
MMOPS: Developing an Autonomous Timeline Management Capability for a Robotic Mars

Mission

Mark J. Woods

(1)
, Derek Long

(2)
, Leslie Baldwin

(1)
, Ruth Aylett

(3)
, Maria Fox

(2)
 David Jameux

(4)
, Raffaele Vitulli

(4)

(1)
 SciSys Ltd.,

Clothier Road, Bristol BS4 5SS, UK

Email:mark.woods@scisys.co.uk

(2)
 Strathclyde Planning Group, University of Strathclyde,

Livingstone Tower, Glasgow, G1 1XH, UK

Email: Derek.long@cis.strath.ac.uk

(3)
 School of Math’s and Computer Science, Heriot-Watt University,

Mountbatten Building, Edinburgh, E14 4AS, UK

Email: ruth@macs.hw.ac.uk

(4)
 ESA/ESTEC TOS-ETD,

Keplerlaan 1, Postbus 299, 2200 AG Noordwijk, The Netherlands

Email: raffaele.vitulli@esa.int

INTRODUCTION
Planetary exploration with surface-based robotic elements presents a number of significant challenges, not least of

which is the lack of real-time, high-bandwidth communication between a surface element and mission control. The lack

of timely data combined with the unstructured and potentially hazardous nature of the terrain creates a difficult mission

planning environment. Given this uncertainty and the paucity of up-to-date data it is difficult to construct robust

timelines at the task level. As a consequence, such missions can be characterised by recurrent safe-modes, significant

downtime, and reduced science return. Lag in the communications cycle exacerbates this problem by increasing

operational workload and delaying return to active science operations. To deal with this, mission planning teams often

adopt a more conservative scheduling strategy which ultimately reduces science return.

Greater on-board autonomy has been proposed as a means of alleviating this inefficiency. Autonomy in this sense is

defined as having a software element which can modify or create a Rover/Lander timeline of activities. The motivation

being that an on-board element, with access to actual on-board state, is in a position to generate or adapt a nominal

timeline in response to anomalies in a timely manner thus preventing excessive downtime and impact on the operational

schedule. AI planning and scheduling technology is seen as an immediate means of implementing this functionality.

Previous missions have shown that the adoption of enabling technologies must be considered within the wider systems

and operational contexts if they are to result in an across-the-board net benefit. In an effort to address key questions

concerning the adoption of this technology the authors have conducted a study called Mars Mission On-Board Planner

and Scheduler (MMOPS) as part of ESA’s Aurora programme. The goal of the activity was to evaluate the Technology

Readiness Level of this technology in a representative environment and determine its suitability for the forthcoming

Aurora missions. Its initiation is timely given that forthcoming missions such as ESA’s ExoMars rover have complex

and challenging science activity requirements which will require a more responsive surface operations function.

Having considered operational/system perspectives from a range of stakeholder groups in previous studies we have

developed a general deployment philosophy that represents a first attempt to incorporate such high-level autonomy

within a specific mission environment. Our chosen approach currently focuses on operators retaining as much control of

autonomous configuration whilst providing the key benefits of on-board autonomy. Our prototype provides an on-board

Timeline Validation, Control and Repair (TVCR) capability. To reflect the needs of current operational strategies and to

ensure a suitable functionality increment, the proposed model does not execute goal based (re-)planning but limits on-

board repair to the modification of a nominal timeline using replacement fragments provided by the operators. The

model is however fully compatible with this function. The rationale for this approach is outlined later in the paper.

To evaluate the suitability of this approach we have developed both an on-board planning/scheduling prototype and an

evaluation framework based on the Beagle 2 Lander software test infrastructure. The on-board planning/scheduling

element has been interfaced to a modified version of the original Beagle 2 Lander software which is executed within an

emulation of the Lander hardware and which in turn has been interfaced to the Lander SCOS 2000 mission control

In Proceedings of the 9th ESA Workshop on Advanced Space Technologies for Robotics and Automation
'ASTRA 2006' ESTEC, Noordwijk, The Netherlands, November 28-30, 2006

system. The evaluation tool allows us to run a simulated version of Beagle 2 with or without on-board autonomy so that

a direct comparison can be obtained. In this paper we report on the results of the evaluation using this dedicated tool.

MISSION OPERATIONS CONTEXT

To understand the capability and limitations of existing approaches it is necessary to examine the appropriate service

definitions, in particular Packet Utilisation Services (PUS) [1] and the wider ECCS Space Segment Operability standard

[2]. Although PUS services such as event monitoring, event-action coupling, and On-Board Control Procedures

(OBCP’s) provide the backbone implementation for FDIR and operational autonomy concepts, additional functionality

is required to meet the requirements of deep space operations. In particular, there is a need to accommodate timeline

management from a global perspective in response to variability (during execution) and uncertainty (at mission

planning time) with regard to on-board resources such as memory and power. For example, the actual power or memory

used during payload activity will often be different from that predicted by mission planners. In the pessimistic case this

will halt the timeline as there will be insufficient resources to carry out the planned tasks that remain. Alternatively

execution may result in a relative abundance of resources if estimates were overly conservative. These resources could,

of course, be used to carry out additional science. A level of autonomy which is greater than that currently offered by

existing PUS services is therefore required to make use of spare capacity and prevent excessive downtime, i.e. to

maximise payload utilisation.

Autonomy in this sense is defined as having a software element that can modify or potentially create a Rover timeline.

The motivation for this is that an on-board element, with access to actual on-board state, is in a position to adapt the

nominal timeline in response to anomalies or opportunities in a timely manner thus preventing excessive downtime and

impact on the operational schedule. What is required therefore is a service which can take account of the Rover state,

assess the remaining timeline and its nested priorities, and compute which remaining activities should be carried out to

optimise resource usage while ensuring that essential engineering tasks are catered for and that the Rover is not put in

any danger. The need for such a capability has been anticipated by the ECCS Space Segment Operability standard

ECSS-E-70-11 which defines three levels of autonomy including:

1. The execution of pre-planned missions operations on-board

2. The execution of adaptive mission operations on-board

3. The execution of goal-based mission operations on-board

European missions to date have essentially implemented up to level 2 with the exception of PROBA-1 [3] which has a,

mission specific, goal-based approach to sensor targeting. The desired global understanding and reconfiguration of the

timeline is not something that can be modelled robustly or safely with existing PUS services such as OBCP’s and

indeed they were not designed for this purpose. A more suitable approach is to consider the use of model-based

autonomy technologies [4] which permit both a possible re-organisation and, critically, a validation of the derived

response by assessing the impact of timeline modification on the system and sub-systems with respect to operational

constraints defined by system designers and operators. As a model-based approach, planning and scheduling technology

is seen as an immediate means of implementing this functionality.

AUTONOMY LEVEL DEFINTION

Although highly desirable, full goal based autonomy (level 3 above) is seen as a step too far for a near-term mission to

Mars. Previous studies [5,6] and consultation with user groups within ESA and industry has highlighted issues such a

lack of applied understanding and evaluation of the technology in actual missions, and the significant change required

in the current operations model. Against this it is clear that a mission such as ExoMars has extremely challenging

science objectives which will require a significant increment in the evolving level 2 autonomy standard. We have

concluded therefore that an intermediate level of autonomy is required to bridge this gap between requirements and

capability.

We have proposed the need for a new service known as Timeline Validation and Control (TVCR) which will provide a

robotic element with the ability to modify the plans/timelines received from Earth to better match the real-time state and

environment. This leaves the nominal planning process firmly in the hands of the mission planning and science teams

but allows these plans to be modified on-board to maximise science return and preserve timeline execution when there

are differences between predicted (used at plan time) and actual on-board states. The service is concerned with three

key issues that considerably affect the robustness of timeline execution under the current model:

1. Timeline failure isolation. If a timeline contains an element that will fail how can this be “surgically removed”

to preserve any remaining healthy elements of the timeline.

2. Resource over-subscription. If the timeline requires the use of more resources (power, memory, instruments)

that are available or operational then it needs to be modified in order to proceed.

3. Resource under-subscription. If the timeline uses less resources than are actually available then is may be

advantageous to carry out additional science in order to increase the overall science return.

2

For items 1 and 2 above, the default case with level 2 autonomy is usually safe-mode and loss of science activity during

that period which can be in the order of days. A cohesive approach to item three is currently not available again leading

to sub-optimal science activity. To implement this service a timeline Validation element is required which can predict

and isolate possible failures, or over and under-utilisation of resources in received timelines. A Repair service is

required to make modifications which will try to amend the timeline in order to harmonise it with the actual on-board

state. Finally a Control element is necessary to periodically check the timeline during execution to spot potential

problems which may occur as state evolves. If so, Repair may need to be invoked again. To implement the combined

TVCR services much of the “machinery” associated with model based full (i.e. goal) planning systems is required. By

adopting the intermediary TVCR approach mission planning can be carried out by the ground teams while the

technology is used in a limited but pragmatic way modify their output to better suit the real time environment. This will

maximise resource use and increase timeline robustness by preventing complete timeline failure because of anomalies

which can in reality be isolated and resolved at a global timeline level. By using elements of a full model based

planning system in a constrained way it will allow a much easier progression to level 3 autonomy as defined by [2] in

extended or future missions. Finally the availability of TVCR on-board is a key enabling function for other autonomous

elements such as robotic arm placement or opportunistic science assessment. In the wider PUS context we propose that

TVCR would be implemented as a private PUS service in the first instance.

THE EVALUATION SYSTEM

To evaluate the suitability of this approach we have developed both an on-board planning/scheduling prototype based

on cumulative research carried out in previous activities [5,6] and an evaluation framework based on the Beagle 2

Lander software test infrastructure. As SciSys developed both the Lander software and SCOS based Mission Control

System for Beagle 2, we had access to the key components of a highly representative test framework kernel. In earlier

work we were able to model the Beagle 2 on-board constraints as specified by both the scientists and engineering team.

Critically, this has allowed us to build a high fidelity evaluation of the technology from both an on-board and operations

perspective. The on-board planning/scheduling element has been interfaced to a modified version of the original Beagle

2 Lander software which is executed within a TSIM-based emulation of the Lander hardware which in turn has been

interfaced to the Beagle 2 SCOS 2000 mission control system. The evaluation tool allows us to run a simulated version

of Beagle 2 with or without on-board autonomy, so that a direct comparison can be obtained. The dedicated tool is

shown in Fig 1.

SUN Solaris

PC/Laptop/Linux

SCOS 2000

SchedulerCONTOOL

TM DisplaysManual Stack

DAF

DAF

DAF

Structure

Structure

TC TM

TC
TM

Beagle 2 Lander
Software (OBS)

Platform and Payload

Simulation (PPS)

TSIM

ERC32

TVCR

TEST with TVCR TEST without TVCR

i.e. Nominal Beagle 2
System

Addition of Constraints

And opportunity science fragments

Creation of Initial Timeline

(TSIM)

IO Module

ECCS

MMIM
MUROCO-II

ARE

Control Manager

SUN Solaris

PC/Laptop/Linux

SCOS 2000

SchedulerCONTOOL

TM DisplaysManual Stack

DAFDAF

DAFDAF

DAFDAF

StructureStructure

StructureStructure

TC TM

TC
TM

Beagle 2 Lander
Software (OBS)

Platform and Payload

Simulation (PPS)

TSIM

ERC32

TVCR

TEST with TVCR TEST without TVCR

i.e. Nominal Beagle 2
System

Addition of Constraints

And opportunity science fragments

Creation of Initial Timeline

(TSIM)

IO Module

ECCS

MMIM
MUROCO-II

ARE

Control Manager

Fig.1. The TVCR Evaluation system allowing for a representative evaluation of the technology and comparison with the

nominal case

This architecture differs from current approaches in that it includes a new on-board timeline management service

(TVCR), a modified (Beagle 2) on-board, Lander software which interfaces with this service and a ground support

application called CONTOOL. These new aspects are now explored in more detail.

3

Modeling Issues – Adapting AI Planning for the Space Domain

In order to assess the validity of a timeline with respect to on-board state and the current goal set, and to manipulate the

timeline to improve its structure, TVCR must have some foundation or basis to support its reasoning. Our

implementation has used the action centred models of AI planning as the [7], underpinning for this reasoning process.

In this case actions which are typically instantiated as low-level procedures in the on-board software are the basic

atomic elements of a mission timeline. When carrying out analysis the preconditions associated with actions and their

effects can be evaluated with respect to the state of the system and its on-board environment. PDDL [8] has been used

as the modelling language to model the behaviour of individual actions and their interactions with other actions. In

applying this approach to the space planetary robotics domain we have identified a number of issues which required

new insight.

Firstly, a distinction has been made between methodological and logical constraints which are attached to the timeline.

The former type of constraint refers to behaviour which are logically possible but may not be desirable for scientific or

engineering purposes, e.g. carrying out destructive sample analysis before taking contextual images. Secondly, AI

planning systems usually require the creation of a plan which moves the state to some new goal state. This approach is

not always appropriate for the selected application as it may require an excessive level of granularity in describing the

on-board state variables. A more convenient and operationally friendly approach is to specify the goals in terms of

which actions a timeline is intended to achieve.

In our approach TVCR has in effect two separate resources to allow it to reason about timelines be it for validation,

control or repair. Its primary PDDL model of possible timeline actions and the domain is an updateable model which is

flown on-board as part of the TVCR service. This model captures the logical constraints associated with the domain. In

addition, we have implemented a mission planning support tool called CONTOOL to capture user level information

which is specific to a particular timeline. This information includes, Plan Structure, Ordering Constraints, Timing

Constraints and Mutual Exclusion Constraints and allows scientists and engineers to communicate methodological

constraints and information on their intent for the plan to TVCR. For example scientists can group related activities into

timeline fragments, which form a cohesive set typically aimed at achieving a distinct scientific or engineering activity

such as an experiment. Each fragment can have a priority associated with it and be related to other fragments on the

timeline using constraints. This would allow scientists to specify which fragments should have precedence if resources

are limited. In addition it allows scientists to specify additional or opportunistic science activities as separate fragments,

which could be scheduled should sufficient resources be available. The combination of timeline structure and

constraints will allow TVCR to isolate possible failed elements in a manner which is consistent with

science/engineering objectives. Thus mission planning personnel have a convenient means to provide a high level of

control or instruction over how the on-board autonomy should carry out its work.

When using TVCR, operators are able to create a nominal timeline and add additional information to that timeline e.g.

group related activities into fragments, assign priorities, create alternative science activities or fragments, and define

constraints and interdependencies using a dedicated CONTOOL MMI. Timelines are uplinked as a TC stack in the

normal way via the SCOS 2000 Manual stack. The timeline is processed by the on-board Lander software and it uses

TVCR to carry out the validation, control, and repair. TVCR itself uses the current on-board state, the received timeline,

the additional information and the on-board domain models to implement the appropriate services.

TVCR

The Timeline software object which is part of the Beagle 2 on-board software is responsible for the execution of the

timeline itself. It is able to call upon TVCR to provide the various management functions required for greater on-board

autonomy. The interaction between the Timeline object and TVCR can be summarised as follows:

• On-board, the On-board Software (OBS) and Timeline Object receives the timeline (including opportunity

fragments and constraints) and requests a validation from the TVCR service. The validation service will

assess current Rover state and compute the validity of the uplinked timeline versus known constraints and

flight rules contained in pre-defined models.

• If the timeline is valid, the OBS will schedule execution. If it is invalid, TVCR will signify this and the

OBS can then choose to select a repair response. In this case, TVCR will attempt to repair the timeline by

moving, deleting (existing timeline fragments), and/or inserting opportunity fragments (to use freed up

resources) in a manner that respects the defined constraints and actual Rover state. For example, if an

instrument that is used several times in a multi-sol period fails, future fragments that use this device could

be removed and opportunity fragments inserted in order to make use of the available power and memory

resources. If a timeline repair is successful, it will be sent back to the OBS which again controls execution.

If unsuccessful, then the OBS would proceed according to current practice, i.e. a switch into an appropriate

safe mode.

• During execution the OBS can request a periodic Control service from TVCR. In this case, TVCR projects

forward the remainder of the current timeline (up to a certain horizon) based on fresh state updates received

4

from the OBS. During this look-ahead, it can anticipate failure and offer to repair the timeline at an

appropriate time. For example, if the timeline is viable in the near-term, TVCR can repair the longer-term

part of the timeline as a low-priority background task. Alternatively, if failure of the timeline is imminent it

will request permission from the OBS to carry out an immediate repair.

Fig. 2. TVCR Architecture

The architecture for TVCR is shown in Fig 2. TVCR can be viewed in terms of the “classical” three layer robotics

architecture and in that case it would operate at the upper deliberative level. TVCR itself has actually uses a software

framework developed for a robotics control activity [9] and the plan dispatch role in that framework is handled in our

system by the OBS software, the Timeline Object in particular. At the heart of this architecture are the PDDL domain

models supplemented by the CONTOOL data and also power and temperature models. The Validation process projects

the state through a series of models of activities representing the timeline. A mixture of analytic and numeric techniques

is used to achieve this. The Timeline repair follows a strategy of iterated repairs. It first identifies and removes all

fragments of the current timeline that are broken because of the conditions in the current state. It then identifies

opportunity fragments, if there are any, that might still be executed. These are limited by the availability of resources

freed by the broken fragments and by the conditions of the current state. TVCR then proceeds to consider the fragments

in priority order, inserting those that are possible and confirming, as it does so, that the constraints on the use of the

fragments are satisfied. These can include, for example, dependency constraints, so that a fragment requires another

fragment to be executed before it in the timeline, conditional orderings, so that if two fragments are both executed they

must follow a certain ordering, and mutex constraints, so that at most one of a constrained pair of fragments may appear

in a timeline. The choice is made heuristically, using a greedy strategy based on the priorities assigned by personnel on

the ground. This can mean that the final repair is not optimal with respect to all possible execution traces, but it is

typical for greedy heuristics to find good quality solutions and to do so very quickly. Given the constraints on on-board

resources, this is considered the most effective compromise.

The state synthesis component of TVCR has a critical role in all functionality provided by TVCR. In order to deduce

the effects of activities on the state of the lander, TVCR must have a model of the current state of the lander. This

enables TVCR to check that the preconditions for the activity are met and then to project the effects of the activity. In

general, finding the current state of the lander is dependent on the existence of adequate internal state monitors. For

example, to find the position of the PAW in Beagle 2, the only monitors available are potentiometers on the joints.

These do not give precise position information, but must be interpreted in terms of calibration values. In some cases,

determining accurate state information can be problematic: there might not be a convenient way to measure some

aspects of the system state. Furthermore, the state conditions that determine whether an activity can be executed

successfully might not be accessible to the lander sensors. To address this TVCR currently adopts the simpler route of

assuming success until presented with proof of failure, and updates its model of the state accordingly. Where activities

fail, the state can be even harder to capture, since some aspects of the state in which the activity was started will have

changed while others might not. TVCR makes the conservative assumption that failed activities have consumed all

5

resources that cannot be directly measured. The status of instruments following failure is assumed to be unknown and

this prevents further access to those instruments.

EVALUATION

The TVCR concept was validated by “flying” a series of science activity plans in a Beagle 2 software simulation mode

and injecting various faults etc to compare with nominal response mechanisms. Figure 3 shows the ultimate ground

segment view of the result of TVCR activity. The nominal 2 Sol timeline (first line in figure) consists of a series of

Beagle 2 science activities such as use of cameras, robotic ARM, Mossbauer (MBS) and X-Ray spectrometer etc. In the

first test case the MBS instrument has failed and this has been detected by the on-board validation component of TVCR

(indicated by lightening bolt in figure). TVCR constructs a repair by inserting a backup set of activities in place of the

original MBS fragment (dark green) which it removes. This is shown on the figure as a set of activities in light green

which have been dropped below the nominal timeline. In this scenario the MBS was to be used on Sol 2, and again

TVCR removes it from the timeline. In this case there a no appropriate substitute activities to carry out. However the

key benefit is that the majority of the original science plan has been executed and additional ‘next in line’ activities

were also used.

The second test case shown here depicts a scenario where there was insufficient power to execute the nominal timeline

received on-board. This is a classic characteristic of remote missions were ground based mission planning teams need to

predict the available power on-board with out-of-date information. When the actual timeline is received the on-board

state may have deviated from predicted state resulting in an over-subscription of resources. TVCR handles this situation

by removing particular science fragments. The figure shows two cases where alternative fragments are removed based

on a re-ordering of priorities.

(a)

(b)

Figure 3: TVCR Test results as viewed on the ground a posterior using CONTOOL: (a) Substituting opportunistic science in place of

a failed Mossbauer experiment. (b):

6

In order to assess the flight readiness of the prototype, on-board software experts within the team (including analysts on

both Beagle 2 and ExoMars Phase A teams) compiled a series of parameters to be considered in assessing the maturity

of the approach, and the steps required to complete a flight-ready implementation. These included issues such as

determinism, timing and memory requirements, flight code readiness and integration with existing services. In a number

of cases where specific metrics are required, we were able to make only order-of-magnitude assessments. However, we

believe that these are sufficient to determine the technology readiness at this stage. In summary, our assessment has

shown that the production of a version which could be executed on flight-representative hardware, is possible and

should be considered as the next step. We have not identified dependences or critical constraints which would prevent

this. This is, of course, not a trivial task but compatible with current schedule estimates for programmes such as

ExoMars rover. Finally, it should be noted that TVCR is similar in a number of respects to to the NASA CASPER

architecture which at the time of writing has been controlling autonomous (full goal-based including timeline

construction) operations on-board the EO-1 spacecraft for almost one year on a highly restricted flight environment i.e.

12 MIPS Mongoose M5 processor [10].

FUTURE WORK

As part of a follow-up to this work we are linking TVCR to other developments in autonomous science operations. We

commenced work on a prototype system to explore ways in which scientific targets can be detected on-board. On

making a positive detection an appropriate response would also be required such as take close-up image or place contact

instruments on a rock surface. At the heart of this is the need for a TVCR capability which can authorise the execution

of this “opportunistic” science behaviour given that is is aware of both the current on-board state and priorities and

constraints associated with the nominal timeline. We will develop a prototype system of the various elements required

and test this on a rover demonstrator (concept-E) in a rock garden environment.

In addition to offering a demonstration of the full closed-loop science capability the work will also illustrate the

necessity of deploying an on-board supervisory capability for the ExoMars mission. Our platform will include a robotic

ARM which will perform autonomous instrument placement. Clearly it is important to have the TVCR service available

to validate the proposed sub-plan generated by the ARM sub-system to ensure overall system safety and planning

integrity.

Fig. 4. Autonomous Science Architecture proposed for the CREST activity.

CONCLUSIONS

The objective of this work from the outset was to ascertain whether or not model based AI planning and scheduling

technology could be used in a pragmatic and practical way to:

7

• Implement autonomous timeline management on-board a robotic exploration unit

• Increase the efficiency of surface operations/payload utilisation as a result

• Remain compatible with the existing mission operations infrastructure and methods

• Be flight-ready within the timescales of near-term Mars missions such as ExoMars Rover

We believe that our assessment has answered these questions in a positive way and it is clear that although not trivial,

the next step is to develop an implementation which can be executed on flight-representative hardware. Providing a

remote Rover or Lander with the ability to autonomously manage the planned timeline of activities while out of contact

from remote operators will help achieve the ambitious science goals set out for forthcoming Mars missions.

The contribution of this work considered at a number of levels. Firstly, when deployed as proposed, TVCR would allow

a net increase in the flow of science from a vehicle over a specified period of time by; reducing downtime which results

from resource over subscription or instrument failure; and allowing the introduction of additional science activities

when resources are under-subscribed. In order to perform a large amount of science in a short period of time in a

mission such as ExoMars for example such a capability will be crucial as the cumulative impact of successive

downtime and the in-efficiencies of conservative planning will impact the science schedule severely. It is clear that the

mission will require the rover to autonomously execute complex and dense collections of science activities which will

be heavily dependent on constrained resources. Without some on-board ability to ensure that up-linked timeline plans

are compatible with actual resources and to repair these timelines if necessary, the science schedule could be severely

compromised. Even the immensely successful Mars Exploratory Rovers (MER) mission has been extremely cautious:

the original planned mission lifetime for the rovers was only 90 sols, yet they have now been active for more than 850

sols. Even so, they have travelled no more than 7 kilometers in the nearly three years of mission activity. Despite great

improvements in the support technology for the planning of MER operations [11], plans remain conservative and plan

execution failures have caused many days of lost science gathering over the lifetime of the mission.

Secondly, the inclusion of other forms of more advanced autonomy such as opportunistic science, require a capability

such as TVCR (V at a minimum) as a pre-requisite. The V element must be able to act as an on-board guardian of the

nominal science plan, resource requirements and overall system constraints before allowing unplanned activity. Thirdly

as TVCR used much of the machinery and techniques required for full goal based planning it can pave the way for more

advanced operational configurations where day-to-day planning is ultimately devolved to the on-board environment

allowing scientists an engineers to concentrate on science and strategic mission objectives.

The compatibility of this approach with existing ECSS standards gives wider meaning to this work. In short, the

techniques used here to provide a Martian Rover or Lander with timeline autonomy could also be applied to many other

spacecraft to reduce operational cost and support increase in mission function for initiatives such as GMES. The success

of the EO-1 Autonomous Science Experiment also bears this out [10]. Finally the technology is not limited to remote

planetary exploration, similar principles will apply for terrestrial applications also.

REFERENCES

[1] ECSS, “Ground Systems and Operations – Telemetry and Telecommand Packet Utilisation”, ECSS-E-70-11,

ESA Publications, Jan 2003

[2] ECSS, “Space Engineering – Space Segment Operability”, ECSS-E-70-411A, ESA Publications, Aug 2005

[3] R. Creasy and F. Teston, “Project for on board Autonomy: PROBA”, Proceedings of the ESA Workshop on

On-Board Autonomy”, WPP-191, ESTEC, Noordwijk, The Netherlands, 2001, pp. 57-68.

[4] J. Kurien, P. Nayak and B. Williams, “Model Based Autonomy for Robust Mars Operations”, Proceedings of

the First International Conference of the Mars Society, August 1998.

[5] M. Woods, R. A. Aylett, D. Long and M. Fox, “O-BIPPS Final Report”, SciSys, 2003

[6] M. Woods, R. A. Aylett, D. Long and M. Fox, “O-BIPPS CCN1 Final Report”, SciSys, 2004

[7] M. Fox, D. Long, L. Baldwin, G. Wilson, M. Woods, R. Aylett, D. Jameux, “On-Board Timeline Validation

and Repair: A feasibility Study”, in press

[8] M. Fox, and D. Long, 2003, “PDDL2.1 An Extension to PDDL for Expressing Temporal Planning Domains”,

Journal of AI Research 20:61–124.

[9] A. Coddington; M. Fox, J. Gough, D. Long, and I. Serina. 2005, “MADbot: A motivated and goal directed

robot”, In Proceedings of AAAI’05 (Intelligent Systems Demo).

[10] S. Chien, R. Sherwood, D. Tran, B. Cichy, G. Rabideau, R. Castano, A. Davies, D. Mandl, S. Frye, B. Trout, J.

D'Agostino, S. Shulman, D. Boyer, S. Hayden, A. Sweet, S. Christa, “Lesson Learned from the Autonomous

Sciencecraft Experiment” In Proceedings of Autonomous Agents and Multi-Agent Systems Conference

(AAMAS 2005), Utrecht, Netherlands. July 2005

[11] Ai-Change, M.; Bresina, J.; Charest, L.; Hsu, J.; Jonsson, A.; Kanefsy, R.; Maldegue, P.; Morris, P.; Rajan, K.;

and Yglesias, J. 2003. MAPGEN: Mixed intitive activity planning for the Mars Exploratory Rover mission. In

Proceedings of Demonstration Systems Track, ICAPS’03.

8

