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ABSTRACT:

We propose a robust method for registering high oblique images of landscapes. Typically, an input image can be registered by matching
it against a set of registered images of the same location. While this has been shown to work very well for images of popular urban
landmarks, registering landscape images remains a very challenging task: For a given place, only a very small amount of registered im-
ages is generally already available on photo-sharing platforms. Moreover, the appearance of landscapes can vary drastically depending
on the season and the weather conditions. For these two reasons, matching the input images with registered images in a reliable way
remains a challenging task. Our contribution is two-fold: first, we show how to estimate the camera orientation for images with GPS
data using a novel algorithm for horizon matching based on Dynamic Time Warping. The proposed algorithm exploits an elevation
model. Each image is processed independently from the others, there is therefore no need neither for image matching or for a large set
of images. This step provides a set of reliable, fully registered images. Second, and in odrer to register new images with no GPS data
available, we first ask the user to provide an approximate image localization on a 2D map. Then, we exploit this prior on the camera
location to efficiently and robustly constrain and guide the matching process used to register the query image. We apply our method
to a case study from the Zermatt area in Southern Switzerland, and show that the method provides registrations, which are accurate
enough to map each pixel to an aerial map.

1 INTRODUCTION

Many recent works have shown that 3D reconstruction of fa-
mous monuments or of entire urban areas using tourist photos
only is possible (Snavely et al., 2006, Strecha et al., 2010, Agar-
wal et al., 2011). Such reconstructions are usually computed in
an arbitrary coordinate system and are then georeferenced after-
wards, either with Ground Control Points (GCP) or with some
reference GIS data, such as a 3D city model or roads vector
layers (Strecha et al., 2010). By contrast, much fewer works
have considered landscape areas imaged with oblique photogra-
phy. This is mainly because in natural landscapes the images
are much more sparsely distributed and prone to illumination and
seasonal variations (Baboud et al., 2011). With these constraints
in mind, applying bundle adjustment becomes difficult, if at all
possible (Chippendale et al., 2008). Nonetheless the possibility
of exploiting tourist images is very appealing: precisely georefer-
enced photo images could become extremely valuable alternative
data sources for Earth sciences, which could be used in the esti-
mation of the snow melting rate, of the displacements of glaciers,
or of land cover changes.
A second motivation is related to web sharing platforms and land-
scape image database management. Web sharing applications
usually provide 2D maps with pictures location. However, im-
ages with associated 3D pose would open new opportunities. First,
make 3D navigation between images possible in a virtual globe.
Second, a 3D pose is required to augment images with georef-
erenced data (rivers, trails, toponyms etc.). Those attributes will
also ensure that correct tags are associated to the images for more
advanced querying.

This paper aims at providing a semi-automatic 2D-3D registra-
tion methodology for landscape pictures issued from the Web: we
present an automatic pose estimation workflow for sets of land-
scape tourist images. The georeference of each photography is
estimated using two data sources: a small set of GPS-registered
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images and a Digital Elevation Model (DEM). To estimate the
camera orientations for these GPS-located images, we propose an
algorithm that matches the horizon silhouette in the images with
the DEM. Once oriented, the 3D coordinates of each GPS image
is computed. To register a query image, we start from a coarse lo-
cation provided by the user by clicking on a 2D map. We use this
location as a prior information in a our proposed algorithm that
simultaneously estimates the camera pose and establishes SIFT
2D-3D point correspondences between the query image and the
GPS-registered images. Finally, the horizon line is further used
to fine-tune the camera orientation.

The proposed workflow is applied to a set of pictures of one of
the most attractive places in the Swiss Alps: the region of Zer-
matt and the Matterhorn. Query images are downloaded from the
web-sharing service Panoramio. To assess the accuracy of the
resulting orthorectifed images, we compare them with a state-of-
the-art orthoimage of the area. This comparison shows an 50 m
accuracy on the average pixel localization.

The remainder of the paper is as follows: Section 2 presents re-
lated work. Section 3 introduces the pose estimation problem
and the ingredients of the proposed workflow, which is detailed
in Section 6. Section 7 presents the dataset studied and the ex-
perimental results, which are discussed in Section 8. Section 9
concludes the paper.

2 RELATED WORK

Oblique terrestrial images are often used to assess the changes
of a landscape (Roush et al., 2007, Kull, 2005, Debussche et
al., 1999). Oblique images have several advantages compared
to aerial images. First, fixed terrestrial cameras such as web-
cams can observe landscapes continuously, from the same loca-
tion and with high temporal and spatial resolutions. Second, these
cameras are cheap and do not require skilled operators running
them. Finally, for studies considering past images (∼1850-1920),
mostly only terrestrial images are available.
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Despite all these advantages, georeferencing routines for oblique
terrestrial images are less widespread than those dedicated to sets
of aerial or satellite images. Among the papers proposing geo-
referencing solution for oblique photography, (Corripio, 2004)
assess movements of glaciers, while methods in (Bozzini et al.,
2011, Produit et al., 2013) georeference historic images. These
papers propose tools to compute the pose of an image from user-
defined GCP and facilitate the interaction between the oblique
image and the map. Once the images have been registered, one
can measure objects displacements of augment the image with
vector information.

Currently, large efforts are done in the automatic pose estima-
tion of images, either at the global or local scale (Li et al., 2012,
Crandall et al., 2009, Hays and Efros, 2008, Friedland et al.,
2011, or the MediaEval Benchmarking Initiative1). At local scale
(and specifically for landscape images), authors showed the po-
tential of using GIS data as landmark features or models (see (Ja-
cobs et al., 2007, Hammoud et al., 2013, Produit et al., 2014)).
A straightforward landmark element in mountainous area is the
horizon, which can be easily extracted from a DEM. It has been
used in (Baatz et al., 2012a) to recover an image location and ori-
entation at the scale of the Switzerland. A DEM provides alos
other morphologic edges: authors in (Baboud et al., 2011, Chip-
pendale et al., 2008) use this source to orient the images. Finally,
the DEM can also be warped with landcover maps (Baatz et al.,
2012b) or orthoimages to render more realistic views that can in
turn be used as reference for matching query images (Produit et
al., 2012). Both these methods allow to avoid explicit matching
of the horizon, but the first requires precise knowledge about the
camera position and the second is specific to glacier areas with
high contrast geomorphological features.
Among the works above, the closest to ours is the one of (Baatz
et al., 2012a). The authors build a database of horizon contourlets
for the whole territory of Switzerland. This way, they locate 88%
of the query images within 1km of their real location. This re-
sult is very impressive and promising, but has some drawbacks.
First, the method relies only on the horizon, which in the query
images can be hidden behind clouds or other foreground objects.
Second, the camera orientation is obtained from the horizon sil-
houette matched with ICP (Iterative Closest Point): the matching
is done in 2D, while the horizon extracted from the DEM has 3D
coordinates, which can be used to compute a finer pose. Finally,
the horizon segmentation in (Baatz et al., 2012a) requires user
intervention for 49% of the images, thus reducing the degree of
automation of the system. For all these reasons, we believe that
complementary methods still need to be developed.

Landscape images collections differ from urban images mostly
used in comparable studies in several ways. First, images density
is usually lower in rural area and their overlap is small. Pictures
are generally shot from some easily accessible locations and only
few pictures can be found in between these popular locations.
Second, landscape images show large illumination variations due
to daylight changes and seasonal effects. Third, colors, textures
and land cover change during the year. For these reasons, tradi-
tional bundle adjustment is difficult. Hence, and at the best of
our knowledge, there is no workflow able to estimate the pose
(location and orientation) of landscape images, if structure-from-
motion can’t be applied.
In this paper, we describe a workflow to address these problems
and provide the georeferencing of a set of landscape images with
limited user interaction. Such a process is well adapted for cur-
rent image databases, which often contain only a few precisely
located images (GPS acquired) and a wider set of roughly lo-
cated ones (toponym or click on a map). In this paper, we focus

1http://www.multimediaeval.org

on landscape images shared on the web. In the workflow pro-
posed, the pose of each image is estimated sequentially using the
3D model of the area and some pose priors.

3 PROBLEM SETUP

In this section, we briefly present the basic concepts and equa-
tions used in the proposed workflow.
We use the collinearity equations to describe the relation between
the 3D world coordinates X = [Easting, Northing, Height] and
the corresponding image coordinates u. First, a translation and a
rotation transform the world coordinates X in the camera frame
with coordinates x:

x = R(X− T ) (1)

where R is a rotation matrix parameterized by three Euler angles
and T = [E0, N0, Z0] is the location of the camera. The camera
coordinates frame has two axes parallel to the image sides and
the third one is pointing in the viewing direction. Then, image
coordinates u are obtained with:

u =

[
u
v

]
= −c

[
x1/x3

x2/x3

]
(2)

In this formulation, the image pose p is made of the three Euler
rotation angles forming the rotation matrix R and the three cam-
era location coordinates in T . Thus, 6 parameters are unknown.
The constant c corresponds to the focal length:

u =

[
f1(p, X)
f2(p, X)

]
= F (p, X) (3)

The pose estimation from n 2D-3D correspondences is defined as
a least squares problem:

min
p∈R6

∑
‖F (p̂, X)− u‖2 . (4)

4 DYNAMIC TIME WARPING FOR HORIZON
MATCHING

To estimate the camera orientation when its location is available,
we match the horizon in the image with the DEM. This is done
with a novel algorithm based on Dynamic Time Warping (Berndt
and Clifford, 1994), a technique matching sequences of different
length based on the warping and distance measurements.
Typically, the horizon silhouette is extracted from a rendered view
or a synthetic panorama and assuming the camera roll and tilt
equal to zero. In this specific setup, DTW shows some desirable
properties. First, the warping is used to be robust to image or
panorama distortions, inaccurate focal estimation and rendering
artifacts.

DTW was originally developed to match two time series with
time distortions, acceleration and deceleration, sampled at equal
time steps. In our problem of horizon matching, time is replaced
by the image coordinates on the horizontal axis u0. The first se-
ries is the set of N query horizon features hQ = {u0, ..., uN} and
the second is composed of M reference horizon features hR =
{u0, ..., uM}, both ordered by increasing horizontal coordinate.
DTW computes a set of correspondence pairs Ci∈[0,N ],j∈[0,M ] =
{..., (i, j), ...}, which minimizes the global performance measure
between the matched hQ and hR. The global performance is the
sum of the Euclidean distances measured between corresponding
features in C. Moreover, each horizon feature in the reference
image is linked to a 3D coordinate HR = {X0, ..., XM}.
Matches computed with DTW are iteratively inserted in the least-
square problem of Eq. (4) in order to re-estimate the orientation
and compute a more accurate reference horizon, by fixing the
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translation to the GPS data and optimizing the rotation only. It-
erations are stopped once the orientation is stable or after a pre-
defined number of iterations. In this way, the global measure is
used to detect the best azimuth and 2D-3D correspondences are
used in an iterative way to retrieve accurately the azimuth, roll
and tilt and thus ensure that each pixel will be accurately georef-
erenced.

5 FULL POSE ESTIMATION VIA KALMAN
FILTERING

If a pose p and its variance Σp are known, variance propagation is
used to estimate the covariance ellipses of a 3D correspondence
Xi projected in the image frame :

Σu
i = AiΣ

pAT
i (5)

where Ai is the jacobian of F (p, Xi). In our implementation, J
sets of 2D-3D correspondences are found iteratively. The prob-
lem can be reformulated in the following form to be used in a
Kalman filter:

min
p∈R

J∑
j=1

‖Aj(p, Xj)− uj‖2 (6)

Following the Kalman filter algorithm, if a pose pj is associated
with a covariance matrix Σp

j and the noise covariance of the mea-
surement is Σu

j . Then the gain Kj is:

Kj = Σp
j AT

j (AjΣp
j AT

j + Σu
j )−1 (7)

The gain is then used to update the pose:

pj+1 = pj + Kj(uj −Ajpj) (8)

And to update the pose covariance:

Σp
j+1 = (I −KjAj)Σp

j (9)

In the proposed workflow, a recursive pose estimation process is
needed to refine the 2D-3D correspondences extraction for each
estimation of an image pose. The Kalman filter has the advan-
tages of using prior information and of keeping a memory of the
process, which limits the influence of false positives. Moreover,
it is able to deal with several types of measurements, for example
an update of the camera height with the DEM. However, since in
this case study our focus is the minimization of the reprojection
error and not the exact camera location computation, we did not
include the height update.

6 PROPOSED WORKFLOW

In the previous section, we defined the tools required for the pose
estimation of landscape images. In this section, we first explain
how images having known location (e.g. acquired with a GPS-
enabled camera) are oriented. Then, we present how these images
are used as references for the pose estimation of the remaining
images in the database.

6.1 Orientation of the GPS images using the horizon

A small part of images found in photosharing platforms are ge-
olocated with a GPS device. GPS mounted on cameras and cell-
phones have a sufficient accuracy for our purposes (< 20m). In
particular, our study area is open and above the forests limit, thus
no obstructions should disturb the GPS measurements. For this
small set of images, we assume that the camera location T is
known, while the orientation is unknown. It has been shown that

DEM

GPS image

T

Horizon
(Watershed)

Horizon 2D

Horizon
(Rendering)

Horizon 3D

Orientation

DTW

GPS Image

T, R

Rendering

GPS image

T, R, 3D

Figure 1: Processing of the GPS images, T refers to the camera
location measured with the GPS, R is the orientation of the cam-
era. At the end of this step, each GPS-image pixel owns a 3D
coordinate.

(a)

(b)

Figure 2: (a) One of the reference GPS images; (b) Correspond-
ing distance matrix: each pixel is coloured as a function of its
distance to the camera (in meters).

the camera orientation in mountainous area can be automatically
retrieved (e.g. (Baboud et al., 2011)). Nevertheless, as in (Baatz
et al., 2012a) we choose to involve the user in the extraction of
the horizon in order to ensure an accurate delineation and at the
same time avoid heavy pose computation. We propose to ex-
tract it using a watershed segmentation, where the user provides
an initialization region. Indeed, a precise horizon delineation is
essential for a precise camera orientation: the user involvement
ensures a trustable horizon detection, especially in cloudy images
and ensures that those images used as reference later are well ori-
ented.

Following the process presented previously for DTW horizon match-
ing, 2D-3D correspondences in the horizon are used to compute
the image orientation. Ultimately, 3D coordinates of each one of
the GPS image pixels are computed by projecting the DEM in the
image plane via the z-buffer method. Figure 1 summarizes the
workflow applied to get the orientation of the GPS images, while
Figure 2 illustrates an example of 3D coordinates of an oriented
image obtained with the proposed method.

6.2 Pose estimation of the remaining images

The remaining images only have inaccurate geotags provided by
the user with a click on a map. The proposed workflow is inspired
by the one of (Moreno-Noguer et al., 2008) in which camera pose
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Figure 3: Processing of the query images, T 0 refers to the geotag,
R is the orientation of the camera.

prior are known and 2D-3D correspondences are detected solely
based on the geometric location of features. In our case the prior
is the geotag and orientation extracted from reference images.
We add feature descriptions to the process, since they are also
available. The involvement of the 3D coordinates of the features
detected in the reference images has two effects: on the one hand,
3D coordinates are used to restrict possible matches and to adapt
the SIFT matching threshold, while, on the other hand, 3D coor-
dinates in a global coordinates system allows to take advantage
of small overlaps in non-densely photographed areas.

The workflow of this second phase is summarized in Figure 3. In
the first part, the geometric constraint requires an estimation of
the camera location T 0 (which is obtained with the geotag) and
an estimation of the orientation R0. To compute the latter, SIFT
features are extracted from the collection of reference GPS im-
ages. Features from every reference image are merged into one
set of n features Ri with corresponding 3D coordinates XR

i and
SIFT descriptions dR

i . Given a query image, a set of m features
Qi are computed and each of them has an image location uQ

i and
a description dQ

i . SIFT features are firstly matched according
to the ratio of the two closest features descriptions found in the
other set (Nearest Neighbour Distance Ratio, NNDR). Using the
NNDR, a set of 2D-3D correspondences is extracted. Those first
matches are used to compute the initial camera orientation with
RANSAC in conjunction with the camera orientation model (the
camera is initially fixed at the geotag location T 0, figure 4(a).
Typically, few and poorly distributed matches are found, and this
is why we do not use RANSAC in association with the pose es-
timation model. The pose pQ

0 is associated with a high standard
deviation Σp

0 and the matches are associated with noise Σu
0 .

During the second part, corresponding to the geometric match-
ing, the reference features XR

i are projected in the query image:
uR

i = f(pQ, XR
i ) and the variance propagation in Eq. (5) is

used to compute the corresponding covariance matrix ΣR
u . Based

on the covariances, ellipses are drawn in the query images and
used to constrain the SIFT feature matching, as illustrated in Fig-
ure 4(b-c). The Kalman filter prerequisites are met and with each
new bloc of 2D-3D correspondences, a new pose is computed.
During the iterations, the SIFT distance threshold between two
features descriptions is relaxed to take into account texture and
illumination variations.

At this stage, the estimated pose is quite accurate, but the align-
ment with the 3D model is still not exact because of the pose
inaccuracy of some reference images and of accumulated errors.

We propose to update the pose with an additional horizon align-
ment. This time, the current pose and its covariance are used to
delineate the region in the query image where the horizon should
be located. Then, a Sobel edge extractor is applied inside this re-
gion and the DTW algorithm is used to refine the orientation, as
shown in Figure 4(d).
At the end of the process, the query image is draped on the DEM
to generate an orthorectified image that can be used in a GIS (Fig-
ure 4(f)).

7 RESULTS

In this section, we apply the proposed workflow to a real collec-
tion of landscape images shared on the web. Particularly, with
limited user interaction, our method can be used to compute the
pose of the oblique image and orthrectify it.

7.1 Data

The area of interest is located in the southern Swiss Alps in the
surroundings of the famous Zermatt ski resort. From Zermatt, a
train brings people to the Gornergrat, a ski and hiking region in
the middle of the highest Alps peaks. From this area, there is
a great view on the Matterhorn and the Dufourspitze, which are
among the most famous Swiss peaks. A large amount of pictures
is shot in the area representing one of those two peaks. Figure 5
shows the area and the location of the images available.

0 2 4 6 8 10 km

Figure 5: Zermatt area. The red dots represent the GPS images
location, while black dots are the images with geotags only. The
dashed line encloses the area of interest. Most of the images are
shot from the Gornergrat ridge.

A set of images is extracted from the photosharing platform Pano-
ramio. This platform is mainly dedicated to ”Photos of the world”
and thus oriented to landscape scenery. Once they connect to this
platform, users can assign a map location to the pictures by the
GPS record, a click on a map or by entering an image location.
Especially because of this last technique, some geotags are very
inaccurate. For instance, in the map of Figure 5, some inaccurate
geotags are those located on the very North.

In order to compute the camera pose correctly, the focal length
must be estimated. A good estimate can be computed from the
focal which is stored in the image metadata and from the camera
sensor size, which is found in online camera databases. If the
image metadata is incomplete, a normal lens is assumed (focal
length equal to the diagonal of the image). In total, our set of
images pointing to the area of interest is composed of 198 images,
among which 10 have a GPS location and 118 have the focal
stored in the metadata.

To compute both the horizon and the pixels world coordinates, a
DEM is needed. We use the one provided by the Swiss Office of
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(a) Initial matches found after the NNDR matching and
RANSAC orientation.

(b) Covariance ellipses at the first iteration.

(c) Covariance ellipses after 10 iterations.
(d) Horizon projected in the image before (red) and

after (green) DTW matching.

(e) Query picture masked with DEM and the SIFT
features (only the area within the convex hull of the

matched SIFT is conserved).
(f) Query picture orthorectified.

Figure 4: Representation of the query images pose estimation workflow.

Topography2, which has a 25m pixel size. Indeed, our focus is
on objects far from the camera (beyond 1km), which makes the
use of a finer DEM unnecessary. Some height inaccuracies are
expected in glacier areas, since glaciers move and melt.

7.2 Reference GPS image orientation

To validate the success of the proposed workflow, we first mea-
sure the accuracy of the pixel localization. Indeed, our method
minimizes the reprojection error, but because of distortions not
taken into account explicitly (focal, principal point location, im-
age distortion) and false positive matches, the estimated pose may
differ from the real one, while still providing good pixel localiza-
tion close to the correspondences. To measure the accuracy of the
pixel localization, we applied the following scheme: the images
are orthorectified with the DEM (i.e. according to the pose each

2http://www.swisstopo.admin.ch/

pixel is projected on a triangulation of the DEM to retrieve its
corresponding map coordinates), thus resulting in orthorectified
images. Then, distances are measured between similar landmarks
found on the rectified images and on an official orthoimage (accu-
racy < 1m). For each image, between 5 and 15 planar distances
are measured and statistics are presented in Table 1. Two orien-
tation methods are compared: horizon matching with DTW and
user defined GCP. The GCP digitization accuracy depends on the
resolution of the oblique image. To provide a fair comparison,
we used images with 500 pixel width for both methods.

First, we comment the user interaction required for both methods.
It is much easier for an user to provide the initialization region of
the horizon than to detect precise GCP. Indeed, and specifically
for this study case, it is not obvious to find similar rocks or cracks
in oblique images and orthoimages.

Second, we compare their accuracy: from Table 1, we observe
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Table 1: Distances measured between recognizable landmarks
found both in an orthoimage and in rectified reference GPS im-
ages. Reference images were oriented either with DTW (left) or
GCP (right) and they are presented in Figure 6.

DTW/GCP
Picture ID Min. [m] Max. [m] Avg. [m]
24694380 62 / 32 289 / 447 149 / 156
47903616 6 / 6 73 / 76 44 / 40
58907261 10 / 25 76 / 96 44 / 58
65319402 13 / 10 57 / 70 36 / 41

Table 2: Distances measured between recognisable landmarks
found on an orthoimage and on rectified query images. Those
images are also those presented in Figure 6.

Picture ID Min. dist. [m] Max. dist. [m] Av. dist. [m]
14653410 21 343 139
39408227 24 406 148
42359812 28 223 84
54833218 18 239 81
78060652 58 207 98
87063176 14 102 39
96861787 44 538 196

no sensible difference in the accuracy of the methods. On the
average, the accuracy of the pixel localization is better than 50m,
which is good according to the image resolution and the geometry
of the problem (Kraus, 2007). Indeed, and unlike vertical images,
the angle between pixel rays and the DEM in oblique images is
usually large. In particular, the ray is almost tangent in flat areas
and close to the horizon. In these regions of the pictures, small
inaccuracy of the pose generates large distortions. The worst ac-
curacy observed, for both DTW and GCP, is measured for the
same image (24694380), which may indicate that either the GPS
location or the focal estimation is incorrect. Images presented in
Table 1 have easily extractable horizon (sky without clouds): the
performances tend to decrease when clouds occlude the horizon.

7.3 Query image pose estimation

Once the pose and the 3D coordinates have been estimated for
all the GPS images, we can use them as references for the re-
maining query images. A pose is computed for the query images,
for which RANSAC can found initial matches (100 images over
the 188 query images). However, some poses are clearly incor-
rect (10 images): these incorrect poses are associated to images,
for which RANSAC returns only false positives. At the end of
the pose estimation process, inexact poses are also computed for
images with few correspondences irregularly distributed in the
image. These poorly distributed correspondences generate large
uncertainty in the areas without correspondences. However, by
erasing image areas without correspondences, we somehow avoid
very large distortions. Finally, the horizon matching step applied
to refine the pose is useful for images without clouds, but may
suffer of undesirable effects in presence of clouds (see the dis-
cussion in the previous section). Statistics for 7 query images are
presented in Table 2. As expected the accuracy decrease com-
pared to the reference images. The geometry effects presented
above generate even larger distortions in some regions of the im-
age close to silhouette break lines.

To assess the accuracy of the pose itself, we computed as refer-
ence the orientation of one image with GCP (the image is pre-
sented in Figure 6). Then, we started the pose estimation using
a geotag randomly located on circle centered on the location es-
timated with GCP and with increasing radius. For each distance,
10 pose estimations are conducted. The mean and standard de-
viation of the absolute difference between the computed param-
eters and the one obtained with GCP are presented in Table 3.

Table 3: Impact of the geotag on the pose accuracy. For a
same image, the initialisation location is generated at different
distances. Distances are measured in meters, angles in degrees.
Mean Dist. ∆ XY ∆ Z ∆ head. ∆ tilt ∆ roll

(# < 100m)
50 85.5 (9) 14.7 0.4 0.5 0.5
200 72.2 (10) 10.8 0.2 0.2 0.1
500 85.3 (10) 35.9 0.4 0.7 0.5
1000 232.7 (3) 95.6 1.7 1.3 1
1500 227 (7) 132.6 1.7 1.4 0.8
2000 253.2 (4) 144.4 2.1 1.9 2
3000 2992.3 (0) 367.5 21.9 7.4 2.4

Std. dev. Dist. ∆ XY ∆ Z ∆ head. ∆ tilt ∆ roll
50 15.6 7.2 0.3 0.6 0.8
200 18.2 1.7 0.2 0.1 0.1
500 14.9 46 0.3 0.9 1.
1000 129.2 51.4 1.5 0.7 1.
1500 275.5 179.2 3.4 1.7 1.
2000 280.1 189.3 2.8 2.4 0.4
3000 1877.1 540.9 13.5 7.8 0.4

Between parenthesis, we summed the number of pose locations
within a 100m radius of the reference location. It appears, that
most of the poses in a 500m radius reach a local minima. We
can see it also from the small standard deviations in ∆XY . This
minima is not centered on the real location but 100m away, this
shift can be explained by the registration errors of the reference
images and some false positives detected. Beyond this thresh-
old, for distances from 500m to 2km, the variance increases, and
some poses do not converge to the minima. Beyond 2km, com-
puted poses hardly converge.

A video is available on the following link3. In this video, the
100 images for which the pose was estimated are rendered on a
shaded 3D model of the area, including those with poor match-
ing. Holes in the reconstructed surface correspond to regions of
the map which are hidden from the camera position. Quite of-
ten, patches of sky are visible at the proximity of the horizon;
this illustrates the misregistration problem due to tangential ge-
ometry. Attentive viewers will also notice foregrounds projected
on the background (a man with a hat, a bird on a fence, a lake).
However at the scale represented in this video, the registration is
usually of good quality and at least represents a great improve-
ment compared to an unique geotag.

8 DISCUSSION

The proposed workflow is composed of four stages: For the first
stage (orientation of the GPS images), we propose a DTW-based
horizon matching. The area studied in this application is indeed
perfect for horizon matching thanks to the mountains that pro-
vide specific silhouettes. However, in presence of other kinds
of silhouettes (flatter or with repetitive shapes) or in presence of
foreground objects perturbing the horizon (trees, buildings) DTW
may fail. In this case, the user can constrain the matching with
an azimuth range or provide some GCP. In term of time spent
and skills, less than 20 seconds are required to provide a very
good watershed initialization, while the digitization of GCP will
require a skilled operator, a GIS and for each GCP at least the
same amount of time as the one spent for the sky segmentation.
Currently, the segmentation is led by the user and automatic sky
segmentation (if robust enough) would be a great improvement
(see a recent review in (Boroujeni et al., 2012)).

Our workflow is strongly dependent on the a priori orientation,
which gives a lot of emphasis to SIFT. This step supposes that im-
ages, which are similar (season, illumination) to the query images

3http://youtu.be/87dHVDdlPSs
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are present in the reference database. At this stage, more than
50% of the images were correctly georeferenced. We could also
increase this percentage by running a second pass of the process
(using not only GPS images as reference, but also the newly geo-
referenced ones). To overcome the use of SIFT, rendered views
could also be used as reference images, but the challenge then
becomes to find a set of descriptors able to match synthetic and
real images (see (Produit et al., 2012)).
The location part of the a priori orientation is based on the geo-
tag provided by the user. Some web applications store the zoom
level applied on the map by the user when clicking as a mea-
sure of the localization accuracy. However, the relation between
the zoom and the accuracy is not straightforward and here we as-
sumed for every geotag a standard deviation of 1000m. (Zielstra
and Hochmair, 2013) studied image geotag accuracies for several
type of landscapes and several areas of the world. We can learn
from this paper that in natural landscape users provide location
much better than that.
In general, the accuracy around detected correspondences is co-
herent to an a priori expected accuracy (<50m). For this case
study, we used low resolution images, and improvement may still
be observable by considering full resolution images. Accuracy
tends to decrease in image regions where no or false correspon-
dences are found (for instance close to the image borders) and in
sinuous parts of the DEM, which generate large distortions dur-
ing the orthorectification of the query images. To digitize the
GCP used to compute the statistics, we choose the best quality
images, which often correspond to those more reliably oriented.
We can then imagine that the accuracy within the whole set could
slightly decrease. Considering our setup, which involves very dif-
fering images shot with uncalibrated camera and rough pose, the
results meet the expected accuracy.

One of the motivations for computing the pose of landscape im-
ages is related to environmental monitoring. To be effective, such
monitoring requires a very high accuracy of the measurements
of natural objects position and movements. According to statis-
tics presented in Tables 1 and 2, the accuracy is not sufficient for
environmental studies in most part of the images. However, by
providing our estimation as an initial pose, the task of manually
georeferencing images with GCP becomes strongly facilitated.
Moreover, once some GCP are provided by the user, we can take
advantage of the Kalman filter and get more restrictive error el-
lipses, in order to propose more correspondences and a final bet-
ter pose.
Database of landscape images are currently list of images, some-
times associated with geotags, sometimes linked to a 2D map.
The orientation computed with ourworkflow could be useful in
several way to create more user-friendly image database browsers.
First, the location and heading measured are accurate enough to
detect visible points of interest and link the images with appro-
priate tags. Then, computed poses can also be used to overlay to-
ponyms and other geographic layers in the images (as the moun-
tain names). Finally, the visual matching of the image and the
landscape model is quite good and thus the images could be in-
serted in a virtual globe.

9 CONCLUSION

In this paper, we presented a workflow to estimate the pose for
a set of landscape images downloaded from a photosharing plat-
form. Such a workflow is necessary to answer the problem of
finding the pose of the images and extracting geoinformation from
non-photogrammetric sets of images whose geolocation is some-
times very approximative and for which only sparse images, cov-
ering the area with low density, are generally available. This

setup is not limited to web-shared oblique landscape images, since
it also corresponds, for example, to historic image databases.
It has been shown by several other authors (Baboud et al., 2011,
Chippendale et al., 2008) that the orientation of landscape images
can be computed from a landscape model if the location of the
camera is provided. Their approaches are indeed automatic, but
the processing involved is very demanding, reason for which we
propose an alternative method using horizon line matching. The
proposed method is less computationally expensive, but involves
the user in its initialization.
In our proposition, reference images are used to recover automat-
ically the full pose (orientation and location) of the other images
belonging to the same collection, but without precise location.
To reach this goal, we propose an original workflow based on a
Kalman filter and use the landscape model to add more robust-
ness to the SIFT matching. To the best of our knowledge, our
method is the first to recover orientation and location of tourist
images collections in rural area. Since the user is involved only
at the beginning of the process, i.e. during the orientation of the
GPS located images, it remains reasonably close to an automatic
routine.
The achieved accuracy is not comparable to the one of orthoim-
ages generated via a classic acquisition and processing of pho-
togrammetric images, which remains a limitation for the usage
of our workflow at its current state for environmental studies. To
improve the accuracy further, an increased involvement of the
user would be necessary. Nonetheless, the pose is correct enough
to open interesting opportunities for images database manage-
ment, for example for advanced querying or augmented reality
purposes.
Our workflow can only be applied in area of interest where quite
large collections of landscape pictures are available. The applica-
tion of such a workflow in other areas of the world where only a
landscape model is available as reference remain an open chal-
lenge, which is to date only partially addressed (Baatz et al.,
2012a). Nevertheless, with the popularization of GPS enabled
camera connected to the internet, we can reasonably think that
the image databases will continue their growth.
Further developments will make the estimation of the orientation
of the GPS images automatic and the initial estimate of the ori-
entation for the query images independent of SIFT. Moreover,
the process is also designed to be extendible to images without
geotags, if a rough assumption of their location is provided. For
instance, we showed in (Produit et al., 2014) that landscape mod-
els can be used to discard unlikely shooting locations and detect
preferred ones.
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