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We investigate the situation where a customer experiencing an inventory stockout at a retailer potentially

leaves the firm’s market. In classical inventory theory, a unit stockout penalty cost has been used as a

surrogate to mimic the economic effect of such a departure; in this study we explicitly represent this aspect

of consumer behavior, incorporating the diminishing effect of the consumers leaving the market upon the

stochastic demand distribution in a time-dynamic context. The initial model considers a single-firm. We

allow for consumer forgiveness where customers may flow back to the committed purchasing market from a

non-purchasing “latent” market. The per-period decisions include a marketing mix to attract latent and new

consumers to the committed market and the setting of inventory levels. We establish conditions under which

the firm optimally operates a base-stock inventory policy. The subsequent two models consider a duopoly

where the potential market for a firm is now the committed market of the other firm; each firm decides its

own inventory level. In the first model the only decisions are the stocking decisions and in the second model

a firm may also advertise to attract dissatisfied customers from its competitor’s market. In both cases, we

establish conditions for a base-stock equilibrium policy. We demonstrate comparative statics in all models.

Key words : Inventory, competition, Markov games, Marketing/Operations interface

1. Introduction

The treatment of consumers in classical inventory theory has typically been quite näıve. While

the aggregate consumer demand is often assumed to be uncertain, albeit with a known demand

distribution, any further aspects of consumer behavior tend to be limited to assuming unsatisfied

customers will backlog, be lost, or a mixture of these. However, Fitzsimons (2000) finds a common

consumer reaction to a stockout is to change retailers during a subsequent shopping excursion.

As stockout frequencies can be quite high in practice (see citations in Section 1.3 for research on

typical values), the incorporation of the consumers’ activities subsequent to experiencing a stockout

is important.

Most commonly in the inventory literature, a unit stockout penalty cost is assessed to the

firm for each customer whose demand is not satisfied from on-hand inventory immediately. This

*Former title: “Consumer Behavior in Inventory Management.”
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penalty cost has numerous interpretations (e.g., expediting delivery, paying premiums at alternative

retailers, a more costly substitute) but commonly it is intended to represent the economic effects

of a customer’s lost goodwill. As Heyman and Sobel (1984) note “[I]t is difficult to estimate such

penalty costs, but usually, it is even harder to model explicitly the dependence of the demand

process on the degree to which demands do not exceed stock levels.” It is our objective to, indeed,

explicitly model the diminishment of demand caused by stockouts.

Philosophically, it is far more satisfying to explicitly capture the actual phenomenon of interest

rather than rely on a proxy. However, one question we seek to address is “how good is such a

proxy?” In this paper, we exclude any unit stockout penalty cost and instead permit some customers

to backlog, some to have lost demand in that period, and the remainder to leave the market

altogether, thus creating a shrinkage in the demand distribution for the following period, while

maintaining the usual aspects of inventory models (stochastic demand, periodic review, unit holding

costs, transition of physical inventory between periods). We focus on proving the optimality (or

equilibrium existence) of base-stock policies under a model with market size dependent demand. By

characterizing sufficient conditions for optimality of such policies, we have characterized sufficient

conditions for the existence of a proxy stockout cost in the analogous traditional inventory setting.

We initially consider a single enterprise concurrently making inventory decisions and marketing

mix decisions. Two markets are specified in the model. The first is labeled the “committed” market

from which consumers may realize their demand in each period, and the second is a “latent” market

consisting of consumers who may have previously shopped with the firm or may do so in the future.

We permit a portion of the unsatisfied consumers (i.e., those experiencing a stockout) to be lost

demand in that time period only, a portion to backlog into the following period, and a portion to

leave the market entirely (i.e., flow from the committed to the latent market). The two marketing

mix decisions the firm makes are an incentive to persuade latent customers to become committed

again at some cost, and an advertising decision to attract altogether new customers to join the

committed market. Operating under this regime with some demand and parameter conditions, we

discover the firm should operate under a base-stock inventory policy. In addition, we find we can

determine a value for each committed and each latent customer.

Like the majority of the traditional inventory literature (see, e.g., Porteus, 2002; Zipkin, 2000),

we do not allow the firm to set price. There are three equally compatible narratives for this setting.

The first is simply that inventory decisions are made by a separate set of decision makers on a

more frequent timeline than pricing decisions. The second is that the firm is a monopolist without

setting a retail price (e.g., in a regulated environment), or that the consumers are not responsive to
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changes in price.1 The last is that the firm is one of many operating under perfect price competition,

a situation where no single firm can influence price. In this case, we assume that the uncertainty

about demand, and hence service performance, creates sufficient friction in the market so that the

firm may set its desired service level based on its own revenue and cost parameters and without

reference to the market as a whole.

We then shift our attention to a competitive model, specifically a duopoly, where dissatisfied

customers leave the committed market of one firm and join the committed market of the other

firm. That is, the “potential market” (in lieu of the latent plus external markets considered in the

single firm model) of one firm is the committed market of the other. In this Markov game, the state

space at the beginning of each period consists of both firms’ initial inventory levels and committed

market sizes. Initially we isolate the firms’ decisions to stocking levels only, allowing for partial

backlogging, lost sales, and customer defection, as in the single-firm model. Under similar demand

and parameter assumptions to the single-firm model, we show there is a base-stock equilibrium

policy for each firm. Finally, we consider a model where firms can actively try to attract dissatisfied

customers from the other firm. We again show existence of a base-stock equilibrium policy.

In all the above models we assume the demand distribution follows a three parameter affine

mean function, which has additive and multiplicative forms as special cases; this form for demand

was also used in Liu et al. (2007) (see Section 1.1). Further, customer behavior is assumed to be

governed by Markov (memoryless) transition functions. These assumptions will allow us to write

the value function as an affine function of the market sizes and independent of initial inventory,

so long as it is below the desired base-stock level. This will allow a simple characterization of the

optimal decision variables as well as intuition into the components of the value function.

Key to the inductive arguments we use to prove our results will be showing that inventory in the

subsequent period is below its desired base-stock level, which will in turn be shown to be an affine

function of the committed market size. The argument for why future inventory will be below the

desired base-stock level proceeds as follows. If the committed market grows, then the affine nature

of inventory in market size will imply that the following period’s inventory cannot be “too high.”

However, if the market shrinks, then there must have been dissatisfied customers; hence, inventory

has been depleted and by definition again cannot be “too high.” This argument is formalized in

the proofs of the four main theorems.

1 The potential shortcoming of this interpretation is that the firm should therefore choose an extremely high price,
but eventually nearly all customers will react against an extraordinarily high price. Assuming the firm adopts but
does not set price, reconciles this interpretation.
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This paper touches upon several disparate literatures. Specifically, the inventory literature where

the occurrence of stocking out has consequences on the demand distribution, the inventory duopoly

literature, and the consumer behavior literature. These literatures are surveyed in the following

three subsections. From a methodological perspective, the Markov decision process and Markov

game literatures are also important and the interested reader can see Başar and Olsder (1999),

Heyman and Sobel (1984), Fudenberg and Tirole (1991), Hernández-Lerma and Lasserre (1996),

and Parker and Kapuściński (2006).

1.1. Literature: Stockouts Affect Future Demand

Schwartz (1966) appears to be the first research article to address the issue of future demands

being affected by current poor inventory performance; he restricts attention to a deterministic

demand rate. In Schwartz (1970), the model is extended to incorporate some uncertainty of the

mean demand rate in continuous time, and some recognition (although not modeled) is given to

the possibility of consumer forgiveness, a concept we formalize in our models. Liberopoulos and

Tsikis (2006) extend this line of analysis in order to quantify the unit backorder cost in this EOQ

context.

Fergani’s (1976) (unpublished) Ph.D. thesis is probably the most comprehensive attempt to

capture the effects of inventory stockouts on future demand for a single firm. Fergani has three

primary models. The first is a finite-horizon MDP model with a fraction of dissatisfied customers

leaving the market, a model we independently analyzed but do not include here for the sake of

brevity. Robinson (1990) considers an infinite horizon version of this model with a quite general

demand function, establishing tractable upper and lower bounds on the optimal inventory policy.

Fergani’s second model incorporates an advertising mechanism to boost the market size, although

the structure of advertising used is simple (with linear per unit costs) and is unrepresentative of

current advertising literature. His third model assumes the market size is unknown at the beginning

of every period but a prior distribution is updated in a Bayesian fashion in every period. In com-

parison, we incorporate more general advertising functions, consumer forgiveness, and consumer

incentives; all elements missing in Fergani’s models.

Henig and Gerchak (2003) is probably the most relevant study to ours, in a competitive context.

They deal with duopolists competing in inventory stocking levels with disaffected customers defect-

ing to the other firms markets. Using “proportional demands” they demonstrate the equilibrium

policy. Two earlier papers, Hall and Porteus (2000) and Liu et al. (2007), are the next most rele-

vant studies to ours. They study systems where duopolists compete by installing capacity in every

period but any service failures result in market diminishment. Liu et al. (2007) extend Hall and
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Porteus’ (2000) analysis with a more general demand function, which we have also adopted in our

models. The multi-period nature of these models, with market reductions in a competitive frame-

work, make these papers similar to ours. Their models describe a service system especially well,

particularly where capacity may be changed at short notice. They also carry over to production

settings where the “capacity” is now intended to represent perishable inventory in a newsvendor

setting, similar to Henig and Gerchak (2003).

All three of the papers in the previous paragraph operate under the assumption that physical

inventory or consumer backlogs are not carried between periods, whereas we track the physical

inventory, backlogs, lost sales, and market defections. We are aware of no other dynamic game

literature, other than those described above, which deal with the relationship between market

sizes and stockouts and we believe our paper to be the first in this setting to allow inventory and

stockouts to carry over from period to period.

1.2. Literature: Inventory Duopolies

The literature on inventory duopolies is bountiful, beginning with Kirman and Sobel (1974) who

allow full backlogging and history dependent equilibrium policies in a truly dynamic context. One

particular element of the inventory duopoly literature of relevance here is how customers are treated

after experiencing a stockout. In particular, Parlar (1988), Lippman and McCardle (1997), and

Netessine and Rudi (2003) have some fixed proportion of disappointed customers transferring to the

other retailer and the loyal but disappointed customers considered lost. Avsar and Baykal-Gürsoy

(2002) has the same treatment in the infinite horizon. Ahn and Olsen (2007), in a subscription

model context, extend Lippman and McCardle’s (1997) work to multiple periods. Netessine et al.

(2006) have several (independent) treatments of customers’ backlogging and transfer behavior in

a dynamic environment. Olsen and Parker (2007) generalizes and integrates these treatments in a

single model with backlogging, lost sales, and transfers.

We allow the transfer of some portion of the unsatisfied customers between the markets but do not

permit search within the same time period, an approach partly validated by Fitzsimons (2000) who

finds consumers having experienced a stockout are substantially more likely to visit an alternative

retailer during a subsequent shopping outing, although we acknowledge consumer search within the

same period could certainly occur, too. It should be noted that we take the consumer behavior of

switching between markets as a black-box, not delving into the psychological elements underpinning

these decisions (see Fitzsimons, 2000, for an illustrative study of consumer choice, conflict, and

behavioral responses to stockouts). Mahajan and van Ryzin (1999) summarizes consumer choice
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models where the retailer can directly or indirectly control the consumer substitution, the latter

of which encompasses our approach.

We are aware of a few papers which address the issuance of incentives after customers experience

a stockout. In particular, Netessine et al. (2006) examine a firm’s incentive to its own customers

to remain loyal (i.e., backlog locally) rather than switch retailers after experiencing a stockout;

DeCroix and Arreola-Risa (1998) consider a similar incentive for a monopolist. Anderson et al.

(2006) find that the cost of such incentives to backlog do not tend to offset the increased revenues

of these consumers; they recommend a targeted discounting strategy. Another paper dealing with

the competitive aspects of customer defection is Gans (2002), where customers experience the

quality of service or product supplied by a firm and update a prior belief of that firm’s quality in

a Bayesian manner. Likewise, Gaur and Park (2005) incorporate consumer learning and retailer

service levels in ascertaining the competitive inventory policy.

We address the idea of offering incentives to customers after they experience inventory dis-

appointment; however, we focus on firms attempting to draw customers from elsewhere to their

markets. In the single-firm model, the firm persuades “latent” customers to become “committed”

customers, whereas in the duopoly model, each firm tempts dissatisfied customers from its com-

petitor’s market. Further, unlike our paper, none of the papers surveyed in this section have an

underlying market from which demand is drawn.

1.3. Literature: Consumer Behavior

The consumer behavior literature contains interesting and relevant work that provides further

empirical motivation for our work. Here we briefly survey consumer behavior literature on: fre-

quency of stockouts; estimating shortage costs; consumer behavior upon experiencing stockouts;

and advertising models. We compare and contrast the results of this literature with our model.

Since our paper models consumer behavior after a stockout, it is important to know whether

stockouts are indeed relevant in practice. Stockout levels can vary between 10-30% in retail settings

(as surveyed in Fitzsimons, 2000), between 8.2% (Fitzsimons, 2000) and 18% (Balachander and

Farquhar, 1994) in supermarkets, 8-10% in grocery goods, and 20-40% in catalog items (Anderson

et al., 2006). Thus, the incorporation of the consumers’ activities subsequent to experiencing a

stockout are indeed highly relevant.

Establishing a precise estimate for a unit shortage cost can be a challenging exercise, as illustrated

by Oral et al. (1972) and Anderson et al. (2006). The primary reason for this is that most retail

establishments record actual sales, not the primary demand of consumers. The ultimate sales can,

of course, be the culmination of a brand substitution, a size substitution, or some other mediating
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activity between the demand and the sale, in addition to the lack of a sale altogether which will

oftentimes not be registered at all. In their study of mail order catalogs, Anderson et al. (2006) find

a firm has an 86% probability of earning revenue if an item is in stock but this falls to 62% if the

item is not in stock. They also find there are diminished purchases by customers who experience

a stockout, quantified at $6 per customer for one year and as much as $23 per customer in the

long-term. These values could be interpreted as the difference in values of a “committed” customer

and an “latent” customer, a quantity we are able to isolate in our subsequent analysis.

Balachander and Farquhar (1994) find holding less stock can potentially reduce price competition

between firms, which can offset the reduced sales from stockouts; we take retail prices as given and

fixed. Charlton and Ehrenberg (1976) find no long-term market share or category sales reduction

in their experiment with detergents stockouts, whereas Motes and Castleberry (1985) find reduced

long-term market shares but restored levels of category sales. The retailer(s) in our models deal(s)

with a single item, so substitution between brands at a single location is not possible. The differing

levels of “blame” and “forgiveness” found in these empirical studies can be accommodated in our

models since they are parameterized.

Straughn (1991) (using scanner data) and Fitzsimons (2000) (using experiments) find there are

sustained market share effects of stockouts. Schary and Christopher (1979) report that upon expe-

riencing a stockout 48% of British supermarket shoppers decided to shop elsewhere, 30% chose

not to purchase at all or postpone their purchase to a subsequent visit, 17% switched brands,

and 5% substituted a different size. Emmelhainz et al. (1991) find 14% shopped at another store,

32% switched brands, and 41% substituted a different size or variety. Looking at apparel sales,

Kalyanam et al. (2007) find there is little size substitution and focus primarily on the effect of key

item stockouts on ancillary items. The message of this is that there is underlying variation. These

quantities are represented by the flow parameters in our models and are relatively unrestricted.

Liberopoulos and Tsikis (2005) find similar effects at the wholesale level, showing stockouts neg-

atively affect future demand, reducing the value of future orders and lengthening the time before

the next order.

We make no assumption that the availability of inventory on the shelf will have a stimulating

effect upon the primary demand, a common assumption in the marketing literature. In addition,

we do not distinguish between the inventory holdings in different locations. We assume if an item

is in stock, it is available to be sold, although we recognize stock could be “shrunk” (i.e., stolen),

in different locations (e.g., retail shelf, retail stockroom, warehouse, in transit), or misplaced. Ton



Olsen and Parker: Inventory Management Under Market Size Dynamics
8 Article submitted to Management Science; manuscript no. MS-01020-2006.R1

and Raman (2005) approximately quantify misplaced SKUs at 3%. Such considerations could be

the subject of future research.

The final elements of the consumer behavior literature which are relevant for us to consider

pertain to advertising models. We condense this vast literature into some classical and recent

references. The advertising response function is a standard tool, measuring the consumer response

for a given advertising expenditure. S-shaped advertising response functions (see Sasieni, 1971, and

Feinberg, 2001) are commonly believed to represent the effect of these promotions. Specifically,

there is little effect in the market for some initial expenditures (the advertising “threshold”), but

then a substantial effect is observed for further outlays, which then tapers off in diminishing returns

for higher spending; the overall shape of this curve is S-shaped. There is debate as to the existence

or extent of the initial threshold (see Vakratsas et al., 2004), but there tends to be a consensus

that there are diminishing returns to scale at higher advertising spending (i.e., a convex increasing

advertising cost function). Our assumptions on advertising will indeed incorporate diminishing

returns to scale. Nguyen and Shi (2006) incorporate such diminishing returns in a competitive

advertising model where market sizes are affected.

1.4. Paper Overview

As outlined above, the overarching goal of our research is to investigate how realistic a model with

respect to consumer behavior we can have and still prove optimality (or equilibrium existence)

of base-stock policies (and hence, for the single-firm model, prove the existence of a proxy lost

sales cost). Within this objective our contribution is four-fold. First, we explicitly model a range of

consumer decisions in the face of stockouts. Second, we provide a much more detailed single-firm

model than previously studied. In particular, we allow general extra-firm advertising and explicitly

capture consumer forgiveness through a latent market. This model is provided in §2. Third we

provide what we believe to be the first dynamic duopoly model that addresses the relationship

between market size and stockouts, while allowing inventory and backlog carry-over from period

to period. Finally, we extend our duopoly to allow firms to actively try to attract dissatisfied

customers, an extension missing from the few works that do consider the relationship between

market size and stockouts (none of which carry inventory between periods). Both duopoly models

are given in §3. Concluding remarks appear in §4 and the appendix and online appendix contain

all proofs.

2. The Single-Firm Model

In this section, we introduce and analyze a “single-firm” periodic-review model. The firm begins

every time period t knowing the current inventory level (xt), the size of its committed market
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(θt), and the size of its latent market (βt). The committed market consists of regular purchasers,

while the latent market is made up of former customers who left the committed market due to

experiencing an inventory service failure. In reality these markets must be estimated and will not

be known exactly; here, for ease of exposition and analytic tractability, we assume they are indeed

known. Internet retail providers are the most likely to have a good estimate of these markets,

although with frequent purchaser cards and modern data mining techniques it appears likely that

firms will become increasingly able to provide such estimates. It is also probable, in our estimation,

that a Bayesian model, similar to that considered in Fergani (1976), may be able to be layered on

our model; we have not pursued such an extension and leave it as a potential subject of future

research.

Let Dt(θ) be the uncertain demand in period t arising from a committed market of size θ. The

firm is assumed to know the distribution of Dt(θ). When the period is clear we will drop the

subscript t for notational convenience. We make the following assumption.

Assumption 1. Demand in period t is distributed as Dt(θt) = p1θt + (p2θt + p3)εt, where

p1, p2, p3 ≥ 0 and εt is a mean zero random variable. The random variables {εt} are independent

and identically distributed (i.i.d.) and are drawn from a continuous distribution with support a

closed subset of [−p1/p2,∞), having cumulative distribution function (cdf) Φ(·), and density φ(·).

This demand form is analogous to that presented in Liu et al. (2007), where the reader is referred for

further explanation and justification of this form. It contains additive and multiplicative demands

as special cases.2 Assumption 1 does not restrict the form of the distribution for demand; it does,

however, imply that both the mean and standard deviation of demand are affine in the market

size and that the coefficient of variation of demand is decreasing in market size (for p3 > 0). This

assumption will be seen later to add significant tractability, leading to a greater number of insights

than would otherwise likely be possible.

The firm makes the following decisions simultaneously in each period: (1) an inventory stocking

decision (y); (2) a marketing decision to persuade latent customers to return to the committed

market (ρ); and (3) an advertising decision to increase the size of the committed market (ν). The

flow decision, ρ, is the expected proportion of the latent market which is diverted to the committed

market, while the external advertising decision, ν, is the expected total flow of customers from

outside both markets in response to advertising. We allow all these variables to be continuous.

2 We are grateful to a reviewer for suggesting we adopt this demand form. Our original form was multiplicative only
(p1 = p3 = 0, p2 = 1). In that case, a continuous distribution is not necessary in the finite horizon model.
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Thus we are, in effect, assuming that the market size (and hence demand) and market flows are

large enough such that continuous flow-based approximations suffice. We have deliberately kept the

form of the second and third decisions general, so they may reflect coupons, targeted advertising,

or some other marketing mechanism.

Suppose that control ρ is applied in period t. We assume the proportion of customers who switch

from the latent pool to the committed pool is Rt(ρ), where E[Rt(ρ)] = ρ. The manipulation of ρ

is presumed to be at a strictly convex non-negative increasing cost per latent customer of C(ρ).

Thus, if there are β customers in the pool of latent customers and a control of ρ is applied then,

Rt(ρ)β customers will choose to return to the committed pool and the total cost will be C(ρ)β.

Likewise, we suggest advertising externally can attract new customers to the committed pool

from outside. A cost of K(ν) will attract Ut(ν) customers to the committed pool, where E[Ut(ν)] =

ν. We assume there is a finite point ν̄ after which K(ν) is strictly convex, which will preclude

infinite advertising in a period being optimal. Clearly, S-shaped advertising functions are a sub-

case of these assumptions. We do not model any interaction between Rt(ρ) and Ut(ν), assuming

that ν is indeed only targeted at external customers. We make the following assumption.

Assumption 2. The sequences of random variables {Rt(ρ)} and {Ut(ν)} are i.i.d., mutually

independent, independent of all other random variables in the system, and have means ρ = E[Rt(ρ)]

and ν = E[Ut(ν)], respectively.

In each period t, let Γt be the random proportion of customers experiencing a stockout who

choose not to backlog and Λt be the random proportion of non-backlogging unsatisfied customers

who choose to leave the committed market. This formulation was chosen to reflect a greater desire

for the firm’s product by the customers who backlog. However, the parameters governing the

division of the unsatisfied customers into backlogging, immediate lost sales, or market defection

routes is arbitrary, so long as market losses occur only if inventory is depleted, and the routings

can in fact be arranged in any manner. We make the following assumption.

Assumption 3. The sequences of random variables {Γt} and {Λt} are i.i.d., mutually inde-

pendent, independent of all other random variables in the system, and have means γ = E[Γt] and

λ = E[Λt], respectively.

Assume controls ρt and νt are applied in period t. Then the state transition functions are as

follows:

xt+1 = (yt −Dt(θt))+− (1−Γt)(Dt(θt)− yt)+ (1)
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= yt −Dt(θt)+Γt(Dt(θt)− yt)+

θt+1 = θt −ΛtΓt(Dt(θt)− yt)+ +Rt(ρt)βt +Ut(νt) (2)

βt+1 = (1−Rt(ρt))βt +ΛtΓt(Dt(θt)− yt)+, (3)

where we define x+ = x if x≥ 0 and x+ = 0, otherwise. For future reference, we similarly define x− =

−x if x≤ 0 and x− = 0, otherwise. Equation (1) simply transfers any leftover physical inventory

into the following period and likewise the backlogging proportion (at rate 1−Γt) of the unsatisfied

demand. Equation (2) states the new committed market size consists of the old committed market

size less the outflow to the latent market due to stockouts plus the inflow from the latent market

due to forgiveness or incentives plus inflows due to external advertising. Equation (3) states the

new latent market size is the old latent market size plus the inflow from the committed market

less the outflow back to the committed market.

Assume r > 0 is the retail price and h > 0 is the per unit holding cost in each period. We will

assume a discount factor of α, 0 < α < 1. The objective is to maximize total discounted expected

reward over either the finite or infinite horizon (this will be shown to be well defined in the infinite

horizon). In the finite horizon assume there are T periods. Consider the firm’s expected periodic

profits in any period t, when controls (yt, ρt, νt) are applied, 1≤ t≤ T :

rE[min(yt,Dt(θt))+x−t ]−hE[(yt −Dt(θt))+]−C(ρt)βt −K(νt) (4)

= −rE[(Dt(θt)− yt)+]−hE[(yt −Dt(θt))+] + rE[Dt(θt)]−C(ρt)βt −K(νt)+ rx−t . (5)

The revenue term in (4) consists of the lesser of demand and available inventory plus satisfying

the backlog. Clearly, the final term of (5) can be “rolled back” into period t− 1 using (1) and

discounting at rate α, thus producing a per period reward of

−r̃E[(D(θt)− yt)+]−hE[(yt −D(θt))+] + rE[D(θt)]−C(ρt)βt −K(νt),

where r̃ = r(1−α(1− γ)).

We will assume throughout that, in the finite horizon model, the terminal value has been nor-

malized by rx−T+1. In other words, if ṼT+1(x, θ,β) is the actual terminal value function then we will

use a terminal value of VT+1(x, θ,β) = ṼT+1(x, θ,β)− rx−. Thus, all assumptions on VT+1(x, θ,β)

should be translated into assumptions on the actual terminal value function ṼT+1(x, θ,β) by adding

rx− to VT+1(x, θ,β).

If demand is non-random (i.e., ε = 0), an affine demand function (in committed market size) can

be seen to be necessary for concavity of the one period reward function (and is likely also necessary
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for most forms of stochastic demand). As our focus is on the optimality of base-stock policies, we

restrict attention to concave revenue functions. This is the primary reasoning behind the affine

demand function in Assumption 1. However, this assumption also leads to a change of variable

that significantly aids the model tractability. Note that linear demand assumptions were made (for

similar reasons) in Fergani (1976), Hall and Porteus (2000), and Henig and Gerchak (2003), and

the affine form used here was also used (for similar reasons) in Liu et al. (2007).

Define the functions

y−1(x, θ) = Φ((x− p1θ)/(p2θ + p3))

and

yf (z, θ) = p1θ +Φ−1(z)(p2θ + p3),

where the notation Φ−1 denotes the inverse of the cumulative distribution function Φ. We perform

a change of variable letting zt = y−1(yt, θt) so that yt = yf (zt, θt). Then,

yt −Dt(θt) = (p2θt + p3)(Φ−1(zt)− εt)

and zt is the chosen critical fractile for satisfied demand. The transition functions may, therefore,

be rewritten as follows:

xt+1 = (p2θt + p3)(Φ−1(zt)− εt +Γt(εt −Φ−1(zt))+) (6)

θt+1 = θt − (p2θt + p3)ΛtΓt(εt −Φ−1(zt))+ +Rt(ρt)βt +Ut(νt) (7)

βt+1 = (1−Rt(ρt))βt +(p2θt + p3)ΛtΓt(εt −Φ−1(zt))+. (8)

Further, the expected periodic reward for any period t is:

L(zt, ρt, νt, θt, βt)
∆= (p2θt + p3)(−r̃E[(εt −Φ−1(zt))+]−hE[(Φ−1(zt)− εt)+])+ rp1θt −C(ρt)βt −K(νt)

= (p2θt + p3)L̃(zt)+ rp1θt −C(ρt)βt −K(νt),

where

L̃(z) ∆=−r̃E[(εt −Φ−1(z))+]−hE[(Φ−1(z)− εt)+].

Note that both the reward and transition functions are affine in θt and βt.

We define:

S(z) ∆= E[ΛtΓt(εt −Φ−1(z))+] (9)

as the expected proportion of lost customers when inventory is stocked to critical fractile z, and

z∗my

∆= argmax
z

L̃(z), (10)
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where z∗my is the optimal scaled myopic inventory quantity. If controls (zt, ρt, νt) are applied in

period t, then

E[θt+1] = θt − (p2θt + p3)S(zt)+ ρtβt + νt (11)

E[βt+1] = (1− ρt)βt +(p2θt + p3)S(zt). (12)

Note that −S(z) and L̃(z) are both concave in z with −S(z) also being non-decreasing in z.

Our model contains limited memory; it is assumed that customers in either market are averaged

across their tenures in the market. This is equivalent to assuming that the consumers are mem-

oryless about their previous experiences, good or bad, in the markets. It is possible to describe

each market as a vector where each element represents the number of consumers who have been

in the market for a particular number of periods, and the sum of the elements is the total market

size. Unfortunately, for our method of analysis (as given below) to be sustained, it is necessary to

assume that demand is homogeneous across all committed customer segments and that customers’

loyalty behavior (whether to leave the committed market following a stockout or whether to rejoin

the committed market) must also be homogeneous. Given that such restrictive assumptions are

needed, this extension was not pursued further, and a more general model (with a different type

of analysis) is left as the subject of future research.

Another possible extension to our model is to apply a multiplicative stochastic shock to the

latent market to reflect the chance that some latent customers will leave this market (either through

moving away or through forgetting about the retailer) or to reflect other non-purchasing customers

becoming newly aware of the retailer (e.g., moving to the region from elsewhere). All the analysis

is preserved (with some additional technical conditions on the average size of the shock) but little

additional insight is gained with its inclusion. A similar shock cannot be applied to the committed

market without destroying the analytical structure of the model.

2.1. Finite Horizon Results

Using the (normalized) terminal value function VT+1(x, θ,β), recursively define the optimal profit-

to-go or value function in period t, 1≤ t≤ T , as

Vt(x, θ,β) = max
z≥y−1(x,θ)
0≤ρ≤1,ν≥0

(L(z, ρ, ν, θ, β)+αE[Vt+1(xt+1, θt+1, βt+1)]) .

We seek to characterize the structure (with respect to (x, θ,β)) of the optimal decision variables,

z∗t , ρ∗t , and ν∗t , which achieve the maximum in the above equation.

The affine nature of both the one-period revenue and transition functions, coupled with appro-

priate assumptions on the terminal value, will allow us to write Vt(·) as an affine function of (θ,β),
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and independent of x (so long as x is below the desired base-stock level). Above the desired base-

stock level, Vt(·) will be bounded above by its value at the desired base-stock level. This will allow

a simple characterization of the optimal decision variables as well as intuition into the components

of the value function. As discussed in the introduction, the inductive argument therefore relies on

proving that starting inventory in the following period is below the desired base-stock level. We will

also assume that initial inventory in period 1 is below the desired level; however, this (relatively

mild) condition is for convenience only and the Online Appendix provides an extension to the proof

of Theorem 1 where this assumption is relaxed. As it will be shown that the desired critical fractile

is at least the myopic level we state the assumption on period 1 inventory as follows.

Assumption 4. Assume that initial inventory x1 ≤ yf (z∗my, θ1).

If the terminal value of committed customers is low then the optimal decision will likely be to

save on inventory costs and ramp down market size near the end of the horizon. As future market

size is stochastic this would likely imply optimal policies depend (possibly in a non-smooth fashion)

on both the current market size and the number of periods to go. Similarly, if the terminal value

of committed customers is quite high then similar effects will likely occur with a growing market.

Assumption 5 below places the terminal value between “too high” and “too low”. Of course, the

effect of any assumption on terminal value becomes increasingly diminished as one moves further

from the end of the horizon. We make the following assumption.

Assumption 5. Assume, for any x, VT+1(x, θ,β) = aT+1θ + bT+1β + cT+1, where

aT+1 =
p2L̃(z∗my)+ rp1

(1−α)2
, (13)

bT+1 = αaT+1, and cT+1 = 0. (14)

Salvage value functions are frequently used to either (i) overcome undesirable and unrepresentative

behavior at the end of a time horizon, (ii) endow a model with analytical tractability, or (iii) reflect

economic reality. We use them for reasons (i) and (ii) and note that such an assumption will not

be needed in the infinite horizon model.

The final assumption in this section is a technical one that ensures the future expected value of

a committed customer is at least that of a latent customer. As it seems likely that the firm would

prefer to keep a customer in the committed marked rather than lose them to the latent market, it

is likely that the conditions needed to guarantee this condition are also reasonable.

Assumption 6.

1− ρ∗T − p2λγE[(εt −Φ−1(z∗my))
+]≥ 0. (15)
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Assumptions analogous to Assumption 6 were made in both Hall and Porteus (2000) and Liu

et al. (2007). Liu et al. (2007) contains further discussion and justification for their analogous

assumption, referring to it as “very mild” (see their Condition 3 and the discussion surrounding

it). We are now ready to present the main result of this section.

Theorem 1. Recursively define

mt = max
0≤z≤1

(L̃(z)−αS(z)(at+1− bt+1)) (16)

at = p2mt +αat+1 + rp1 (17)

bt = max
0≤ρ≤1

(−C(ρ)+αρ(at+1− bt+1))+αbt+1 (18)

ct = max
ν≥0

(αat+1ν−K(ν))+ p3mt +αct+1, (19)

then, under assumptions 1, 2, 3, 4, 5, and 6,

z∗t = arg max
0≤z≤1

(L̃(z)−αS(z)(at+1− bt+1))

ρ∗t = arg max
0≤ρ≤1

(−C(ρ)+αρ(at+1− bt+1))

ν∗t = argmax
ν≥0

(αat+1ν−K(ν))

and for x≤ yf (z∗t , θ)

Vt(x, θ,β) = atθ + btβ + ct.

For x > yf (z∗t , θ), Vt(x, θ,β) is bounded above by Vt(yf (z∗t , θ), θ, β). Further, z∗t , ρ∗t , at, bt, and at−bt

are non-decreasing in t with at − bt ≥ 0 and z∗t ≥ z∗my, for all t, 1≤ t≤ T .

The proof may be found in the appendix. It follows by an inductive argument that formalizes the

intuition given in the introduction as to why the future period’s inventory will not exceed the

desired level whether the market grows or shrinks.

Theorem 1 yields several observations. First, the overall value of the firm can be separated into

elements of the value of the committed market, the value of the latent market, and any remaining

value. An appealing interpretation is that the variables, at and bt, are the per customer values in

each of these markets. So, at is the discounted expected value of a current committed customer in

period t, accounting for all possible expected movements over the remainder of the time horizon.

This gives the firm some real intuition of how its inventory policies, and the customer responses

to them, affect the value of those customers to the firm in tangible outcomes: sales. Notice also

that the base-stock level in period t, y∗t , equals p1θt + Φ−1(z∗t )(p2θ2 + p3) and therefore is affine in

committed market size θt.
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The difference, at − bt, is the incremental benefit of having a committed rather than a latent

customer. This increment is shown to be positive (using Assumption 6), which is natural since

only a committed customer can purchase from the firm and the best a latent customer can do

is to forgive and begin buying in the future. We also show this increment is non-decreasing as

the end of the horizon approaches, which we would argue is also natural as there are fewer and

fewer opportunities for the latent customers to become committed and committed customer have

a sufficient salvage value.

The second observation is that the optimal inventory policy (operating under standing assump-

tions) is base-stock. The efficacy of this unadorned policy is well known; it is a natural and appealing

policy for implementation. The immediate conclusion is that the unit stockout cost used in classical

theory as a surrogate for market shrinkage due to lost future demand and customer goodwill, can

indeed be a valid proxy. By explicitly modeling this market shrinkage, rather than using the unit

cost, we also arrive at the same structural optimal policy. This can be true under numerous model-

ing “accessories” (e.g., consumer forgiveness, advertising, coupons) or under minimal assumptions

(as in the corollary below). The counterpoint to this statement is that the base-stock inventory

policy may not be optimal under all circumstances. Thus, while the unit stockout cost can continue

to be used in the future to approximate lost future demand, it should be used with some caution,

noting whether the conditions appear justified.

The optimal level of advertising to the latent pool, ρ∗t , depends on the future per customer value

difference, at+1 − bt+1, but not on the size of either the committed or latent markets (although

total advertising to the latent pool is proportional to the latent market size). Similarly, the optimal

amount of external advertising, ν∗t , depends on the future value of a committed customer, at+1, but

not on the market size. This lack of dependence in market size is due to our affine model structure,

which does not reflect economies of scale. Recall that an affine demand structure was necessary to

prove concavity of the one-period profit function, so a model with economies of scale would need

an entirely new method of analysis which is beyond the scope of this paper.

We recognize Fergani (1976) offers a streamlined inventory model where future demand is affected

by current stockouts and the demand may adopt a linear or affine form in the market size. His

model does not include the latent market at all and thus, we exclude those parameters in the

following corollary. This implies there will only be an outflow of (dissatisfied) customers from the

committed market and no resulting inflow (from the latent market or from external advertising3),

3 In an extension, Fergani (1976) considers external advertising to “replenish” the market.
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thus this model is appropriate for a finite time horizon only. On the other hand, this streamlined

model is burdened by few restrictive assumptions.

Corollary (Fergani, 1976) Setting ρ = ν = 0, the system optimally operates under a base-stock

inventory policy.

2.2. Infinite Horizon Results

In the infinite horizon, if the market is either shrinking or growing then there is transience towards

zero or infinity, respectively. We therefore assume no external advertising is possible. Define the

functions

zf (∆) = arg max
0≤z≤1

(
L̃(z)−α∆S(z)

)
(20)

and

ρf (∆) = arg max
0≤ρ≤1

(−C(ρ)+α∆ρ) . (21)

In what follows, ∆ will equal the value difference between a committed and a latent customer;

zf (∆) and ρf (∆) will be the optimal controls, given this value difference. Note that z∗my = zf (0).

From the concavity of −S(z) and L̃(z), for ∆≥ 0,

zf (∆) = 1− h

r̃ +αλγ∆+h
.

Thus zf (∆) is increasing in ∆. Further, ρf (0) = 0 and, for ∆ > 0,

ρf (∆) = min(C ′−1(α∆),1).

Note that ρf (∆) is nondecreasing in ∆. The solution to this equation is unique because C(·) is

increasing and strictly convex.

Define

∆max =
p2L̃(z∗my)+ rp1

1−α

zmax = 1− h

r̃ +α∆maxγ +h
ρmax = min(C

′−1 (α∆max) ,1).

These variables will be shown in the following lemma to indeed be upper bounds on their respective

modifiers under the following assumption:

Assumption 7. 1− p2S(z∗my)− ρmax ≥ 0.

This is a flow assumption, similar in nature to (15), to guarantee non-negativity of the value

difference ∆. Since h > 0 this assumption implies that ρmax < 1 and hence ρmax = C
′−1 (α∆max).

The following fixed point lemma will aid in the infinite horizon proof.
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Lemma 1. Define the mapping

T (∆) = p2L̃(zf (∆))−α∆p2S(zf (∆))+ rp1 +α∆+C(ρf (∆))−α∆ρf (∆).

Under Assumption 7, there is a unique fixed point, ∆∗, such that

∆∗ = T (∆∗), (22)

where ∆∗ ∈ [0,∆max]. Further, for any ∆∈ [0,∆max],

z∗my ≤ zf (∆)≤ zmax and 0≤ ρf (∆)≤ ρmax.

The proof of Lemma 1 (found in the Online Appendix) follows from basic calculus and showing

that T (·) is a contraction mapping. Let Π be the set of admissible policies. Define

V ∗(x, θ,β) = sup
π∈Π

∞∑
t=1

αt−1L(zt, ρt, θt, βt),

where we redefine L(z, ρ, θ, β) ∆= L(z, ρ, ·, θ, β). Then V ∗(x, θ,β) is the optimal discounted expected

revenue function for the infinite horizon problem with initial state equal to (x, θ,β). We have the

following result.

Theorem 2. Assume assumptions 1, 2, 3, and 7. Define

a = (p2(L̃(zf (∆∗))−α∆∗S(zf (∆∗)))+ rp1)/(1−α) (23)

b = (−C(ρf (∆∗))+α∆∗ρf (∆∗))/(1−α) (24)

c = p3(L̃(zf (∆∗))−α∆∗S(zf (∆∗)))/(1−α) (25)

where ∆∗ is from equation (22). Then ∆∗ = a− b and a and b simultaneously solve:

a = p2 max
z≥0

(L̃(z)−αS(z)(a− b))+ rp1 +αa (26)

b = max
0≤ρ≤1

(−C(ρ)+αρ(a− b))+αb. (27)

Further, for x≤ yf (zf (∆∗), θ),

V ∗(x, θ,β) = aθ + bβ + c

and zf (∆∗) and ρf (∆∗) are an optimal stationary policy.

The proof (found in the appendix) follows by showing that aθ+bβ+c satisfies the Bellman equation

for V ∗. We can offer some comparative statics for these optimality results.
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Proposition 1. The optimal “value increment”, ∆∗, increases in r (if p1 ≥ p2), −h, −γ, −λ,

and α. The optimal stocking level, zf (∆∗), increases with r,∆∗, and −h. When λγ∆∗ ≥ r(1− γ),

the optimal stocking level increases in α. The optimal incentive, ρf (∆∗), increases with increasing

∆∗, r,−h,−γ,−λ, and α.

This result states that the value increment of a committed customer over a latent customer

increases with the retail price and the discount factor. The former is obvious as a committed

customer will pay more when their demand is realized and satisfied. The latter arises because it

lessens the effect of a defecting customer who has a chance of returning to the committed pool in

the following period. The value increment will also increase when the holding cost decreases since

it lessens the cost of servicing a committed customer, and when either γ or λ decrease because

these govern the proportion of dissatisfied customers who leave the committed market. The optimal

stocking level increases with an increase in the retail price or a decrease in the holding cost,

since these changes indicate a greater level of inventory service is economically warranted. The

optimal stocking level increases with the optimal value increment since this represents preserving a

committed customer over losing them. The optimal incentive level increases by the same reasoning.

In other words, a greater value increment, higher price, lower holding cost, and a smaller proportion

of leaving customers are all reasons for the firm to spend more to convert a latent customer to a

committed one.

The proof of these comparative statics follows from a standard application of the Implicit Func-

tion Theorem and may be found in the Online Appendix. The observations following Theorem 1

for the finite-horizon model carry over to the infinite-horizon. Moreover, a specific value for the

“equivalent” unit stockout cost in a traditional inventory model, is found to be:

unit stockout cost = αλγ(a− b) = αλγ∆∗.

The interpretation of this unit stockout cost is that it represents the value lost due to a stockout.

It is discounted by α since the leaving customers will join the latent market in the following period.

The parameters λγ represent the expected proportion of stocked-out customers who will leave, and

(a− b) is the expected lost (lifetime) value of the customers leaving the committed market for the

latent market in the following period.

3. The Duopoly Model

In this section we provide a competitive framework where two firms explicitly compete with each

other for the retention of customers on the basis of their inventory performance. The “committed”
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market for one firm is now the “potential” market of the other firm. That is, when customers

stock-out at firm 1, they may join firm 2’s market, and vice versa. There is no external (outside the

duopoly) advertising. Thus the potential market has replaced both the latent and external markets

of the previous section.

We first prove results for a duopoly where each firm makes a stocking decision only. We then

extend the basic model to a model with incentive decisions as well as inventory stocking decisions.

We define some commonalities shared by the two models before examining each separately. While

we only consider duopolies, the results would likely extend to oligolopies as well. However, one

would carefully need to define and justify the flows of dissatisfied customers between firms. For

the model with stocking decisions only, the separability that occurs would make this relatively

straightforward; however, for the model where the flows depend on explicit decisions, much more

care would be needed.

Much of the nomenclature is identical or analogous to the single-firm model, with the difference

being a superscript identifying the firm. We will not redefine such notation if we believe its definition

to be self explanatory.

We have four state variables, (x1
t , x

2
t , θ

1
t , θ

2
t ), where xi

t is firm i’s inventory (or backlog) level at

the beginning of period t and θi
t is the size of firm i’s committed customer pool. We reserve indices

i and j throughout to denote the two firms, where the use of both implies j 6= i. Let us first define

the transition functions for each firm i:

xi
t+1 = yi

t −Di(θi
t)+Γi

t(D
i
t(θ

i
t)− yi

t)
+ (28)

θi
t+1 = θi

t −Λij
t Γi

t(D
i
t(θ

i
t)− yi

t)
+ +Λji

t Γj
t(D

j
t (θ

j
t )− yj

t )
+, (29)

where Λij
t is the proportion of unsatisfied firm i customers that defect to firm j in the following

period.

Throughout this section, we assume the following.

Assumption 8. For period t, i=1,2, Di
t(θi

t) = pi
1θ

i
t + (pi

2θ
i
t + pi

3)εi
t, where pi

1, p
i
2, p

i
3 ≥ 0. The

sequences {εi
t} and {εj

t} are i.i.d., independent of each other, and follow the same distributional

assumptions as in Assumption 1.

Assumption 9. The sequences of random variables {Γi
t}, {Γ

j
t}, {Λij

t } and {Λji
t } are i.i.d., mutu-

ally independent, independent of all other random variables in the system, and have means γi =

E[Γi
t], γj = E[Γj

t ], λij = E[Λij
t ], and λji = E[Λji

t ], respectively.
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Perform a change of variable so that

zi
t = y−1

f (yi
t, θ

i) = Φi

(
yi

t − pi
1θ

i

pi
2θ

i + pi
3

)
,

where Φi is the cdf of εi (we use a subscript for i on Φ to aid notationally when its inverse is taken).

Then the transition functions can be rewritten as follows:

xi
t+1 = (pi

2θ
i
t + pi

3)(Φ
−1
i (zi

t)− εi
t +Γi

t(ε
i
t −Φ−1

i (zi
t))

+) (30)

θi
t+1 = θi

t − (pi
2θ

i
t + pi

3)Λ
ij
t Γi

t(ε
i
t −Φ−1

i (zi
t))

+)+ (pj
2θ

j
t + pj

3)Λ
ji
t Γj

t(ε
j
t −Φ−1

j (zj
t ))

+. (31)

For the model with no incentives, the periodic reward for period t for firm i is:

Li(yi
t, θ

i
t) = −r̃iE[(Di(θi

t)− yi
t)

+]−hiE[(yi
t −Di(θi

t))
+] + riE[Di(θi

t)]

= (pi
2θ

i
t + pi

3)L̃
i(zi

t)+ ripi
1θ

i
t,

where

L̃i(zi
t)

∆=−r̃iE[(εi
t −Φ−1

i (zi
t))

+]−hiE[(Φ−1
i (zi

t)− εi
t)

+].

Note that both the reward and transition functions are affine in θi
t and θj

t . The model with incentives

will have the additional advertising costs associated with attracting the other firm’s customers in

the periodic reward function; these will be written separately from L̃i(·), which is defined as above

in both models.

3.1. Duopoly With No Consumer Incentives

In this subsection, we assume each firm chooses their inventory levels, mindful of the potential of

losing their own customers but with no conscious effort to attract customers from the other firm.

This could be translated as the inward-looking “operations focused” model.

As in the single-firm model, we assume that there is a (normalized) salvage value associated with

the end of horizon state vector (xi, xj, θi, θj), as follows:

Assumption 10. For any xi, xj, V i
T+1(xi, xj, θi, θj) = ai

T+1θ
i + bi

T+1θ
j, where

ai
T+1 =

pi
2L̃

i(zi∗
my)+ ripi

1

(1−α)2
, (32)

bi
T+1 = αai

T+1. (33)

The intuition for this assumption is analogous to the single-firm model.

We define V i
t (xi, xj, θi, θj) to be the discounted expected value for firm i under a Markov equi-

librium (if it exists) from period t onwards, given a current state vector of (xi, xj, θi, θj). While this

value will depend on the specific equilibrium chosen, we show there is, in fact, a unique Markov

equilibrium in each period and hence there is no ambiguity in the expression. Further, we assume

that:
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Assumption 11. Assume 1− pi
2λ

ijγiE[(εi −Φ−1
i (zi∗

my))+]− pj
2λ

jiγjE[(εj −Φ−1
j (zj∗

my))+]≥ 0.

This condition, which ensures we would prefer to keep a customer than lose it to the competitor

(see the proof of the theorem), has strong analogies to Assumption 6. It is also effectively the

same as Condition 3 in Liu et al. (2007). Indeed the assumptions of this section are effectively

equivalent to those of Liu et al. (2007) except that we allow inventory (or backlogs) to be carried

between periods (which is the significant contribution of the section), which in turn necessitates

an assumption on the salvage value. As stated before, such an assumption becomes decreasingly

important as one moves further from the end of horizon and is not needed in the infinite horizon.

Theorem 3. Recursively define

zi∗
t = arg max

0≤zi≤1

{
L̃i(zi)−α(ai

t+1− bi
t+1)S

i(zi)
}

(34)

ai
t = pi

2L̃
i(zi∗

t )−αpi
2(a

i
t+1− bi

t+1)S
i(zi∗

t )+ ripi
1 +αai

t+1 (35)

bi
t = αpj

2(a
i
t+1− bi

t+1)S
j(zj∗

t )+αbi
t+1 (36)

ci
t = pi

3L̃
i(zi∗

t )−αpi
3(a

i
t+1− bi

t+1)S
i(zi∗

t )+αpj
3(a

i
t+1− bi

t+1)S
j(zj∗

t )+αci
t+1 (37)

then, under assumptions 8, 9, 10, and 11 for xi
1 ≤ yi

f (zi∗
1 , θi) and xj

1 ≤ yj
f (zj∗

1 , θj), the unique Markov

perfect equilibrium policy is for the firms to order-up-to (yi
f (zi∗

t , θi), yj
f (zj∗

t , θj)) and this policy has

value V i
t (xi, xj, θi, θj) = ai

tθ
i + bi

tθ
j + ci

t. Further, zi∗
t , ai

t, bi
t , and ai

t − bi
t are non-decreasing in t

with ai
t − bi

t ≥ 0.

Thus, so long as the inventory in the first period (only) is below the desired levels, there is an

equilibrium in base-stock policies. As in the single firm model, it is likely that one does not actually

need to restrict first period inventory but the proof would become more involved because a bounding

argument on V i
t (·) is no longer sufficient.

The value function V i
t (·) represents firm i’s expected present value of the current and future

rewards under the (unique) pure-strategy Markov equilibrium given the current state. As is well

known, a Markov equilibrium is a subgame perfect Nash equilibrium in a finite horizon. In this

particular model, due to assumptions 8, 9, 10, and 11, we gain additive separability of each firm’s

value function into components dependent upon the market size state variables and independent

of the beginning inventory state variables. We speculate the primary reason for the separability

is that defecting customers do not search at the other retailer in the same period but join the

competitor’s market and may be served in the following period at the soonest. This assumption

and resultant separability is also seen in Hall and Porteus (2000) and Liu et al. (2007).
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Given the above separability, the Markov game effectively becomes two parallel Markov decision

process models where each firm can choose its inventory independent of the other firm’s choices.

As such, the solution to the infinite horizon model is well defined and stationary. Further, one

could use machinery similar to that of Theorem 2 to find the (unique) infinite horizon stationary

values where the stationary flow from the competitor, pj
2S

j(zj∗), would replace the stationary flow

decision, ρf (∆∗). We do not do so here in the interests of space.

3.2. Duopoly With Incentives for Dissatisfied Consumers

We now suppose that the firm may attract dissatisfied customers from the competition. That is,

firm i may influence the mean (λji) of the flow from firm j to firm i. We assume that there is

a convex increasing advertising cost for firm i to attract an expected proportion λji of firm j’s

dissatisfied customers. We intend this advertising effort to be directed towards all the customers

of the competitor but only the dissatisfied customers will be significantly affected by the message.

Further, we assume that this cost may be written as (pj
2θ

j
t + pj

3)Ai(λji). As such, it is assumed

to contain a term that is proportional to θj and a further term that is independent of θj, where

the ratio between these terms is fixed. If pj
3 = 0 (i.e., multiplicative demand) then this assumption

simply implies that the advertising cost must be proportional to the competitor’s market size.

For notational convenience we will suppress explicit dependence of Λij
t on the control λij, but

such dependence should be understood in the following. Further, the distributional assumptions of

Assumption 9 continue to hold where the Λij
t are identically distributed conditional on having the

same control λij applied. The periodic reward will be as before with this additional incentive cost,

as follows:

(pi
2θ

i
t + pi

3)L̃
i(zi

t)+ ripi
1θ

i
t − θj

t (p
j
2θ

j
t + pj

3)A
i(λji).

Define

S̃i(z) = γiE[(εi −Φ−1
i (z))+]. (38)

Then,

E[θi
t+1] = θi

t(1− pi
2λ

ij
t S̃i(zi))+ θj

tp
j
2λ

ji
t S̃j(zj). (39)

As in the single firm model, ∆i will represent the value difference between a committed (firm i)

and potential (firm j) customer. We define the vector ∆ = (∆1,∆2). Further, define

zi
f (∆) = 1− hi

r̃i +α∆iλij
f (∆)γi +hi

, (40)

λij
f (∆) = min

(
A
′−1
j

(
α∆jS̃i(zi

f (∆))
)

,1
)

. (41)
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Analogous the single-firm model, zi
f (∆) and λij

f (∆) will represent equilibrium responses given

customer value differences of ∆. Note that, in contrast to the duopoly with inventory decisions

only, here the decisions of the two firms truly represent an equilibrium decision. As such, we need

to show that these responses are well defined. This is done in the following lemma.

Lemma 2. For any positive pair ∆ = (∆1,∆2) there is a unique solution to equations (40), (41).

The proof of Lemma 2 follows by showing that the response functions have opposite signs and can

be found in the Online Appendix. Define the mapping

T i(∆) = pi
2(L̃

i(zi
f (∆))−α∆iλij

f (∆)S̃i(zi
f (∆)))+ripi

1+α∆i+pj
2(A

i(λji
f (∆))−α∆iλji

f (∆)S̃j(zj
f (∆))).

(42)

Then it will be shown that a fixed point solution such that ∆1 = T 1(∆) and ∆2 = T 2(∆) will be

such that ∆1 = a1 − b1 and ∆2 = a2 − b2 in the infinite horizon equilibrium. The following lemma

establishes preliminaries for existence of such a fixed point. Its proof is primarily algebraic and

may be found in the Online Appendix.

Lemma 3. Define

∆i
max =

pi
2L̃

i(zi
my)+ ripi

1

1−α
λij

max = min
(
A
′−1
j

(
α∆j

maxS̃
i(zi

my)
)

,1
)

zi
my = 1− hi

r̃i +hi
zi

max = 1− hi

r̃i +α∆i
maxγ

i +hi

If 1− pi
2λ

ij
maxS̃

i(zi
my)− pj

2λ
ji
maxS̃

j(zj
my)≥ 0 then let

∆i
min =

pi
2L̃

i(zi
my)+ ripi

1

1−α(1− pi
2λ

ij
maxS̃i(zi

my)− pj
2λ

ji
maxS̃j(zj

my))

else let ∆i
min = 0. Finally, let

λij
min = min

(
A
′−1
j

(
α∆j

minS̃i(zi
max)

)
,1
)

.

Then if (∆i,∆j) is a fixed point of T i(·), T j(·) then ∆i ∈ [∆i
min,∆i

max] and ∆j ∈ [∆j
min,∆j

max].

Further for any ∆i ∈ [∆i
min,∆i

max] and ∆j ∈ [∆j
min,∆j

max]

zi
my ≤ zi

f (∆)≤ zi
max and λij

min ≤ λij
f (∆)≤ λij

max

In order to show there is a unique fixed point we need to show that
∣∣ ∂

∂∆j T i(∆)
∣∣< 1. A relatively

strong set of assumptions that implies this is as follows.
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Assumption 12. Assume

pj
2

∆i
max

∆j
min

≤ 2,
∆i

min

∆j
max

≥ 1
2
pi

2, p
i
2∆

i
max < min

λ
ij
min≤λ≤λ

ij
max

A′′
j (λ).

Further, for all z, assume
φi(z)
Φi(z)

≥ 1.

These assumptions say that the ranges of the ∆i,∆j cannot be too far apart, that the second

derivative of the cost function is sufficiently large relative to ∆i, and that the hazard rate of εi,

φi(z)/Φi(z), is at least one. These assumptions are driven by the algebra and unfortunately do not

appear particularly intuitive. A weaker, but somewhat more obscure, assumption that can easily

be shown to be implied by these assumption is given as Assumption 13 in the appendix.

Lemma 4. Under Assumption 12 or 13, the mappings T i(∆), T j(∆) have a unique fixed point.

Let ∆∗ be the unique fixed point of the mappings T i(∆), T j(∆). Define

ai =
pi

2(L̃i(zi
f (∆∗))−α(∆∗i)λij

f (∆∗))S̃i(zi
f (∆∗)))+ ripi

1

1−α

bi =
pj

2(α∆∗iλji
f (∆∗)S̃j(zj

f (∆∗))−Ai(λ
ji
f (∆∗)))

1−α

ci =
pi

3(L̃i(zi
f (∆∗))−α(∆∗i)λij

f (∆∗)S̃i(zi
f (∆∗)))+ pj

3(α∆∗iλji
f (∆∗)S̃j(zj

f (∆∗))−Ai(λ
ji
f (∆∗)))

1−α
.

so that ∆∗i = ai − bi.

We are now ready to establish our main result, which shows that there is an equilibrium in

stationary state-independent policies in the infinite horizon discounted game. An equilibrium in

stationary policies is weaker than the Markov equilibrium of the previous section. It is one where

all firms precommit to a fixed policy for the infinite horizon and then a one-shot game is played on

the policy space. Such an equilibrium is not guaranteed to be subgame perfect (and is likely not).

This is the same type of equilibrium used in most inventory games considered over the infinite

horizon (e.g., Avsar and Baykal-Gürsoy, 2002; Bernstein and Federgruen, 2004; Cachon and Zipkin,

1999) and it appears that a stronger result must await theory development in Markov games.

For the inventory game considered here we must define what it means to follow a state-

independent inventory policy. For ease of exposition, we assume that the firm may costlessly reduce

down to the desired inventory level. However, we will also show that, operating under the equilib-

rium policy, the inventory level is never above the desired level and so this (somewhat unrealistic)

option is never actually used. One could more realistically assume that the firm simply orders

nothing, allowing demand to draw down inventory, if it finds itself above the stationary level but

(since this still never occurs) this complicates the proof with little extra value added.
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Theorem 4. Under assumptions 8, 9, and 12 or 13, (zi
f (∆∗), zj

f (∆∗), λij
f (∆∗), λji

f (∆∗)) form

an equilibrium in state-independent stationary policies in the infinite horizon discounted game. The

expected discounted pay-off function for firm i under this equilibrium, for starting state (xi, xj, θi, θj)

with xi ≤ yi
f (zi

f (∆∗), θi) and xj ≤ yj
f (zj

f (∆∗), θj), equals aiθi + biθj + ci.

We have the following comparative statics for the equilibrium which, similar to Proposition 1,

are proven in the Online Appendix using the Implicit Function Theorem on the mapping T i(·).

The sufficient condition used in this proposition will be shown to be quite weak in the associated

proof.

Proposition 2. When S̃j(zf
j(∆))−∆i∂S̃j(zf

j(∆))/∂∆i ≥ 0, (a) firm i’s (i 6= j) equilibrium

“value increment”, ∆i∗, increases in ri (when pi
1 ≥ pi

2), rj,−hi,−hj, and −γi; (b) firm i’s (i 6= j)

equilibrium stocking level increases in ri, rj,−hi, and −hj; and (c) firm i’s (i 6= j) equilibrium

incentive level increases in ri, rj,−hi,−hj, and −γi.

This result establishes that a firm’s valuation of one of its committed customers over the valuation

of its potential customer, its equilibrium stocking level, and its equilibrium incentive level increase

when either firms’ retail price increases or either firms’ holding cost decreases. The reason for its

own retail price and holding cost are straightforward. The reason for these changes in the other

firm’s retail price and holding cost is simply that the other firm will increase its value increment

and stocking level and the original firm will too, in response.

Our incentives are targeted towards dissatisfied customers from the competitor’s market. Because

the retailer can retain its own customers by performing well with their inventory decisions and

limiting the number of stockouts, as far as is economically sensible, the inventory decision is partly

an incentive in itself. In research not reported here, we considered a model where one firm can

directly attract any of the competitor’s customers. Unfortunately, we found that the conditions

needed to show base-stock equilibrium policies (the focus of this paper) are too restrictive to

make the model of general interest. It may also be possible for the firm to work to retain its own

dissatisfied customers (other than with available inventory). In that case the interaction between

the firm’s actions and its competitor’s actions would need to be carefully delineated. Future work

should investigate such competitive models.

4. Conclusions and Extensions

Consumers in classical dynamic inventory models are assumed to either backlog (most common),

be lost (next most common), be partially backlogged/partially lost (relatively uncommon), or
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leave the market and therefore reduce future demand (rare). In these first three cases, the firm’s

economic burden from not satisfying customers is usually approximated using a simple unit stockout

cost. Although there has been widespread agreement that one (significant) element of the unit

stockout cost is to reflect the economic consequences of some of these dissatisfied customers leaving

the firm’s market, thus reducing future demand, there has been little research investigating how

this phenomenon affects the optimal (or equilibrium) inventory policy; notable exceptions to this

statement include Fergani (1976), Hall and Porteus (2000), and Liu et al. (2007). In addition to

explicitly modeling the effect of future stockouts on demand, we explicitly incorporate the three

previously mentioned stockout alternatives (in contrast to Hall and Porteus, 2000, and Liu et al.,

2007), we include the possibility of consumer forgiveness (in contrast to Fergani, 1976), and we

consider the possibility of attracting new customers.

We first consider a single firm. This firm could be considered as one firm operating under perfect

competition, a price-taking monopolist, or simply one where pricing decisions are made by separate

decision makers on a longer time frame. The firm’s decisions are the stocking level, the proportion

of “latent” customers who can be convinced to become “committed”, and external advertising

to increase the committed pool of customers. We establish sufficient conditions under which the

optimal inventory policy is base-stock for the finite and infinite time horizons. Although we do not

consider the conditions strenuous, they do suggest that the unit stockout cost may not be a good

proxy under all circumstances. When the conditions are supported, we find a closed-form solution

for the unit stockout cost, representing the discounted lost value premium of those lost customers.

In addition, we find “lifetime” values of committed and latent customers. The optimal base-stock

level increases with the retail price, the proportion of non-backlogging customers who leave, and

the value premium the committed customers have over the latent customers, and decreases with

the unit holding cost and proportion of stocked out customers who wish to backlog.

The natural extension to the single-firm model is a duopoly where a customer leaving one firm’s

market joins the other firm’s market and vice versa. In the initial duopoly, the firms decide only

upon inventory levels and conditions are found under which the firms will operate under a base-

stock equilibrium policy. Due primarily to the fact that a leaving customer will join the other firm’s

market but not search within the same time period, the equilibrium separates in every period.

In the subsequent duopoly model, an incentive decision is included with the inventory decision.

The incentive decision is advertising targeted towards the other firm’s dissatisfied customers. We

establish conditions under which a base-stock inventory policy is an equilibrium in stationary

policies.
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As mentioned in Section 2, we assume the firms actually know the market sizes, whereas in

reality they may only have estimates. A model with Bayesian updating, such as that in Fergani

(1976), could likely be used to accommodate this uncertainty and is an interesting topic for future

research. Further, we assume leadtimes are zero. As non-zero leadtimes with lost sales assumptions

typically present a challenging problem, it is likely that incorporating leadtime in our models will

present similar challenges.
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Appendix
Proof of Theorem 1

The proof is inductive and we establish the basis in the Online Appendix. For period t, 1≤ t≤ T −1,

assume:

• Vt+1(x, θ,β) = at+1θ + bt+1β + ct+1 for x ≤ yf (z∗t+1, θ) and is bounded above by

Vt+1(yf (z∗t+1, θ), θ, β) for x > yf (z∗t+1, θ);

• z∗my ≤ z∗t+1, 0≤ at+1− bt+1 ≤ at+2− bt+2, at+1 ≤ at+2, and bt+1 ≤ bt+2.

For zt ≤ z∗t+1, xt+1 ≤ yf (z∗t+1, θt+1) by the following reasoning. Observe

xt+1 = (p2θt + p3)(Φ−1(zt)− εt +Γt(εt −Φ−1(zt))+).

If (εt − Φ−1(zt))+ = 0 then there were no dissatisfied customers so that θt+1 ≥ θt and therefore

xt+1 ≤ (p2θt + p3)Φ−1(zt) ≤ (p2θt+1 + p3)Φ−1(zt) ≤ (p2θt+1 + p3)Φ−1(z∗t+1) ≤ yf (z∗t+1, θt+1). For the

case where (εt −Φ−1(zt))+ > 0, xt+1 < 0≤ yf (z∗t+1, θt+1). Therefore, for zt ≤ z∗t+1,

EVt+1(xt+1, θt+1, βt+1) = at+1Eθt+1 + bt+1Eβt+1 + ct+1.

For zt > z∗t+1,

EVt+1(xt+1, θt+1, βt+1)

≤ at+1Eθt+1 + bt+1Eβt+1 + ct+1

= at+1(θt − (p2θt + p3)S(zt)+ ρtβt + νt)+ bt+1((1− ρt)βt +(p2θt + p3)S(zt))+ ct+1

= at+1θt − (p2θt + p3)S(zt)(at+1− bt+1)+βt(ρt(at+1− bt+1)+ bt+1)+ at+1νt + ct+1. (43)
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Define

ft(z) ∆= L̃(z)−αS(z)(at+1− bt+1).

We will show that z∗t = argmaxz ft(z). Note that, in this case, by the concavity of −S(z), z∗t ≥ z∗my.

Now,

(p2θt+p3)L̃(zt)+αEVt+1(xt+1, θt+1, βt+1)≤ (p2θt+p3)ft(zt)+αβt(ρt(at+1−bt+1)+bt+1)+αat+1(θt+νt)+αct+1.

By the concavity of −S(z) and L̃(z) and the non-decreasing nature of at − bt (by the induction

assumption), argmaxz ft(z)≤ argmaxz ft+1(z) = z∗t+1. Therefore, by the concavity of ft(·), ft(zt)≤

ft(z∗t+1) for zt > z∗t+1. Consequently, we can exclude consideration of zt > z∗t+1.

Therefore,

Vt(x, θ,β) = max
z∗t+1≥z≥y−1(x,θ)

0≤ρ≤1,ν≥0

[
(p2θ + p3)L̃(z)+ rp1θ−C(ρ)β−K(ν)+αat+1E[θt+1] +αbt+1E[βt+1] +αct+1

]
,

where y−1(x, θ) = Φ((x− p1θ)/(p2θ + p3)). Applying the same logic as in (43),

Vt(x, θ,β) = (p2θ + p3) max
z≥y−1(x,θ)

ft(z)+ θ(rp1 +αat+1)+

β max
0≤ρ≤1

(−C(ρ)+α(ρ(at+1− bt+1)+ bt+1))+αct+1 +max
ν≥0

(αat+1ν−K(ν))

= atθ + btβ + ct,

for x ≤ yf (z∗t , θ), where at, bt, and ct are as defined in equations (17) - (19). Since z∗t+1 =

argmaxz(L̃(z) − αS(z)(at+2 − bt+2)), z∗t+1 ≥ z∗t through the induction assumption (at+2 − bt+2 ≥

at+1− bt+1) and again by the concavity of −S(z). Now,

at = p2 max
z

ft(z)+αat+1 + rp1

= p2(L̃(z∗t )−αS(z∗t )(at+1− bt+1))+αat+1 + rp1,

which is increasing in t since (1−S(z))≥ 0 for all z and (at+1− bt+1) is also increasing in t. Also,

bt = max
ρ

(−C(ρ)+αρ(at+1− bt+1))+αbt+1

= −C(ρ∗t )+αρ∗t (at+1− bt+1)+αbt+1,

which is also increasing along similar reasoning to at. Now,

ρ∗t = argmax
ρ

(−C(ρ)+αρ(at+1− bt+1))

so ρ∗t ≤ ρ∗t+1 from the induction assumption. Further,

at − bt = p2L̃(z∗t )+ rp1 +C(ρ∗t )+α(at+1− bt+1)(1− ρ∗t − p2S(z∗t ))
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≤ p2L̃(z∗t )+ rp1 +C(ρ∗t+1)+α(at+1− bt+1)(1− ρ∗t+1− p2S(z∗t ))

≤ p2L̃(z∗t )+ rp1 +C(ρ∗t+1)+α(at+2− bt+2)(1− ρ∗t+1− p2S(z∗t ))

≤ p2L̃(z∗t+1)+ rp1 +C(ρ∗t+1)+α(at+2− bt+2)(1− ρ∗t+1− p2S(z∗t+1))

= at+1− bt+1,

where the first inequality is due to the optimality of ρ∗t , the second inequality is because at+1−bt+1 ≤

at+2 − bt+2, and the third is by definition of z∗t+1. Finally, at − bt ≥ 0 since at+1 − bt+1 ≥ 0 and

1− ρ∗t − p2S(z∗t )≥ 1− ρ∗T − p2S(z∗my)≥ 0. Q.E.D.

Proof of Theorem 2

By definition, a and b simultaneously solve:

a = p2 max
z

(L̃(z)−αS(z)(a− b))+αa+ rp1 (44)

b = max
0≤ρ≤1

(−C(ρ)+αρ(a− b))+αb. (45)

Let ε, Γ, and Λ be some random realization of demand, non-backlogging proportions, and leaving

proportions, respectively. Define X(z) = Φ−1(z)− ε+Γ(ε−Φ−1(z))+ and Y (z) = ΛΓ(ε−Φ−1(z))+.

From Hernández-Lerma and Lasserre (1996) Theorem 4.2.3 the optimal stationary solution must

satisfy

V ∗(x, θ,β) = max
z≥y−1(x,θ)

0≤ρ≤1

(
(p2θ + p3)L̃(z)+ rp1θ−C(ρ)β+

αE[V ∗(yf (X(z), θ), θ(1−Y (z))+R(ρ)β, (1−R(ρ))β +Y (z)θ)]) .

We first consider the relaxed problem where there is no lower bound on z. Substituting Ṽ ∗(x, θ,β) =

aθ + bβ + c into the right-hand-side of the relaxed version of the above equation yields

max
z,0≤ρ≤1

(
(p2θ + p3)L̃(z)+ rp1θ−C(ρ)β +α(a(θ(1−S(z))+ ρβ)+ b((1− ρ)β +S(z)θ)+ c

)
= (p2θ + p3)max

z
(L̃(z)−α(a− b)S(z))+ θ(rp1 +αa)+β max

0≤ρ≤1
(−C(ρ)+α(a− b)ρ+αb)+αc

= θa+βb+ c.

Therefore, the optimal stationary policy for the relaxed problem is (zf (∆∗), ρf (∆∗)). If this solution

is also feasible for the original problem then it must also be optimal for the original problem. Let

z∗ = zf (∆∗), this policy is feasible if future inventory is less than or equal to the desired future

order-up-to point. Now future inventory equals (p2θ + p3)(Φ−1(z∗)− ε + Γ(ε−Φ−1(z∗))+) and the

future desired order-up-to point equals

yf (z∗, θ(1−Y (z∗))+R(ρ)β) = p1(θ(1−Y (z∗))+R(ρ)β)+Φ−1(z∗)(p2(θ(1−Y (z∗))+R(ρ)β)+ p3).
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If ε≤Φ−1(z∗), so there are no unsatisfied customers, then Y (z) = 0 and, using the fact that demand

must be non-negative, the future desired order-up-to point is bounded below by

p1θ +(p2θ + p3)Φ−1(z∗)≥ (p2θ + p3)(Φ−1(z∗)− ε),

where the right hand-side equals future inventory (in this case). If ε > Φ−1(z∗) then future inventory

is negative but, again using non-negativity of demand, the future desired order-up-to point is non-

negative. Thus, in both cases, future inventory is at most the future desired order-up-to point and

z∗ is indeed feasible. Hence, (zf (∆∗), ρf (∆∗)) is the optimal stationary policy. Q.E.D.

Alternate (Weaker) Assumption to Assumption 12

A weaker assumption to Assumption 12 (which can easily be shown to be implied by Assumption 12)

is as follows.

Assumption 13. For all ∆i ∈ [∆i
min,∆i

max] and ∆j ∈ [∆j
min,∆j

max],∣∣∣∣∣−α2pi
2∆iS̃i(zi

f (∆))2φi(zi
f (∆))(gi(∆i, λij

f (∆)))2

ni(∆)
+

α2pj
2h

j∆i(γj)2(λji
f (∆))2 Pr(εj > zj

f (∆))A′′
i (λ

ji
f (∆))

nj(∆)

∣∣∣∣∣< 1,

where

ni(∆) = A′′
j (λ

ij
f (∆))φi(zi

f (∆))(gi(∆i, λij
f (∆)))2 +hiα2∆i∆j(γi)2 Pr(εi > zi

f (∆))

and

gi(∆i, λij) = r̃i +α∆iλijγi +hi.

The assumption arises from the need for
∣∣ ∂

∂∆j T i(∆)
∣∣ < 1 and the expression on the left will be

shown to be
∣∣ ∂

∂∆j T i(∆)
∣∣ (see Lemma 5 in the Online Appendix).

Proof of Theorem 4

Let ∆∗ be the unique fixed point of the mappings T i(∆), T j(∆) (which exists by the given

assumptions and Lemma 4). Further, for any x, define the function

V i(x, θi, θj) = aiθi + biθj + ci.

To show that (zi
f (∆∗), zj

f (∆∗), λij
f (∆∗), λji

f (∆∗)) form an equilibrium in stationary policies in

the infinite horizon discounted game, we must show that

V i(xi, xj, θi, θj) = eqm z≥0

0≤λji≤1

[
(pi

2θ
i + pi

3)L̃
i(z)− (pj

2θ
j + pj

3)A
i(λji)+ ripi

1θ
i +αE[V i(xi

t+1, x
j
t+1, θ

i
t+1, θ

j
t+1)]

]
,



Olsen and Parker: Inventory Management Under Market Size Dynamics
32 Article submitted to Management Science; manuscript no. MS-01020-2006.R1

where z is unrestricted due to our assumption that inventory may be drawn down costlessly.

Further, we must show that, for xi ≤ yi
f (zi

f (∆∗), θi) and xj ≤ yj
f (zj

f (∆∗), θj), xi
t+1 ≤ yi

f (zi
f (∆∗), θi

t+1)

and xj
t+1 ≤ yj

f (zj
f (∆∗), θj

t+1).

We begin with the final point, which implies that a stationary state-independent order-up-to

policy is feasible for the system where inventory may not be removed costlessly. Pick 0≤ z ≤ 1. For

zi
t ≤ z, xi

t+1 ≤ yi
f (z, θi

t+1) (and hence z is also feasible in the following period) due to the following

reasoning. We have that

xi
t+1 = (pi

2θ
i
t + pi

3)(Φ
−1
i (zi

t)− εi
t +Γi

t(ε
i
t −Φ−1

i (zi
t))

+)

and

yi
f (z, θi

t+1) = pi
1θ

i
t+1 +Φ−1

i (z)(pi
2θ

i
t+1 + pi

3).

If εi
t ≤Φ−1

i (z), so there are no unsatisfied customers, then θi
t+1 ≥ θi

t and, using the fact that demand

must be non-negative, the future desired order-up-to point, yi
f (z, θi

t+1), is bounded below by

pi
1θ

i
t +Φ−1

i (zi
t)(p

i
2θ

i
t + pi

3)≥ (pi
2θ

i
t + pi

3)(Φ
−1
i (zi

t)− εi
t),

where the right hand-side equals future inventory, xi
t+1, (in this case). If εi

t > Φ−1
i (z) then future

inventory, xi
t+1, is negative but, again using non-negativity of demand, the future desired order-

up-to point, yi
f (zi

f (∆∗), θi
t+1), is non-negative. Thus, in both cases, xi

t+1 ≤ yi
f (z, θi

t+1)

Now,

aiEθi
t+1 + biEθj

t+1 (46)

= ai(θi − (pi
2θ

i + pi
3)λ

ijS̃i(zi)+ (pj
2θ

j + pj
3)λ

jiS̃j(zj))

+bi(θj − (pj
2θ

j + pj
3)λ

jiS̃j(zj)+ (pi
2θ

i + pi
3)λ

ijS̃i(zi)) (47)

Fixing the opponents strategy at (zj, λij),

max
z≥y−1

i
(xi,θi)

0≤λji≤1

[
(pi

2θ
i + pi

3)L̃
i(z)− (pj

2θ
j + pj

3)A
i(λji)+ ripi

1θ
i +αE[V i(xi

t+1, x
j
t+1, θ

i
t+1, θ

j
t+1)]

]
= (pi

2θ
i + pi

3) max
z≥y−1

i (xi,θi)

[
L̃i(z)−αλijS̃i(zi)∆i∗

]
+ θi(ripi

1 +αai)

+(pj
2θ

j + pj
3) max

0≤λji≤1

[
−Ai(λji)+αλjiS̃j(zj)∆i∗

]
+αθjbi +αci

= (pi
2θ

i + pi
3) max

z≥y−1
i (xi,θi)

M i(z,λij)+ θi(ripi
1 +αai)+ (pj

2θ
j + pj

3) max
0≤λji≤1

Bi(λji, zj)+ θjαbi +αci

where

M i(z,λij) ∆= L̃i(z)−αλijS̃i(z)∆i∗
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and

Bi(λji, zj) ∆=−Ai(λji)+αλjiS̃j(zj)∆i∗.

However, zi
f (∆∗) = argmaxz≥w M i(z,λij

f (∆∗)) for w≤ y−1
i (xi, θi) and λji

f (∆∗) = argmax0≤λji≤1 Bi(λji, zj
f (∆∗)).

Therefore, (zi
f (∆∗), λji

f (∆∗)) is an optimal response to (zj
f (∆∗), λij

f (∆∗)). Q.E.D.
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Online Appendix - Not Intended for Print Publication
Establishment of Basis for Theorem 1

In the basis for induction, we need to show

• VT (x, θ,β) = aT θ + bT β + cT for x≤ yf (z∗T , θ) and is bounded above by VT (yf (z∗T , θ), θ, β) for

x > yf (z∗T , θ);

• z∗my ≤ z∗T ;

• 0≤ aT − bT ≤ aT+1− bT+1, aT ≤ aT+1, and bT ≤ bT+1.

However, the first and second bullets follow by arguments identical to those in the proof of Theo-

rem 1 with substitution of T for t.

Recall from Assumption 5,

aT+1 =
p2L̃(z∗my)+ rp1

(1−α)2
, (48)

bT+1 = αaT+1, and cT+1 = 0. (49)

So that,

aT+1− bT+1 = (1−α)aT+1.

Further,

mT = max
0≤z≤1

(L̃(z)−αS(z)(aT+1− bT+1))

aT = p2mT +αaT+1 + rp1

bT = max
0≤ρ≤1

(−C(ρ)+αρ(aT+1− bT+1))+αbT+1

cT = max
ν≥0

(αaT+1ν−K(ν))+ p3mT +αcT+1.

Then,

aT ≤ p2L̃(z∗my)+αaT+1 + rp1

=
(p2L̃(z∗my)+ rp1)((1−α)2 +α)

(1−α)2

= aT+1(1−α(1−α))

≤ aT+1

Using the non-negativity of C(·) and then ρ≤ 1,

bT ≤ αaT+1 = bT+1.

Substituting ρ = 0 as a lower bound,

bT ≥ αbT+1
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Further,

aT − bT ≤ p2L̃(z∗my)+ rp1 +α(aT+1− bT+1)

= (1−α)2aT+1 +α(1−α)aT+1

= (1−α)aT+1

= aT+1− bT+1.

Finally,

aT − bT ≥ p2L̃(z∗my)+ rp1−αp2S(z∗my)(aT+1− bT+1)+αaT+1

−(αρ∗T (aT+1− bT+1)+αbT+1)

= p2L̃(z∗my)+ rp1 +α(aT+1− bT+1)(1− ρ∗T − p2S(z∗my))

≥ 0.

Where the final inequality follows by Assumption 6. This has established the basis. Q.E.D.

Extension to the Proof of Theorem 1 When There is No Assumption on Initial
Inventory

Recall that y−1(x, θ) = Φ((x−p1θ)/(p2θ +p3)). We define a function h(x, θ) to be nonincreasing in

y−1(x, θ) if for every (x1, θ1) and (x2, θ2) such that y−1(x1, θ1)≤ y−1(x2, θ2) we have that h(x1, θ1)≥

h(x2, θ2). In lieu of the first inductive assumption for period t, 1≤ t≤ T − 1, assume:

• Vt+1(x, θ,β) = at+1θ + bt+1β + ct+1 + ht+1(x, θ), where ht+1(x, θ) = 0 for x≤ yf (z∗t+1, θ) and is

non-negative and nonincreasing in y−1(x, θ) (and is independent of β) for x > yf (z∗t+1, θ).

This is a slightly stronger condition that implies the original condition. Is is true for the basis (by

assumption) with hT+1(x, θ)≡ 0.

Consider the case where z∗t < y−1(xt, θt) (i.e., ordering up to z∗t is not feasible). Then, analogous

to in the proof of Theorem 1,

Vt(x, θ,β) = (p2θ + p3) max
z≥y−1(x,θ)

(ft(z)+E[ht+1(xt+1, θt+1)])+ θ(rp1 +αat+1)+

β max
0≤ρ≤1

(−C(ρ)+α(ρt(at+1− bt+1)+ bt+1))+αct+1 +max
ν≥0

(αat+1ν−K(ν)).

If suffices to show that E[ht+1(xt+1, θt+1)] is nonincreasing in the decision z. Then the concave

nature of ft(z) implies that ft(z)+E[ht+1(xt+1, θt+1)] is minimized at y−1(x, θ) (and hence ordering

nothing when above the desired base-stock is optimal). Further, define

ht(x, θ) = ft(y−1(x, θ))− ft(z∗t )+E[ht+1(xt+1, θt+1)],

where (xt+1, θt+1) are determined by ordering up to y−1(x, θ). Then Vt(x, θ,β) = atθ + btβ + ct +

ht(x, θ). By combining the above with the previous analysis in the proof of Theorem 1 in the
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appendix, ht(x, θ) = 0 for x ≤ yf (z∗t , θ). Further, it is clearly non-negative, independent of βt,

and nonincreasing in y−1(x, θ) (if we have shown that E[ht+1(xt+1, θt+1)] is nonincreasing in z =

y−1(x, θ)) for x > yf (z∗t , θ).

Thus it remains to show that E[ht+1(xt+1, θt+1)] is indeed nonincreasing in the decision zt. Fix the

demand realization εt. If we can show for every realization of εt that y−1(xt+1, θt+1) is nondecreasing

in zt then, since ht+1(x, θ) is nonincreasing in y−1(x, θ) (by the inductive assumption), we have

that E[ht+1(xt+1, θt+1)] is nonincreasing in zt. Recall that:

xt+1 = (p2θt + p3)(Φ−1(zt)− εt +Γt(εt −Φ−1(zt))+)

θt+1 = θt − (p2θt + p3)ΛtΓt(εt −Φ−1(zt))+ +Rt(ρt)βt +Ut(νt).

Then

y−1(xt+1, θt+1)

= Φ
(

xt+1− p1θt+1

p2θt+1 + p3

)
= Φ

(
(p2θt + p3)(Φ−1(zt)− εt +Γt(εt −Φ−1(zt))+(1− p1Λt))− p1(θt +Rt(ρt)βt +Ut(νt))

p2(θt − (p2θt + p3)ΛtΓt(εt −Φ−1(zt))+ +Rt(ρt)βt +Ut(νt))+ p3

)
.

If (εt−Φ−1(zt))+ = 0 then this is clearly increasing in zt (locally). Now suppose (εt−Φ−1(zt))+ > 0,

then

y−1(xt+1, θt+1) = Φ
(

(p2θt + p3)(Φ−1(zt)− εt)(1−Γt(1− p1Λt))− p1(θt +Rt(ρt)βt +Ut(νt))
(p2θt + p3)(Φ−1(zt)− εt)p2ΛtΓt + p2(θt +Rt(ρt)βt +Ut(νt))+ p3

)
.

Dividing through by (Φ−1(zt) − εt) we can see that the numerator is increasing in zt and the

denominator decreasing in zt making the whole increasing in zt. As the function is continuous at

εt = Φ−1(zt), the proof is complete. Q.E.D.

Proof of Lemma 1

By the definition of ρf (∆),

C(ρf (∆))−α∆ρf (∆)≤ C(ρ)−α∆ρ|ρ=0 = 0.

Using S(·)≥ 0 and the definition of z∗my as the maximizer of L̃(·),

T (∆)≤ p2L̃(z∗my)+ rp1 +α∆MAX ,

where ∆MAX is some upper bound on ∆. Thus, if a fixed point exists, ∆∗ = T (∆∗) and

∆∗ ≤ p2L̃(z∗my)+ rp1 +α∆MAX .
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Thus we can let

∆MAX =
p2L̃(z∗my)+ rp1

(1−α)
∆= ∆max,

which yields, for any fixed point ∆∗, ∆∗ ≤∆max and we can restrict attention to ∆≤∆max. Now,

for ∆≥ 0,

zf (∆) = 1− h

r̃ +α∆γλ +h

≤ 1− h

r̃ +α∆maxγλ +h
= zmax.

Further, for 0 < ∆≤∆max,

ρf (∆) = C
′−1 (α∆)

≤ C
′−1 (α∆max) = ρmax.

If ∆≤ 0 (which will actually be shown to be excluded) then zf (∆)≤ z∗my ≤ zmax and ρf (∆) = 0≤

ρmax.

For ∆≥ 0,
dzf (∆)

d∆
=

hαλγ

(r̃ +αλγ∆+h)2
> 0

and for 0 < ρf (∆) < 1, by the inverse function theorem,

dρf (∆)
d∆

=
α

C ′′(ρf (∆))
> 0.

Thus, both zf (∆) and ρf (∆) are nondecreasing in ∆ and hence zf (∆)≥ z∗my for ∆≥ 0. Further,

dT (∆)
d∆

= p2

d

dz

[
L̃(z)−α∆S(z)

]∣∣∣∣
z=zf (∆)

dzf (∆)
d∆

+
d

dρ
[C(ρ)−α∆ρ]

∣∣∣∣
ρ=ρf (∆)

dρf (∆)
d∆

+α(1− p2S(zf (∆))− ρf (∆))

= α(1− p2S(zf (∆))− ρf (∆))≥ α(1− p2S(z∗my)− ρmax)≥ 0

where the equality follows since d
dz

[
L̃(z)−α∆S(z)

]∣∣∣
z=zf (∆)

= 0 and, by the strict convexity of C(·),

either d
dρ

[C(ρ)−α∆ρ]
∣∣∣
ρ=ρf (∆)

= 0 or dρf (∆)

d∆
= 0. Thus 0≤ dT (∆)

d∆
< 1 and hence T (·) is a contraction

mapping with a unique fixed point ∆∗. Further, T (0) = p2L̃(z∗my) + rp1 > 0 and dT (∆)

d∆
≥ 0 implies

that ∆∗ > 0. Q.E.D.

Proof of Proposition 1

Define G(∆∗) = ∆∗ − T (∆∗). In preparation for applying the implicit function theorem, let us

differentiate G:

∂

∂∆∗G(∆∗) = 1− p2

∂

∂z

[
L̃(z)−α∆∗S(z)

]∣∣∣∣
z=zf (∆∗)

∂zf (∆∗)
∂∆∗ − ∂

∂ρ
[C(ρ)−α∆∗ρ]

∣∣∣∣
ρ=ρf (∆∗)

∂ρf (∆∗)
∂∆∗
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−α(1− p2S(zf (∆∗))− ρf (∆∗))

= 1−α(1− p2S(zf (∆∗))− ρf (∆∗))≥ 0

− ∂

∂r
G(∆∗) =

∂

∂r
T (∆∗)

= p2

∂

∂z

[
L̃(z)−α∆∗S(z)

]∣∣∣∣
z=zf (∆∗)

∂zf (∆∗)
∂r

+ p1 + p2

∂

∂r
L̃(z)

= p1− p2(1−α(1− γ))E[(ε−Φ−1(zf (∆∗)))+]≥ 0 if p1 ≥ p2

− ∂

∂h
G(∆∗) =

∂

∂h
T (∆∗)

= p2

∂

∂z

[
L̃(z)−α∆∗S(z)

]∣∣∣∣
z=zf (∆∗)

∂zf (∆∗)
∂h

+ p2

∂

∂h
L̃(z)

= −p2E[(Φ−1(zf (∆∗))− ε)+]≤ 0

− ∂

∂γ
G(∆∗) =

∂

∂γ
T (∆∗)

= p2

∂

∂z

[
L̃(z)−α∆∗S(z)

]∣∣∣∣
z=zf (∆∗)

∂zf (∆∗)
∂γ

+ p2

∂

∂γ
L̃(z)−αp2∆∗λE[(ε−Φ−1(zf (∆∗)))+]

= −αp2(∆∗λ+ r)E[(ε−Φ−1(zf (∆∗)))+]≤ 0

− ∂

∂λ
G(∆∗) =

∂

∂λ
T (∆∗)

= p2

∂

∂z

[
L̃(z)−α∆∗S(z)

]∣∣∣∣
z=zf (∆∗)

∂zf (∆∗)
∂λ

−αp2∆∗γE[(ε−Φ−1(zf (∆∗)))+]

= −αp2∆∗γE[(ε−Φ−1(zf (∆∗)))+]≤ 0

− ∂

∂α
G(∆∗) =

∂

∂α
T (∆∗)

= p2

∂

∂z

[
L̃(z)−α∆∗S(z)

]∣∣∣∣
z=zf (∆∗)

∂zf (∆∗)
∂α

+
∂

∂ρ
[C(ρ)−α∆∗ρ]

∣∣∣∣
ρ=ρf (∆∗)

∂ρf (∆∗)
∂α

+p2

∂

∂α
L̃(z)+∆∗(1− p2S(zf (∆∗))− ρf (∆∗))

= rp2(1− γ)E[(ε−Φ−1(zf (∆∗)))+] +∆∗(1− p2S(zf (∆∗))− ρf (∆∗))

≥ rp2(1− γ)E[(ε−Φ−1(zf (∆∗)))+] +∆∗(1− p2S(zmy)− ρmax)≥ 0

Applying the implicit function theorem:

∂∆∗

∂r
=
−∂G

∂r
∂G

∂∆∗
≥ 0,

∂∆∗

∂h
=
−∂G

∂h
∂G

∂∆∗
≤ 0,

∂∆∗

∂γ
=
−∂G

∂γ

∂G
∂∆∗

≤ 0,
∂∆∗

∂λ
=
−∂G

∂λ
∂G

∂∆∗
≤ 0,

∂∆∗

∂α
=
−∂G

∂α
∂G

∂∆∗
≥ 0.

The optimal solution of the stocking level is:

zf (∆∗) = 1− h

r̃ +αλγ∆∗ +h

Define g(∆∗) = r̃ +α∆∗λγ +h

∂zf (∆∗)
∂∆∗ =

hαλγ

(g(∆∗))2
≥ 0

∂zf (∆∗)
∂r

=
h(1−α(1− γ))

(g(∆∗))2
+

hαλγ

(g(∆∗))2

∂∆∗

∂r
≥ 0
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∂zf (∆∗)
∂h

=
−r̃−α∆∗λγ−h+h

(g(∆∗))2
+

hαλγ

(g(∆∗))2

∂∆∗

∂h
≤ 0

∂zf (∆∗)
∂α

=
−hr(1− γ)+hλγ∆∗

(g(∆∗))2
+

hαλγ

(g(∆∗))2

∂∆∗

∂α
≥ 0,

where the final inequality follows from the sufficient condition in the theorem statement. The

optimal solution to the incentive decision is:

ρf (∆∗) = min(C ′−1(α∆∗),1).

Clearly, ρf (∆∗) may adopt the value of 1 or a lesser (positive) value. Taking the derivative of 1

with respect to various parameters will yield 0, so we will hereafter assume ρf (∆∗) = C ′−1(α∆∗)

for the remainder of this analysis.

∂ρf (∆∗)
∂∆∗ =

α

C ′′(ρf (∆∗))
≥ 0

∂ρf (∆∗)
∂r

=
α

C ′′(ρf (∆∗))
∂∆∗

∂r
≥ 0

∂ρf (∆∗)
∂h

=
α

C ′′(ρf (∆∗))
∂∆∗

∂h
≤ 0

∂ρf (∆∗)
∂γ

=
α

C ′′(ρf (∆∗))
∂∆∗

∂γ
≤ 0

∂ρf (∆∗)
∂λ

=
α

C ′′(ρf (∆∗))
∂∆∗

∂λ
≤ 0

∂ρf (∆∗)
∂α

=
∆∗

C ′′(ρf (∆∗))
+

α

C ′′(ρf (∆∗))
∂∆∗

∂α
≥ 0

Q.E.D.

Proof of Theorem 3

In the basis for induction, we will show (i 6= j)

• V i
T (xi, xj, θi, θj) = ai

T θi + bi
T θj + cT for xi ≤ yi

f (zi∗
T , θi) and is bounded above by

V i
T (yi

f (zi∗
T , θi), xj, θi, θj);

• zi∗
my ≤ zi∗

T ;

• 0≤ ai
T − bi

T ≤ ai
T+1− bi

T+1; and

• ai
T ≤ ai

T+1 and bi
T ≤ bi

T+1.

Now,

ai
T+1Eθi

T+1 + bi
T+1Eθj

T+1

= ai
T+1(θ

i
T − (pi

2θ
i
T + pi

3)S
i(zi)+ (pj

2θ
j
T + pj

3)S
j(zj))
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+bi
T+1(θ

j
T − (pj

2θ
j
T + pj

3)S
j(zj)+ (pi

2θ
i
T + pi

3)S
i(zi))

= ai
T+1θ

i
T − (pi

2θ
i
T + pi

3)S
i(zi)(ai

T+1− bi
T+1)+ bi

T+1θ
j
T +(pj

2θ
j
T + pj

3)S
j(zj)(ai

T+1− bi
T+1)

For period T ,

V i
T (xi, xj, θi, θj) = max

zi≥y−1(xi,θi)

[
(pi

2θ
i + pi

3)L̃i(zi)+ rpi
1θ

i +α(ai
T+1Eθi

T+1 + bi
T+1Eθj

T+1 + ci
T+1)

]
= max

zi≥y−1(xi,θi)

[
(pi

2θ
i + pi

3)(L̃i(zi)−αSi(zi)(ai
T+1− bi

T+1))+ (ai
T+1 + rp1)θi

+α(pj
2θ

j
T + pj

3)Sj(zj)(ai
T+1− bi

T+1)+αbi
T+1θ

j
T +αci

T+1

]
Thus V i

T (xi, xj, θi, θj) = ai
T θi + bi

T θj + ci
T for xi ≤ yi

f (zi∗
T , θi). For xi > yi

f (zi∗
T , θi), V i

T (xi, xj, θi, θj)≤

V i
T (yi

f (zi∗
T , θi), xj, θi, θj) = ai

T θi + bi
T θj + ci

T by the optimality of zi∗
T in the above.

We have immediately from assumption 10,

ai
T+1− bi

T+1 =
(pi

2L̃
i(zi∗

my)+ ripi
1)(1−α)

(1−α)2
≥ 0.

Thus, from its definition, zi∗
T ≥ zi∗

my. Further,

ai
T ≤ pi

2L̃
i(zi∗

my)+ ripi
1 +αai

T+1

=
(pi

2L̃
i(zi∗

my)+ ripi
1)((1−α)2 +α)

(1−α)2

= ai
T+1(1−α +α2)

≤ ai
T+1

From the recursive definitions,

bi
T ≤ α(ai

T+1− bi
T+1)+αbi

T+1 = αai
T+1 = bi

T+1

bi
T ≥ αbi

T+1

ai
T − bi

T ≤ pi
2L̃

i(zi∗
my)+ ripi

1 +α(ai
T+1− bi

T+1)

= pi
2L̃

i(zi∗
my)+ ripi

1 +α(1−α)ai
T+1

= (pi
2L̃

i(zi∗
my)+ ripi

1)
(

1+
α(1−α)
(1−α)2

)
=

pi
2L̃

i(zi∗
my)+ ripi

1

1−α
= ai

T+1− bi
T+1.

ai
T − bi

T ≥ pi
2L̃

i(zi∗
T )+ ripi

1−α(ai
T+1− bi

T+1)S
i(zi∗

T )+αai
T+1

−(α(ai
T+1− bi

T+1)p
j
2S

j(zj∗
T )+αbi

T+1)
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= pi
2L̃

i(zi∗
my)+ ripi

1 +α(ai
T+1− bi

T+1)(1− pi
2S

i(zi∗
my)− pj

2S
j(zj∗

my))

≥ 0.

from assumption 10. This has established the basis.

For period t, assume (i 6= j)

• V i
t+1(xi, xj, θi, θj) = ai

t+1θ
i + bi

t+1θ
j + ct+1 for xi ≤ yi

f (zi∗
t+1, θ

i) and is bounded above by

V i
t+1(yi

f (zi∗
t+1, θ

i), xj, θi, θj) for xi > yi
f (zi∗

t+1, θ
i) ;

• zi∗
my ≤ zi∗

t+1;

• 0≤ ai
t+1− bi

t+1 ≤ ai
t+2− bi

t+2; and

• ai
t+1 ≤ ai

t+2 and bi
t+1 ≤ bi

t+2.

Along any sample path

V i
t+1(x

i
t+1, x

j
t+1, θ

i
t+1, θ

j
t+1)

{
= ai

t+1θ
i
t+1 + bi

t+1θ
j
t+1 + ci

t+1 xi
t+1 ≤ yi

f (zi∗
t+1, θ

i
t+1)

≤ ai
t+1θ

i
t+1 + bi

t+1θ
j
t+1 + ci

t+1 xi
t+1 > yi

f (zi∗
t+1, θ

i
t+1)

For zi
t ≤ zi∗

t+1, V i
t+1(xi

t+1, x
j
t+1, θ

i
t+1, θ

j
t+1) = ai

t+1θ
i
t+1 +bi

t+1θ
j
t+1 +ci

t+1 if xi
t+1 ≤ yi

f (zi∗
t+1, θ

i
t+1). Which

is true due to the following reasoning. We have that,

xi
t+1 = (pi

2θ
i
t + pi

3)(Φ
−1
i (zi

t)− εi
t +Γi

t(ε
i
t −Φ−1

i (zi
t))

+)

and

yi
f (zi∗

t+1, θ
i
t+1) = pi

1θ
i
t+1 +Φ−1

i (zi∗
t+1)(p

i
2θ

i
t+1 + pi

3).

If εi
t ≤Φ−1

i (zi
t), so there are no unsatisfied customers, then θi

t+1 ≥ θi
t and, using the fact that demand

must be non-negative, the future desired order-up-to point, yi
f (zi∗

t+1, θ
i
t+1), is bounded below by

pi
1θ

i
t +Φ−1

i (zi
t)(p

i
2θ

i
t + pi

3)≥ (pi
2θ

i
t + pi

3)(Φ
−1
i (zi

t)− εi
t),

where the right hand-side equals future inventory, xi
t+1, (in this case). If εi

t > Φ−1(zi
t) then future

inventory, xi
t+1, is negative but, again using non-negativity of demand, the future desired order-

up-to point, yi
f (zi∗

t+1, θ
i
t+1), is non-negative. Thus, in both cases, xi

t+1 ≤ yi
f (zi∗

t+1, θ
i
t+1).

For zi
t > zi∗

t+1,

EV i
t+1(x

i
t+1, x

j
t+1, θ

i
t+1, θ

j
t+1)

≤ ai
t+1Eθi

t+1 + bi
t+1Eθj

t+1 + ci
t+1

= ai
t+1θ

i
t − (pi

2θ
i
t + pi

3)S
i(zi

t)(a
i
t+1− bi

t+1)+ bi
t+1θ

j
t +(pj

2θ
j
t + pj

3)S
j(zj

t )(a
i
t+1− bi

t+1)+ ci
t+1. (50)

Therefore,

L̃i(zi
t)+αEV i

t+1(x
i
t+1, x

j
t+1, θ

i
t+1, θ

j
t+1)
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≤ (pi
2θ

i
t + pi

3)f
i
t (z

i
t)+ (αai

t+1 + ripi
1)θ

i
t +α(pj

2θ
j
t + pj

3)S
j(zj

t )(a
i
t+1− bi

t+1)+αbi
t+1θ

j
t +αci

t+1,

where

f i
t (z) = L̃i(z)−αSi(z)(ai

t+1− bi
t+1).

By the induction assumption, argmaxz f i
t (z)≤ argmaxz f i

t+1(z) = zi∗
t+1, where the inequality follows

from the concavity of −Si(z) and L̃i(z) and the non-decreasing nature of ai
t− bi

t. Therefore, by the

concavity of f i
t (z), f i

t (zi
t)≤ f i

t (zi∗
t+1). Consequently, we can exclude consideration of zi

t > zi∗
t+1.

Therefore, applying the same logic as in (50),

V i
t (xi, xj, θi, θj) = (pi

2θ
i+pi

3) max
z≥y−1(xi,θi)

f i
t (z)+(αai

t+1+ripi
1)θ

i
t +α(pj

2θ
j
t +pj

3)S
j(zj

t )(a
i
t+1−bi

t+1)+αbi
t+1θ

j
t +αci

t+1.

Now,

zi∗
t = arg max

0≤zi≤1

{
L̃i(zi)−α(ai

t+1− bi
t+1)S

i(zi)
}

(51)

ai
t = pi

2L̃
i(zi∗)−αpi

2(a
i
t+1− bi

t+1)S
i(zi∗)+ ripi

1 +αai
t+1 (52)

bi
t = αpj

2(a
i
t+1− bi

t+1)S
j(zj∗)+αbi

t+1 (53)

ci
t = pi

3L̃
i(zi∗)−αpi

3(a
i
t+1− bi

t+1)S
i(zi∗)+αpj

3(a
i
t+1− bi

t+1)S
j(zj∗)+αci

t+1 (54)

ai
t = pi

2(max
z

(L̃i(z)−αSi(z)(ai
t+1− bi

t+1)))+αai
t+1 + ripi

1 (55)

= pi
2(L̃

i(zi∗
t )−αSi(zi∗

t )(ai
t+1− bi

t+1))+αai
t+1 + ripi

1 (56)

which is increasing in t since (1−Si(z))≥ 0 for all z and (ai
t+1− bi

t+1) is also increasing in t.

bi
t = αpj

2(a
i
t+1− bi

t+1)S
j(zj∗)+αbi

t+1 (57)

which is also increasing along similar reasoning to ai
t. Further,

ai
t − bi

t = pi
2L̃

i(zi∗
t )+α(ai

t+1− bi
t+1)(1− pi

2S
i(zi∗

t )− pj
2S

j(zj∗
t ))

≤ pi
2L̃

i(zi∗
t )+α(ai

t+2− bi
t+2)(1− pi

2S
i(zi∗

t )− pj
2S

j(zj∗
t ))

≤ pi
2L̃

i(zi∗
t+1)+α(ai

t+2− bi
t+2)(1− pi

2S
i(zi∗

t+1)− pj
2S

j(zj∗
t+1))

= ai
t+1− bi

t+1

where the first inequality arises via the induction assumption since 1 − pi
2S

i(zi∗
t ) − pj

2S
j(zj∗

t ) ≥

1− pi
2S

i(zi∗
my)− pj

2S
j(zj∗

my)≥ 0, and the second inequality arises by the definition of zi∗
t+1. Finally,

ai
t − bi

t ≥ 0 since 1− pi
2S

i(zi∗
t )− pj

2S
j(zj∗

t )≥ 0 as above. Q.E.D.
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Proof of Lemma 2

Begin by observing:

S̃i(z) = γiE[(εi −Φ−1
i (z))+]. (58)

∂S̃i(z)/∂z = −γi Pr(εi > Φ−1
i (z))/φi(z) (59)

gi(∆i, λij) = r̃i +α∆iλijγi +hi (60)

∂gi(∆i, λij)/∂λij = α∆iγi (61)

∂gi(∆i, λij)/∂∆i = αλijγi (62)

Define

z̃i
f (∆i, λij) = 1− hi

gi(∆i, λij)
.

So that, for fixed ∆i, z̃i
f (∆i, λij) is the z-response function. Then,

∂z̃i
f (∆i, λij)
∂∆i

=
hi∂gi(∆i, λij)/∂∆i

(gi(∆i, λij))2
=

hiαλijγi

(gi(∆i, λij))2
> 0

and
∂z̃i

f (∆i, λij)
∂λij

=
hi∂gi(∆i, λij)/∂λij

(gi(∆i, λij))2
=

hiα∆iγi

(gi(∆i, λij))2
> 0.

Define

λ̃ij
f (∆j, zi) = A

′−1
j

(
α∆jS̃i(zi)

)
.

Then, for fixed ∆j, λ̃ij
f (∆j, zi) is the λij-response function, if this response is less than one. From

the inverse function theorem,
∂λ̃ij

f (∆j, zi)
∂∆j

=
αS̃i(zi)

A′′
j (λ̃

ij
f (∆j, zi))

and
∂λ̃ij

f (∆j, zi)
∂zi

=
α∆j

A′′
j (λ̃

ij
f (∆j, zi))

∂S̃i(zi)
∂zi

=
−α∆jγi Pr(εi > Φ−1

i (z))
A′′

j (λ̃
ij
f (∆j, zi))φi(zi)

< 0.

As the partial derivatives of the response functions are of opposite signs there exists a unique

solution to equations (40) - (41). Q.E.D.

Proof of Lemma 3

We wish to find bounds on:

T i(∆) = pi
2(L̃

i(zi
f (∆))−α∆iλij

f (∆)S̃i(zi
f (∆)))+ripi

1+α∆i+pj
2(A

i(λji
f (∆))−α∆iλji

f (∆)S̃j(zj
f (∆))).

Note that, by definition of λji
f (∆),

Ai(λji
f (∆))−α∆iλji

f (∆)S̃j(zf
j(∆))
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≤ Ai(λji)−α∆iλjiS̃j(zf
j(∆))

∣∣∣
λji=0

= −α∆iS̃j(zf
j(∆))

Using λij
f (∆), S̃i(·), S̃j(·)≥ 0 and the definition of zi

my,

T i(∆)≤ pi
2L̃

i(zi
my)+ ripi

1 +α∆i ≤ pi
2L̃

i(zi
my)+ ripi

1 +α∆i
max

where ∆i
max is an upper bound on ∆i. Thus,

∆i
max ≤ pi

2L̃
i(zi

my)+ ripi
1 +α∆i

max

or we can let

∆i
max =

pi
2L̃

i(zi
my)+ ripi

1

1−α
.

Now

zf
i(∆) = 1− hi

r̃i +α∆iγiλij
f (∆)+hi

≤ 1− hi

r̃i +α∆i
maxγ

i +hi
.

Then, for

zi
max = 1− hi

r̃i +α∆i
maxγ

i +hi
,

zf
i(∆)≤ zi

max. Now,

λij
f (∆) = min

(
A
′−1
j

(
α∆jS̃i(zf

i(∆))
)

,1
)

≤ min
(
A
′−1
j

(
α∆j

maxS̃
i(zi

my)
)

,1
)

= λij
max

T i(∆) = pi
2(L̃

i(zf
i(∆))−α∆iλij

f (∆)S̃i(zf
i(∆)))+ ripi

1 +α∆i

+pj
2(A

i(λji
f (∆))−α∆iλji

f (∆)S̃j(zf
j(∆)))

≥ pi
2(L̃

i(zi
my)−α∆iλij

f (∆)S̃i(zi
my))+ ripi

1 +α∆i

+pj
2(A

i(λji
f (∆))−α∆iλji

f (∆)S̃j(zf
j(∆)))

≥ pi
2(L̃

i(zi
my)−α∆iλij

max)S̃
i(zi

my))+ ripi
1 +α∆i −αpj

2∆
iλji

maxS̃
j(zj

my)

= pi
2L̃

i(zi
my)+ ripi

1 +α∆i(1− pi
2λ

ij
maxS̃

i(zi
my)− pj

2λ
ji
maxS̃

j(zj
my))

Thus if 1− pi
2λ

ij
maxS̃

i(zi
my)− pj

2λ
ji
maxS̃

j(zj
my)≥ 0 then let

∆i
min =

pi
2L̃

i(zi
my)+ ripi

1

1− pi
2λ

ij
maxS̃i(zi

my)− pj
2λ

ji
maxS̃j(zj

my)
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else let ∆i
min = 0. Then,

λij
f (∆) = min

(
A
′−1
j

(
α∆jS̃i(zf

i(∆))
)

,1
)

≥ min
(
A
′−1
j

(
α∆j

minS̃i(zi
max)

)
,1
)

= λij
min

Q.E.D.

Lemma 5. Define,

ni(∆) = A′′
j (λ

ij
f (∆))φi(zi

f (∆))(gi(∆i, λij
f (∆)))2 +hiα2∆i∆j(γi)2 Pr(εi > Φ−1

i (zi
f (∆))),

then

∂λij
f (∆)
∂∆i

=
−hiα2∆j(γi)2λij

f (∆)Pr(εi > Φ−1
i (zi

f (∆)))
ni(∆)

< 0 (63)

∂λij
f (∆)
∂∆j

=
αSi(zi

f (∆))φi(zi
f (∆))(gi(∆i, λij

f (∆)))2

ni(∆)
> 0 (64)

∂zi
f (∆)
∂∆i

=
hiαγiλij

f (∆)A′′
j (λ

ij
f (∆))

ni(∆)
> 0 (65)

∂zi
f (∆)
∂∆j

=
α2hi∆iγiSi(zi

f (∆))A′′
j (λ

ij
f (∆))

ni(∆)
> 0 (66)

Further,

∂

∂∆i
T i(∆) = α(1− pi

2λ
ij
f (∆)Si(zi

f (∆))− pj
2λ

ji
f (∆)Sj(zj

f (∆))) (67)

+
pi

2h
iα3∆i∆j(γi)2Si(zj

f (∆))λij
f (∆)Pr(εi > Φ−1

i (zi
f (∆)))

ni(∆)

+
pi

2h
jα3∆i∆jγjλji

f (∆)γiSj(zj
f (∆))Pr(εj > Φ−1

j (zj
f (∆)))A′′

i (λ
ji
f (∆))

nj(∆)
∂

∂∆j
T i(∆) =

−α2pi
2∆iSi(zi

f (∆))2φi(zi
f (∆))(gi(∆i, λij

f (∆)))2

ni(∆)
(68)

+
α2pj

2h
j∆i(γj)2(λji

f (∆))2 Pr(εj > Φ−1
j (zj

f (∆)))A′′
i (λ

ji
f (∆))

nj(∆)
.

Proof of Lemma 5

Let us define:

G(∆i,∆j, λij) = λij −A
′−1
j

(
α∆jS̃i(z̃i

f (∆i, λij))
)

From the implicit function theorem

∂λij
f (∆)
∂∆i

=
− ∂G

∂∆i

∂G
∂λij

∣∣∣∣∣
λij=λ

ij
f

(∆)

.

We first compute the appropriate partials as follows.

∂

∂∆i
G(∆i,∆j, λij) =

−α∆j ∂S̃i(zi)

∂zi

∣∣∣
zi=z̃i

f
(∆i,λij)

∂z̃i
f (∆i,λij)

∂∆i

A′′
j (λ̃

ij
f (∆j, z̃i

f (∆i, λij)))
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=
hiα2∆j(γi)2λij Pr(εi > Φ−1

i (z̃i
f (∆i, λij)))

A′′
j (λ̃

ij
f (∆j, z̃i

f (∆i, λij)))φi(z̃i
f (∆i, λij))(gi(∆i, λij))2

∂

∂∆j
G(∆i,∆j, λij) =

−αS̃i(z̃i
f (∆i, λij))

A′′
j (λ̃

ij
f (∆j, z̃i

f (∆i, λij)))

∂

∂λij
G(∆i,∆j, λij) = 1−

α∆j ∂S̃i(zi)

∂zi

∣∣∣
zi=z̃i

f
(∆i,λij)

∂z̃i
f (∆i,λij)

∂λij

A′′
j (λ̃

ij
f (∆j, z̃i

f (∆i, λij)))

= 1+
hiα2∆i∆j(γi)2 Pr(εi > Φ−1

i (z̃i
f (∆i, λij)))

A′′
j (λ̃

ij
f (∆j, z̃i

f (∆i, λij)))φi(z̃i
f (∆i, λij))(gi(∆i, λij))2

Thus

∂λij
f (∆)
∂∆i

=
− ∂G

∂∆i

∂G
∂λij

∣∣∣∣∣
λij=λ

ij
f

(∆)

=
−hiα2∆j(γi)2λij Pr(εi > Φ−1

i (z̃i
f (∆i, λij)))

A′′
j (λ̃

ij
f (∆j, z̃i

f (∆i, λij)))φi(z̃i
f (∆i, λij))(gi(∆i, λij))2 +hiα2∆i∆j(γi)2 Pr(εi > Φ−1

i (z̃i
f (∆i, λij)))

∣∣∣∣∣
λij=λ

ij
f

(∆)

=
−hiα2∆j(γi)2λij

f (∆)Pr(εi > Φ−1
i (zf

i(∆)))

A′′
j (λ

ij
f (∆))φi(zf

i(∆))(gi(∆i, λij
f (∆)))2 +hiα2∆i∆j(γi)2 Pr(εi > Φ−1

i (zf
i(∆)))

and

∂λij
f (∆)
∂∆j

=
− ∂G

∂∆j

∂G
∂λij

∣∣∣∣∣
λij=λ

ij
f

(∆)

=
αS̃i(z̃i

f (∆i, λij))φi(z̃i
f (∆i, λij))(gi(∆i, λij))2

A′′
j (λ̃

ij
f (∆j, z̃i

f (∆i, λij)))φi(z̃i
f (∆i, λij))(gi(∆i, λij))2 +hiα2∆i∆j(γi)2 Pr(εi > Φ−1

i (z̃i
f (∆i, λij)))

∣∣∣∣∣
λij=λ

ij
f

(∆)

=
αS̃i(zf

i(∆))φi(zf
i(∆))(gi(∆i, λij

f (∆)))2

A′′
j (λ

ij
f (∆))φi(zf

i(∆))(gi(∆i, λij
f (∆)))2 +hiα2∆i∆j(γi)2 Pr(εi > Φ−1

i (zf
i(∆)))

Define:

H(∆i,∆j, zj) = zj − 1+
hj

gj(∆j, λ̃ji
f (∆i, zj))

where

λ̃ji
f (∆i, zj) = A

′−1
i

(
α∆iS̃j(zj)

)
.

From the implicit function theorem

∂zf
j(∆)

∂∆j
=
− ∂H

∂∆j

∂H
∂zj

∣∣∣∣∣
zj=zf

j(∆)

.
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We first compute the appropriate partials as follows. As previously, from the inverse function

theorem,
∂λ̃ji

f (∆i, zj)
∂∆i

=
αS̃j(zj)

A′′
i (λ̃

ji
f (∆i, zj))

and
∂λ̃ji

f (∆i, zj)
∂zj

=
α∆i

A′′
i (λ̃

ji
f (∆i, zj))

∂S̃j(zj)
∂zj

=
−α∆iγj Pr(εj > Φ−1

j (zj))

A′′
i (λ̃

ji
f (∆i, zj))

.

Recall,

gj(∆j, λji) = r̃j +α∆jλjiγj +hj,

so that,

∂

∂zj
gj(∆j, λ̃ji

f (∆i, zj)) = α∆jγj ∂

∂zj
λ̃ji

f (∆i, zj)

=
−α2∆i∆j(γj)2 Pr(εj > Φ−1

j (zj))

A′′
i (λ̃

ji
f (∆i, zj))

∂

∂∆i
gj(∆j, λ̃ji

f (∆i, zj)) = α∆jγj ∂

∂∆i
λ̃ji

f (∆i, zj)

=
α2∆jγjS̃j(zj)
A′′

i (λ̃
ji
f (∆i, zj))

∂

∂∆j
gj(∆j, λ̃ji

f (∆i, zj)) = αγjλ̃ji
f (∆i, zj)

Thus,

∂

∂zj
H(∆i,∆j, zj) = 1−

hj∂gj(∆j, λ̃ji
f (∆i, zj))/∂zj

(gj(∆j, λ̃ji
f (∆i, zj)))2

= 1+
α2hj∆i∆j(γj)2 Pr(εj > Φ−1

j (zj))

A′′
i (λ̃

ji
f (∆i, zj))φj(z̃

j
f (∆j, λ̃ji

f (∆i, zj)))(gj(∆j, λ̃ji
f (∆i, zj)))2

∂

∂∆j
H(∆i,∆j, zj) =

−hj∂gj(∆j, λ̃ji
f (∆i, zj))/∂∆j

(gj(∆j, λ̃ji
f (∆i, zj)))2

=
−hjαγjλ̃ji

f (∆i, zj)

φj(z̃
j
f (∆j, λ̃ji

f (∆i, zj)))(gj(∆j, λ̃ji
f (∆i, zj)))2

∂

∂∆i
H(∆i,∆j, zj) =

−hj∂gj(∆j, λ̃ji
f (∆i, zj))/∂∆i

(gj(∆j, λ̃ji
f (∆i, zj)))2

=
−α2hj∆jγjS̃j(zj)

A′′
i (λ̃

ji
f (∆i, zj))φj(z̃

j
f (∆j, λ̃ji

f (∆i, zj)))(gj(∆j, λ̃ji
f (∆i, zj)))2

∂zf
j(∆)

∂∆j

=
− ∂H

∂∆j

∂H
∂zj

∣∣∣∣∣
zj=zf

j(∆)
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=
hjαγjλ̃ji

f (∆i, zj)A′′
i (λ̃

ji
f (∆i, zj))

A′′
i (λ̃

ji
f (∆i, zj))φj(z̃

j
f (∆j, λ̃ji

f (∆i, zj)))gj(∆j, λ̃ji
f (∆i, zj)))2 +α2hj∆i∆j(γj)2 Pr(εj > Φ−1

j (zj))

∣∣∣∣∣
zj=zf

j(∆)

=
hjαγjλji

f (∆)A′′
i (λ

ji
f (∆))

A′′
i (λ

ji
f (∆))φj(zf

j(∆)gj(∆j, λji
f (∆)))2 +α2hj∆i∆j(γj)2 Pr(εj > Φ−1

j (zf
j(∆)))

∂zf
j(∆)

∂∆i

=
− ∂H

∂∆i

∂H
∂zj

∣∣∣∣∣
zj=zf

j(∆)

=
α2hj∆jγjS̃j(zj)A′′

i (λ̃
ji
f (∆i, zj))

A′′
i (λ̃

ji
f (∆i, zj))φj(z̃

j
f (∆j, λ̃ji

f (∆i, zj)))gj(∆j, λ̃ji
f (∆i, zj)))2 +α2hj∆i∆j(γj)2 Pr(εj > Φ−1

j (zj))

∣∣∣∣∣
zj=zf

j(∆)

=
α2hj∆jγjS̃j(zf

j(∆))A′′
i (λ

ji
f (∆))

A′′
i (λ

ji
f (∆))φj(zf

j(∆))(gj(∆j, λji
f (∆)))2 +α2hj∆i∆j(γj)2 Pr(εj > Φ−1

j (zf
j(∆)))

Now,

∂

∂∆i
T i(∆)

= pi
2

∂

∂zi

[
L̃i(zi)−α∆iλij

f (∆)S̃i(zi)
]∣∣∣∣

zi=zf
i(∆)

∂zf
i(∆)

∂∆i

+pj
2

∂

∂λji

[
Ai(λji)−α∆iλjiS̃j(zf

i(∆))
]∣∣∣∣

λji=λ
ji
f

(∆)

∂λji
f (∆)
∂∆i

+α(1− pi
2λ

ij
f (∆)S̃i(zf

i(∆))− pj
2λ

ji
f (∆)S̃j(zf

j(∆)))

−αpi
2∆

iS̃i(zf
i(∆))

∂λij
f (∆)
∂∆i

−αpi
2∆

iλji
f (∆)

∂S̃j(zf
j(∆))

∂∆i

= α(1− pi
2λ

ij
f (∆)S̃i(zf

i(∆))− pj
2λ

ji
f (∆)S̃j(zf

j(∆)))−αpi
2∆

iS̃i(zf
i(∆))

∂λij
f (∆)
∂∆i

+αpi
2∆

iλji
f (∆)γi Pr(εj > zf

j(∆)))
∂zf

j(∆)
∂∆i

= α(1− pi
2λ

ij
f (∆)S̃i(zf

i(∆))− pj
2λ

ji
f (∆)S̃j(zf

j(∆)))

+
pi

2h
iα3∆i∆j(γi)2S̃i(zf

j(∆))λij
f (∆)Pr(εi > Φ−1

i (zf
i(∆)))

A′′
j (λ

ij
f (∆))φi(zf

i(∆))(gi(∆i, λij
f (∆)))2 +hiα2∆i∆j(γi)2 Pr(εi > Φ−1

i (zf
i(∆)))

+
pi

2h
jα3∆i∆jγjλji

f (∆)γiS̃j(zf
j(∆))Pr(εj > Φ−1

j (zf
j(∆)))A′′

i (λ
ji
f (∆))

A′′
i (λ

ji
f (∆))φj(zf

j(∆))(gj(∆j, λji
f (∆)))2 +α2hj∆i∆j(γj)2 Pr(εj > Φ−1

j (zf
j(∆)))

Thus, ∂
∂∆i T

i(∆)≥ 0.

∂

∂∆j
T i(∆)

= pi
2

∂

∂zi

[
L̃i(zi)−α∆iλij

f (∆)S̃i(zi)
]∣∣∣∣

zi=zf
i(∆)

∂zf
i(∆)

∂∆j

+ pj
2

∂

∂λji

[
Ai(λji)−α∆iλjiS̃j(zf

i(∆))
]∣∣∣∣

λji=λ
ji
f

(∆)

∂λji
f (∆)
∂∆j
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−αpi
2∆

iS̃i(zf
j(∆))

∂λij
f (∆)
∂∆j

−αpj
2∆

iλji
f (∆)

∂S̃j(zf
j(∆))

∂∆j

= −αpi
2∆

iS̃i(zf
j(∆))

∂λij
f (∆)
∂∆j

+αpj
2∆

iλji
f (∆)γj Pr(εj > zf

j(∆))
∂zf

j(∆)
∂∆j

=
−α2pi

2∆i(S̃i(zf
i(∆)))2φi(zf

i(∆))(gi(∆i, λij
f (∆)))2

A′′
j (λ

ij
f (∆))φi(zf

i(∆))(gi(∆i, λij
f (∆)))2 +hiα2∆i∆j(γi)2 Pr(εi > Φ−1

i (zf
i(∆)))

+
α2pj

2h
j∆i(γj)2(λji

f (∆))2 Pr(εj > Φ−1
j (zf

j(∆)))A′′
i (λ

ji
f (∆))

A′′
i (λ

ji
f (∆))φj(zf

j(∆)gj(∆j, λji
f (∆)))2 +α2hj∆i∆j(γj)2 Pr(εj > Φ−1

j (zf
j(∆)))

Substituting in ni(∆) and nj(∆) yields equations (67) and (68). Q.E.D.

Proof of Lemma 4

We wish to show: ∣∣∣∣ ∂

∂∆j
T i(∆)

∣∣∣∣< 1

which with | ∂
∂∆i T

j(∆)|< 1 are the conditions necessary for the model to be a contraction mapping4.

This follows immediatedly from assumption 13 and Lemma 5.

We now show the result under assumption 12. As the first term of ∂
∂∆j T i(∆) is negative and the

second is positive∣∣∣∣ ∂

∂∆j
T i(∆)

∣∣∣∣ ≤ max

(
α2pi

2∆i(S̃i(zf
i(∆)))2φi(zf

i(∆))(gi(∆i, λij
f (∆)))2

ni(∆)
,

α2pj
2h

j∆i(γj)2(λji
f (∆))2 Pr(εj > Φ−1

j (zf
j(∆)))A′′

i (λ
ji
f (∆))

nj(∆)

)
Thus, it suffices to show that,

ni(∆)−α2pi
2∆

i(S̃i(zf
i(∆)))2φi(zf

i(∆))(gi(∆i, λij
f (∆)))2 > 0 (69)

and

nj(∆)−α2pj
2h

j∆i(γj)2(λji
f (∆))2 Pr(εj > Φ−1

j (zf
j(∆)))A′′

i (λ
ji
f (∆)) > 0 (70)

Recall,

ni(∆) = A′′
j (λ

ij
f (∆))φi(zf

i(∆))(gi(∆i, λij
f (∆)))2 +hiα2∆i∆j(γi)2 Pr(εi > Φ−1

i (zf
i(∆))),

Therefore, a sufficient condition for (69) is that

α2pi
2∆

i(S̃i(zf
i(∆)))2 < A′′

j (λ
ij
f (∆))

for any vector ∆. This is guaranteed by assumption 12. Two alternate sufficient conditions for (70)

are that

∆j > pj
2(λ

ji
f (∆))2A′′

i (λ
ji
f (∆))

4 These definitions collectively are identical to having a spectral radius less than 1 for our two player game.
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or

φj(zf
j(∆))(gj(∆j, λji

f (∆)))2 > α2pj
2h

j∆i(γj)2(λji
f (∆))2 Pr(εj > Φ−1

j (zf
j(∆))).

But

(gj(∆j, λji
f (∆)))2 ≥ 2hjα∆jγjλji

f (∆))

so for the latter condition it suffices to show

φj(zf
j(∆))2∆j > αpj

2∆
iγjλji

f (∆))Pr(εj > Φ−1
j (zf

j(∆))).

Assumption 12 guarantees this. Q.E.D.

Proof of Proposition 2

Taking the contraction mapping for firm i:

T i(∆) = pi
2(L̃

i(zi
f (∆))−α∆iλij

f (∆)S̃i(zi
f (∆)))+ripi

1+α∆i+pj
2(A

i(λji
f (∆))−α∆iλji

f (∆)S̃j(zj
f (∆)))

we can construct the function G(∆) = ∆i −T i(∆). From Lemma 5

∂zi
f (∆)
∂∆i

> 0,
∂zi

f (∆)
∂∆j

> 0,
∂zj

f (∆)
∂∆j

> 0,
∂zj

f (∆)
∂∆i

> 0,

∂λij
f (∆)
∂∆i

< 0,
∂λij

f (∆)
∂∆j

> 0,
∂λji

f (∆)
∂∆i

> 0,
∂λji

f (∆)
∂∆j

< 0.

which are used in multiple locations to establish the signs of various partial differentiations. We

differentiate G in preparation for applying the implicit function theorem.

∂

∂∆i
G(∆) = 1− pi

2

∂

∂zi

[
L̃(zi)−α∆iλij

f (∆)S̃i(z)
]∣∣∣∣

zi=zi
f
(∆)

∂zi
f (∆)
∂∆i

−pj
2

∂

∂λji

[
Ai(λji)−α∆iλjiS̃j(zj

f (∆))
]∣∣∣∣

λji=λ
ji
f

(∆)

∂λji
f (∆)
∂∆i

−α(1− pi
2λ

ij
f (∆)S̃i(zi

f (∆∗))− pj
2λ

ji
f (∆)S̃j(zj

f (∆)))

+ αpj
2∆

iλji
f (∆)

∂S̃j(zj
f (∆))

∂zj

∣∣∣∣∣
zj=z

j
f
(∆)

∂zj
f (∆)
∂∆i

+αpi
2∆

iS̃i(zi
f (∆))

∂λij
f (∆)
∂∆i

= 1−α(1− pi
2λ

ij
f (∆)S̃i(zi

f (∆∗))− pj
2λ

ji
f (∆)S̃j(zj

f (∆)))

+ αpj
2∆

iλji
f (∆)

∂S̃j(zj
f (∆))

∂zj

∣∣∣∣∣
zj=z

j
f
(∆)

∂zj
f (∆)
∂∆i

+αpi
2∆

iS̃i(zi
f (∆))

∂λij
f (∆)
∂∆i

= 1−α

(
1− pi

2λ
ij
f (∆)S̃i(zi

f (∆∗))

(
1−

hiα∆i∆j(γi)2 Pr(εi > Φ−1
i (zi

f (∆)))
ni(∆)

)

−pj
2λ

ji
f (∆)

(
S̃j(zj

f (∆))−∆i
∂S̃j(zj

f (∆))
∂∆i

))
≥ 0

which is true due to the condition in the Proposition statement.
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− ∂

∂ri
G(∆) =

∂

∂ri
T (∆)

= pi
2

∂

∂ri
L̃(zi

f (∆))+ pi
1−αpj

2∆
iλji

f (∆)
∂S̃j(zj

f (∆))
∂zj

∣∣∣∣∣
zj=z

j
f
(∆)

∂zj
f (∆)
∂ri

−αpi
2∆

iS̃i(zi
f (∆))

∂λij
f (∆)
∂ri

= −pi
2(1−α(1− γi))E[(εi − zi

f (∆))+] + pi
1 ≥ 0 if pi

1 ≥ pi
2 since

dzj
f

dri
=

dλij
f

dri
= 0

− ∂

∂rj
G(∆) =

∂

∂rj
T (∆)

= αpj
2∆

iλji
f (∆)γj Pr(εj > Φ−1

j (zj
f (∆)))

∂zj
f (∆)
∂rj

≥ 0

− ∂

∂hi
G(∆) =

∂

∂hi
T (∆) = pi

2

∂

∂hi
L̃i(zi

f (∆)) =−pi
2E[(zi

f (∆)− εi)+]≤ 0

− ∂

∂hj
G(∆) =

∂

∂hj
T (∆)

=
−αpj

2∆iλji
f (∆)γj Pr(εj > Φ−1

j (zj
f (∆)))(r̃j +α∆jλji

f (∆)γj)

φj(zi
f (∆))[gj(∆, λji

f (∆))]2
≤ 0

− ∂

∂γi
G(∆) =

∂

∂γi
T (∆)

= pi
2

∂

∂γi
L̃(zi

f (∆))−αpi
2∆

iE[(εi − zi
f (∆))+]λij

f (∆)

−pi
2α∆iS̃i(zi

f (∆))
∂λij

f (∆)
∂γi

= −ripi
2αE[(εi − zi

f (∆))+]−αpi
2∆

iE[(εi − zi
f (∆))+]λij

f (∆)

−
αpi

2∆iS̃i(zi
f (∆))α∆jE[(εi − zi

f (∆))+]

A′′
j (λ

ij
f (∆))

≤ 0

Applying the implicit function theorem:

∂∆i

∂ri
=
− ∂G

∂ri

∂G
∂∆i

≥ 0,
∂∆i

∂rj
=
− ∂G

∂rj

∂G
∂∆i

≥ 0,
∂∆i

∂hi
=
− ∂G

∂hi

∂G
∂∆i

≤ 0,
∂∆i

∂hj
=
− ∂G

∂hj

∂G
∂∆i

≤ 0,
∂∆i

∂γi
=
− ∂G

∂γi

∂G
∂∆i

≤ 0.

And similarly,

dzi
f (∆)
dri

=
hi(1−α(1− γi))

φi(zi
f (∆))[gi(∆, λij

f (∆))]2
+

∂zi
f (∆)
∂∆i

∂∆i

∂ri
≥ 0

dzi
f (∆)
drj

=
∂zi

f (∆)
∂∆i

∂∆i

∂rj
≥ 0 since

dzi

drj
= 0

dzi
f (∆)
dhi

=
−(r̃i +α∆iλij

f (∆)γi)

φi(zi
f (∆))[gi(∆, λij

f (∆))]2
+

∂zi
f (∆)
∂∆i

∂∆i

∂hi
≤ 0

dzi
f (∆)
dhj

=
∂zi

f (∆)
∂∆i

∂∆i

∂hj
≤ 0 since

dzi

dhj
= 0

dλji
f (∆)
dri

=
αS̃j(zj

f (∆))

A′′
i (λ

ji
f (∆))

∂∆i

∂ri
≥ 0

dλji
f (∆)
drj

=
αS̃j(zj

f (∆))

A′′
i (λ

ji
f (∆))

∂∆i

∂rj
≥ 0

dλji
f (∆)
dhi

=
αS̃j(zj

f (∆))

A′′
i (λ

ji
f (∆))

∂∆i

∂hi
≤ 0
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dλji
f (∆)
dhj

=
αS̃j(zj

f (∆))

A′′
i (λ

ji
f (∆))

∂∆i

∂hj
≤ 0

dλji
f (∆)
dγi

=
αS̃j(zj

f (∆))

A′′
i (λ

ji
f (∆))

∂∆i

∂γi
≥ 0

Q.E.D.


