

Business Process Workflow Monitoring
Using Distributed CBR with GPU Computing

Ioannis Agorgianitis1, Stelios Kapetanakis1, Miltos Petridis2, Andrew Fish1
 1 Department of Computing, University of Brighton, UK, 2 Department of Computer Science Middlesex University, UK

 1{i.agorgianitis, s.kapetanakis, a.fish}@brighton.ac.uk, 2m.petridis@mdx.ac.uk

Abstract
Workflow monitoring and diagnosis can be a complex pro-
cess involving sophisticated computational intensive opera-
tions. The ever-growing data generation and its utilisation
have increased the complexity of workflow domains leading
to an increased interest in distributed approaches for effi-
cient workflow monitoring. Existing work has proposed a
CBR enhancement to tackle deficiencies in areas where data
volumes increase significantly. In such areas, the notion of a
“data volume” component was proposed in an enhanced
CBR architecture. This work proceeds further by evaluating
a proposed distributed CBR lifecycle based on GPU pro-
gramming to abstract further and evaluate the hypothesis
that: increased data volumes can be tackled efficiently using
distributed case bases and processing on demand. Our pro-
posed approach is evaluated against previous work and it
shows promising speedup gains. This paper signposts future
research areas in distributed CBR paradigms.

 Introduction
The complexity of enterprise applications along with their
increased data generation and exploitation has led to the
emergence of a “Big Data” era. Such systems encapsulate
numerous interconnected business processes with sophisti-
cated mechanisms for capturing, monitoring and managing
continuous data streams and processes. However, in their
vast majority they require human intervention to provide
corrective actions in volatile points of the production
lifecycle (Kapetanakis et al., 2010a).
 Several standards have been developed with the aim of
providing uniform mechanisms for handling business pro-
cesses, such as BPMN (OMG, 2016). Existing work has
shown a number of successful endeavours focusing on
diagnosis and management of business workflows by using
CBR (Aadmodt and Plaza, 1994) primarily as their core
intelligence mechanism. (Kapetanakis et al., 2010a, 2010b,
2014) introduced an abstract architectural framework for

Copyright © 2017, Association for the Advancement of Artificial Intelli-
gence (www.aaai.org). All rights reserved.

CBR-based monitoring of business workflows, whilst rep-
resentation and index-based retrieval of agile workflows
have been introduced by Minor et al (2007). Towards
workflow monitoring, Dijkman et al. (2009) developed a
process-ranking model against a pool of process models.
 Previous work (Agorgianitis et al., 2016) has introduced
a new categorization of distributed CBR systems along
with a distributed CBR lifecycle. Its results seemed prom-
ising and have presented increased performance gains. This
work proceeds by abstracting and evaluating the proposed
categorisation and CBR distribution with a substantially
different distribution paradigm, that of GPU programming.
 The paper continues by presenting the current trends in
Big Data and ingestion of them by CBR along with a recap
of our previous work which we use as a base-line metric.
A brief illustration of the investigated domain is presented
upon which the experiments are conducted. Our proposed
distributed CBR approach (with GPU computing) is then
presented along with its evaluation part, presenting the
results of the experiments in comparison with a serial exe-
cution and horizontal distribution approaches. Finally, we
conclude with a summary of potentials for distributed CBR
in workflow management and monitoring.

Background Work
 The ever-growing generation and capture of data in
modern Information Systems, irrespective of application
domain, seems a catalyst for great advancements in highly
distributed systems. Berkley Open Infrastructure for Net-
work Computing (BOINC) (Anderson, 2004) exploits idle
time from heterogeneous web-enabled devices. Commodi-
ty-based distribution technologies like Apache Hadoop and
Spark (Zaharia et al., 2010) perform massive distribution
of processing across thousands of commodity computa-
tional nodes utilising both in-memory and on-disk pro-
cessing schemes. Organizations and enterprises are migrat-
ing to such technologies to tackle an ongoing increased
data volume (Netflix, 2014). Similarly, in scientific big
data, a number of techniques are followed to increase effi-

Proceedings of the Thirtieth International Florida Artificial Intelligence Research Society Conference

495

ciency, scalability and migration of the various research
domains to the big data world. Batselem et al. (2015) pro-
pose a reasoning approach for Resource Description
Framework Schema (RDFS) that employs optimized meth-
ods based on Apache Spark. Jalali and Leake (2015) pre-
sent a case study harnessing big data methods, specifically
MapReduce and locality sensitive hashing (LSH), to make
ensembles of adaptation for regression (EAR) approach
feasible for large case bases without compression.

In previous work (Agorgianitis et al., 2016), we pro-
posed a new categorization of distributed CBR systems
(horizontal distribution), in which the data volume compo-
nent was a key prerequisite in the integration of distribu-
tion in CBR systems specialized in business process work-
flow monitoring and management. A number of predicates
were established upon which the following categorisations
could take place: ground-up distribution; distribution of
case base and processing on demand; and agent competen-
cy to handle large data volumes. The results of the experi-
ments indicated that considerable performance gains can
be achieved in specific areas of the CBR cycle in which
increased data volumes can generate deficiencies. In this
respect, the initial stages of the CBR cycle (case-loading,
case-representation and similarity computations) could be
largely distributed to enhance the performance of CBR
systems via (GPU programming) whereas keeping the pro-
posed distributed CBR lifecycle paradigm.

The CBR Domain
The utilised CBR domain comes from the area of ordering
and distribution of goods to retail points involving work-
flow experts, data and business rules. The investigated
business process comprises various phases, such as new
order generation, order preparation through various de-
partments and finally the dispatching and delivery of goods
(see Figure 1) in a strictly timely manner. The required
domain knowledge was acquired through past working
experience within the domain throughout all departments
of the workflow lifecycle.

Scaling CBR with GPU programming
Horizontal distribution handles increased workloads by
adding and interconnecting hardware and software re-
sources operating as “one” physical entity (interconnected
servers). However, vertical distribution could also handle
scaling, by utilising better each and every resource node by
increasing the capacity of software and hardware resources
in order to make it faster.

Aiming to provide an enhanced degree of abstraction,
this work advances the state of the art by adapting a Verti-
cal scaling approach. The evaluation is extended to cover
the two major families of distribution, vertical and horizon-
tal, thereby fully enhancing the volume-CBR lifecycle.

Vertical Scaling with GPU and CPU programming
The vertical distribution approach was conducted using a
mixed distribution workflow. The raw data distribution and

case loading are implemented using C# and Parallel LINQ
(PLINQ) (Microsoft, 2016).

Fgsfgsfgs

Figure 1. Business process definition (BPMN) of the inves-
tigated business process

 The similarity computations take place by exploiting
GPU parallel programming with NVIDIA CUDA kernel
(NVIDIA, 2016) and the rest of the CBR cycle tasks oper-
ate using C# serial execution. The case bases developed in
the horizontal scaling and serial execution experiments,
text based for distributed versions and relational database
for the serial execution, are both utilised in the vertical
distribution. The Isomorphic Graph Similarity Links Algo-
rithm
The business workflow of the current application domain is
composed of a finite number of actions along with their
corresponding intervals. Groups of actions and intervals
are included in every valid instance to have a “complete”
workflow. Action order is of importance and is fixed since
the production phase is defined under specific schematics.
As an example, “a dispatch order cannot take place before
the generation of an invoice for this specific order”.
 An ordering process BPMN could be classified as iso-
morphic (Ruohonen, 2008) due to the fixed number of ac-
tions in conjunction with the constant way that the actions
relate to each other. The lack of loop occurrences in the
graph representation of the workflow means the graph is
acyclic.
 The Isomorphic Graph Similarity Links (IGSL) algo-
rithm is a basic algorithm developed aiming to measure
similarities of isomorphic and acyclic graphs specifically
for our domain area. Given two acyclic and isomorphic
Graphs G and G′, the similarity Sim(G, G′) between the
two is calculated by:

where count(E) is the number of edges in G graph and
σ(Ei , Ei’), with 0≤ σ(Ei ,Ei’) ≤1, is the similarity measure
between 2 individual edges Ei and Ei′ from graphs G and
G′ correspondingly.

496

The idea behind the development of the proposed algo-
rithm is that given the fact that all workflow instances have
the same number of nodes and the nodes are connected in
the same way, the similarity between two given graphs
could be calculated by measuring the distances of the cor-
responding links between the given graphs.

The GPU parallel programming model introduces the
utilisation of GPUs in conjunction, depending on the num-
ber of cases up to 10 million. Having completed the simi-
larity computations and their storage, along with the cases
indices, the similarities are sorted and the K most similar
indices are returned [Algorithm 1].

The K most similar indices are then used to retrieve the
cases in question from a relational database. The retrieval
is fast enough since the cases are indexed within the data-
base. Finally, the rest of the CBR cycle (classification,
adaptation and persistence) occurs in a sequential manner.

Algorithm 1. GPU - Similarity Computations
1: function ComputeKSimilarGPUHost
2: Init Host vars and load data from text media (PLINQ)
3: › graphsData, newCase, similarities

4: Allocate the memory on the GPU and copy data

5: › gpu.Allocate(graphsData, newCase,similarities)

6: › gpu.CopyToDevice(allData)
7: Launch 100.000 blocks of 1000 threads each
8: › gpu.Launch(100000,1000).KernelSims(allData)
9: Copy computed similarities from device

10: › gpu.CopyFromDevice(similarities)
11: return K most similar indices
12: function KernelSims
13: Compute thread Id
14: › tId = threadId.x + blockId.x * blockDimension.x
15: do while thread Id < Total Number of Cases
16: Get graph data for each thread based on thread Id
17: Compute IGSL similarity for current thread Id
18: › sim[tId] = ISGL(currentGraphData, newCase)
19: Update Thread Id so as to ensure exit form loop
20: › tId = blockDim.x * thread.gridDim.x
21: function ISGL
22: › similarity = 0
23: for each edge1 in newGraph do
24: for each edge2 in threadGraph do

25: ›similarity += calculate edge1, edge2 distance
26: return similarity

Evaluation
For the evaluation part, we assessed the proposed distrib-
uted CBR lifecycle and its level of abstraction by intro-
ducing distribution in CBR. We used heterogeneous dis-
tribution schematics, technologies and workflows in the
application domain area of business workflow monitor-
ing and diagnosis. Several experiments were conducted,
integrating distribution in the initial stages of the CBR
having the following hypotheses:
Hypothesis 1 Increased data volumes can be tackled
efficiently using distribution of case base and pro-

cessing on demand, irrespective of underlying distribu-
tion frameworks and schematics.
Hypothesis 2 Increased data volumes and processing
can be handled efficiently by a single agent entity
 The experimental runs were based on 7 real instance-
based generated datasets. Each dataset contained log en-
tries with information relating to actions (workflow-case)
that occurred within the production phase. Each work-
flow included various actions from the log entries rang-
ing from “invoice generation” to “delivery order”. Fuzzi-
ness was introduced throughout our experimental data
using 4 main categories of delays (no delay, minor, mod-
erate and severe) along with application of domain
knowledge delay rules and random fluctuations.
 The classification of the cases was developed using a
threshold classification scheme (50%). The actual evalua-
tion of the distributed CBR lifecycle was conducted by
developing a basic implementation of a k-NN classifica-
tion algorithm in order to classify a new case fed into the
system. The new case classification was delivered by a
weighted voting of the k most similar cases.
 The baseline metrics utilised in the current evaluation
come from our previous work, including an optimised
serial execution CBR cycle and a horizontal distribution
approach using Apache Spark as the underlying distribu-
tion framework. The experimental runs involved a large
variety of case numbers ranging from: 20 to 10 million. All
experimental runs were conducted on the same machine (8
cores, 16 GB RAM, and a conventional NVIDIA display
adapter with 48 CUDA cores).

Results
The results of the experiments are presented in Table 1 in
contrast with our previous versions (serial and horizontal
scaling executions) (Agorgianitis et al., 2016). The vertical
distribution outer- performs the optimised horizontal scal-
ing in each set of experiments.

Figure 2. Vertical Scaling, PLINQ and CUDA Time Results

The break-even point, after which someone can notice per-
formance gains, is between 10 and 100 thousand cases.
Small numbers of cases had better performance via serial
execution, due to distribution overheads of parallel ap-
proaches (see Figure 2).

497

 A vertical distribution approach (GPU) involves
more sophisticated execution workflows in comparison to
the equivalent horizontal approach s i n c e it exploits two
distributed technologies (PLINQ and CUDA parallel pro-
gramming). This means that the produced overheads (due
to parallelism) are greater, something which lead to per-
formance downgrades. Furthermore, the utilisation of
additional APIs in order to integrate different runtimes
(CUDAfy) is another factor which introduces additional
overheads to any vertical parallel execution.

Stored
Cases

Serial Ex-
ecution (sec)

Horizontal
Scaling (sec)

GPU
Scaling (sec)

20 0.279635668 1.725372791 1.4142951
103 0.370043755 1.789544344 1.4525411
104 0.782604933 1.943482876 1.5664515
105 6.322293282 3.685497522 2.8503591
106 58.5914855 14.62897038 14.4442463

5*106 1847.181649 73.43203068 57.708023
107 2370.668307 140.6282022 111.504969

Table 1. Vertical Scaling, PLINQ and

CUDA Approach Execution Time Results

From our experiments it seemed like a vertical ap-
proach outperforms any horizontal distribution attempts.
A maximum speedup of 32 is achieved for 5 million cas-
es, which is a considerable improvement in performance.
However, speedup appears to be downgraded for experi-
ments with more than 5 million stored cases.
This observation may not seem valid at first glance
since the similarity computations are massively parallel-
ized (GPU fires up to 10 million concurrent threads in
one go). The speedup decrease implies two things.
First, the similarity algorithm utilised in the experiments
is a conventional one with a small degree of complexity.
As a result, increased performance gains are prohibited
due to the simplicity of the algorithm. Secondly, the dis-
tribution and loading of data are still bound to CPU pro-
cessing which is limited by the number of the available
cores. So, the bottleneck in terms of similarity computa-
tions is indeed resolved by using GPU programming but
the one introduced by the data distribution and loading is
still bound to the number of available cores.

Conclusions
This paper presents a novel approach in CBR workflow
monitoring using distributed GPU programming. Super-
linear speedup is observed for a high number of cases, in-
dicating that CBR systems are bound to increase pro-
cessing and I/O. Distribution is proven to provide perfor-
mance gains in CBR systems tackling increased workloads
and very large datasets. Further research will focus on for-
mulating a generic architecture capable of incorporating
distribution in CBR, irrespective of technical features, dis-
tribution schematics and application domains. Similarly
our focus will be on data optimisation and process distrib-

uted pipelines and dynamic partitioning algorithms for
large datasets.

References
Aamodt, A. and Plaza. E. 1994. Case-Based Reasoning: Founda-
tional Issues, Methodological Variations, and System Approach-
es. Artificial Intelligence Communications 7(1): 39-52
Agorgianitis I., Petridis M., Kapetanakis S., Fish A., 2016. Evalu-
ating Distributed Methods for CBR Systems for Monitoring
Business Process Workflows. In Proceedings of Workshop on
Reasoning about time in CBR at 24th ICCBR 2016, RATIC,
2016, Atlanta, Georgia, USA: 122-131.
Anderson, D.P. 2004. BOINC: A System for Public-Resource
Computing and Storage. In Proceedings of the 5th IEEE/ACM
International Workshop on Grid Computing
Batselem J., Young-Tack P.2015. Distributed Scalable RDFS
Reasoning”, BigComp 2015, pp. 31-34
Dijkman R.M., Dumas, M., Garcia-Banuelos, L. 2009. Graph
matching algorithms for business process model similarity search.
In Proceedings of the 7th International BPM. LNCS, 5701: 48–63
Jalali V., Leake D. (2015). CBR Meets Big Data: A Case Study
of Large-Scale Adaptation Rule Generation”, Proceedings of
23rd ICCBR 2015, Frankfurt, Germany, pp 181-196
Kapetanakis, S., Petridis, M., Knight, B., Ma, J., Bacon, L. 2010a.
A Case Based Reasoning Approach for the Monitoring of
Business Workflows. In Proceeding of the 18th ICCBR 2010,
Alessandria, Italy, LNAI (2010)
Kapetanakis S., Petridis M., Ma J., Bacon L. 2010b. Providing
explanations for the intelligent monitoring of business work-
flows using case-based reasoning. In Proceedings of the Fifth
International Workshop on Explanation-aware Computing, ExaCt
2010, Lisbon, Portugal
Kapetanakis S., Petridis M., 2014. Evaluating a Case-Based Rea-
soning Architecture for the Intelligent Monitoring of Business
Workflows. Successful Case-based Reasoning Applications-2,
Studies in Computational Intelligence 494: 43-54 Springer-Verlag
Microsoft (2016) Parallel LINQ, https://msdn.microsoft.com/
Accessed November 16
Minor, M., Tartakovski, A. and Bergmann, R. 2007. Representa-
tion and structure-based similarity assessment for Agile work-
flows, In Proceedings of the 7th ICCBR 2007, Belfast. LNAI,
4626: 224–238. Springer-Verlag.
Netflix. 2014. Distributed Neural Networks with GPUs in the
AWS Cloud. http://techblog.netflix.com/2014/02/ distributed-
neural-networks-with-gpus.html,, Netflix Tech Blog, Accessed
November 2016
NVIDIA. 2016. Parallel Programming and Computing Platform,
CUDA, NVIDIA, http://www.nvidia.com/ Accessed November
2016
Object Management Group 2016. BPMN Version 2.0: OMG
Specifications. From http://www.omg.org/ Accessed November
2016
Ruohonen, K. 2008. Graph Theory. Tampere University of Tech-
nology, Chapter 1, Section 5
Zaharia, M., Chowdhury, M., Franklin, M. J., Shenker, S., Stoica,
I. 2010. Spark: Cluster Computing with Working Sets. In Pro-
ceedings of the 2nd USENIX conference on Hot topics in cloud
computing, pp.10-10

498

