
OzCare: A Workflow Automation System for Care Plans

Wenke Lee, Gail E. Kaiser
Department of Computer Science

Columbia University
New York, New York

Paul D. Clayton, Eric H. Sherman
Department of Medical Informatics

Columbia University College of Physicians and Surgeons
New York, New York

An automated environment for implementing and
monitoring care plans and practice guidelines is
very important to the reduction of hospital costs and
optimization of medical care. The goal of our
research effort is to design a general system
architecture that facilitates the implementation of
(potentially) numerous care plans. Our approach is
unique in that we apply the principles and
technologies of Oz. a multi-user collaborative
workflow system that has been used as a software
engineering environment framework, to hospital
care planning. We utilize not only the workflow
modeling and execution facilities of Oz, but also its
open-system architecture to interface it with the
World Wide Web, the Medical Logic Module server,
and other components of the clinical information
system. Our initial proof-of-concept system, OzCare,
is constructed on top of the existing Oz system.
Through several experiments in which we used this
system to implement some Columbia-Presbyterian
Medical Center care plans, we demonstrated that
our system is capable and flexible for care plan
automation.

INTRODUCTION

A care plan is a specified process for caring for a
particular illness; it outlines specific procedures and
protocols to be carried out at specific points of an
illness or recuperation. Care plans exist most
commonly in manual forms, where health care
providers are expected to adhere to the textual lists
of recommended practices through "check off'
compliance. Studies have shown that adherence to
the manual plans reduces lengths of hospital stays by
30% and cost of care by 20-25%3. It is widely

0195-4210/96/$5.00 0 1996 AMIA, Inc.

believed that computer-automated care plans will
result in more substantial savings in healthcare costs.

Care plan automation is similar to workflow
automation because a care plan is a special form of
workflow -- it describes the steps of delivering care
to patients. However care plans have some unique
characteristics. First of all, there are thousands of
existing standard care plans and the number is still
growing. More significantly, when each care plan is
used in practice, it is to be applied to a specific
patient and every patient can have individual
circumstances that make the usual standard "one-
size-fits-all" plan inappropriate. While in other
domains staff might be required to stick to policies,
even at the cost of individual creativity, to guarantee
a high degree of quality assurance, a physician
should not be forced to follow standard care plans
under "unusual" situations.

Although a number of care plans have been
implemented using only Medical Logic Modules
(MLMs)6at Columbia Presbyterian Medical Center
(CPMC), we discovered that MLMs alone are
insufficient for care plan management because
MLMs are low level, in that each MLM makes only
a single medical decision such as generating an
alert, making a diagnosis, etc. A care plan normally
consists of a partially ordered set of care elements
(clinical tasks). Although each care element can be
implemented using one (or more) MLM(s), higher
level control mechanisms are needed to manage the
current status/progress of the entire care plan, the
dynamic rescheduling of care elements with respect
to the care plan due to resource constraints, and the
dynamic restructuring of a care plan due to tailoring
to the individual patient's current status. These

577

higher level functions can readily be provided by a
workflow management system.

Ozl is a collaborative workflow management system
developed at the Programming Systems Laboratory
(PSL) at Columbia University. Although Oz was
originally designed to support software engineering
processes, it has a general-purpose rule-based
workflow modeling language and a programmable
workflow engine, which make Oz applicable to other
application domains. Therefore the motivation of our
cooperative research (between PSL and CPMC) is to
use Oz as the workflow management system that
provides the high level control functions required by
a hospital care plan system.

In the sections that follow, we first discuss the
workflow management requirements of a care plan
automation system. Then we provide brief
background information on Oz, describe the design
and implementation of OzCare, and conclude with
discussion and future directions.

WORKFLOW MANAGEMENT

As we discussed in the previous section, a care plan
system needs a workflow management component.
Evidently the workflow management system should
have a general approach to modeling and managing
care plans, given the sheer numbers of potential care
plans to be installed. It must also be specific enough
to give precise guidelines for each patient, based on
patient data from other components in the clinical
information system. In the following, we examine
care plans from several different perspectives to
illustrate the requirements of a care plan workflow
system.

From the data management point of view, a care
plan consists of a set of care elements, each of which
are medical care events, or tasks. Each (instance of
a) task must be associated with a patient's medical
record number (MRN), which is the key used to
retrieve all demographic and medical information
about the patient. Each task is assigned a group of
care givers (physicians, nurses, therapists, etc.).

From the medical care point of view, each care
element has a medical activity (also mapped to task),
and its start time and stop time. The start time is
used to schedule the task and the stop time is the
deadline for completion of the task. When assigning
and scheduling tasks, resources such as available
physicians, hospital beds, operating rooms, etc. must

be considered. Before a task can be carried out, some
preconditions must be satisfied. These can be
categorized into logistic conditions (e.g., the task has
been assigned and the care giver is available) and
medical conditions (e.g., the patient's vital signs
have been stable for the past 24 hours). The
evaluation of the medical preconditions normally
requires invocation of the MLMs associated with the
task. Each task, when finished, also has post-
conditions used in determining which task(s) to
carry out next. Again, MLMs may be used to obtain
"expert system" medical advice to evaluate the
current state of the care plan.

From the hospital administration point of view, the
workflow system should monitor the progress of care
plans. It should generate reminders for pending tasks
as well as alarms for past due (not yet completed)
tasks. The care plan system must be an integral part
of a clinical information system; for example, it
needs to communicate with the patient database,
event monitors and MLMs using the standard Health
Level 7 (HL7) format for information exchange4.
Moreover, it should also have support for
collaborative workflow management so that care
plans can be carried out over a healthcare network.

Oz BACKGROUND

Oz provides a rule-based workflow modeling
language. A rule generally corresponds to a
workflow step, and specifies the step's name; input
data and bindings of additional data from queries to
the organization-specific database; a condition that
must be satisfied before initiating the activity to be
performed during the step; the activity, which is
normally the invocation of a program or script in the
host system; and a set of effects, of which assert the
actual results of completing the activity.

The workflow model of Oz is different from that of a
typical commercial workflow system: instead of
representing tasks as a graph with strictly specified
execution order, Oz represents a task as a rule,
allowing any ordering consistent with the conditions
and effects of rules. The workflow engine enforces
that rule conditions are satisfied, and can automate
sequences of workflow steps via forward and
backward chaining. A user can specify any task (an
entry point) he/she desires to perform, and Oz does
the backward chaining (goal-driven) to automate
satisfaction of prerequisites and forward chaining
(event-driven) to automate fulfillment of
consequences. The chaining of rules corresponds to

578

the sequence (execution order) of workflow steps and
is purely dynamic because it depends on user
selection (of the entry rule) and the state of the data
(that are evaluated in rule conditions and effects).
The Oz workflow model is therefore much more
powerful and flexible.

Oz supports object-oriented data definition (schema)
and query languages. A class specifies one or more
super-classes, primitive attributes (integers, strings,
time stamps, etc.), file attributes (path names to files
in an intentionally opaque "hidden file system"),
composite attributes in an aggregation hierarchy,
and reference attributes allowing arbitrary 1-to-N
relations among objects. Commercial off-the shelf
(COTS) tools and other external programs are
interfaced to Oz through shell script envelopes5. A
return code from the envelope determines which of
the several rule effects is asserted.

Oz employs a client/server architecture. Clients
provide the user interface and invoke the envelopes.
Servers context-switch among multiple clients, and
include the workflow engine, object management,
and transaction management for concurrency control
and recovery. An Oz environment consists of one or
more servers (sites), each with its own workflow
model, data schema, object base and tools. Clients
are always connected to one "local" server, and may
also open and close connections to "remote" servers.
Servers communicate among themselves to
coordinate workflow steps that involve data and/or
users from multiple sites.

DESIGN AND IMPLEMENTATION

We studied some manual care plans, Physical
Therapy and Occupational Therapy for open knee
surgery, and a care plan for high cholesterol
treatment, that are actually used at CPMC. We then
developed a prototype system, based on Oz, to
automate these care plans. OzCare has been tested in
simulated environments, but not in actual medical
trials. The principles and techniques behind this
prototype are general and can be applied to manage
many other care plans.

From the workflow modeling perspective, since a
care plan specifies a set of care elements (workflow
steps), it is tempting to represent care plans with an
Oz workflow model so that each care element is one
or more Oz rules. But there are many different care
plans and most importantly, every patient may use a
care plan that is a variant of the standard one.

Mapping a care plan to an Oz workflow model
would mean one workflow for each care plan for
each patient, resulting in a (potentially) enormous
and extremely dynamic rule base. Since Oz
workflow models are normally long-lived and
relatively static, this approach is not practical.

Instead, we first defined a general data model that
captures the operational environment of care plans.
Under this model, a care plan is composed of a set of
care elements, where each care element is an activity
that needs to be carried out by the system; see figure
1. A standard care plan is a "template" object that is
instantiated (copied) and stored as first class object
for each admitted patient. A patient specific care
plan is the result of modifications (by using OzCare
add or delete command to add or delete care
elements) to the instantiated standard care plan.

CARE_ZLUXNT superclass
CLXINCAL.EVZNT1

care-giver: set_of link HZALTNWORKZRj
2RN: string;
start_tim time)
stop_.tim.- time;
state : string)
pre-lm : NUI
activity stringj
post_Alm stI

PATXIZT_CARI_PLAN :: superclass
ZNTITI7t

name : strings
care_element : set_of CAR._XLZKZNT,
start_date : times

end

Figure 1: Definition of Care Element and Care Plan

Once the data model was in place, we identified the
set of general policies and workflow management
functions that control the execution of the care
elements. These were then modeled as Oz rules.
Figure 2 is an example of such a rule. Report is
invoked when a care giver reports the completion of
a care element. Note that the rule activity,
report-element, is implemented as a tool envelope.
Within this envelope, the MLM associated with this
care element is invoked to report the completion of
the task.

* nae and parameters
Report care-elment-t : CARR_ELEZMNT,
?report : LITERAL, ?vital-signs : LITERALJ:
L binding
(and (exists mm ftml suchthat

(member C?care-_l.ment.post.-lm ?mam]))
(forall HEALTHWORKUR ?worker suchthat

579

(linkto ?care_el ent.care-giver
?worker]))

(exists PATXZT patient suchthat
(?patient.NX - rcare_elment.NRN))):

condition
(and (tcare_ele ntatatus <> Reported)

(?care-_eleaent.status - checkout))
activity
(CarePlan_tool report_lement

Tcare_element.report ?report
?care_eleaent.Nae ?care_lement.RX
?l1u.naae ?lal.input ?vital_signs

return rteport_status ?alu_output)
eeffects

(and (?care-_le nt update_ti_etCurrentTime)
(ltau.output * ?al-_output)
(link C?patient.track_record

?care-lemntl)
(link ?tvorker.track_record

?care_elelentl))

Figure 2: The Report Rule

It is important to see that Report can be applied to
all care elements since it takes a care element object
as its input argument. These execution rules (e.g.,
Report) are used by the Oz workflow engine to
interpret and execute the care elements that are
stored as first class objects. Modifications to care
plans can therefore be achieved by simply changing
objects in the object base (at anytime) instead of
redefining the work flow model (the rules).

Besides the data model and workflow model, there
are some other care plan-specific system
requirements that we had to address. The first is the
notion of timed event -- an event has to start and end
at or by certain times. We defined in the data model
an EVENT QUEUE and an ALARM_QUEUE. Care
elements are put into the EVENTL.QUEUE based on
their start-time, and ALARM_QUEUE based on
their stop-time. Care elements in the
EVENT_QUEUE are those that have not been
"checked out" by the responsible care givers,
whereas care elements in the ALARM_QUEUE are
those that have not been "reported" yet. A UNIX
timer program runs once every day to generate a "to-
do" list for care givers based on the care elements in
the EVENT7QUEUE. Another UNIX timer program
runs once every hour to send reminders to the care
givers for their care elements in the
EVENT QUEUE, and "alarms" (e.g., beeper
messages) for their care elements in the
ALARM_QUEUE. These time periods were only
selected for demonstration purposes. Significantly
shorter intervals would be needed in practice.

A critical requirement for OzCare is that it must
interface with the CPMC MLM server because the

clinical events associated with individual care
elements are normally implemented as MLMs. The
communication between OzCare and the MLM
server can be either synchronous or asynchronous.
Figure 3 depicts the architecture of the OzCare
system.

Figure 3: OzCare System Architecture

In the synchronous case, an MLM is called as a
result of executing the activity of an Oz rule, e.g.,
Report. This kind of MLM normally triggers a
clinical event or reports the completion of a clinical
event. A gateway agent runs at a CPMC workstation
and communicates with remote gateways through
sockets. When an Oz rule activity invokes an MLM,
the regular Oz client runs the synchronous gateway,
which in turn sends the "run MLM" request (e.g.,
"run new_rx"), to the gateway agent in CPMC. The
synchronous gateway then waits for MLM output.
When the gateway agent gets the request, it invokes
a "runmlm" command to execute the MLM in the
CPMC MLM server, and sends the output back to
the synchronous gateway of Oz. On receiving the
MLM output, the synchronous gateway invokes the
appropriate Oz rules (by sending the requests to the
Oz client, which in turn communicates with the Oz
server) according to the actions specified in the
output. For example, an MLM output
"delete:maintenance_rx:313:delay 24 hours", will
result in an Oz query to find the care element
"maintenance_rx" that belongs to the patient whose
MRN value is 313, and is scheduled 24 hours from
now. Once such an instance is found, the Oz rule
Delete is invoked.

Asynchronous communication is also needed
because there always can be "unexpected" clinical

580

events that may cause the care plan to be altered. For
example, a just-reported lab result may indicate that
the patient is no longer suitable for the current care
plan. Since such clinical events are implemented
using MLMs, OzCare needs to "listen" to the MLM
outputs that are of interest. Each MLM can have a
list of email recipients (e.g., doctor@hospital)
so that the MLM output is sent to the physicians in
charge. For OzCare, a dedicated email account
"ozmlm" can be set up, and its email address can be
registered as one of the email recipients for certain
MLMs. Further, an asynchronous gateway is used to
process the incoming emails sent to "ozmlm".

Another important system requirement for care plan
management, and in fact for healthcare applications
in general, is that the system be integrated into the
World Wide Web2. WWW is used for easy access to
information sites and for collaboration among
institutions. In OzCare system, users interact via the
standard forms mediums using a regular Web
browser. A set of scripts enable the Web server to
interpret user inputs and to send appropriate object
base queries and rule invocations to the Oz client.
For performance considerations, the Oz client uses a
pair of pipes (UNIX FIFO inter-process
communication streams) for input and output.

DISCUSSION

The unique contribution of our work is that we have
successful "separation of concerns", with MLMs
implementing the low level medical knowledge
intensive clinical events and decisions, and Oz
implementing the high level operational workflow
management.

A number of weaknesses of Oz also come to light in
our implementation of OzCare. The most serious one
is the lack of timing support. In the workflow
modeling language, there is no way to specify that a
rule, for example check_alaramqueue, be run at a
frequency, for example, every 5 minutes. The
workflow engine does not have a built-in timing
control either. Thus in order to schedule a rule
execution at certain time, a (separate) UNIX process
has to be set up to send the request to Oz at the
specified time.

FUTURE WORK

The next steps would be to first add timing support
to Oz. Also needed is the support of viewing and
analysis of workflow progress. An interesting

experiment would be to apply Oz's workflow
interoperability and geographical distribution
features to support healthcare networks across
multiple hospitals, clinics, etc., with perhaps
different care plans (procedures and protocols), to
collaboratively provide the highest quality patient
care at the lowest cost.

Acknowledgments

This work is supported in part by the New York
State Science and Technology Foundation Center for
Advanced Technology in High Performance
Computing and Communications in Healthcare.
Steve Luxenberg, James J. Cimino, George Hripcsak,
Robert Jenders, and Justin Starren at CPMC
provided crucial direction and input to this research.
We would also like to thank Steve Linde, Peter
Skopp, and Issy Ben-Shaul for their work on the
CGI-bins and alternative Oz interfaces for OzCare,
and Jeff Do and Richard Baldwin for their helps with
demo screens.

References

1. Isreal Ben-Shaul and Gail E. Kaiser. A
Paradigm for Decentralized Process Modeling.
Kluwer Academic Publishers, Boston, 1995.

2. James J. Cimino, Socrates A. Socratous, and
Paul D. Clayton. Internet as clinical information
system: Application development using the
world wide web. Journal of the American
Medical Informatics Association, 2(5):273-284,
1995.

3. Paul D. Clayton and George Hripcsak. Decision
support in healthcare. International Journal of
Bio-Medical Computing, 39:59-66, 1995.

4. Paul D. Clayton, Robert Sideli, and Soumitra
Sengupta. Open architecture and integrated
information at Columbia-Presbyterian Medical
Center. Clinical Computing, 9(5):297-303,
1992.

5. Mark A. Gisi and Gail E. Kaiser. Extending a
tool integration language. In Mark Dowson,
editor, 1" International Conference on the
Software Process: Manufacturing Complex
Systems, pages 218-227, Redondo Beach CA,
October 1991. IEEE Computer Society Press.

6. ASTM Subcommittee E31.15 on Medical
Knowledge Representation. Standard
specification for definition and sharing modular
health knowledge base (Arden Syntax for
Medical Logic Systems). Pages 1460-92, April
1992.

581

