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Abstract: This study i1s mainly to cope with the problems when a firm faces time-varying demand and receives
product from a single supplier who faces random supply. The supplier's availability may be affected by events
such as natural disasters, labor strikes, manufacturing defects, machine breakdowns, or other events. A model
is proposed in this research that considers a dynamic production-inventory environment: the exponential
distribution of disruption, as well as the demand can be time dependent. The model explains production-
inventory as a NP-hard problem, which using genetic algorithms is developed tominimize the average total cost
to determinate the production cycles under various ordering policies. To evaluate the performance of the
proposed algorithm, a numerical study has been conducted to compare the ordering policies under various
demands in an extensive order. Based on the computational result, it can be seen that the optimal ordering
policy not only should strike a balance between protecting against stockouts during disruptions but also
maintaining low inventory levels of finished products and raw materials.
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INTRODUCTION

Despite the careful attention paid to mventory
planmng m a supply chain, supply disruptions are
inevitable. Disruptions may come from a variety of
including natural  disasters, strikes,
manufacturing defects, machime breakdowns, or other
events, meanwhile they are typically mfrequent and
unpredictable. Even though the shortage of inventory
mcurred from supply disruptions can be backlogged,
there still evolves the excess costs for handling inventory
backlog. Also it mncreases the difficulty to maintain the
suitable stock level of raw materials as the disruptions
might happen in the production process. As result, an
effective production-inventory policy not only should
strike a balance between protecting agamst stockouts
during disruptions but also maintaining low inventory
levels of finished products and raw materials.

Most studies on inventory management are based on
the economic lot sizes, but Parsons et al. (2004) explamed
the advantage of formulating the problem in terms of
reorder intervals rather than in terms of lot sizes. They
established three principal reasons for this: (1) The
experience that production planning i1s more naturally
centered around the frequency of production because it
indicated the numbers of set-ups, the requests for tooling
and fixtures and the demands on the material handling
system, (2) the mathematical representation of the model
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is simplified and (3) from a scheduling point of view it is
often practical to keep reorder intervals constant in the
face of minor changes to demand forecasts and to adjust
lot sizes accordingly.

Moreover, traditionally the economic lot size for raw
material purchase and manufacturing batch size are
determined separately. However, when the raw matenal 1s
used in production, its ordering quantities are dependent
on the batch quantity of the product. Therefore, it is
undesirable to separate the problem of economic purchase
of raw material from economic batch quantity. As results,
one should determine the optimumn production cycle time
associated with its raw material ordering quantities at the
same time.

This study discusses a manufacturing system which
the manufacturer uses raw material, received from an
outside supplier, so to produce a finished product under
an imperfect production condition with trended demand
and shortage which will be completely backlogged.
This research formulates the problem in terms of
reproduction intervals rather than in terms of lot sizes;
meanwhile, the production-inventory policy is cyclically
modeled mto four stages as production, consumption,
shortage and reproduction stage (Fig. 1). By assuming the
production disruptions are obeyed the exponential
distribution, this study uses genetic algorithm to optimize
the production cycles m a given time horizon to minimize
the average inventory costs at each production cycle. As
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Fig. 1: The stages of EPQ system

the production cycles has determined, the (s, Q) inventory
policy for raw material is also can be determined
accordingly and the aggregative production plan can be
generated.

After consulted the related literature and the
consideration related important attribute, we also find the
problem of the economic replenishment policy for an
mventory item having a time-varying demand over a fimte
planning horizon has attracted the attention of
researchers over the last 25 years since the publication of
the research of Jumpol and Sarah (2006), which gave the
analytic solution of the no-shortage case of a linear trend
in demand. Donaldson used sunple calculus to develop a
computational procedure for finding the optimal reorder
times over a finite planning horizon. Chyr et al. (2005)
developed an approximate solution procedure for a
linearly time-varying demand by using the Silver-Meal
heuristic. None of these models permitted shortages in
mventory.

Chan et al. (2007) developed an Economic Production
Quantity (EPQ) model with a linearly trended demand and
a uniform production rate with inventory shortages.
Schweitzer and Seidmann (1991) questioned the
assumption of umform preduction rate and pointed out
that the machine production rate should be flexible to
adjust itself with the variability in the market demand.
Giri and Chaudhuri (1999) discussed a production-
mventory model in which the demand varies linearly with
time, unit production cost 1s taken to be a function of
the production rate and shortage in inventory are allowed
and fully backlogged. Meanwhile, Sana et «l (2004)
developed an Economic Production Lot Sizing moedel
(EPLS) for a deteriorating item over a finite planming
horizon with a linearly time-varying demand rate and a
uniform production rate, allowing shortages which
are completely backlogged. In the EPLS models of
Zhou (1995, 1996), over a finite horizon with a linear trend

648

in demand and shortages, the production rate is adjusted
at the beginning of each production cycle to cope with
the increasing demand and the cost of adjusting the
production rate depends linearly on the magnitude of
change in the production rate.

From those studies discussed above, the production
conditions were hypothesized under a perfect condition,
that 1s, there were no any production disruption existed.
But in reality, there are many possibilities that the
production might incur disruption in the process caused
by natural disasters, labor strikes, manufacturing defects,
machine breakdowns, or other events. The first treatment
of supply disruptions in the literature appears to be that
of Meyer et al. (1979), who consider a production facility
subject to stochastic disruptions and repairs. Items
produced by the facility are stored 1n a capacitated buffer
that sees constant, deterministic demand. Their model 1s
descriptive rather than prescriptive, characterizing the
stockout percentage for a given inventory policy rather
than finding the optimal policy.

Parlar and Berkin (1991) present an EOQ-like model
with deterministic demand but stochastic disruptions and
repairs with the aim of finding the optimal order quantity.
Parlar and Perry (1995) relax the Zero-Inventory Ordering
(Z10) assumption and consider random as well as
deterministic yields. Both the reorder point and the
waiting time between unsuccessful orders are decision
variables, leading to what the authors call a (Q, r, T)
inventory policy. Moinzadeh and Prabhu (1997) consider
a model based on the EPQ model. They propose a
continuous-review (s, 3) policy, rather than a (Q, r) policy,
since the inventory level may fall strictly below the
reorder point during a disruption. Chen et al. (2006)
considered the possible alternatives existed on the
production environment which will incur imperfect
production and quality variance and used fuzzy AHP
method to evaluate the most critical alternative in order to
determine the economic production quantity. In this
study, we deal the supply disruption caused by machine
breakdowns and manufacturing defects with backlog
and assume this disruption obeys the exponential
distribution.

Traditionally the economic lot size for raw material
purchase and manufacturing batch size are determined
separately. An ordering policy for raw materials to meet
the requirements of a production facility under a fixed
quantity, periodic delivery policy has been developed
by Sarker and Parija (1994), JTamal and Sarker (1993),
Golhar and Sarker (1992) and Sarker and Golhar (1993).
They considered that the manufacturer is allowed to place
only one order for raw material per finished product
inventory cycle. In this case, a fixed quantity of finished
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goods is to be delivered to the customer at the end of a
fixed mterval. This delivery pattern forces mventory
build-up in a saw-tooth fashion during the production
up-time. The on-hand inventory depletes sharply at
regular intervals during the production down time until

the end of the cycle.

MODEL FORMULATION AND PROBLEM
DEFINITION

Assumptions: The assumptions, similar to Sana et al.
(2004), of production-inventory model at each cycle
consist of four stages shown as Fig. 1.

The initial stock at each cycle is zero and production
starts at the very beginning of the cycle. As production
continues, m production stage 1, inventory begins to
build up continuously after meeting demand with a defect
rate incurred from mmperfect production system which
obeys exponential distribution. Production is stopped at
a certamn time g. The accumulated inventory is then
gradually depleted and ultimately becomes zero due to
consumption in consumption stage II. Production does
not restart in stage 11T and inventory shortages continue
to accumulate for some time. Thereafter, production
restarts, in stage TV, at s; and shortages are gradually
cleared after meeting current demands and defects. The
cycle ends with zero inventories at time t;. The other
assumptions about this production-inventory moedel
include:

+  Production rate is finite and constant

* Defect rate 13 constant and obeys exponential
distribution

¢ Shortages are allowed and are completely backlogged

*  Time horizon 1s fimte

*  The fimite time horizon 1s divided mto a finite number
of production cycles, each of equal duration

*  Demand rate 1s linear in time

Problem definition and modeling: Facing the stochastic
demand of high variety of products, the most important
thing a manufacturer must consider 1s how to make a
quick respond to customer requirement with efficiently
scheduling its aggregative production plan as well as
lowering the total cost of production. That is, a flexible
production schedule to determine when to produce what
product in how much quantity according to demand
forecasting will be the most important decision which a
manufacturer should make. Therefore, a practical scenario
1s described as:

The initial stock of the i-th cycle is zero and
production starts at the very beginming of the cycle. As
production continues, inventory begins to build up after

meeting demand. Production stops at the time ¢. The
accumulated mnventory 1s just sufficient enough to satisfy
demand over the interval [q;, t;]. Shortages accumulate
over [t, s]. Production restarts at time s, and the
accumulated shortages are fully supplied during [s;, t;]
after meeting current demands (Fig. 1). The cycle ends
with zero inventories. Therefore, the problem can be
formulated to mimimize the Average Total Cost (ATC)
during the time horizon H as following:

st

¢, Y [stock _p(i) + stock _c()]
min ATC(n) = % +C,3 " [stock _s(i)+ stock_rp(i)]
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t=rT+(1-c)T .0<r <1 (4
q =kt +(1-k)T_ 0<k <1 (5)
s, =dT +(1-d)t,0<d <1 (6)
T, = (H/n)i,
Where:
i=1,2...n 7

Meanwhile, the associated (R, Q) nventory policy for raw
material at each production cycle can also be determined
as:

Q_ ()= Tpdt tstock s(i— 1) &)

R=Hm (9
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ALGORITHM FORMULATION

Genetic algorithms are stochastic search techniques
based on the mechamism of natural selection and natural
genetics, which requires little information to search
effectively in a large or poorly understood search space.
Some of the principal advantages of the genetic algorithm
are versatility, flexibility, sumplicity and efficiency. They
have been employed to solve optimization problems
across all disciplines and interests and their simplicity
permits to solve difficult problems as NP-hard problems.

Applications of genetic algorithms in production
planning and inventory management include assembly
line balancing, buffer size optimization, preduction
scheduling and manufacturing cell design. Herndndez and
Stier (1999) presented an application of genetic algorithms
to obtain the reorder quantity for an incapacitated, no
shortage allowed, single-item, single-level situation and
lot sizing problem. Khowa et al. (1998) proposed the use
of genetic algorithms to solve the economic lot size
scheduling problem.

The proposed algorithm in this study uses genetic
algorithms with the chromosome of real number type.
Simulations are taken to determine the optimal number of
cycles and the staring times to produce at each
production cycle and reproduction cycle in order to
mimmize the average total cost of inventory system.

The GA-Approach procedure will follow as:

Step 1: An iteration approach is taken from 1 to a finite
number n to determine the time mterval of each cycle with
the interval length equals H/n. Therefore, the optimal
number of production cycles will be determined.

Step 2: Randomly pick up r; to determine the t Eq. 4 in
each production cycle T;, where T, = (H/n)<1Eq. 7.

Step 3: A local search, Newton’s Method, has been used
to find out the mitial selution of g and s relative to t,
Eq. 5 and 6 which satisfied Eq. 1 and 2.

Step 4: A selection based on Roulette Wheel picks up
two candidates from population.

Step 51 A crossover, by taking the average of two
candidates to produce child 1, is taken under a given
probability.

Step 6: Mutation is taken under a given probability with
randomly initiating two random numbers to mutate child
2 from child 1 by child 2 = a*child 1 + (1-a)w, where g and
w are random number range in [0 1].
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Step 7: Only the best according to its fitness to the
objective function is kept to maintain the population sizes
constant.

Step 8: Repeat step 4 to 7 until the termination criterion of
maximal iterations has achieved.

Step 9: Restart from step 1 for next n until fimsh.

Step 10: The ordering policy for raw material is calculated
from Eqg. 8 and 9 based on the optimal production cycles
calculated from above.

COMPUTATION RESULTS

For illustrative purpose, a simple numerical example
is tested under the operation environnient of Windows
XP Professional with Pentium III CPU, 846 MHz, 312MB
RAM and encoding with MATLAB. Two numerical cases
with a linear demand, formulated as f{t) = 100+2t, under a
constant production rate equal to 200 with a mean
disruption rate, A equal to 0.05, which obeys exponential
distribution 1n a time horizen equal to 30 days have been
simulated and compared 1n this study. In both cases we
set the cost of backlog, the holding cost for finished
product, the holding cost for defects and the setup cost
for production equal 20, 15, 15 and 100, respectively. For
runmng GA, we set the population size equal to 5,
probability of crossover equal to 0.95, probability of
mutation equal to 0.3 and the stopping criteria include the
maximal iterations of each cycle 15 20 and the maximal
iterations of finding nitial solution s 40 and 50 for
crossover and mutation.

After simulation of 30 day tume horizon, in the
increasing demand case, the optimal solution is the
average inventory cost of 297 resulted from dividing the
planning time horizon into 15 cycles (Fig. 2) and its
relative ordering policy for raw material at each production
15 shown as Fig. 4. Meanwhile, in a decreasing demand
case, the optimal solution 1s the average inventory cost of
252 resulted from dividing the planning time horizon into
24 cycles (Fig. 3) and its relative ordering policy for
raw material at each production s shown as Fig. 5. The
average CPU time for running number of cycles from 1 to
30 is 666 sec.

By comparing Fig. 2 and 3, since the shortage is
allowed and fully backlogged in our production-inventory
model, 1n both cases, the sensitivity of the holding costs
for finished products and defects and the backlog cost for
a longer period of time is much higher than the sensitivity
of the setup cost mcreasing as the number of production
cycles mereased. As results, the average inventory cost
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Fig. 2: The average cost of production-inventory model
with increasing demand at different production
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Fig. 3. The average total cost of production-inventory
model with decreasing demand at different
production cycle plamming

has sharply decreased as the number of production cycles
increased. But, as the setup cost effect is much sensitive
than the effect of the costs, the average mventory cost
increased again. Therefore the minimum average
inventory cost can be searchable.

Since the demand 1s varied as time goes by, the
optimal production cycles i increasing demand case are
required less than they are in decreasing demand case.
Meanwhile, the volatility due to production disruption is
much more fluctuant n decreasing demand case than in
mncreasing case. As shown m Fig. 4 and 5, the ordering
quantity for inventory at each cycle is also much more
fluctuant in decreasing case than in increasing case.

By formulated with the reproduction interval to
search the optimal number of production cycle, the GA
approached algorithm used in this study can provide not
only the production periods in time horizon but also the
requirement associated with each production cycle for raw
material can be determined. As results, the inventory

651

220
200+
180+
160+
1401
120
100

|

40 T T 1
10
No. of cyele

Fig. 4 The ordering policy for raw material with
increasing demand with optimal production cycle
planning

140
120+
100+
£

Ei 801
60-

40

20 T
0

l'D 1I5 { )
No. of cycle
Fig. 5: The ordering policy for raw material with
decreasing demand with optimal production cycle
planning

policy and aggregate production plan can be generated
on the basis of production cycles to minimize total
1nventory costs.

CONCLUSIONS

In this study, the genetic algorithm has been adopted
to cope with the production-inventory problem with
backlog in the real circumstance with time-varied demand
and imperfect production due to the defects maybe exists
in production disruption with exponential distribution.
Based on the reproduction interval searching ina
given time horizon, not only the number of production
cycles could be optimized to generate a (R, Q) inventory
policy, but also an aggregative production plan can be
generated to minimize the total inventory cost. The result,
at least a local optimum, 1s approachable to provider a
comprehensive decision support to management.
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This research is constrained on the equal duration
of cycle periods divided from a finite planning time
horizon and the demand rate is linear pattern. For
future researches can consider using this production-
mventory model on the dynamic duration of cycle
periods in a finite or infinite time horizon but also consider
using the different demand models for real time

modification.

NOMENCLATURE

f(t) = atbt : b is the demand rate at time t where a=b#0.

P . Production rate, p=a+bt, te[0, H]

A : The average defect rate per unit time due to
production disruption obeys exponential
distribution

C, . Inventory holding cost per item per umit
time

C, . Backlog cost per item per unit time

Cy . Defect cost per item per unit time

K . Setup cost per cycle

H : Time horizon

n : Number of cycles in [0, H]

stock p : The accumulated stock m stage of
production

stock ¢ : The accumulated stock in stage of
consumption

stock s : The accumulated stock in stage of shortage

stock ip : The accumulated stock m stage of
reproduction

stock d : The accumulated stock of defects due to
production disruption

Q.. (1) : The required raw material quantity for
ordering at cycle 1

V(i) . The stock level of raw material at the end of
cycle1

LT : The average lead time for purchasing raw
material

O.r . The standard deviation of lead time for
purchasing raw material

2 : The z-value of standard normal distribution

under the confidence interval of a
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