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Abstract

Context Spatial variation in abundance is influenced

by local- and landscape-level environmental variables,

but modeling landscape effects is challenging because

the spatial scales of the relationships are unknown.

Current approaches involve buffering survey locations

with polygons of various sizes and using model

selection to identify the best scale. The buffering

approach does not acknowledge that the influence of

surrounding landscape features should diminish with

distance, and it does not yield an estimate of the

unknown scale parameters.

Objectives The purpose of this paper is to present an

approach that allows for statistical inference about the

scales at which landscape variables affect abundance.

Methods Our method uses smoothing kernels to

average landscape variables around focal sites and

uses maximum likelihood to estimate the scale

parameters of the kernels and the effects of the

smoothed variables on abundance. We assessed model

performance using a simulation study and an avian

point count dataset.

Results The simulation study demonstrated that

estimators are unbiased and produce correct confi-

dence interval coverage except in the rare case in

which there is little spatial autocorrelation in the

landscape variable. Canada warbler abundance was

more highly correlated with site-level measures of

NDVI than landscape-level NDVI, but the reverse was

true for elevation. Canada warbler abundance was

highest when elevation in the surrounding landscape,

defined by an estimated Gaussian kernel, was between

1300 and 1400 m.

Conclusions Our method provides a rigorous way of

formally estimating the scales at which landscape

variables affect abundance, and it can be embedded

within most classes of statistical models.

Keywords Appalachian Mountains � Cardellina
canadensis � Habitat selection � Kernel smoothing �
Moving window analysis � Characteristic scale

Introduction

There is widespread support for the hypothesis that

ecological processes are affected by environmental

variables at multiple spatial scales (Johnson 1980;

Wiens 1989; Cushman and McGarigal 2004; Holland

et al. 2004; Parrish and Hepinstall-Cymerman 2012).

For example, numerous studies have demonstrated

that habitat selection can depend on characteristics of
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the site as well as features of the surrounding

landscape, and these multiscale habitat selection

processes strongly influence spatial variation in abun-

dance (Stouffer et al. 2006; Zeller et al. 2014).

Studying multiscale processes therefore requires an

understanding of what constitutes the ‘‘surrounding

landscape’’, yet, in almost all settings, the scales at

which organisms respond to the environment are

unknown, and it is impossible to precisely define the

surrounding landscape a priori.

Uncertainty regarding the scales of species-envi-

ronment relationships poses two fundamental chal-

lenges when attempting to model the effects of

landscape variables on ecological state variables such

as abundance or occurrence. First, standard statistical

models such as generalized linear mixed-effects

models cannot accommodate uncertainty about

covariate values, which is the case when the value of

the landscape variable is unknown. Second, landscape

variables are typically spatially autocorrelated, and

ignoring or mischaracterizing the influence of land-

scape variables can violate the independence assump-

tion of many statistical models (Fortin and Dale 2005;

De Knegt et al. 2010).

The common approach for addressing the scale

problem is to measure each landscape variable at

multiple spatial scales, defined by polygons of various

extents centered on a set of survey sites. For instance,

in avian point count surveys, each point count location

may be buffered by concentric circles with radii

ranging from hundreds of meters to several kilometers,

and landscape variables such as forest cover are

averaged over each circle (e.g., Chandler et al. 2009;

Parrish and Hepinstall-Cymerman 2012). Procedures

such as this result in multiple highly correlated

representations of each landscape variable. Model

selection methods are then used to identify the

‘‘characteristic scale’’ or ‘‘scale of effect’’ (Jackson

and Fahrig 2012), defined as the spatial extent at which

each landscape covariate is most highly correlated

with the response variable (Holland et al. 2004). This

approach is commonly referred to as the ‘‘focal site

multiscale study design’’ (Brennan et al. 2002).

A problem with this approach is that researchers

must make arbitrary decisions about the number and

range of extents to consider (Wheatley and Johnson

2009). Although theory suggests that the characteristic

scale should be positively correlated with traits such as

home range size and dispersal ability (Bowman et al.

2002; Thornton and Fletcher 2014), such general

guidance is of little help when choosing specific

scales. Perhaps for this reason, a recent meta-analysis

revealed that most studies using this approach have

identified the characteristic scale to be either the

smallest or largest extent considered (Jackson and

Fahrig 2015), indicating that the range of scales

evaluated is usually too narrow. In addition to the

problem of choosing among a small set of prescribed

scales, the focal site multiscale approach does not

acknowledge that the effect of landscape variables

should decrease with distance from the focal site

(Moilanen and Nieminen 2002). Instead, this approach

involves averaging a landscape variable over a poly-

gon and therefore implies that the environment within

the polygon is uniformly influential while the envi-

ronment immediately outside the polygon has no

effect. As pointed out byMoilanen and Hanski (2001),

this type of step function has no theoretical basis.

Another drawback of the focal site multiscale

approach is that it does not result in a formal estimate

of the characteristic scale, and consequently there are

no associated confidence intervals or other measures

of uncertainty that could be used for hypothesis testing

or other forms of statistical inference. However,

because the characteristic scale is an unknown

parameter capable influencing spatial variation in

abundance, it should be possible to estimate the scale

parameter directly.

In this paper, we present a statistical model for

understanding the scales at which landscape variables

affect ecological processes. Our method improves

upon the focal site multiscale study design by avoiding

the need to prescribe sets of polygons around each site,

by allowing the effect of landscape features to decay

with distance, and by allowing for statistical inference

about the scales at which landscape variables affect

population parameters such as abundance or

occurrence.

Methods

Statistical model and data requirements

For simplicity, we will assume that the landscape can

be characterized as a regular grid such that each pixel

is a site with an associated value of abundance and an

associated set of environmental covariates. In practice,
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the landscape-level covariate data will be available for

the entire region, but the abundance data must be

collected at a sample of sites. Although our approach

could be generalized easily to landscapes defined by

polygons or landscapes characterized by continuous

variation in abundance or covariates, most spatial data

are represented in this raster format, and most previous

studies of landscape effects have operated under these

conditions (De Knegt et al. 2010; Jackson and Fahrig

2015).

The coordinates of a site (i.e., pixel) will be denoted

by x, and the abundance at a site by N(x). Our aim is to

model the expected value of abundance E(N(x)) =

k(x) as a function of the environmental covariates z(x).

These covariates could be site-specific measurements

that are collected in the field (e.g., stem density) or

they could be landscape-level raster layers defined for

the entire region of interest. To address the issues that

(1) we do not know the scale at which the surrounding

landscape affects N(x) and (2) the effect should

diminish with distance, we employ a spatial smoothing

approach. This involves averaging each landscape

covariate around each focal site using a spatial kernel

to produce a distance-weighted representation of the

original landscape variable. Numerous spatial smooth-

ers could be considered, but here we focus on

functions of the form:

s z xið Þ; rð Þ ¼
X

xj 6¼xið Þ2S
z xj
� �

w xi; xj; r
� �

ð1Þ

which is a weighted average of the original landscape

variable with weights, w(�), determined by a kernel

such as the Gaussian, Epanechnikov, or exponential.

In the Gaussian case, the weights are given by

w xi; xj; r
� �

¼
exp � xi � xj

�� ��2
.

2r2ð Þ
� �

P
xj 6¼xið Þ2S exp � xi � xj

�� ��2
.

2r2ð Þ
� �

ð2Þ

where r is the scale parameter that determines the

shape of the kernel and jjxi � xjjj is the Euclidean

distance between sites i and j. If r is high, then the

kernel is relatively flat and landscape features far from

the focal site are more influential than if r is low. The

smoothing takes place over the two-dimensional

region S that encompasses the study area. In practice,

Swill be defined by the extent of the raster data, which

should be large enough to ensure that landscape

features near the boundaries of the region have no

influence on abundance at the focal sites. It is also

important to note that the summation in Eq. 1 is over

all sites in S except the focal site ðxiÞ. However, this
need not be the case if one does not want to make the

distinction between site-level and landscape-level

covariates.

Estimating the spatial scale parameters is accom-

plished by embedding the smoothing, and the resulting

smoothed landscape variables, in a statistical model.

The focus of this paper is abundance, and thus a

natural model for the expected value of abundance at

location xi is a log-linear model:

log k xið Þð Þ ¼ b0 þ b1s1 z1 xið Þ;r1ð Þ þ b2s2 z2 xið Þ; r2ð Þ
þ � � � þ sp zp xið Þ; rp

� �
ð3Þ

This equation includes a smoothing term for each of

the p landscape covariate, but site-level covariates can

be easily accommodated by removing the associated

smoothing functions, i.e. the s(�) functions. Aside from
the smoothing, Eq. (3) is identical to other log-linear

models used widely in ecology in that the b parameters

are the intercept and effects of each covariate. The

addition of the smoothing terms makes the function

resemble a generalized additive model, but here we are

smoothing the covariate over space rather than

smoothing the covariate’s relationship with the

expected value.

Equation 3 can be substituted into virtually any

model of abundance, including mixed effects models,

hierarchical models, and spatial point process models.

As such, it is possible to account for processes such as

overdispersion and imperfect detection that are asso-

ciated with most ecological datasets. However, for

clarity and ease of exposition, we focus on the Poisson

model: N xið Þ� Poisson k xið Þð Þ whose likelihood is

given by:

L b; r; N xið Þf gð Þ ¼
YR

i¼1

k xið ÞNðxiÞe�kðxiÞ

N xið Þ! ð4Þ

where R is the number of focal sites in the sample. This

likelihood assumes that the site-specific abundances,

N xið Þf g, are independent after accounting for spatial

dependence attributable to the smoothed landscape

variables. This is a much more relaxed assumption

than the traditional independence assumption of
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generalized linear models, and it represents a

tractable model of spatial dependence whose covari-

ance function is non-stationary and anisotropic,

meaning that it is not simply a function of distance

and location. Maximizing Eq. 4 can be accomplished

using numerical optimization routines available in

most statistical software packages, and it can be easily

modified to accommodate other discrete distributions

such as the negative binomial or zero-inflated Poisson.

Selecting among kernels (e.g. Gaussian vs exponen-

tial) can be accomplished using AIC or some other

information criterion. R code for fitting the model is

available in Online Appendix 1.

Simulation study

We assessed the general properties of the estimator

using a simulation study in which we varied the spatial

scale of the landscape effect (r) and the amount of

spatial correlation in the landscape itself. The reason

for considering the degree of correlation in the

landscape is that the landscape contexts of sites in

either a highly correlated landscape or a highly

uncorrelated landscape will be virtually identical,

and hence it should be difficult to estimate r in these

extreme cases because there will be little variation

among sites.

We considered a single landscape variable with five

levels of spatial correlation. The autocorrelated vari-

ables were generated using a multivariate Gaussian

process with exponential covariance determined by

the parameter q. For q, we considered five values:

0.01, 0.25, 0.5, 0.75, and 1.0, which produce land-

scapes such as the examples depicted in Fig. 1.

For each of the five values of q, we considered eight
values of r: 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9, and 1.0. The
r = 0.3 scenario represents a case in which local

abundance is influenced by nearby landscape features

whereas, in the r = 1.0 case, local abundance is

influenced by landscape features farther away. In other

words, low values of r result in low smoothing and

high values of r result in high smoothing.

For each of the 40 cases (5 values of q and 8 values

of r) we simulated 1000 datasets consisting of the

landscape covariate as well as abundance data from

the 100 sample locations shown in Fig. 1. The

abundance data were generated from a model with

one site-level covariate (z1ðxÞ) and one landscape-

level covariate (z2ðxÞ):

log k xið Þð Þ ¼ b0 þ b1z1 xið Þ þ b2s2 z2 xið Þ; rð Þ

N xið Þ� Poisson k xið Þð Þ ð5Þ

The coefficients used in the simulations were

b0 ¼ 2; b1 ¼ 1; and b2 ¼ 0:5, chosen to reflect a sce-

nario in which abundance is strongly influenced by the

site-level variable and moderately affected by the

smoothed landscape variable. We assessed model

performance by calculating bias, root mean squared

error (RMSE), and confidence interval coverage of the

estimators of the four parameters (b0; b1; b2; r).
R code to reproduce one of the simulation cases is

found in Online Appendix 1.

Canada warbler example

We conducted avian point count surveys at 70 locations

in and around the USDA Coweeta Hydrologic Labora-

tory in Macon County, NC, USA (35�303500N,
83�2505100W) during June and July of 2014. These data

were collected as part of a study designed to understand

the factors limiting the distribution of species at low-

latitude range margins. Point counts were positioned on

a 500-mgrid that covered a range of elevations from850

to 1350 m. Each location was surveyed once for 10 min

during which time all birds detected were recorded. To

reduce heterogeneity in detection, the analysis was

restricted to data on male Canada warblers (Cardellina

canadensis) detected within 100 m. Ideas for formally

accounting for imperfect detection are presented in the

Discussion section.

We modeled Canada Warbler abundance as a

function of elevation (30-m National Elevation

Database) and evergreen vegetation cover as mea-

sured by leaf-off Normalized Difference Vegetation

Index (NDVI) dervied from a Landsat 8 OLI image

acquired 15 February 2014 (Soudani et al. 2006).

Elevation was of interest because, like many other

species in the region, Canada warblers appear to be

restricted to higher elevations. Personal observations

suggest that Canada Warblers are also closely asso-

ciated with understory thickets of Rhododendron spp.

and Kalmia spp., which in this region of minimal

needle-leaf evergreen trees, are adequately measured
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by NDVI recorded in the winter (see Laseter et al.

2012 and references contained therein for a complete

site description). Elevation and NDVI rasters were

aggregated from a 30-m to a 180-m resolution, making

the area of a pixel similar to the area of 100-m radius

point count plot. Images of the elevation and NDVI

layers, along with the point count locations and count

data, are shown in Fig. 2.

We fit six models using several combinations of site-

and landscape-level versions of elevation and NDVI.

This allowed us to assess whether the landscape-level

variables influenced abundance more than the site-level

variables. For elevation, we considered a quadratic

effect for both the site-level and the landscape-level

variables because we hypothesized that abundance

might peak at intermediate elevations. Models were fit

using maximum likelihood and compared using AIC.

Results

Simulation study

The primary purpose of the simulation study was to

evaluate the estimator of r, the parameter determining

the scale at which landscape features affect abun-

dance. Our results indicate that the estimator is

approximately unbiased and confidence interval cov-

erage is nominal for all cases considered except when

spatial correlation in the landscape is low (q ¼ 0:01,

Fig. 3). In this case, the landscape resembles white

noise, and we found bias to be as high as 21 % and

confidence interval coverage as low as 0.76 (Table 1).

The poor performance associated with the uncorre-

lated landscape was not surprising because medium to

high amounts of smoothing will result in similar

Fig. 1 Examples of the

landscapes used in the

simulation study. The

parameter q determines the

amount of spatial correlation

in the landscape. For each of

the four landscape types, we

generated 1000 datasets and

evaluated the model’s

ability to estimate the effect

of the surrounding

landscape on abundance at

the 100 survey locations

denoted by crosses
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averaged values of the landscape variable, and there-

fore the likelihood is flat with respect to r.
Real landscapes rarely look like white noise, and

our results indicate that the model performs well when

there is moderate to high amounts of spatial autocor-

relation (Fig. 3; Table 1). Bias of the r estimator was

\1.5 % in each of these cases and 95 % confidence

interval coverage ranged from 0.90 to 0.96 (Table 1).

Root mean squared error was lowest for intermediate

values of r indicating that bias and variance were

highest when the surrounding landscape was either

very small or very large. However, these differences

were small indicating that the model performed well

regardless of the magnitude of the scale parameter.

In addition to estimating the spatial scale at which

the landscape affects abundance, we were also inter-

ested in the estimators of b0; b1; and b2. Summaries of

these parameter estimates are provided in Online

Appendix 2. Bias was minimal and 95 % confidence

interval coverage was correct for the intercept (b0) and
the coefficient of the site-level covariate (b1). How-
ever, as with r, the estimator of b2—the effect of the

smoothed landscape covariate—performed poorly in

the unusual case of low spatial correlation in the

landscape. Again, in this case, the surrounding land-

scape is effectively the same among sites and thus

there is no variation to inform the model.

Our simulation results also indicate that r cannot be

estimated when b2 is near zero. In other words, if there
is no effect of the landscape variable, there is no

characteristic scale to estimate (Online Appendix 2).

Similarly, if r is approximately zero, there is no effect

of the landscape and b2 cannot be estimated. The

covariance between these two parameters results in

convergence problems when the data suggest that

either r or b2 is near zero. However, just as one would
never consider a landscape scale defined by a circle

with a radius of zero, it is not worth considering values

of r near zero, which can be achieved using

constrained optimization as demonstrated in Online

Appendix 1.

Canada warbler example

The most supported model of Canada warbler abun-

dance included a linear effect of site-level NDVI and a

quadratic effect of landscape-level elevation

(Tables 2, 3). A model with site-level instead of

landscape-level elevation received a similar amount of

support, indicating that the landscape-level variable

explained only slightly more variation in the data. Our

estimate of the spatial scale parameter for elevation

was r̂ ¼ exp �1:86ð Þ ¼ 0:156 (Table 3), and the

associated kernel, which defines the smoothing

weights, is illustrated in Fig. 4. The estimated kernel

weights decay quickly with distance such that the

influence of elevation in the surrounding landscape

was negligible beyond 400 m.

Fig. 2 Elevation and NDVI, the two spatial covariates used to

model Canada warbler abundance. Crosses indicate point count

locations and circles represent the number of male warblers

detected at each site, which ranged from 0 to 4
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As with standard generalized linear models, our

model can be used to predict abundance and generate

distribution maps (Fig. 5). The most supported model

predicts that Canada warbler abundance is highest at

elevations between 1300 and 1400 m at sites with

relatively high winter NDVI (understory evergreen

vegetation). Even though the distinction between

models with landscape-level and site-level elevation

was slight, landscape-level elevation was a better

predictor suggesting that abundance is more clustered

than would be expected based on the site-level

representation of elevation. Consequently, our model

predicts that an isolated peak at a preferred elevation

would have lower abundance than a site surrounded by

similar elevations (Fig. 5).

Discussion

We developed a model that allows for statistical

inference about the spatial scales at which landscape

variables affect abundance. Unlike previous approaches,

Fig. 3 Boxplots of

simulation results. The

horizontal orange line

represents the actual value

of the scale of effect

parameter r, which was

estimated on the log scale.

The black dots represent the

median estimate from 1000

simulations of each case.

The estimator exhibited

little bias for any values of

r, except for the case in
which the landscape did not

exhibit spatial correlation

(i.e., q = 0.01)
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our method does not involve specifying a set of

landscape scales a priori and thereby eliminates the

possibility that the characteristic scale is outside the

range of scales considered (Jackson and Fahrig 2015). In

addition, rather than choosing among a set of prescribed

polygons using model selection procedures, our

approach results in an estimate of the scale parameter

for each of the landscape-level covariates of interest.

The scale parameter considered here is not defined

in terms of the extent of a polygon, but instead it is a

parameter that determines the shape of a kernel used to

compute a distance-weighted average of a landscape

feature. This averaging is superficially similar to the

moving window approach (Betts et al. 2014) and the

focal site multiscale study design (Brennan et al.

2002), however both of these approaches involve

averaging landscape variables using nested polygons

of predefined size, thereby implying that the sur-

rounding landscape is influential within the polygon

but not outside it. Our approach differs in that it

Table 1 Percent bias, root mean squared error, and 95 % CI

coverage for the estimator of r (the spatial scale parameter)

under each of the 40 cases considered

Case % Bias RMSE Coverage

q r

0.01 0.3 0.08 0.37 0.89

0.01 0.4 -0.18 0.44 0.90

0.01 0.5 -1.22 0.58 0.85

0.01 0.6 -2.45 0.65 0.85

0.01 0.7 -5.47 0.73 0.84

0.01 0.8 -7.80 0.72 0.82

0.01 0.9 -14.79 0.88 0.78

0.01 1 -21.70 0.96 0.76

0.25 0.3 -1.28 0.34 0.92

0.25 0.4 -0.57 0.30 0.94

0.25 0.5 -0.82 0.27 0.95

0.25 0.6 -0.77 0.26 0.95

0.25 0.7 -0.61 0.27 0.95

0.25 0.8 -0.28 0.28 0.93

0.25 0.9 -0.08 0.27 0.96

0.25 1 -1.09 0.31 0.94

0.5 0.3 -1.04 0.37 0.92

0.5 0.4 -1.03 0.37 0.92

0.5 0.5 0.11 0.23 0.95

0.5 0.6 -0.30 0.35 0.93

0.5 0.7 -0.73 0.32 0.95

0.5 0.8 -0.63 0.31 0.93

0.5 0.9 -0.34 0.30 0.94

0.5 1 -1.08 0.31 0.94

0.75 0.3 -0.89 0.40 0.90

0.75 0.4 -1.29 0.37 0.93

0.75 0.5 -1.37 0.38 0.93

0.75 0.6 -1.12 0.36 0.93

0.75 0.7 -0.89 0.31 0.94

0.75 0.8 -0.84 0.32 0.95

0.75 0.9 -1.22 0.33 0.95

0.75 1 -1.41 0.33 0.95

1.0 0.3 -1.54 0.43 0.90

1.0 0.4 -1.37 0.41 0.92

1.0 0.5 -1.02 0.38 0.92

1.0 0.6 -1.28 0.35 0.95

1.0 0.7 -1.21 0.35 0.93

1.0 0.8 -0.37 0.31 0.94

1.0 0.9 -1.04 0.36 0.93

Table 1 continued

Case % Bias RMSE Coverage

q r

1.0 1 -0.72 0.38 0.93

Cases were defined by unique combinations of r and q (the

degree of spatial correlation in the landscape). Results are

based on models fit to each of 1000 simulated dataset generated

for each case

Table 2 Top five models and the intercept only model of

Canada Warbler abundance ranked by AIC

Model Parameters AIC

NDVI ? s(Elevation) ? s(Elevation)2 5 77.6

NDVI ? s(Elevation) 4 79.7

NDVI ? Elevation ? Elevation2 3 80.2

NDVI ? Elevation 3 81.0

s(NDVI) ? Elevation 4 83.2

Intercept only 1 122.6

The s() notation indicates that the variable was a smoothed

landscape-level variable rather than a site-level variable. The

most supported model included a quadratic effect of the

smoothed version of elevation and a linear effect of site-level

NDVI
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recognizes that the influence of the surrounding

landscape should diminish with distance. Nonetheless,

one could use our approach to estimate the radius of a

circle or the dimensions of a rectangle by replacing our

smoothing kernel with a step function that produces

equal weights within the polygon and zero weights

outside it. As argued previously, however, we can find

no theoretical basis for averaging landscape variables

over a polygon, and we believe that such an approach

could lead to poor conservation decisions. For exam-

ple, if a conservation organization is interested in

protecting habitat around a focal site, financial

resources might be used inefficiently if potential sites

are given equal weights within some radius instead of

being weighted based on distance and the estimated

scale parameter r.
Our method performed well in most of the settings

considered in our simulation study, and it explained

more variation in the Canada warbler data than did a

model using only site-level variables. The method

performed poorly when the landscape variable exhib-

ited little spatial autocorrelation. In such cases, the

landscape variable resembles white noise, and there-

fore, the surrounding landscapes are effectively the

same among sites, leaving little variation to model.

The same type of problem would occur if the

landscape exhibited perfect autocorrelation because

each site would have exactly the same surroundings.

The method should also not be expected to work well

when a species responds to the landscape at a scale

much greater than that covered by the focal sites. Once

again, each site would effectively have the same

landscape context, and there would be no variation to

model. Such issues would affect any method designed

to estimate landscape scales, including the standard

buffering approach, not just ours. However, these

issues are either unlikely to be encountered in most

studies, because environmental variables rarely

resemble white noise, or can be addressed by sampling

a region with an extent large enough to ensure

variation in the landscape context of the focal sites.

The kernel smoothing we employed incidentally

provides a means of modeling spatial correlation

beyond that arising from spatial correlation in the

landscape itself. Specifically, it allows for the possi-

bility of excess clustering because high quality sites

surrounded by other high quality sites will be

predicted to have higher abundance than high quality

sites that are isolated. Other models of clustering and

spatial dependence involve smoothing latent random

variables (Wolpert and Ickstadt 1998; Higdon 2002),

which is much more computationally challenging and

possibly less mechanistic than smoothing a set of

landscape covariates as we have done here.

While we focused on models of abundance, our

model could be used for other ecological state

variables such as occupancy, and it could be extended

to allow for observation error, including imperfect

detection (Royle and Dorazio 2008). For example, if

NðxÞ cannot be observed directly because some

individuals are hard to detect, replicate observations

could be recorded and the observed data could be

modeled using a binomial distribution with parameters

NðxÞ and p. This amounts to a simple extension of an

N-mixture model (Royle 2004). Similar approaches

could be used if distance sampling data, capture-

recapture data, or data from other ecological sampling

methods are available.

We developed our model for situations in which

sites can be equated with pixels in a rasterized

representation of a landscape, and the data are site-

specific measures of abundance. Strictly speaking, if

density varies continuously in space, an analysis of

site-level abundance data represents a form of

Table 3 Parameter estimates from the most supported model of Canada Warbler abundance

Parameter Description Estimate SE

b0 Intercept -6.06 1.89

b1 Effect of site-level NDVI 0.56 0.51

b2 First term of quadratic effect of landscape-level elevation 8.70 3.60

b3 Second term of quadratic effect of landscape-level elevation -2.80 1.59

log(r) Scale of the landscape effect -1.86 0.79

The scale of effect parameter r determines the shape of the kernel used to smooth elevation in the surrounding landscape
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aggregation that can result in inaccurate inferences

about spatial variation in density (Robinson 1950;

Lechner et al. 2012; Banerjee et al. 2014). This has

been called the modifiable areal unit problem (Best

et al. 2000; Gotway and Young 2002;Wakefield 2004)

and is an issue common to virtually all models of count

data. However, when sites are small relative to the rate

at which density varies in space, density can be

assumed to be locally constant, and the issue can be

ignored (Sillett et al. 2012). If this assumption is not

justified, the notion of a site could be done away with

altogether, for example by recording the actual

locations of individuals and fitting spatial point

process models to estimate the underlying density

surface (Best et al. 2000; Diggle 2013; Royle et al.

2014). Our method could be embedded in a spatial

point process model by defining x as a point in space,

bFig. 4 The original elevation covariate (top), a cross-section of

the estimated smoothing kernel (middle), and the smoothed

version of elevation (bottom). The smoothing kernel determines

the weight given to features in the surrounding landscape. In this

case, site-level abundance was associated with elevation out to

approximately 400 m. Crosses indicate survey locations.

Circles are proportional to the number of Canada warblers

detected at each location

Fig. 5 Expected values of CanadaWarbler abundance based on

the most supported model, which included a quadratic effect of

landscape-level elevation and a linear effect of site-level

NDVI. Crosses indicate survey locations. Circles are propor-

tional to the number of Canada warblers detected at each

location
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rather than a site. One issue that might arise when there

is no clearly defined site is the need to estimate

multiple scale parameters for each landscape variable

as a way of describing the hierarchial habitat selection

process envisioned by Johnson (1980). For instance,

one scale parameter might be used to average the

environment at the home range level while another

scale parameter could define the surrounding land-

scape (Mashintonio et al. 2014). While conceptually

appealing, it may be difficult to estimate multiple scale

parameters for each covariate, and this complication

can, and should, be avoided if a biologically mean-

ingful definition of a site exists, as in studies of

metapopulations (Hanski 1998).

Although we believe that the model presented here

represents an important development in efforts to

understand the scales at which landscape variables

affect ecological state variables such as abundance, all

static models of abundance are essentially phe-

nomenological because, ultimately, patterns of abun-

dance are determined by spatial variation in survival,

recruitment and movement. From a mechanistic

perspective, efforts to model landscape effects on

abundance can be viewed as proxies for understanding

site-level connectivity, which results from a species’

movement behavior in response to landscape struc-

ture. It is therefore preferable to use process-based

spatio-temporal models (Chandler and Clark 2014;

Chandler et al. 2015), rather than models that ignore

temporal dynamics, and we suggest that additional

research is needed to understand the scales at which

landscape variables affect the underlying ecological

processes governing spatial variation in abundance.
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