
Sports League Scheduling
Ken McAloon, Carol Tretkoff, Gerhard Wetzel

Logic Based Systems Lab
Brooklyn College and CUNY Graduate Center, Brooklyn, NY 11210, USA

Email: {tretkoff,mcaloon,gw}@sci.brooklyn.cuny.edu

1. Introduction
Sports scheduling is an area of increasing interest in constraint programming. As amateur andprofessional sports leagues proliferate and grow in size and complexity, organizers are increasingly turning tocomputer assisted scheduling [Nemhauser and Trick]. The scientific literature in this area is also growing and onecan begin to get a sense of the range and mathematical difficulty of the problems encountered. These can includeclassical challenges such as set covering problems and quadratic assignment problems. In this note we concentrateon a version of a core problem that invariably comes up: determining whether a set of constraints on the scheduleis feasible. This is often called the “timetabling” problem of the scheduling process.
Here we consider the timetabling problem for a “round robin” schedule: the case in which every teammust play every other team exactly once. (Later we will discuss related problems that come up in other sportssituations such as ones involving home and away games between each pair of teams.) Typically a league gamewill be scheduled on a certain field or court, at a certain time, etc. This kind of combination will be called aperiod. These periods can vary in desirability due to such factors as lateness in the day, the location and thecondition of the field, etc. Therefore, the problem is to schedule the games such that the different periods areassigned to the teams in an equitable manner over the course of the season. To fix ideas, we make the followingstipulations:
1. There are N teams (N even) and every two teams play each other exactly once.
2. The season lasts N-1 weeks.
3. Every team plays one game in each week of the season.
4. There are N/2 periods and, each week, every period is scheduled for one game.
5. No team plays more than twice in the same period over the course of the season.
A particular period in a particular week will be called a slot. The meeting between two teams will becalled a matchup. For example, a valid schedule for 8 teams named 0,1,2,3,4,5,6,7 would be given by filling inthe slots with matchups as in the Table below.

2. Algorithms
The 8 team problem instance is very simple and can be done by brute force if necessary. However, thecombinatorics of this scheduling problem are very explosive. For an N team league, there are N/2*(N-1) matchups(i,j) with 0i<j<N to be played. A schedule can be thought of as a permutation of these matchups. So for N teamsthe search space size is (N/2*(N-1))! . In other words the search space size grows as the factorial of the square ofN/2. This means that algorithms cannot be expected to scale nicely; and, as we shall see, they do not.

An 8 Team Round Robin Timetable

Week 1 Week 2 Week 3 Week 4 Week 5 Week 6 Week 7Period 1 0 vs 1 0 vs 2 4 vs 7 3 vs 6 3 vs 7 1 vs 5 2 vs 4
Period 2 2 vs 3 1 vs 7 0 vs 3 5 vs 7 1 vs 4 0 vs 6 5 vs 6
Period 3 4 vs 5 3 vs 5 1 vs 6 0 vs 4 2 vs 6 2 vs 7 0 vs 7
Period 4 6 vs 7 4 vs 6 2 vs 5 1 vs 2 0 vs 5 3 vs 4 1 vs 3

There are two ways of formulating a solution strategy. The primal method is to start with the slots andto seek to find matchups to place in them. The dual method is to start with the matchups and to look for the slotsto place them in. The primal approach makes formulating the constraints more natural and it is the one we discussnow. We discuss the dual method briefly further on.
As in the Table, the solution can be represented as a two-dimensional array with columns for weeks androws for periods. There is a “cardinality” constraint on each row, namely that no team appear more than twice. Oneach column we have the constraint that each team occur exactly once; this is equivalent to an “all different”constraint on the column, namely that the teams appearing in the column be distinct. Finally there is a globalconstraint on the entire array, namely that each matchup occur exactly once or, equivalently, that all matchups bedifferent. So the primal algorithm comes down to filling the slots with matchups subject to the above constraints.Note that one has the choice for the column constraints and the global constraint of the problem of using“cardinality = 1” constraints or of using “all different” constraints.
An important tool for this timetabling phase of sports scheduling is integer programming (IP). In thisapproach one uses the cardinality constraints rather than the all different constraints, the former being elegant inthis approach and the latter being both inelegant and inefficient. The 0-1 integer programming model for theprimal approach to a solution can be summarized as follows. For each pair of teams i<j<N, for each row k andeach column m, there is a binary variable xi,j,k,m which will be 1 if i plays j in the slot in row k and column mand 0 otherwise. The constraints arre
for all i and j Σ x i,j,k,m = 1 each team plays each other team once k,m
for all i and m Σ x i,j,k,m = 1 team i plays once in column m k,j
for all i and k Σ x i,j,k,m <= 2 each team plays at most twice in a period k,m
for all k and m Σ x i,j,k,m = 1 each slot has 1 game i,j
This 0-1 integer program is elegant in its simplicity. However, it suffers from the fact that as N increasesthe number of 0-1 variables and the number of constraints grow exceedingly large. Even with symmetry breakingvariable bindings added, this formulation was not able to find a solution for N=14, although it performedcreditably for N<= 12. For reference, these analyses were made using Cplex, a leading commercial integerprogramming package.
The ILOG Solver offers the possibility of using all different constraints in lieu of the cardinalityconstraints that were used in the IP model to express the facts that each team plays once in each column and thateach matchup occurs exactly once in the schedule.
To do this in ILOG Solver, we introduce a row object with two kinds of structural constraints:constraints to insure that each matchup involves different teams and the cardinality constraints on the row. Notethat the row has length 2*(N-1) because each matchup requires a pair of teams.

class Row {

public:

IlcIntVarArray row;

Row();

};

Row::Row(): row(2*(N-1),0,N-1){

IlcInt j;

 for(j=0;j<2*(N-1);j=j+2)

IlcPost(row[j] < row[j+1]);

IlcIndex I;

 for(j=0;j<N;j++)

IlcPost(IlcCard(I,row[I] == j) <= 2);

}

Then the two-dimensional schedule is represented by a vector of rows
Sched *rows = new (IlcHeap()) Row[N/2];

Another object is introduced to obtain a column view of the schedule:
class Column {

public:

IlcIntVarArray column;

Column();

};

Column::Column(): column(N,0,N-1){

// Constraint delayed until assignments are made

// IlcPost(IlcAllDifferent(column,whenValue));

}

Then the schedule is organized from a column view as a vector of column objects
Column *columns = new (IlcHeap()) Column[N-1];

The column entries are assigned the appropriate row entries. At this point, the all different constraints on thecolumns can be posted.
Finally, we have to assert that all the matchups are distinct. To that end we introduce a “pairingfunction”:

IlcIntVar Array pairs(N*(N-1));

We then assign to the elements of this array an IlcIntExp for each i < N and each even j<2*(N-1),
pairs[i*(N-1)+j/2] = N*Sched[i].row[j] + Sched[i].row[j+1];

and tighten the upper and lower bounds and prune the domains. The global requirement that each matchup onlyoccur once becomes
IlcPost(IlcAllDifferent(pairs,whenValue));

At this point we can call
IlcSolve(IlcGenerate(pairs,IlcChooseMinSizeInt));

However, generating pairs means deciding both teams i and j (i<j) for a slot at each branching point in the search.More flexibility is afforded by separating these into a decision on i and a decision on j. To this end, anIlcIntVarArray is introduced to embody the entire schedule and its entries are generated in a call to IlcSolve. Thisgives the best performance. In fact it solves the N=14 problem in 45 minutes on an UltraSparc.
3. Remarks

With some very simple changes this code can be adapted to deal with the timetabling problems thatcome up in other kinds of league scheduling. For example, let us look at double round robin tournaments, a mostcommon form for amateur and professional leagues. Here each team plays each other team twice, once at home andonce away. The season can be broken into two halves, the first being a simple round robin schedule and thesecond being a mirror of the first. Looking at the first half schedule, each team will play some games at home andsome away; fairness dictates that these numbers be close, even equal if possible, and that consecutive sequences ofhome or away games be at most 2 (say) in length. A set of N home/away patterns with the property that thenumber of home teams equals the number of away teams for each game day is determined. Finding such sets isitself an interesting set covering problem. Given such a set, determining a feasible schedule is a timetablingproblem much akin to the one we discussed above though much simpler. The cardinality constraints on the rowscan be dropped. One adds column constraints to the effect that two opposing teams cannot both be home or bothbe away. (Though this is a much simpler problem, in practice it is often infeasible and verifying this can take a bitmore time than one would like.) As before, there is an integer programming formulation, but ILOG Solver offersthe more scalable solution with all different constraints replacing the cardinality constraints of the integerprogramming model. One more point: typically, the sets of home and away patters are determined for abstractteams 0,...,N-1. Only after timetables have been developed does one try to assign actual teams to 0,...,N-1. Forthe computationally masochistic, this turns out to be a quadratic assignment problem [Schreuder], anotherclassically difficult combinatorial problem. But this one is well-studied and enumeration techniques provesufficient to the task, at least for small enough N. It is also simplified by team preferences and other criteria thatrestrict the freedom in these assignments, Examples include Munich’s wanting to play at home during theOktoberfest and the Minnesota Twins’ wanting to be away on the first day of hunting season.
Let us make some remarks on the dual approach to our original single round robin problem. For onething there is no clear natural way of formulating the dual as an integer program. On the other hand, the ILOGSolver provides the tools for a very elegant formulation. However, our code does not perform nearly so well as theprimal code. We are continuing experiments with the dual code since it is compact and might have better scalingbehavior in the end. In point of fact, we also formulated primal and dual code in clp(FD). Here the primalperformance was less satisfactory than with ILOG and the instance N=14 was not solved. However, theperformance of the dual algorithm in clp(FD) for N<=12 was comparable to the primal in clp(FD).
The hope for the dual algorithm is also bolstered by the performance of a randomized local search versionof it: one randomly assigns a permutation of the matchups to slots, then one makes random swaps getting columnafter column to satisfy the all different constraints. If that succeeds, one makes swaps within a column from row torow to try to satisfy the cardinality constraints on the rows. This code’s performance is delicate; it dependsheavily on the random number generator used and on several critical parameters that have to be set. With lucky

settings, this algorithm can solve the N=14 problem in 10 minutes; with unlucky settings, the algorithm doesnot succeed.
In point of fact, we do not know if this problem has a solution for N=16. It would be nice to have aproper mathematical analysis of the problem in its pure form. Even were that available. however, computer-basedsolutions would still be needed to deal with the infinite variations that occur in practical situations.
The round robin scheduling problem we have been considering is something of a classic. We would liketo thank Bob Daniels for suggesting it and for giving us some of the folklore as to its origin: it reportedly cameup first in scheduling “five on a side” football and the desirable periods afforded more uninterrupted pub time.

4. References
[Nemhauser and Trick] G. Nemhauser and M. Trick, Scheduling a Major College Basketball Conference, GeorgiaTech Technical Report, 1997.
[Schreuder] J.A.M. Schreuder, Combinatorial Aspects of Construction of Competition Dutch ProfessionalFootball Leagues, Discrete Applied Mathematics 35 (1992) 301-312.

