adding discount, 91
OrderDiscount class, 86—87
Parameters property, 89
Result property, 89—90
running application, 91—92
TargetObject property, 88

OrderItem object processing, 61—68
adding OrderItem object, 65
ForEach activity, 61—64
ParallelForEach activity, 68
running application, 66—68

passing arguments, 45—58
creating new solution, 45—48
implementing workflow, 48—56, 49—

51, 51, 51—52, 53—56
invoking workflow, 56—58
running application, 58

reusing chapter 4 project, 59—61
reusing chapter 5 project, 69—70
reusing chapter 6 project, 79

OutArgument class, 28

�P
Parallel activity, 40—42, 323—332, 333

adding, 40
adding branches, 41—42
running application, 42

ParallelForEach activity, 68
Parameters dialog, 89
Parameters property, 89, 308
parameters, using to pass data, 162—168

modified PerformLookup activity, 166
second workflow service, 163—165

■INDEX

449

testing, 167—168
PerformLookup activity, 158—161, 166
PerformLookup2 activity, 166
PerformLookup2.cs class, 166
PerformLookup.cs class, 158
Persist activity, 311
PersistableIdle event handler, 210, 211,

220, 247
PersistAssignment extension, 284—286, 304
PersistAssignmentBehavior class, 303—304
PersistAssignment.cs class, 294
PersistAssignment.cs file, 294, 303
persisted workflow, lifecycle of, 247
persistence, 277—287. See also SQL

persistence
IPersistenceParticipant interface, 278
LeadGenerator project, 215—220

accessing extension from
application, 218—219

AddComment activity, 216—218
creating extension, 215—216
event handler syntax, 219—220
IPersistenceParticipant interface,

216
modifying workflow, 218

PersistAssignment extension, 284—286
PersistLead extension, 278—284

connecting to database, 281
modifying AssignLead activity, 283—

284
modifying CreateLead activity, 282—

283
updates, 281

running application, 287
setting up solution, 277—278

PersistQueueInstance extension, 415
PersistRequest extension, 423
Pick activity, 173, 425, 427
PickBranch activities, 425
Policy object, 405
PolicyActivity

adding dependency properties, 380—
382

defining data structures, 376—379
defining rules, 384—386

overview, 375—379, 392—404
priority, 390—392
rule sets

chaining, 388—389
creating, 383
Halt, 389
overview, 387—390
rules, 387—388
rules file, 389—390
Update, 389

port access, allowing, 121, 122
printing collections, 349—351
PrintList class, 349, 350
priority

determining, 390
entering rules, 391—392

Priority property, 418
priority variable, 396
PriorityPolicy activity, 391, 417, 418
procedural elements, adding, 7—15

Assign activity, 11
Delay activity, 13
If activity, 10—11
Sequence activity, 13
variables, 8—9
While activity, 12

Process link, 409
Process page, 409
ProcessRequest class, 107—115

CreateResponse activity, 108—110
Receive activity, 108
SendReply activity, 110—114

Product queue, 411, 412, 413
Program class, modifying, 362
Projects tab, 291
Properties property, 260
Properties window, VS 2010 IDE, 4—11

for Assign activity, 11
defining If activity in, 11
entering properties in, 9
of selected variable, 8—9

properties windows, If ElseBranch activity,
390

Propertiew window, VS 2010 IDE, 6
Property window, MyActivity, 400

■INDEX

450

PublishValues() method, 216

�Q
QC column, 412
QC mode, 412, 413
QC review, 412, 413
QCPolicy activity, 379, 393, 395, 396, 403,

416—418
QCPolicy assembly, 395, 400
QCPolicy custom activity, 391
QCPolicy.cs file, 379, 380, 390
QCPolicy.rules file, 389
QPolicy activity, 396
Queries property, 234
query correlation, 429
queue list, 411, 413
Queue table, 414, 423
QueueInstance objects, 423
QueueInstance record, 416, 417, 423, 425
QueueInstance table, 414, 423
queueName variable, 428
queues, displaying, 409
QueueTrack table, 414
QueueTracking extension, 418, 435

�R
Receive activity, 95—122, 168, 310, 311, 425,

426, 429
creating project, 95—102

application configuration, 101—102
defining messages between

applications, 96—101
defining workflows, 102—114

ProcessRequest class, 107—114
SendRequest class, 102—107

implementing application, 114—118
WorkflowInvoker class, 116—118
WorkflowServiceHost class, 114—115

ProcessRequest class, 108
running application, 118—122

configuring library branch, 118—120
expected results, 120—122

ReceiveReply activities, 428
ReceiveReply activity, 107, 308
ReceiveRequest activity, 155—158
Reception activity, 327, 328, 332, 333, 334,

339, 343
Reception compensation, 334
Reevaluate property, 389
Reevaluation property, 389
Refresh() method, 259
Remarks section, 315
RemoveFromCollection activity, 355
renaming workflow files, 49
replicated activities, 59—68

OrderItem object processing, 61—68
adding OrderItem object, 65
ForEach activity, 61—64
ParallelForEach activity, 68
running application, 66—68

Replicator activity, 64
Request objects, 423
Request property, 107
Request queue, 414
Request record, 425
request reply correlation, 428
Request table, 423
request variable, 107
requestAddress variable, 103
RequestBook() method, 101
requestHandle variable, 107, 108
RequestKey, 429, 430
RequestQC activity, 415, 416
requests in workflow project

processing, 409—413
submitting, 408

ReservationRequest class, 96, 97, 99, 103,
105

ReservationResponse class, 96, 99, 100
reserved variable, 107
ResetEval() method, 398
RespondToRequest() method, 101, 144
response variable, 107
Result property, 54, 89—90, 339
ResumeBookmark() method, 143, 263
Rethrow activity, 342
rethrown exception, 343

■INDEX

451

Review property, 390, 398, 418
review variable, 396
ReviewPolicy activity, 390, 417
Right property, Add activity, 54
RouteNext field, 412, 428
Rule Set Editor, 383
rule sets

chaining, 388—389
creating, 383
Halt, 389
overview, 387—390
rules file, 389—390
Update, 389

rules, 387—388
defining, 384—386
priority, 391—392

RuleSet class, 383, 385, 386
ruleset editor, 384
RuleSetReference property, 391
Run as administrator option, 121, 122
RuntimeTransactionHandle class, 260

�S
Save operation, 278
Schedule Rehearsal activity, 335
Schema Explorer, XML, 421, 422
Scope property, 50, 338
Search property, 161
searching collections, 353—355

ExistsInCollection activity, 354
overriding Equals() method, 353—354
RemoveFromCollection activity, 355

Select links, 410, 411
Select Rule Set dialog, 386, 387, 391
SelectionChanged event handler, 198
Send activity, 95—122, 103, 141, 174, 308,

310, 428
creating project, 95—102

application configuration, 101—102
defining messages between

applications, 96—101
defining workflows, 102—114

ProcessRequest class, 107—114

SendRequest class, 102—107
implementing application, 114—118

WorkflowInvoker class, 116—118
WorkflowServiceHost class, 114—115

running application, 118—122
configuring library branch, 118—120
expected results, 120—122

SendRequest class, 104
SendReply activity, 110—114, 152, 168, 310,

420, 425, 426
SendRequest class, 102—107

CreateRequest activity, 104—106
ReceiveReply activity, 107
Send activity, 104

SendResponse activity, 155—158
Sequence activity, 5, 8, 13, 25, 63, 84, 273,

322, 325, 327, 328, 329, 333, 341,
395, 400

in coded workflows, 28—29
difference from Flowchart activity, 34

Sequence class, 25
Sequence workflow, 152
Sequence1.xaml file, 17
Sequential option, 389
sequential workflow, 3, 22

adding procedural elements, 7—15
Assign activity, 11
Delay activity, 13
If activity, 10—11
Sequence activity, 13
using variables, 8—9
While activity, 12

simple workflow, 4—7
designing, 5—6
IDE, 4—5
Program.cs file, 6—7
running application, 7

Sequential Workflow Console Application,
creating, 361, 362

Sequential Workflow Console Application
template, VS2010, 3

Service class, 115
service contract, defining for workflow

service, 152—155
service layer, in workflow project, 420—437

■INDEX

452

activities, 423
AssignOperator method, 427—428
correlation, 428—430
database design, 422—423
service contract, 420—421
SubmitRequest method, 425—426
using WorkflowServiceHost, 430—437
workflow design, 424—428

Service1.wsdl file, 421
Service1.xamlx file, 152
ServiceContract attribute, 155
ServiceContract interface, 100—101
ServiceContract property, 155
ServiceHost class, 114, 134—135
SetupHost() method, 300, 301
SetupInstance class, 210
SetupInstance() method, 211, 212, 218,

233, 238, 246, 264, 294, 301, 433
SetValue() method, 82
ShoppingList project, 345—360

ClearCollection activity, 355—360
creating, 345—349

AddToCollection activity, 348
defining, 346
initial workflow, 347—348
invoking workflow, 348
running application, 349

printing, 349—351
searching, 353—355

ExistsInCollection activity, 354
overriding Equals() method, 353—

354
RemoveFromCollection activity, 355

sorting, 351—353
Solution Explorer, VS 2010 IDE, 4
Sort() method, List class, 352
SortCollection class, 351, 352
sorting collections, 351—353
SQL persistence, 177—207

creating application, 177—184
defining window form, 178—180
renaming window, 178
TextWriter class, 181—184

designing workflow, 191—195
CreateLead activity, 191—192

defining workflow activities, 193—
195

WaitForInput activity, 193
implementing application, 195—200

application configuration
(app.config) file, 196

assigning leads, 198—200
creating leads, 197—198
loading existing leads, 200

persisting arguments and variables, 207
running application, 204—205
setting up database, 185—191

installing schema, 185—188
LINQ to SQL classes, 188—191

SqlPersistenceProvider class, 281
SqlTrackingParticipant class, 241—254

configuring, 245—246
implementing, 243—245
running application, 247—254
setting up database, 241—242

SqlWorkflowInstanceStore extension, 434
SqlWorkflowInstanceStore extention, 301
SqlWorkflowInstanceStoreBehavior class,

301
Starting activity, 332, 333
StartupUri attribute, 291
static Create<T>() method,

ExpressionServices class, 27
static reference, ApplicationInterface class,

128—129
static WorkflowInvoker class, 7
Status property, 260
String input arguments, 170
Submit link, 408
submit page, 409
SubmitChanges() method, 192, 281
SubQueue table, 414, 423, 425—426
SupportsQC option, 414
Switch activity, 51—52, 54, 425
System namespace, 370
System.Activities assembly, 337
System.Activities.Expressions namespace,

53
System.Workflow.ComponentModel

assembly, 365, 393

■INDEX

453

�T
Target property, 339
TargetObject property, 88
TargetType drop-down list, 88
TargetType property, 88
Text property, 6, 323, 325, 326, 327, 328,

329, 332, 333, 334, 362, 373, 395
TextWriter class, 127—131, 181—184

ListBoxTextWriter class, 129—131
providing static reference, 128—129

TextWriter property, 6
Then action, 384, 385, 387, 388, 391
Then element, of If activity, 11
Then property, 27
Then section, 11, 73, 341
Throw activity, 73, 334, 335, 336, 339, 341
throw statement, 314
ThrowActivity, 370
TimeSpan class, 13, 29, 233
timeToUnload property, 435
Title argument, 172
To property, 11, 28
token variables, 337—338
Toolbox, VS 2010 IDE, 4
ToString() method, 29
TotalAmount argument, 54
Track() method, 232—233, 236, 245, 418,

419
tracking events, 229

EtwTrackingParticipant class, 238—241
running application, 239—241
setting up extension, 238
TrackingProfile class, 239

ListBoxTrackingParticipant class, 230—
238

configuring, 233—234
CustomTrackingRecord class, 236—

238
overriding Track() method, 232—233
running application, 238
TrackingProfile class, 234—236

setting up solution, 229—230
setting up database, 230
tracking participants, 230

SqlTrackingParticipant class, 241—247

configuring, 245—246
implementing, 243—245
running application, 247
setting up database, 241—242

tracking extension, 435—437
tracking participants

EtwTrackingParticipant class, 238—241
running application, 239—241
setting up extension, 238
TrackingProfile class, 239

ListBoxTrackingParticipant class, 230—
238

configuring, 233—234
CustomTrackingRecord class, 236—

238
overriding Track() method, 232—233
running application, 238
TrackingProfile class, 234—236

overview, 230
SqlTrackingParticipant class, 241

configuring, 245—246
implementing, 243—245
running application, 247
setting up database, 241—242

tracking workflow
in UserTasks project, 418—420
in workflow project, 413

Tracking.dtq query, 413
TrackingParticipant class, 230, 232
TrackingProfile class, 234—236

ActivityStateQuery class, 235
BookmarkResumptionQuery class, 235
CustomTrackingQuery class, 236
Event Tracing for Windows, 239
WorkflowInstanceQuery class, 235

TrackingQuery class, 234
TrackingRecord class, 232, 245
TransactionConfig class, 379, 394, 400
TransactionConfig object, 379, 402
transactionData argument, 394, 400
TransactionList class, 379, 400, 402
TransactionList object, 402
transactions, 255—276

application changes, 262—264

■INDEX

454

adding workflow event handlers,
264

removing database updates, 263—
264

updating list of leads, 262—263
Assignment table, 256—262

adding LINQ to SQL class, 256—258
AssignLead class, 258—260
CreateAssignment class, 260—262

running application, 276
setting up solution, 255—256
workflow changes, 272—273

TransactionScope activity, 308, 311
TransactionScopeActivity class, 273
Trigger activities, 173
Trigger property, 173
True branch, FlowDecision activity, 36
TrueLabel property, 36
Try section, 70, 72, 77, 322
TryCatch activity, 70, 77, 78, 322—323, 338,

341, 342, 344, 371, 373, 374
TypeArgument property, 400

�U
UnAssignQueueInstance activity,

UserTasks project, 415
UnderEvaluation property,

OperatorConfig class, 379
Unloaded event handler, 135
Update command, 389
UpdateControls() method, 262, 263
UpdateCounter.cs file, 397
UpdateCounters activity, 398
UpdateCounters.cs file, 397
UpdateLead() method, 262, 263, 273
UpdateRequest activity, 423, 428
UserTasks project, 413—420

activities, 415
CompleteInstance activity, 415—416
database design, 414
QCPolicy activity, 416—418
tracking workflow events, 418—420

UserTasks.dbml file, UserTasks project,
414

�V
Validate() method, 302
Value property, 11, 28, 55
Values property, 400
Variable class, 28

getting data from, 27
Variable type, 156, 163
Variable type drop-down list, 337, 338
Variable type field, 83
Variable type property, 156
variables, 5, 8—9

persisting, 207
Variables button, 8
Variables collection, 337, 338
Variables control, 156
Variables link, 337
Variables list, 338
Variables window, VS 2010 IDE, 8—10
versions of WF, 21—22
View message link, 157, 158

�W
WaitForInput activity, 139, 141, 193, 195,

218, 247, 272, 273, 311
WaitForInput class, 135
WCF (Windows Communication

Foundation), 95, 151
WCF Test Client, 161
WCF Workflow Service Application

template, 151
WCF Workflow Service template, 163
Web Service Definition Language (.wsdl)

file, 421
web services, 151—174

client workflow, 168—172
defining, 170—171
implementing host application, 171,

172
running application, 172

■INDEX

455

Pick activity, 173—174
using parameters to pass data, 162—168

modified PerformLookup activity,
166

second workflow service, 163—165
testing, 167—168

workflow service, 151—162
defining service contract, 152—155
PerformLookup activity, 158—161
ReceiveRequest activity, 155—158
SendResponse activity, 155—158
testing, 161—162

web.config file, 406, 431, 434, 435, 436
Wedding project

cancellation handlers, 331—332
CompensableActivity, 324
configuring TryCatch activity, 322—323
customizing compensation and

confirmation, 337—342
designing compensation handlers, 332—

336
designing Invitations activity, 328—329
designing Reception activity, 327—328
designing Wedding activity, 325—326
modifying application, 320—321
running application, 330
using Parallel activity, 323

WF (Workflow Foundation) 3.5. See
workflow 3.5

WF (Workflow Foundation) 4.0, 21—22. See
also workflow 4.0

WF 3.5 workflow designer, 363, 364
WF 4.0 designer, VS 2010 IDE, 5
While activity, 12, 426, 428
Window1.xaml file, 170, 173
Windows Communication Foundation

(WCF), 95, 151
Windows Presentation Foundation (WPF)

project, 123—127
defining window form, 125—127
reusing classes from Chapter 8, 124—125

WorkAssignment workflow class, 308—311
workflow 3.5, creating, 362—365
workflow 4.0

creating, 366—367

interoperability with workflow 3.5, 361—
374

creating 4.0 workflow, 361—367
executing custom 3.5 activity, 367—

374
workflow application

creating
configuring arguments, 400
custom activity, 393—396
implementing console application,

402
incrementing activity counters, 396—

399
main workflow, 400
overview, 392—404

running, 403—404
Workflow Console Application template,

168
Workflow Foundation (WF) 3.5. See

workflow 3.5
Workflow Foundation (WF) 4.0, 21—22. See

also workflow 4.0
workflow project, 405—437

configuring database, 405—406
running application, 406—413

logging in, 407
processing requests, 409—413
submitting request, 408
tracking workflow, 413

service layer, 420—437
activities, 423
correlation, 428—430
database design, 422—423
service contract, 420—421
using WorkflowServiceHost, 430—

437
workflow design, 424—428

UserTasks project, 413—420
activities, 415
CompleteInstance activity, 415—416
database design, 414
QCPolicy activity, 416—418
tracking, 418—420

workflow service, 151—162
defining service contract, 152—155

■INDEX

456

PerformLookup activity, 158—161
ReceiveRequest activity, 155—158
SendResponse activity, 155—158
testing, 161—162

Workflow1 class, 7
Workflow1.asmx file, 7
Workflow1.xaml file, 4, 48, 322, 400
Workflow35 assembly, 372
WorkflowApplication class, 210, 321
WorkflowApplicationCompletedEventArgs

class, 219
WorkflowExtensions collection, 433
WorkflowID, 200
workflowIdle behavior, 435
WorkflowInstance class, 233
WorkflowInstance constructor, 142
WorkflowInstanceID, 259
WorkflowInstanceQuery class, 235
WorkflowInstanceRecord class, 232, 245
WorkflowInvoker class, 25, 58, 116—118,

143, 321, 349
WorkflowRuntime class, 22
WorkflowService, 300—304
WorkflowServiceHost

adding app.config file, 312—313
adding LeadResponse project, 290—294
ApplicationInterface class, 311
defining workflows

CompleteAssignment class, 304
EnterLead workflow modifications,

304—308
Persist activity, 311
WorkAssignment workflow class,

308—311
Language-Integrated Query (LINQ)

conflict, 313—314
running applications, 314
setting up solution, 289—290

in workflow project, 430—437
configuring extensions, 434
persistence extension, 434—435
tracking extension, 435—437
writing extensions, 431—434

WorkflowService, 300—304
WorkflowServiceHost class, 114—115
WorkflowServiceImplementation, 115
WPF (Windows Presentation Foundation)

project, 123—127
defining window form, 125—127
reusing classes from Chapter 8, 124—125

WPF Application template, 123, 177
Write() method, 131
WriteLine activity, 5, 6, 22, 76, 110, 140,

173, 195, 323, 325, 326, 327, 328,
329, 332, 333, 334, 341, 362, 366,
367, 373, 395, 400

WriteLine() method, 128
.wsdl (Web Service Definition Language)

file, 421

�X, Y
xaml (eXtensible Application Markup

Language), 4
.xaml file, 17
XAML tab, 291
.xamlx file, 162, 424
x:Null attribute, 53
XPath query, 430

�Z
zoom control, VS 2010 IDE, 5

	APPENDIX Sample Workflow Project
	Project Overview
	Configuring the Database
	Running the Application
	Logging In
	Submitting a Request
	Processing Requests
	Tracking the Workflow

	Generic Queue Logic
	Database Design
	Activities
	CompleteInstance
	QCPolicy
	Tracking

	Service Layer
	Service Contract
	Database Design
	Activities
	Workflow Design
	SubmitRequest
	Processing a Request

	Correlation
	Using WorkflowServiceHost
	Writing Extensions
	Configuring Extensions
	Configuring Persistence
	Configuring Tracking

	Summary

	Index

