
A Multi-Heuristic GA for Schedule Repair in Precast Plant Production 

Weng-Tat Chan* and Tan Heng Wee** 
 

*Associate Professor, Department of Civil Engineering,  
National University of Singapore, 10 Kent Ridge Crescent,  
Singapore 119260; TEL 65-68742576; cvecwt@nus.edu.sg 

**Research Scholar, Department of Civil Engineering,  
National University of Singapore, 10 Kent Ridge Crescent,  

Singapore 119260; TEL 65-68744643; g0202418@nus.edu.sg 
 
 

Abstract 
A multi-heuristic schedule repair model for schedule 
conflict resolution is presented and its application in 
repairing the schedules of a prefabrication plant is described 
in this paper.  The model combines heuristic strategies with 
Genetic Algorithms to repair schedules with resource 
constraints. The GA determines the “best” sequence of 
resolving schedule disturbances using heuristic rules 
selected from a library of heuristics commonly used in 
industry. We compare quantitatively the advantages of 
using this model for schedule repair against existing single-
heuristic schedule repair techniques with a multi-criteria 
evaluation function. Results on the macroscopic and 
microscopic levels are presented to understand the strengths 
and weaknesses of the model. 
 
Key words: application of planning and scheduling; 
dynamic scheduling. 

1 Introduction   
Our research is based on a real-life application of 
production planning and (re)scheduling in prefabrication 
plants. In Singapore, the increased use of prefabricated 
building components and industrialized building methods 
has been identified as the means of improving both the 
overall productivity at the construction site and the quality 
of the construction facility. The demand for different types 
of prefabricated building components has been on the 
increase, especially in public housing and transport 
infrastructure projects. As a result, the prefabrication 
plants and the general contractors using these prefabricated 
components in their projects form a short but economically 
significant construction supply chain. 
 
The types of prefabricated components used in a 
construction project and the rate of the project’s progress 
significantly influence the production schedule of the 
prefabrication plant supplying those components. More 
specifically, the plant needs to schedule the production of 
specific components required by the general contractor and 
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deliver them to the construction site by the due dates 
determined largely by the pace of the construction site 
schedule. Due to this intimate relationship, a change in 
component specifications, the quantities required or the 
due dates by the contractors inevitably leads to a review of 
the prefabrication plant’s production schedule. Conflicts in 
production schedules arise when the review shows that 
production resources are over-committed to meet new 
delivery due dates. At least one of the production 
operations has to be rescheduled and this is called a 
(schedule) disturbance.  Rescheduling is further 
complicated as prefabrication plants usually supply 
different heterogeneous components to a number of 
construction projects simultaneously at any one time. 
 
In updating the production schedule, plant operators tend 
to utilize their own preferred heuristic, usually the one that 
had proven easy to apply and reasonably efficient from 
past experience. Moreover, the same heuristic is likely to 
be applied to resolve all schedule disturbances. However, 
heuristics are known to be problem specific and cannot 
guarantee good solutions for all cases. 
 
We propose to let an evolutionary search decide the best 
heuristic to apply to a particular disturbance, as well as the 
order of resolving disturbances by combining the use of 
heuristics and genetic algorithms (GA) in a method we call 
the Multi-heuristics Schedule Repair Model. A custom 
chromosome representation is proposed to encode the 
decisions involving the order of resolving disturbances and 
the heuristic best suited to resolve disturbances. The GA 
evolves the chromosomes to determine both the “optimal” 
repair sequence as well as the best combination of 
heuristics from a pool of selected heuristic strategies. We 
investigate the efficiency of the proposed schedule repair 
model in generating high-quality repaired schedules, and 
compare the schedules generated with the use of this 
model against those generated by the single-heuristic 
approaches currently used in the industry. This comparison 
is based on a multi-criteria evaluation function derived 
from factors pertinent to industry practices.    
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2 Literature Review 
The wider use of prefabricated building components has 
led to research on planning and scheduling methods in the 
precast industry. Warszawski (1982, 1990 and 1999) 
provided a general framework of the main features to a 
proposed information for planning, cost and quality control 
in prefabricated plant operations, based on a mathematical 
precast scheduling model defined in terms of decision 
variables. Furthermore, Warszawski (1984) proposed a 
model for short and long-ranged production planning of 
components in make-to-order manufacturing systems. 
Dawood and Neale (1993) developed a computer-based 
capacity based model using the backward scheduling 
technique to help managers create long term capacity plan, 
make better planning decisions and explore options. In the 
general application of GA for scheduling optimization, 
Chan et al. (1996) proposed a generic GA model suitable 
for scheduling and resource allocation problems. The 
random keys concept (Bean 1994) was used in the model 
to ensure that there was no illegal schedule. On the 

application for GA to the optimization of production 
scheduling of prefabricated components, Chan and Hu 
(1998, 1999 and 2002) developed a flow shop sequencing 
model for specialized precast production scheduling, and a 
hybrid genetic algorithm – constraint programming (GA-
CP) approach to solve comprehensive precast scheduling. 
Leu and Hwang (2001) proposed the usage of GA to 
obtain optimal resource-constrained production schedules 
for repetitive prefabricated components. 
One development that is pertinent to industrial practice is 
that of reactive scheduling from artificial intelligence 
research. Much research on schedule coordination and 
repair in the manufacturing industry has been done using 
this scheduling concept (Zwenben et al. 1990; Smith 1994 
and Sadeh 1994). However, there has not been much 
application of such concepts in the construction industry. 
Similarities between the production processes in the 
precast factory and the assembly line in the manufacturing 
process opens the possibility of the transfer of research 
findings and practical experience of schedule repair 
between these two areas. 
 

Figure 1: “External” and “In-house” factors causing schedule disturbances 
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3 Schedule Disturbances and Heuristic 
Strategies 

Important background information on how schedule 
disturbances occur and the variety of heuristic strategies 
used was obtained through interviews with industry 
practitioners during the course of this study. 

3.1 Schedule disturbances 
There are several common causes of schedule 
disturbances, ranging from quantity and design 
specification changes to poor quality and machine 
breakdowns. These causes have been categorized as either 
“in-house factors” or “external factors”, depending on 
whether the cause is within the control of the factory or 
not. Schedule changes may or may not be required in 
response to these disturbances. For example, the plant 
operator may choose to forgo new orders and not disrupt 
existing schedules but is compelled to change his 
schedules if this involves contractual obligations. Figure 1 
illustrates the specific “external” and “in-house” factors 
causing schedule disturbances, as well as their influences 
on one another. 

3.2 Heuristic strategies for repairing schedules 
Production scheduling is carried out for a fixed planning 
horizon (usually 30 days ahead) according to an agreed 
schedule for delivering components. Among the heuristic 
rules used by plant operators to reschedule disturbances 
and repair their production schedules include: 
 
(1) Right shift (RS): resolves conflicts by “pushing” the 

production forward in time until the disturbance is 
resolved (Fig. 2.1); 

(2) Left shift (LS): a similar strategy that shifts an 
operation backwards in time. It is particularly useful 
when a hard constraint that previously prohibited the 
commencement of the operation is softened or 
removed (Fig. 2.2); 

(3) Opportunistic insertion (OI): makes use of idle days in 
the schedule to accommodate a disturbance by 
breaking it into smaller parts and fitting these smaller 
parts into the schedule in an opportunistic first fit 
manner. The efficiency of this heuristic rule largely 
depends on the initial utilization level of the 
production facilities (Fig. 2.3); 

(4) Deterministic Insertion (DI): similar to opportunistic 
insertion but the disturbances have priority over 
already scheduled production and displace them from 
the schedule. The latter are rescheduled using OI (Fig. 
2.4); 

(5) As-soon-as-possible (ASAP) / Backward Scheduling 
(BS): the ASAP method schedules the disturbance 
based on the earliest start time (EST); the BS method 

schedules the disturbances based on the latest start 
time (LST); 

(6) Multiple mold approach: resolves the disturbance by 
assigning similar components within the same group 
of components to any one of several molds capable of 
producing the components using a OI or DI strategy; 

(7) Sub-contracting: this strategy ‘outsources’ production 
to other operators and is used when the plant is 
already producing at its peak capacity or it is 
economically more beneficial to do so.  

 
The heuristic rules mentioned above were solicited from 
experienced plant operators through personal interview. 
The plant operators depended on previous experience 
when choosing rules to resolve disturbances and did not 
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Figure 2: Illustrations of some heuristic rules 
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seem to have a formal quantitative way of deciding on how 
best to repair schedules. Time pressure often prevented 
them from trying alternative ways of resolving 
disturbances or considering the effect of resolving several 
disturbances together. The multi-heuristics schedule repair 
model could help address these deficiencies and provide 
alternative high quality repaired schedules. 
 

4 Multi-heuristic Schedule Repair Model 
Our proposed model supports the determination of priority 
for conflict resolution using heuristic strategies that are 
best suited to incorporate the conflict-causing disturbances 
into an existing schedule. The repair actions are also likely 
to cause further disturbances which then have to be 
resolved. Therefore, it is necessary to consider not only 
how to resolve the conflict but also the order in which the 
conflicts are to be resolved as both have a bearing on the 
desirability of the final repaired schedule. The proposed 
model supports this important consideration by searching 
for the best combination of conflict-resolving sequence 
(order) and heuristics used (how) from many possible 
combinations using GA. 
 
Genetic algorithms are stochastic search methods based on 
the mechanism of selection and evolution, and have been 
successfully applied in scheduling problems including that 
of precast element production. Details of a GA adaptation 
for our proposed model are described as follows. 

4.1 Constraints  

Production scheduling requires allocating resources over 
time to a set of jobs while satisfying a variety of 
constraints and objectives. Hard constraints must always 
be satisfied for a (repaired) schedule to be valid. Soft 
constraints on the other hand, could be relaxed when 
necessary. Based on the results of the industry study, we 
have categorized the hard constraints in our proposed 
model as functional, capacity and availability constraints, 
while the soft constraints are delivery and inventory 
constraints. The representation of these constraints in 
mathematical terms is necessary for their use in GA. The 
following section discusses the mathematical formulation 
of these constraints in terms of binary decision variables 
defined in Table 1. 
   
Functional constraint: to maintain the production 
integrity of the prefabrication plant by limiting the types of 
elements that a specific mold can produce. Although it is 
possible for a mold to produce several different types of 
elements, we have restricted this capability to elements 
within a mold group within which there are only minor 
variations in mold details. This is necessary as converting a 
mold to a different mold group is rarely done in practice 
due to substantial conversion time and costs incurred. 
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Capacity constraints: Following industry norms, each 
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A binary decision variable, where xt, m,e =1 means that mould m is assigned to produce element e on  
day t, whilst xt, m,e =0 will mean the opposite; 
t = 0, 1, 2…T, scheduling periods in days; 
m = 0, 1, 2…M, mould serial numbers; 
e = 0, 1, 2…E, types of elements to be produced; 
Initial stock of element type e at the beginning of the scheduling period (t = 0); 
Number of element type e in stockyard on day t; 
Maximum allowable storage level of element e in stockyard; 
Minimum buffer storage level of element e in stockyard;  
Number of element type e required to be delivered on day t; 
Number of element type e delivered on day t; 
Number of changeovers for mould m in the scheduling period; 
Lead time of element type e between production and delivery; 
Minimum lead time required for element type e between production and delivery; 
Present time; 
Total number of working days, obtain by subtracting the number of Sundays from T. 

 
Table 1. Parameters for mathematical representations 
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mold is limited to produce only one element per working 
day  (Equation 3). Therefore the daily maximum capacity 
of the precast yard is equal to the total number of molds 
(Equation 4). We have further assumed that there is no 
production during Sundays and public holidays (Equation 
5). 
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xt, m,e = 0     for ∈t  Sundays and public holidays 
                      (5) 
 
Availability constraint: specifies the time required for 
each produced element to be ready for delivery. A 
minimum lead time between production and delivery must 
be observed for the components to attain approximately 
70% of their 28-day strength, which refers to the specific 
strength that concrete gains as it stiffens from an initial 
plastic state after a setting time of 28 days. Traditional 
curing takes up to seven days, although the local practice 
of controlled accelerated curing in a curing chamber 
reduces this lead time to just two days. 

ree LL ,≥  where reL , = 48 hours         (6) 
 
Delivery constraint: specifies the delivery requirements 
of the components to the construction sites. Due to the 
large sizes of the prefabricated elements and the shortage 
of storage space on the construction sites, plant operators 
are usually not allowed to deliver the elements any earlier 
than the stipulated date of delivery, nor deliver more than 
what is required (Equation 7). Furthermore the sum of the 
initial stock level and the total production of any element 
before each delivery date should be at least as many as the 
number of elements required to be delivered (Equation 8). 
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Inventory constraint: limits the number of prefabricated 
components to be stored in the inventory. It also specifies 
the level of buffer inventory. In short, the inventory 
constraint serves to define the operating range for stock 
levels of each prefabricated component. Due to space 
constraints, the total number of produced components that 
can be kept in a plant’s stockyard is limited. However, 
plant operators are highly resourceful in ‘seeking’ new 
avenues for storing inventory and have been known to 
store elements temporarily on transportation trailers. They 
also keep a minimum number of various components to 
serve as buffers to unexpected or urgent demand. 
Therefore the cumulative number of any produced 

components less delivered in any period should be less 
than the maximum allowable storage limit but more than 
the minimum buffer level. 
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4.2 Objective functions 
Local precast plants produce prefabricated components 
mainly on a contractual basis, apart from producing some 
standard elements for anticipated demand. Plant operators 
have to meet contractual due dates for deliveries while 
keeping an acceptable level of inventory in the stockyard 
to buffer any unanticipated demand. Counting the number 
of elements that was not delivered on time and the number 
of over or under-stocked elements in the inventory will 
then reflect on the efficiency of the (repaired) schedules.  
 
Plant operators also try to make full use of their molds and 
minimize the number of changeovers required. Efficient 
element to mold assignment is therefore important to 
efficient scheduling, as that will minimize the cost of 
changeovers. Hence, the number of changeovers incurred 
becomes our third parameters for evaluating (repaired) 
schedule efficiency. 
 
Plant operators tend to minimize the number of idle days 
during the planning horizon, as it is seen as a waste of 
resources. However, they have to balance between the 
costs and effects of excessive production. Production of 
any particular element on a permanent basis will keep the 
number of mold changes down and improve the mold 
utilization rate. However it will also increase the over-
stocking of the element thereby affecting the production of 
other components, which can result in late deliveries for 
the latter.  
 
It is clear then that the operators have to seek a balance 
between the different objectives of meeting due dates, 
minimizing mold changes, maintaining optimum inventory 
levels and keeping non-productive working days to the 
minimum. The mathematical representations of these 
parameters are as follows: 
 
Number of elements in excess/inadequate inventory 
level: the inventory level of any element is best maintained 
at an optimum range for spatial and buffer considerations. 
Therefore the total number of elements in excess of or 
below desired inventory levels should be minimized 
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Number of mold changes: in order to produce different 
elements of the same mold group, a mold must undergo 
minor modification, thereby incurring both cost and time. 
Therefore, efficient element to mold assignment is needed 
to minimize the total number of mold changeovers. 

Min ∑
=

=
M

m
mM NZ

1
             (11) 

 
Number of elements not delivered on due dates: failure 
to deliver the stipulated number of elements on time would 
incur financial penalties and bring detriments to the 
reputation of plant operators. Therefore the total number of 
elements not delivered on time should also be minimized. 
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Number of effective idle days: the maximum number of 
elements that can be produced per day is M, and the total 
production capacity within a planning horizon cannot be 
more than MTn. A more accurate reflection of the number 
of idle days would therefore be represented by: 

Min 
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Due to the different units of measurement of the 4 
evaluation parameters, it would not be meaningful to add 
them directly; hence, there is a need to normalize them into 
a dimensionless quantity. One approach is to divide each 
parameter by a constant (e.g. the mean value of a 
distribution) and then sum up the numbers into an 
efficiency index. However this would result in a biased 
analysis favoring parameters which exhibit high variability 
thus resulting in high normalized values, as these tend to 
dominate the efficiency index.  
 
We have used 4 planning rules and the integer 
programming approach to generate 25 pseudo-schedules at 
various resource utilization levels. The hard constraints 
were observed in the creation of these schedules to be used 
for our repair algorithms. These schedules were then 
evaluated separately using each of the four parameters, 
resulting in a range of performance evaluations for each of 
the four parameters. The raw evaluation values were 
mapped onto a range between 0 and 0.25 by means of 
linear regression. Doing so meant that we assumed that 
each of the 4 parameters was equally important. The 
summation of the four parameters created a dimensionless 
objective function which minimized the dominance of any 
parameter. This normalized objective function gave an 
indication of the relative performance on each parameter. 

The higher the index value, the poorer was the 
performance ranking. 
 
The objective function is therefore defined as:  
Min Z = 0.2275 + 0.0008ZS + 0.0076ZM + 0.0042ZD + 
0.0264ZI                  (14) 
 

4.3 GA representation 
As shown in Fig. 3, the chromosome string is made up of 
equal number of D-genes (disturbance gene) and H-gene 
(heuristic genes). Each conflict to be resolved is 
represented by a pair of D and H-genes. The D-genes 
encode real numbers that serves as sort keys to determine 
priority of resolution, whilst the H-genes encode the 
ordinal value of the heuristics used to resolve the conflict. 
The properties of each disturbance and the resolving 
algorithm for each heuristic are defined on their respective 
tabu. 
 
To decode the chromosome, the sequence of resolving 
conflicts is determined by sorting the disturbances in 
increasing order of the D-gene values. The corresponding 
heuristics defined in the H-genes are then used to 
incorporate the disturbances into an existing schedule, as 
illustrated in Fig. 4. In this case, the sequence of conflict 
resolution with corresponding heuristics is: D5 (H1) → D4 
(H2) → D3 (H4) → D1 (H3) → D2 (H3). 
 
There are several parameters that can determine the 
performance of GA but their optimal values cannot be 
ascertained by applying fixed rules. In fact, optimal GA 
parameters are known to be notoriously difficult to 
determine (Myers and Hancock 2001). These parameters 
include the population size, the number of iterations 
performed, the crossover rate, the mutation rate and the 
termination criterion. 
 

Figure 3: Chromosome representation 
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D5 D4 D3 D1 D2 H1 H2 H4 H3 H3

1 2 4 3 3 

H1 H2 H4 H3 H3 

Figure 4: Decoding of chromosome 
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In our proposed model, a two-point crossover is used to 
combine the gene values of two chromosomes to create a 
new pair of chromosomes. Mutation operates on a single 
chromosome and produces a new genotype by making a 
random change to the value of one or more of the genes in 
the chromosome string. The settings for these key 
parameters are: population size (100), number of iterations 
(500), probability of crossover (0.85) and mutation 
(0.001). These values were determined by fine-tuning 
default values over several runs of the GA on a similar 
problem. 
 
The PGAPack operated on a Silicon Graphics workstation 
in the UNIX environment was adopted as the GA software 
used. It is a parallel genetic algorithm library that is 
intended to provide most of the capabilities needed for 
encoding GA applications in an integrated, seamless and 
portable manner. 
 

5 Experiments 
The application of our proposed model presented involves 
the schedule repair of four molds over a period of two 
weeks (10 work days). The plant produces three types of 
elements, namely E1, E2 and E3, which can be produced by 
any of the four molds with minimal modification. Five 
disturbances occur during the planning period and the 
characteristics of these disturbances are shown in Table 2.  
 
Seven heuristic rules were selected to be included in the 
heuristics pool. Six of the heuristics were based on the 
multiple mold approach where more than one mold could 
be used to resolve a conflict. The search for the point of 
insertion into the original schedule can be performed in a 
parallel manner across all mold schedules simultaneously 
or for each mold schedule in sequence. The first 6 

Disturbance Element Type Quantity Due Date for 
Delivery Nature of Disturbance 

D1 E1 1 Day 5 To replace a rejected element 
D2 E2 2 Day 7 Design change to E2 element 
D3 E3 2 Day 9 Design change to E3 element 
D4 E3 2 Day 5 To replace a rejected element 
D5 E2 2 Day 7 To replace a rejected element 

Table 2. Characteristics of disturbances 

Figure 5: Repaired schedule determined by GA 

• The Multi-heuristic Schedule Repair Model determines the “optimal” sequence (D1→D2→D4→D3→D5) and 
the “best-suited” heuristic to incorporate each disturbance defined in Table 2 into the original schedule. 

• Each cell represents an element type scheduled to be produced in a specific production line on a particular day. 
For example, production line L1 is scheduled to produce element type E1 on the first day of the original 
production schedule. "N" denotes no production; therefore production line L4 is not schedule for any 
production in the original schedule.  

• Grey cells in the repaired production schedule represent the incorporated disturbances.

 
 Original production schedule  Repaired production schedule 

 Day  Day 

 1 2 3 4 5 6 7 8 9 10  1 2 3 4 5 6 7 8 9 10 

L1 E1 E1 E1 E1 E1 E1 E1 E1 E1 N  E1 E1 E1 E1 E1 E1 E1 E1 E1 E1 
                      

L2 E1 E1 N N N N N N N N  E1 E1 N N N N N E3 E3 E3 
                      

L3 E3 E3 E3 E3 E3 E3 E3 E3 E3 N  E3 E3 E3 E3 E3 E3 E3 E3 E3 E3 
                      

L4 N N N N N N N N N N  E2 E2 N N N N N N E2 E2 
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heuristics are denoted as S/ASAP/OI, S/BS/OI, 
S/ASAP/DI, P/ASAP/OI, P/BS/OI, P/ASAP/DI. The last 
heuristic considered is sub-contracting. In the naming 
scheme employed, the first part of the name sequence 
denotes the search sequence (parallel or sequential), the 
second part denotes the direction of search (from the 
beginning or from the end), and the last part denotes the 
manner of insertion (opportunistic or deterministic fit). 
  
To test our proposed model, 15 schedules were artificially 
constructed using a random process to give mold 
utilization rates varying from 0.6 to 0.8; this range was 
chosen to reflect the utilization rates commonly seen in 
local practice. The initial inventories for E1, E2 and E3 are 
assumed to be 6, 2 and 6 elements respectively. For each 
of these schedules, a test was conducted using the baseline 
/ original schedule as a basis within which to schedule the 
disturbances shown in Table 2. The GA procedure was 
then used to construct modified schedules wherein the 
disturbances had been inserted. The result of one such test 
is shown in Fig. 5 as space does not allow showing the 
results of all the tests. 
 
Another 4 sets of experiments were conducted, again using 
the same baseline schedules but this time allowing GA to 
apply only one of four heuristics (S/ASAP/OI, S/BS/OI, 

P/ASAP/OI and P/BS/OI). These 4 heuristics were chosen 
because they are industry’s favorites. 
 
The performance of our proposed multi-heuristic schedule 
repair model is compared to the single-heuristic approach 
at both the macro and microscopic level. At the 
macroscopic perspective, we compare the evaluation index 
values obtained by both approaches. The improvement 
obtained by the multi-heuristic approach is also discussed. 
At the microscopic level, we analyze the performances in 
terms of each of the physical parameters that constitute the 
evaluation index. 
 

 5.1 Macroscopic analysis 
Having verified that the index values satisfy the normality 
and correlation tests, 4 separate sets of paired-sample t-
tests were performed to evaluate the significance of the 
difference between the mean index values of our multi-
heuristic model with each of the 4 single-heuristic 
approaches.  
 
The tests revealed results that were very encouraging. Our 
multi-heuristics model has, in all the 4 separate t-tests, 
produced lower mean index values than each of the 4 
single-heuristic approaches with p-values very close to 

Method of Resolution  
Multi-

heuristic S/BS/OI P/ASAP/OI S/ASAP/OI P/BS/OI 
Low utilization level (0.5-0.64)      
Total number of idle days (days) 1.25 1.25 1.25 1.25 1.25 
Total number of late deliveries (elements) 0 0 0 0 2 
Total number of over/under stocking (element-days) 27 25 21 19 19 
Total number of mould changes (times) 3 7 5 7 7 
Best Index 0.3049 0.3337 0.3153 0.3289 0.3373 

Multiple-heuristic yield 0% 9.45% 3.41% 7.87% 10.63% 
Middle utilization level (0.65-0.80)      
Total number of idle days 0.25 0.25 0.25 0.25 0.25 
Total number of late deliveries 2 4 4 3 5 
Total number of over/under stocking 17 5 6 9 8 
Total number of mould changes 5 6 6 7 6 
Best Index 0.2941 0.3005 0.3013 0.3071 0.3071 
Multiple-heuristic yield 0% 2.18% 2.45% 4.42% 4.42% 
High utilization level (>0.8)      
Total number of idle days 0 0 0 0 0 
Total number of late deliveries 8 9 9 9 9 
Total number of over/under stocking 32 32 28 36 31 
Total number of mould changes 6 7 7 8 8 
Best Index 0.3323 0.3441 0.3409 0.3549 0.3509 
Multiple-heuristic yield 0% 3.55% 2.59% 6.80% 5.60% 
 

Table 3. Best performance of multi-heuristic approach compared to the single heuristics 
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zero. Such p-values allow us to conclude strongly that 
there is significant statistical evidence supporting our claim 
that the multi-heuristics model performed better than any 
of the single-heuristic approaches in schedule repair. 
Recalling that the index value is made up of 4 different 
parameters, this suggests that our model generated 
solutions that dominated those obtained with the single-
heuristic approaches. 
 
In terms of the yield, our proposed model outperformed 
any single heuristic by up to 13.09%. The case where the 
multi-heuristic approach could only perform as well as a 
single heuristic occurred when the molds experienced high 
utilization rates. The lack of idle days for schedule repair 
in these schedules limited what any repair strategy could 
do. Table 3 illustrates the cases where the multi-heuristic 

approach performed best against the 4 single heuristic at 3 
different levels of utilization. 
 
The performance of the multi-heuristic approach versus 
that of the single heuristic appears marginal when 
measured on our evaluation index formulation. However, 
the gains become more tangible when translated to real 
physical measures like the number of late deliveries or 
mould changes, which are significant to the plant 
operators. The operators would typically prefer not to incur 
any late deliveries due to either contractual obligation or 
fear of marring the plant’s reputation. Therefore, a yield of 
5% on an index value of 0.3 would translate to an 
equivalent (0.3*0.05/0.0042) 3.57 elements reduction in 
late deliveries or a (0.3*0.05/0.0008) 18.75 elements-days 
reduction in excess/inadequate inventory during the 10-day 
repair period. 

5.2 Microscopic analysis 
The same sets of statistic tests were performed on 3 of the 
4 parameters that constituted the evaluation index. The 
relative performance of the multi-heuristic approach is 
then compared with each of the 4 single-heuristic 
approaches. The results of these tests are summarized in 
Table 4. 
 
Plant operators prefer to keep both the number of late 
deliveries and the number of mold changes during 
production to the minimum. While overstocking is also 
undesirable, it can be resolved with relative ease in 
comparison. From the test results, it is observed that the 
multi-heuristic model excelled in producing repaired 
schedules with a minimal number of mold changes. This 
efficient element to mold assignment is significant as 
changes in the molds disrupt the workflow of the 
production lines and incurred additional changeover costs.  
 
Having kept the number of mold changes to a minimum, 
the multi-heuristic approach continued to perform 
remarkably well in minimizing the number of late 
deliveries incurred in the repaired schedules it generated. 
Statistics revealed that the multi-heuristic model produced 
repaired schedules that have a lower mean number of late 
deliveries than 2 of the single-heuristic approach at 5% 
level of significance and 1 of them at 10% level of 
significance. However, there was not enough to show that 
the number of late deliveries is lower when compared to 
the P/ASAP/OI heuristic. 
 
The multi-heuristic approach did not fare as well in 
minimizing the number of elements in excess/inadequate 
inventory. In fact, the multi-heuristic approach produced 
repaired schedules that have significantly higher mean 
values of excess/inadequate inventory compared to two of 
the single heuristics (S/BS/OI and P/ASAP/OI). However, 
this mean value is not significantly different from the mean 
values of the two other single heuristics. 
 

Mean value Single heuristic 
tested against 

Alternative 
hypothesis  P-value 

S/BS/OI < 0 0.001 

P/ASAP/OI < 0 0 

S/ASAP/OI < 0 0 
Index 

P/BS/OI < 0 0 
    

S/BS/OI < 0 0.055 

P/ASAP/OI < 0 0.357 

S/ASAP/OI < 0 0.036 
Late delivery 

P/BS/OI < 0 0.002 

    

S/BS/OI < 0 0.001 

P/ASAP/OI < 0 0 

S/ASAP/OI < 0 0 
Mould change 

P/BS/OI < 0 0 

    

S/BS/OI >0 0.013 

P/ASAP/OI not = 0 0.48 

S/ASAP/OI not = 0 0.362 
Non-optimal 

inventory 

P/BS/OI >0 0.023 

       
 

Table 4. P-values for paired sample t-tests testing 
the difference of the multi-heuristics approach 

against the various singe heuristics 
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This analysis indicated that the multi-heuristic schedule 
repair model was able to do better than any single-heuristic 
approach; the repaired schedules achieved more efficient 
mold utilization and fewer late deliveries. More 
significantly, these improvements were attained at only a 
slight, or no increase in the value of excessive/inadequate 
inventory. 

6 Conclusions 
We have applied the multi-heuristic schedule repair model 
on a realistic planning and (re)scheduling problem for a 
prefabrication plant. The initial experimental results 
indicate that this multi-heuristic approach is effective in 
resolving schedule disturbances, demonstrably more so 
than the single-heuristic approaches currently used in 
industry. The evaluation index used as the objective  
function incorporates most of the parameters of concern to 
industry practitioners including efficient element to mold 
assignment and minimal late deliveries with little or no 
compromise to the inventory level. It can be used to 
generate non-dominated schedules in conjunction with the 
search procedure of the GA.  
 
However, the scope of the model is quite limited and is 
restricted to schedule repair. For example, it does not 
address the need for better schedule coordination between 
elements of the supply chain, particularly between the 
construction site and the production plant. Further work is 
in progress to look into this aspect of precast production 
scheduling. Ideally, this will then allow both the plant 
operator and the construction manager to negotiate the 
preferred outcome in a co-operative rather than adversarial 
manner.  
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