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Executive Summary

Business Problem

We are going to let manager of each restaurant know how busy they will be tomorrow by this
business forecasting. The forecasted value would be used as a mental preparation of
manager.

Data
The data is provided from iCHEF. It was taking the form of invoice which includes restaurant 1
information of timestamp, items, and so on. And then, we make it into 2-column “mezsg*lign/gmpeople ’
data (demonstrated in the right side of this paragraph) with preprocessing. We are = 16713 4
measuring the daily number of people to forecast future number of people dine in  2016/7/14 49
the restaurant. Every restaurant has weekly tendency. Weekend has more 5812%2 igé
customer than weekday. Some of restaurants show a slight decrease of people.  2016/7/17 190
e : 2016/7/18 144
The others have no specific decrease or increase. 0167119 137
2016/7/20 123
2016/7/21 163

Forecasting Solution & Limitation

Time plot of series with future forecasts in restaurant 3 (90% interval)
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< Sample of one restaurant’s forecasting solution

® Forecasting Solution: The manager will receive the result of this forecast one day
ahead. They would have mental preparation for tomorrow, and prepare next day job
allocation with our forecasted value.

® Forecasting Limitation: The lack of data amount harms the accuracy of future
forecasting. Because of it, if we provide to manager “Under-forecasted value”, we might
let manager mishandle the job allocation.

Recommendation

To complete this project, we tried to choose the different number of days forecasting. We
found the performance of 2-day and 3-day ahead are not bad. Based on this result, we
recommend not to choose only 1-day ahead forecasting so that the manager can get the
forecast earlier. In addition, we highly recommend that iCHEF provides data on daily basis
for the suitability of forecasting.
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Detailed report

Problem description

Business goal: Let manager of each restaurant know how busy they will be tomorrow.
Description:

[ Client: manager of the restaurant

1 Stakeholders: iChef, Restaurants (owner, staff, customer)

[ Benefit: the manager would have mental preparation for tomorrow, and prepare next
day job arrangement with our forecasting result.

d Opportunity: some job could be done when the number of customer is low, so the
staff would provide more efficient service.

d Shortcoming: under-forecasting result might let staff unable to handle the job
arranged by manager.

What would be considered a success?

We set the same day number of customer last day as benchmark, if the forecasting
result is more accurate than it, we consider the result is a success forecast.

Forecasting goal: Forecasting the daily number of customers in each restaurant.
Description of forecasting object:

Number of Series: (5 restaurants) * (Daily # of dine-in customers) = 5 series
It is a forward-looking (prospective) task.

Forecasting horizon (k): one-day-ahead.

Time period (t): daily

Value of the series at time t (y¢): Daily number of dine-in customers in each
restaurant

How will the forecasts be used?

d The forecast will be used as a mental preparation of how busy will be tomorrow. On
top of knowing the approximate number of customer tomorrow, the manager can try
to arrange the job of the day.

Data description

Source: iCHEF

Measure: SUM(people), as. Date(timestamp)

Time period:

From 04/01/2016 to 10/31/2016: 2 restaurants - 7months

From 05/04/2016 to 10/31/2016: 1 restaurant - 6months

From 05/05/2016 to 10/31/2016: 1 restaurant - 6months

From 07/18/2016 to 10/31/2016: 1 restaurant - 3months and a half
(5 restaurants) * (Daily # of dine-in customers) = 5 series
Frequency of collecting data: Daily

Characteristic of the series:

d See all restaurants’ raw time series in appendix 1

[ Each of the series has weekly seasonality.

[ Some of the series have slightly downward trend. Some of them have no trend.



restaurant 1 restaurant 2 restaurant 3 restaurant 4 restaurant 5
timestamp  people timestamp  people timestamp  people timestamp  people timestamp  people
2016/7/12 6| 2016/4/11 105  2016/4/11 83| 2016/5/16 58| 2016/5/16 312
2016/7/13 40 2016/4/12 128|  2016/4/12 103|  2016/5/17 60| 2016/5/17 231
2016/7/14 49| 2016/4/13 115  2016/4/13 100] 2016/5/18 69| 2016/5/18 287
2016/7/15 151|  2016/4/14 119| 2016/4/14 64| 2016/5/19 74| 2016/5/19 276
2016/7/16 180| 2016/4/15 148|  2016/4/15 135  2016/5/20 100]  2016/5/20 310
2016/7/17 190  2016/4/16 196| 2016/4/16 194|  2016/5/21 201|  2016/5/21 408
2016/7/18 144|  2016/4/17 214|  2016/4/17 182|  2016/5/22 216  2016/5/22 411
2016/7/19 137|  2016/4/18 81| 2016/4/18 67| 2016/5/23 69  2016/5/23 288
2016/7/20 123|  2016/4/19 103|  2016/4/19 109  2016/5/24 591 2016/5124 222
2016/7/21 163]  2016/4/20 137  2016/4/20 1191 2016/5/25 66|  2016/5/25 212
<~ Sample of first ten rows for five series

Brief data preparation details

restaurants. Each raw stands for an item in one specific invoice.

nvoice_uuid

100026EA-B2E6-41C8-9A99-6C52E825FE4F
100026EA-B2E6-41C8-9A99-6C52E825FE4F
100026EA-B2E6-41C8-9A99-6C52E825FE4F
100026EA-B2E6-41C8-9A99-6C52E825FE4F
100026EA-B2E6-41C8-9A99-6C52E825FE4F
100026EA-B2E6-41C8-9A99-6C52E825FE4F
100026EA-B2E6-41C8-9A99-6C52E825FE4F
100037B7-5F4E-4196-867B-6D0890E03E8F

100037B7-5F4E-4196-867B-6D0890E03E8F

Description of raw data: This file contains all items in every invoices across five

“ | item_name item_uuid people type | outset  price timestamp timestamp restaurant_uuid
BE-IRHE 48a0422a-9bf0-4fe2-babe-768e6c6e239¢ 1 combo takeout 380 2016-06-1509:27:29.789692 2016-06-1509:27:29.789692 6dOebab3-edf8-4e04-a947-1973e76abl1f
- EHRRIE R 3090bcb2-16e9-4971-8087-b3f92ee6343d 1 combo takeout 220 2016-06-1509:27:29.789692 2016-06-1509:27:29.789692 6dOebab3-edf8-4e04-a947-1973e76abl1f
2-4EHIRE 5ebb6673-0086-4b8a-a052-cdb3424ee3c3 1 combo takeout 180 2016-06-1509:27:29.789692  2016-06-1509:27:29.789692 6d0ebab3-edf8-4e04-2947-1973e76ab11f
BE 6785d383-5a26-4133-ael1-1e9c1bd4462b 1 item  takeout 0 2016-06-15 09:27:29.789692  2016-06-15 09:27:29.789692 6dOebab3-edf8-4e04-a947-1973e76ab11f
BE-BAREAR 9ba372f0-038f-4b3b-afa-833abe6bdfed 1 combo takeout 360 2016-06-1509:27:29.789692  2016-06-15 09:27:29.789692 6dOebab3-edf8-4e04-a947-1973e76ab11f
F-RESE 57525b6c-4086-4bcl-afa4-aa3def92eabd 1 combo takeout 200 2016-06-1509:27:29.789692  2016-06-15 09:27:29.789692 6d0ebab3-edf8-4e04-a947-1973e76ab11f
BE-BASHKEE  76381357-b595-4836-a35a-013da575d847 1 combo takeout 400 2016-06-15 09:27:29.789692  2016-06-15 09:27:29.789692 6dOebab3-edf8-4e04-a947-1973e76ab11f
BRXEERE AR £703cbf4-5c90-4958-b6el-ald8aa97723f 2 combo indoor = 99 2016-05-13 13:44:20.797426  2016-05-13 13:44:20.797426 535b23c0-728f-4ced-8ad6-cBecd8ae379d
BES-1EE 88a36403-6c9b-4beb-b1b9-7ea40463061e 2 combo indoor = 320 2016-05-13 13:44:20.797426  2016-05-13 13:44:20.797426 535b23c0-728f-4ced-8ad6-c8ecd8ae379d

<>

Pre-process steps:

Sample of raw data file

d Step 1: Aggregate item-level data to invoice-level data, so that we can have
the data with each row representing for one invoice.

1 Step 2: Filter out only dine-in invoices and then separate to five data files by
restaurant. Each file includes all invoices in one restaurant.

1 Step 3: For each file, aggregate invoice-level data to daily-level.

[ Step 4: Because we find that there are “NEW opening days” for each series
(restaurant), we remove approximately one to two weeks.

[ Step 5: We find some missing values in our series. We impute those missing

values with last week value.
Forecasting solution

Evaluation: MAE, MAPE, RMSE
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The purpose of this forecast is to let the manager know the approximate number of
customer tomorrow, so that he/she can know how busy they will be for the next day.
Thus, the manager will receive the result of this forecast as an interval. Also, the more
precise the forecast is, the better result it will be. The evaluation of models, therefore,
will be the metrics (hamely MAE, RMSE, MAPE).
Methods applied and evaluation:

d Benchmark: Seasonal Naive

[ All of the forecast are conducted using software R and Excel.

1 See the chart of all restaurants’ evaluation in appendix 2
Model building:
See each model we try in all restaurants comparing with seasonal naive in appendix 3.
All restaurants have a brief description about how each model perform and what model
we choose in the end.
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Time plot of series with future forecasts for each of the 5 series

Since the last data point in our data is October 31, 2016 for all five series, we provide one-

day ahead future forecast (November 1, 2016) in appendix 4. We also provide 90% prediction

interval with point forecasts, and we use empirical way to compute our prediction interval.

The 90% prediction interval is conducted by using the 5th and 95th percentiles from the

forecast errors within validation periods.

Conclusions

® Advantages:

Help managers to better arrange daily job to staff.

® Limitations:

4 The longest time period in our data is only seven-month, which makes us hard to
know if there are yearly seasonality or not.
[ For now, the forecast will be less valuable since the size of people is too small and

the range forecast error is wide due to the small amount of data. Take restaurant 4
for example, the forecast interval of future is (0,75) with the 90% CI (-32, +44);
however, the number of people in weekday is about 30-70 in average. Thus, it seems
that it doesn’t benefit much by doing this analysis now. We think the key reason is
that the distribution of error in validation period is not stable enough now. More data
should be added to let the prediction interval smaller so that the forecasting result
would be more accurate. As the result, the distribution of error in validation period
would become more stable since we could collect more data and error in the future.

® Recommendations:

4 For the client:

We had done 7 days ahead forecast for one restaurant. We found the performance of 2 and

3 three days ahead is not so bad. As the result, we can try 3 or more days ahead forecast in

the future. The client can get the data earlier, so its forecast result might be more valuable.
1 For the people who want to continue developing this forecast:

We tried one external information(weekday/weekend) in our forecasting model, but it only
one restaurant performs well. It can be added more external information so that the
forecasting result would be better.

[ For data collecting frequency:
In this project, we assume that we could get data daily compare to the situation now that we
have three-month delay to get data. Take the plot below for example, if we want to forecast
tomorrow, it would be more suitable to use today’s data than use 3 months ago data.
Therefore, we highly recommend that iCHEF could provide data on daily basis.

3 months ago Today Tomorrow

<~  Data collecting frequency
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Appendix

1. All restaurants’ raw time series
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The trend of sum of people for timestamp Day broken down by restaurant_uuid. The view is filtered on restaurant_uuid, which keeps restaurant 5,
restaurant 1, restaurant 3, restaurant 4 and restaurant 2.

2. All restaurants’ evaluation

Restaurant Split Evaluation SNaive Smoothing Regression NeuralNetwork  Ensemble
1|Training MAE 17.33803  13.80804 13.79573 13.73271 13.46329478
Edison RMSE 23.92741 18.84266 19.15401 18.15823 18.61714
MAPE 17.0555 14.0667 14.11471 13.7287 13.83849564
Valid MAE 16.14286  12.71003 10.53106 16.58203 11.27310794
RMSE 25.72103 17.44983 16.13065 22.07386 16.22562037
MAPE 17.43884 13.87509 10.42628 18.5624 11.87447964
2|Training MAE 2550296  19.21825 19.49779 2.279964 10.28832
Celia RMSE 32.03511 24.24228 2491885 3.198848 13.19963
MAPE 33.4718364 29.677394 30.33776433 4.802939099 16.88788197
Valid MAE 25.57143 19.98456 19.58672 23.97424 20.85494
RMSE 33.90112  22.18147 22.85296 28.60689 23.71199
MAPE 28.7794  22.75178 21.3125 30.27472 25.21227
3|Training MAE 26.39506173 23.97259 30.41537 12.13355 18.20785|
RMSE 34.82212 32.141 38.52742 15.5222 23.89107
Lia MAPE 23.51152 21.1508 26.33493 11.27261 15.00124
Valid MAE 31.9111715 41.5032 46.56517 31.07775 31.91662865)
RMSE 51.97561  50.31712 51.37403 38.95223 42.68426/
MAPE 35.86899 46.2614 43.83687 35.58824 28.36294)
4|Training MAE 28.53 21.03 19.73 12.52 17.3
RMSE 72.81 52.04 50.05 28.67 42.41
Web MAPE 32.85 27.51 24.28 17.01 22.4
Valid MAE 36.64 25.3 21.86 38.39 25.97
RMSE 103.38 66.03 62.64 98.5 67.76
MAPE 84.89 41.96 37.64 100.2 55.56
5|Training MAE 53.53636 25.743842 39.6224 4.131969 24.25
RMSE 75.76369 18.4267 56.10384 5.848232 41.88
MAPE 2536274 24.102744 32.94861 2.699733 18.17
Jack Valid MAE 51.53571 32.52478 47.55487 79.570422 35.84
RMSE 86.81569  26.57346 78.2443 63.30349 28.32
MAPE 32.20483  28.42743 46.5784 68.978873 41.34




3. Model building

e Restaurant 1:

In addition to evaluation metrics, we can have more clear understanding from both
time plots and histogram of error distribution. Therefore, from the following five histograms,
we find that all of our five models for restaurant 1 have higher probability to be over-forecast.

According to time plot of residuals for smoothing method, the forecast errors seem to
be more stable than other methods. (However, we don’t select this for our best model due to
evaluation metrics.) Based on evaluation metrics, we choose regression model for the best
model for restaurant 1. Furthermore, according to histogram of error distribution of
regression model, we can easily find out that about 67% of forecast errors are between -10
to 10. It makes regression model perform better than other models.

1. Seasonal Naive:

Actual vs Forecast(snaive)

Seasonal Naive: Histogram of validation error
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3. Regression

Actual vs Forecast(regression)
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5. Ensemble (smoothing + regression)
Actual vs Forecast(ensemble)
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e Restaurant 2:

Restaurant 2 has a sight downward trend, a weekly seasonality as the other series and a
crazier noise. Because of the crazy noise, it is hard to catch the pattern and forecast well.
According to the performance metrics of 5 methods, the best model is Smoothing. Although
Smoothing is not good enough, it beats the performance of the benchmark (Seasonal Naive).
If we want to forecast this series better, we might want to try differencing or ARIMA to catch

more information.

1. Seasonal naive:

Actual v.s Benchmark(Seasonal Naive)
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2. Smoothing

Actual v.s. Forecast(Smoothing)v.s Benchmark(Seasonal Naive)
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3. Regression
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5. Ensemble (neural + smoothing)

Measure Names

Actual v.s. Forecast(Ensemble)v.s Benchmark(Seasonal Naive) B reople
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e Restaurant 3:
Restaurant 3 has lots of customers compared with others. It leads the forecasting result to
have bigger residuals. Thus, if we don’t care over-forecasting or under-forecasting, we would
recommend Neural Network or Ensemble (Neural Network + Seasonal Naive) model to get
most accurate forecasted value by the evaluation metrics.

1. Seasonal naive

Actual vs Forecast(Snaive)
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2. Smoothing

Actual vs Smoothing
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3. Regression
Actual vs Regression
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4. Neural Network
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5. Ensemble (seasonal naive + neural network)

Actual vs Ensemble(NN + Snaive)
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e Restaurant 4:

In restaurant 4, we can see that its time series have stable seasonality, but its trend is not
clear. Besides that, we can find that neural network might be overfitting so that the residual
of validation period is much more bigger than other model. Instead of neural network, all
other model’s distribution of residual show that most errors are under-forecasting, so we just
don’t care whether it is over-forecasting or under-forecasting. We also find there is nothing
improvement in ensemble model, so | choose regression as the best model by choosing the
lowest MAE, MAPE and RMSE model with our evaluation metrics.
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3. Regression

Actual vs Forecast (regression)
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4. Neural Network
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e Restaurant 5:

In restaurant 5, judging from the time plot, we can see that all model performs quite well in
the training period. However, in the validation period, neural network performs the worst in
the validation period (even though it performs the best in training period), so we do not
choose the neural network model. And then, we have done the metrics (MAPE, RMSE, and
so on) to compare the left three model, and finally found that smoothing performs better (in
the histogram plot we can also see that most errors are in the range of -50 to 50, which

makes its performance better).
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3. Regression

Actual vs Forecast(regression)
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4. Neural Network
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5. Ensemble (seasonal naive + regression +neural network)

Actual vs Forecast(ensemble)
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4. Time plot of series with future forecasts for each of the 5 series
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Note: Red dot means point forecast on November 1, 2016, and two black dots
represent forecast uncertainty (90% confidence interval).
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Time plot of series with future forecasts in restaurant 4 (90% interval)
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