
Tailoring Taint Analysis to GDPR

Pietro Ferrara1, Luca Olivieri1, and Fausto Spoto2

1 JuliaSoft SRL, Verona, Italy
{pietro.ferrara,luca.olivieri}@juliasoft.com

2 Università di Verona, Italy
fausto.spoto@univr.it

Abstract. Static analysis is the analysis of software at compile time
without executing it. Its goal is to explore all execution paths without
needing specific inputs to drive the execution. Thanks to its wide cov-
erage, this approach, and in particular taint analysis, has been widely
applied to detect security vulnerabilities like SQL injections and XSS.

The European General Data Protection Regulation requires all con-
trollers of sensitive data to enforce an approach based on privacy by
design and by default. In such context, verification and testing tech-
niques can be applied to check if the system implementation follows the
constraints identified at design time. Therefore, static program analysis
might be applied to track how sensitive data is automatically managed
by a software, and if such software could leak some of this data.

In this paper, we formalize and discuss how taint analysis can be ex-
tended and augmented in order to detect potential unintended leakages
of sensitive data. Starting from the specification of how sensitive data is
retrieved and it could be leaked, and what types of leakages are allowed
by the privacy policy established by the controller of sensitive data, we
apply standard taint analysis to detect potential leakages, we reconstruct
the flow to check if the flow is allowed or not, and we report full details
about all the flows not allowed by the privacy policy. This approach
has been implemented on the Julia static analysis, and we report some
promising experimental results on the OWASP WebGoat benchmark.

Keywords: Static Analysis, Taint Analysis, GDPR Compliance

1 Introduction

The European General Data Protection Regulation1 (GDPR) was adopted by
the European Parliament on April 27, 2016, and will be enforced from May 25,
2018. Its main goal is to “lay down rules relating to the protection of natural
persons with regard to the processing of personal data and rules relating to the
free movement of personal data” (Article 1). This regulation imposes that the
controller of sensible data adopts an approach based on the concepts of privacy

1 https://eur-lex.europa.eu/legal-content/EN/TXT/?uri=celex%3A32016R0679

2 Pietro Ferrara et al.

by design and by default. The European Commission provided various guidelines
to drive the process of GDPR compliance2:

Companies/organisations are encouraged to implement technical and
organisational measures, at the earliest stages of the design of the pro-
cessing operations, in such a way that safeguards privacy and data pro-
tection principles right from the start (“data protection by design”).
By default, companies/organisations should ensure that personal data is
processed with the highest privacy protection (for example only the data
necessary should be processed, short storage period, limited accessibil-
ity) so that by default personal data isn’t made accessible to an indefinite
number of persons (“data protection by default”).

The scope of GDPR is extremely broad, and ranges from very high level
organizational to deep technical procedures. This paper focuses on a relatively
small and precise aspect of the regulation, that is, the automatic treatment of
personal data in software. In this context, a controller of personal data should
make the best effort to ensure that software processes data in the right way
w.r.t. the GDPR policy (i.e., a rather standard privacy policy establishing what
kinds of sensitive data might disclosed to what kinds of leakage points) of the
organization identified during the design of the system. Here the main question
is: how could we (hopefully automatically) check if software manages personal
data correctly w.r.t. the constraints identified at design time? What tools and
approaches could help?

Static analysis has been widely applied to prove various software properties,
automatically [7–9]. Its main idea is to create a mathematical model of the
executions of a program and to statically prove (i.e., without executing the code)
some properties on such model. A sound static analysis creates a model that
covers all possible executions. Therefore, it can prove that all possible executions
of the program under the analysis satisfy the given property.

Absence of runtime errors, correct synchronization between parallel threads,
absence of security vulnerabilities such as SQL injection and cross-site scripting
(XSS) are just some notable examples of properties that can be proven with
static analysis. Here, the scientific literature is extremely broad. In particular,
information flow analysis targets privacy properties since several decades, and
taint analysis has been already applied for this goal. However, such analyses
normally only detect if there exists a data flow from a source of personal data
to a leaking point. That is, they do not tell which type of personal data flows
and along which path.

This article describes an extension of standard taint analysis that proves
if software complies to a given GDPR policy. Section 2 introduces background
(static analysis, information flow, taint and privacy analysis); Section 3 intro-
duces the configuration of the analysis, which reflects what is already required by

2 https://ec.europa.eu/info/law/law-topic/data-protection/reform/rules-business-
and-organisations/obligations/what-does-data-protection-design-and-default-
mean en

Tailoring Taint Analysis to GDPR 3

the same GDPR compliance process; Section 4 presents how the configuration is
used to instrument the taint analysis engine, how information is extracted from
the results of that analysis, and how a GDPR report is built from this infor-
mation. We have implemented a prototype in the Julia static analyzer [25] and
applied it to the analysis of WebGoat, the motivating example introduced below
and used throughout the article to show how our approach works on real-world
software.

1.1 WebGoat: Motivating Example

WebGoat version 6.0.1 (the last released legacy version3) will be the motivating
example throughout this article. It “is a deliberately insecure web application
maintained by OWASP4 designed to teach web application security lessons”5.
Since WebGoat is a web application designed to expose various security flaws, it
is a particularly good target to test and show the results of various security and
privacy analysis. In addition, it is a relatively small application (about 20KLOCs
of Java code), hence the results of the analysis can be manually checked.

WebGoat contains two critical points interesting from a GPDR perspective:

– class org.owasp.webgoat.session .Employee represents an employee and holds
sensitive data, such as name, surname, SSN, credit card number, etc..;

– the lesson class WsSAXInjection asks the user to add or change her password,
and therefore deals with this sensitive data.

Moreover, WebGoat contains many standard leakage points, such as standard
DB interactions or logging calls. However, we focus on two kinds of leakage:

– into a database, through some standard APIs such as java . sql .PreparedStatement

and Connection, and

– into the Internet, through some standard APIs such as java .net.URL or the
Apache Element Construction Set library. This is a library that generates
elements for a variety of markup languages. WebGoat uses it to build HTML
pages, then sent and rendered.

2 Background

This section introduces background about information flow static analysis, its
industrial application to the detection of various security vulnerabilities (such
as SQL injection and XSS) and its current extensions to privacy properties.

3 The source code can be found at https://github.com/WebGoat/WebGoat-
Legacy/releases/tag/v6.0.1

4 The Open Web Application Security Project, available at the web address
https://www.owasp.org/index.php/Main Page

5 https://www.owasp.org/index.php/Category:OWASP WebGoat Project

4 Pietro Ferrara et al.

2.1 Static Analysis

The goal of static analysis is to prove, statically (i.e., without executing the
code), various program properties [28]. While dynamic analysis, including test-
ing, explores only a portion of the program, that reachable from some given in-
puts, static analysis can explore all possible executions. During the last decades,
many different approaches have been introduced to develop static analyzers.
Model checking [6], type systems [23], data and control flow analyses [18, 21],
and abstract interpretation [7, 8] are the most notable and successful examples.
In particular, sound static analysis guarantees that, if a property is proven on a
program, then all possible executions of the program respect the given property.
For instance, if a sound static analyzer proves that a program does not contain
an SQL injection, then there exists no execution leading to an SQL injection.

Static program analysis has been widely applied to detect bugs in industrial
software. Historically, its first application was to detect potential runtime er-
rors in safety critical embedded software for avionics. In this context, various
industrial static analyzers [4, 1, 2, 19] have been formalized, implemented and
applied to real-world code. During the last decade, various research efforts [25,
27] have targeted the automatic detection of various kinds of injections and XSS
vulnerabilities, achieving a relevant impact on industrial software.

2.2 Information Flow and Taint Analysis

Information flow analyses “can prove that a program cannot cause supposedly
nonconfidential results to depend on confidential input data” [10]. They check
if private input (such as sensitive data or user-controlled input) flows explicitly
(that is, through assignments) or implicitly (through conditions) to a public
channel (such as the Internet or an SQL query execution routine). A lattice
structure defines different (hierarchical) levels of private and public channels,
allowing to check rather complicated policies.

This concept has been around for more than four decades and produced an
impressive amount of scientific and industrial results. As explained by Sabelfeld
and Myers [24]:

The standard way to protect confidential data is (discretionary) access
control: some privilege is required in order to access files or objects con-
taining the confidential data. Access control checks place restrictions on
the release of information but not its propagation. (...) To ensure that
information is used only in accordance with the relevant confidentiality
policies, it is necessary to analyze how information flows within the us-
ing program; because of the complexity of modern computing systems,
a manual analysis is infeasible. (...) This analysis must show that infor-
mation controlled by a confidentiality policy cannot flow to a location
where that policy is violated.

Many analyses (mostly focused on specific type systems) tracking both im-
plicit and explicit flows have been formalized and developed, with JFlow [20]

Tailoring Taint Analysis to GDPR 5

being probably the most notable tool. However, they achieved relatively little
industrial impact mostly because of false alarms generated by implicit flows and
limited scalability. For this reason, taint analysis [27, 12], introduced more than
a decade ago, relaxes standard information flow analysis by considering only ex-
plicit flows, hence reducing the number of false alarms; and using only one level
of taintedness (that is, data can only be public or private) to improve perfor-
mance. Hence the analysis checks if there is an explicit information flow from
an untrusted source to a trusted sink, without intermediate sanitization. This
generic schema has been instantiated to several critical security vulnerabilities
in the OWASP Top 10 list [22], such as

– SQL injection, where sources are methods returning user’s inputs, sinks are
methods executing SQL queries, and sanitizers are methods escaping the
input;

– cross-site scripting, where sinks are instead methods executing the given
data; and

– redirection attacks, where sinks are instead parameters of methods opening
an Internet connection.

Taint analysis achieved impressive industrial results, detecting many vulner-
abilities in real-world software (and in particular web servers) and achieving
amazing results in terms of recall and precision [5], in comparison to other (usu-
ally pattern-based) approaches. In addition, several approaches have recently
applied static taint analysis to Android applications [3], a context where privacy
leaks are particularly relevant.

2.3 Privacy Analysis

Recent research extends static and dynamic taint analysis to detect privacy leaks
in mobile applications [11, 15]. It tries to overcome two main limitations of taint
analysis. Namely, it tries to devise (i) a source sensitive analysis that allows
different types of taintedness and not only a unique public/private layer; and
(ii) a finer-grained tracking of sensitive data; for instance, the first eight digits
of an IMEI number identify the manufacturer of the device and do not contain
any information about the serial number of the device. Hence, they can be freely
divulged.

3 Configuration of the GDPR Analysis

This section introduces the configuration that must be provided in order to
specify a static analysis for GDPR. In particular, this configuration must specify
(i) what types of sensitive data and leakage points exist; (ii) how sensitive data
can be accessed and leaked; and (iii) a GDPR policy that specifies the data flows
that are allowed or forbidden.

6 Pietro Ferrara et al.

3.1 Categories of Sensitive Data and Leakage Points

Not all types of sensitive data and leakage points are equal. For instance, name
and surname of a person are probably sensitive data, but social security number
and credit card number are definitely more critical data from a privacy perspec-
tive. Similarly, leaking sensitive data into a log could be problematic, but it is
rather more dangerous to leak the same data into an insecure Internet connec-
tion. Hence, the configuration of a GDPR analysis must include a categorization
of sensitive data and leakage points. Formally, it must define sets SD (Sensitive
Data) and LP (Leakage Point) of the interesting categories of sensitive data and
leakage points, respectively.

Sensitive Data

Password
Address
CreditCard
Name
Surname
Phone
Salary
SSN

Leakage Point

Internet
DB

(a) Sensitive data and leakage points
categories.

Sensitive Data Leakage Point

Address → DB
Name → DB

Surname → DB
Phone → DB
Salary → DB

SSN → DB
Password → DB

(b) Specification of a GDPR policy.

Type Member Sensitive Data category

Field WsSAXInjection.password Password
Field Employee.ccn CreditCard
Field Employee.firstName Name
Field Employee.lastName Surname

(c) APIs accessing sensitive data (sources).

Type Member Parameter Sensitive Data category

MethodParameter URL.<init> arg 0 Internet
MethodParameter PreparedStatement.setString arg 1 DB
MethodParameter ecs.html.B.<init> arg 0 Internet

(d) APIs leaking data (sinks).

Fig. 1: Configuration of a GDPR analysis for WebGoat.

Motivating Example Figure 1a reports the categories of sensitive data and
leakage points that we consider interesting for a GDPR analysis of WebGoat.
They have already been informally discussed in Section 1.1. In particular, column
A of Figure 1a reports the categories of data considered as sensitive, while its

Tailoring Taint Analysis to GDPR 7

column B specifies that the only interesting leakage points are in categories
Internet or DB.

3.2 Specification of Sensitive Data and Leakage Points

Once the interesting categories have been fixed, one needs to specify how sensitive
data is read and leaked at the statements of the program. If on the one hand
such information needs to be manually specified, on the other hand the GDPR
compliance process requires to know how sensitive data could be accessed and
leaked by the software.

In this Section, we will denote by St the set of statements.

Sensitive Data The question of how a program can read sensitive data is
equivalent to asking how software can read data programmatically. This can
happen through method calls returning a value, or by reading fields, both in the
code of the application (for instance through method calls that access a database)
and in the code of the libraries. Formally, the sensitive data specification SDSpec
is a partial function that relates statements to a sensitive data category: SDSpec :
St→ SD.

Leakage Points The specification of leakage points reduces to how data might
be passed to components outside the bounds of the main application, program-
matically. In this case, this might happen by writing a field, or passing a value
to a parameter of a method call. However, this applies only to components in
the libraries, since the application itself can leak data only by calling APIs of
external libraries. Similarly to sensitive data, the leakage points specification
LPSpec is formalized by a partial function LPSpec : St→ LP.

Motivating Example Figures 1c and 1d report (a part of) the specifica-
tion of sensitive data and leakage points for WebGoat, respectively. In partic-
ular, many fields of class Employee are tagged with the appropriate category
of sensitive data (for instance, Employee.ccn returns sensitive data in category
CreditCard) and field WsSAXInjection.password is tagged as Password. The leakage
points java . sql .PreparedStatement.setString and Statement.executeQuery are tagged
as DB (since data passed to those methods will be stored into a database); sev-
eral other APIs that disclose data into the net are tagged as Internet , such as
the constructor of java .net.URL, methods for handling cookies or Apache ECS
elements (for instance, the class B that represents a bold text in an HTML page).
The full specification includes 12 kinds of statements as sensitive data and 58 as
leakage point (46 are in the ECS library).

3.3 GDPR Policy

The last part of the configuration of a GDPR analysis is the specification of a
privacy policy. As discussed in the introduction, the GDPR obliges the controller

8 Pietro Ferrara et al.

of sensitive data to identify, since the design phase, what type of data it manages,
and how. Hence, the GDPR policy specifies what categories of sensitive data are
allowed to be disclosed to what categories of leakage points. This is represented
as a set of pairs relating sensitive data categories to leakage points categories.
Formally, GDPRPolicy = ℘(SD×LP). For instance, the pair (Name,DB) specifies
that the GDPR policy allows names to be stored into a database.

Motivating Example Figure 1b reports a GDPR policy for the analysis of
WebGoat, that we consider as a sensible formalization of what is allowed in such
a program. In particular, the policy specifies that address, name or surname of
an employee can be stored into a database, as well as passwords. However, it is
not allowed to store credit card numbers into a database and no sensitive data
should ever be leaked into the Internet.

4 Static Analysis for GDPR

This section describes how the configuration in the previous section is used to
tune a taint analysis and extract information from it, useful for GDPR purposes.

4.1 Sources and Sinks

Taint analysis requires to specify a set of sources and sinks (Sources and Sinks,
respectively, see Section 2.2). They are statements in St that access sensitive
data or leak information, respectively. These sets can be derived from the con-
figuration of a GDPR analysis, that specifies SDSpec and LPSpec as shown in
Section 3.2. Namely, let sdspec ∈ SDSpec and lpspec ∈ LPSpec be the specifi-
cation of sensitive data and leakage points, respectively. Taint anaysis will be
performed with Sources = dom(sdspec) and Sinks = dom(lpspec) (where dom is
the domain of a function). There is no specification of sanitizers (as common in
taint analysis) since, typically, different types of sensitive data require different
sanitizers. Hence, the user must evaluate the report described in Section 4.4, to
remove false alarms.

4.2 Taint Analysis

After a taint analysis is performed, one obtains (i) all calls to leakage points that
might pass a tainted parameter: these are the potential leaks of sensitive data;
and (ii) for each program point, the variables and (abstract) heap locations6

that might be tainted.
The result of a taint analysis is a function taint : St→ ℘(LocalVar∪HeapLoc)

that, for each statement, returns the set of heap locations (HeapLoc) and local

6 How to abstract heap locations is an orthogonal problem that has been deeply in-
vestigated by the static analysis research community. We refer the interested reader
to [13, 17] for more details.

Tailoring Taint Analysis to GDPR 9

variables (LocalVar) that might be tainted there (that is, might contain sensitive
data) during an execution of the program. That result can be combined with
the specification LPSpec of the leakage points to infer where leaks might occur.
This is expressed by a function leaks(taint, lpspec) ∈ ℘(St).

4.3 Flow Reconstruction

The taint analysis described in the previous section merges all sources of sensi-
tive data, for scalability. Hence, it cannot identify the source of sensitive data
that flows into a leakage point. As observed in Section 2.2, existing approaches
that track more than one Boolean taintedness flag do not scale to industrial
software (that is, up to 100KLOCs or even 1MLOCs). Therefore, they cannot
be considered as industrially viable solutions. Moreover, in any case they do not
provide the flow (sequence of statements) that tainted data follows from a source
to a sink.

To overcome such limitations, for each statement detected as potential leak,
our analysis performs a backward flow reconstruction that, according to the
semantics of program statements, looks for the origin of tainted data. The result
of such reconstruction is one or more (because of conditional statements) flow
graphs, that is, potentially interprocedural execution paths. The set of such flow
graphs is denoted as FlowGraph.

For most statements, the backward reconstruction is straightforward and just
amounts to following assignments backwards. The only operations that require
careful processing are:

– heap access. When the backwards flow reconstruction reaches an access to a
heap location that returns sensitive data, it must continue with all potential
writers of that (abstract) heap location, backwards. This is achieved by using
the same heap abstraction described in Section 4.2;

– method call. When the backwards flow reconstruction reaches a method call
that returns sensitive data, it must continue with all possible methods that
might be called there and might return sensitive data. For that, it relies on
the static call graph of the program, that approximates the callers/callees
relation in a program7.

It is possible that this flow reconstruction fails, because of a very large number
of alternatives that must be followed backwards. This is particularly true when
heap accesses with many writers are followed. As a result, there might be leaks
for which no flow graph gets reconstructed.

Formally, we represent the backward flow rebuilder by a partial function
flowRebuilder : (TaintRes × St) → ℘(FlowGraph). We assume that functions
source : FlowGraph → St and sink : FlowGraph → St are defined on flow graphs,
to return the source and the sink of the flow, respectively.

7 The construction of the static call graph is an orthogonal problem that has been
widely investigate by the static analysis community. We refer the interested reader
to [26, 16] for more detail.

10 Pietro Ferrara et al.

4.4 GDPR Report

Algorithm 1 GDPR report construction

1: procedure GDPRReport(sdSpec, lpSpec, GDPRpolicy, program)
2: res ← taint(program, dom(sdSpec), dom(lpSpec))
3: flows ← ∅
4: unknown ← ∅
5: for l ∈ leaks(res , lpSpec) do
6: if (res , l) ∈ dom(flowRebuilder) then
7: flows ← flows ∪ flowRebuilder(res , l)
8: else
9: unknown ← unknown ∪{ l}

10: unexpectedFlows ← ∅
11: for f ∈ flows do
12: if (source(f), sink(f)) /∈ GDPRPolicy then
13: unexpectedFlows ← unexpectedFlows ∪ {f}
14: return (unexpectedFlows, unknown)

After the flow reconstruction, it is possible to generate a report for the user of
the GDPR analysis. It tells if the program satisfies the GDPR policy (Section 3.3)
and shows the unexpected flows, in case of non-compliance.

Algorithm 1 builds the report. It requires the specification of the sources
of sensitive data sdSpec ∈ SDSpec and of leakage points lpSpec ∈ LPSpec, of a
GDPRpolicy ∈ GDPRPolicy and of a program ∈ Program. It runs the taint analysis
with such sources and sinks (line 2). For each leak (line 5), it reconstructs and
collects in flows the flows of sensitive data, by using the backward rebuilder
(line 7); moreover, a set unknown collects the leakage points for which the flow
reconstruction fails (line 9). Then (line 11) the algorithm checks if each flow is
allowed by the GDPR policy (line 12); if not, the flow is collected into a set
unexpectedFlows. At the end, the algorithm returns unexpectedFlows and unknown.

The returned information will tell the user about (i) the potential flows of
sensitive data that are not allowed by the desired GDPR policy and therefore
need to be corrected; and (ii) the potential leakage points for which no flow could
be reconstructed and that consequently need manual inspection, to determine if
they are real issues or false alarms.

4.5 The Result of the Analysis of the Motivating Example

A prototype of the analysis described in this article has been implemented in
the Julia analyzer [25]. Julia already contains an industrial implementation of
taint analysis [12], widely applied to the detection of security vulnerabilities
such as SQL injection and XSS [5]. It also contains a heap abstraction and
the construction of a static call graph (both components are used by the taint

Tailoring Taint Analysis to GDPR 11

(a) The GDPR report.

(b) A flow of a credit card number into the DB.

(c) A complex flow from a password into an HTML element.

Fig. 2: GDPR report of WebGoat.

12 Pietro Ferrara et al.

analysis). We applied it to WebGoat with the specifications of sensitive data,
leakage points and GDPR policy from Section 3.

Our GDPR analysis spots two flows of sensitive data that are not allowed
by the GDPR policy (see Figure 2a). The first flow is from the credit card
number of an employee to the database; it occurs many times in classes that
update the employee’s profile. An example is in Figure 2b: the credit card number
is retrieved by calling Employee.getCcn() (that returns the value of the tainted
field Employee.ccn, see Figure 1c); it is then passed to method setString of a
java . sql .PreparedStatement (method setString is tagged as a sink in the leakage
point specification in Figure 1d). In particular, line 207 of CrossSiteScripting .Up−
dateProfile contains the code ps. setString (10, employee.getCcn()). The other flow
is different and more complex. It involves the disclosure of a password into the
Internet, in particular, into an HTML component. Figure 2c reports this flow.
The access of sensitive data and its leakage occur at line 166 and 165 of class
WsSAXInjection, respectively:

165: return new B(HtmlEncoder.encode(”You have changed the password for userid ”
166: + changer.getId() + ” to ’ ” + changer.getPassword() + ” ’ ”));

As pointed out by the flow graph, the password is passed to HtmlEncoder.encode,
that returns the sensitive data. Below is a code snippet with only the statements
identified by the flow graph in Figure 2c:

140: public static String encode(String s1)
141: {
142: StringBuffer buf = new StringBuffer();

...
145: for (i = 0; i < s1.length (); ++i)
147: char ch = s1.charAt(i);
148:
149: String entity = i2e.get(new Integer((int) ch));

...
159: buf.append(ch);

...
168: return buf. toString ();
169: }

The flow graph explains that sensitive data is passed to the beginning of this
method; it is then read at line 145, later read and assigned to local variable ch at
line 147; it flows into variable entity at line 149; it is appended to buf at line 159;
and it is finally returned to the callee at line 168. This example shows that the
flow graph provides full detail about the propagation of sensitive data. This is
invaluable to understand if and how the flow might be a problematic security
breach, violating the GDPR policy.

5 Conclusion

This article describes a novel solution to take advantage of static analysis inside
the process of GDPR compliance. GDPR is a broad regulation that involves

Tailoring Taint Analysis to GDPR 13

many different aspects of data security. We argued that static analysis plays
a relevant role in building tools that identify how sensitive data is processed
in ways that do not comply to the GDPR policy identified during the design
of the software system. The solution leverages many well-known and studied
techniques, notably, taint analysis. It augments them in order to (i) allow the
user to specify the policy, (ii) reconstruct how sensitive data flows in the program,
and (iii) check which flows do not respect the GDPR policy. We formalized the
approach in detail and applied it to a standard benchmark, WebGoat, often used
to show the effectiveness of static analyses for security. A prototype has been
implemented in the Julia static analyzer.

As future work, we are currently working at front-ends to present the results
of the analysis: plugins for various IDEs (such as Eclipse and IntelliJ IDEA) and
dashboards for the results. We have already studied various levels of reporting,
targeting distinct actors of the GDPR compliance process [14]. Each actor will
deserve his front-end view of the results.

References

1. Absint, https://www.absint.com/

2. Grammatech, https://www.grammatech.com/

3. Arzt, S., Rasthofer, S., Fritz, C., Bodden, E., Bartel, A., Klein, J., Le Traon, Y.,
Octeau, D., McDaniel, P.: Flowdroid: Precise context, flow, field, object-sensitive
and lifecycle-aware taint analysis for android apps. In: Proceedings of PLDI ’14.
ACM (2014)

4. Blanchet, B., Cousot, P., Cousot, R., Feret, J., Mauborgne, L., Miné, A., Monniaux,
D., Rival, X.: A static analyzer for large safety-critical software. In: Proceedings
of PLDI ’03. ACM (2003)

5. Burato, E., Ferrara, P., Spoto, F.: Security Analysis of the OWASP Benchmark
with Julia. In: Proceedings of ITASEC ’17 (2017)

6. Clarke, Jr., E.M., Grumberg, O., Peled, D.A.: Model Checking. MIT Press, Cam-
bridge, MA, USA (1999)

7. Cousot, P., Cousot, R.: Abstract interpretation: a unified lattice model for static
analysis of programs by construction or approximation of fixpoints. In: Proceedings
of POPL ’77. ACM Press (1977)

8. Cousot, P., Cousot, R.: Systematic design of program analysis frameworks. In:
Proceedings of POPL ’79. ACM Press (1979)

9. Cousot, P., Cousot, R.: Abstract interpretation: past, present and future. In: Pro-
ceedings of CSL-LICS ’14. ACM (2014)

10. Denning, D.E., Denning, P.J.: Certification of programs for secure information
flow. Commun. ACM 20(7) (Jul 1977)

11. Enck, W., Gilbert, P., Han, S., Tendulkar, V., Chun, B.G., Cox, L.P., Jung, J.,
McDaniel, P., Sheth, A.N.: Taintdroid: An information-flow tracking system for
realtime privacy monitoring on smartphones. ACM Trans. Comput. Syst. 32(2)
(Jun 2014)

12. Ernst, M.D., Lovato, A., Macedonio, D., Spiridon, C., Spoto, F.: Boolean Formulas
for the Static Identification of Injection Attacks in Java. In: Proceedings of LPAR
’15. Lecture Notes in Computer Science, Springer (2015)

14 Pietro Ferrara et al.

13. Ferrara, P.: Generic combination of heap and value analyses in abstract interpre-
tation. In: Proceedings of VMCAI ’14 (2014)

14. Ferrara, P., Spoto, F.: Static analysis for GDPR compliance. In: Proceedings of
ITASEC ’18 (2018)

15. Ferrara, P., Tripp, O., Pistoia, M.: Morphdroid: Fine-grained privacy verification.
In: Proceedings of ACSAC 2015. ACM (2015)

16. Grove, D., DeFouw, G., Dean, J., Chambers, C.: Call graph construction in object-
oriented languages. In: Proceedings of OOPSLA ’97. ACM (1997)

17. Hind, M.: Pointer analysis: haven’t we solved this problem yet? In: Proceedings of
PASTE ’01. ACM (2001)

18. Kildall, G.A.: A unified approach to global program optimization. In: Proceedings
of the 1st Annual ACM SIGACT-SIGPLAN Symposium on Principles of Program-
ming Languages. POPL ’73, ACM, New York, NY, USA (1973)

19. Mathworks: Polyspace, https://www.mathworks.com/products/polyspace.html
20. Myers, A.C.: JFlow: Practical Mostly-static Information Flow Control. In: Pro-

ceedings of POPL ’99. ACM (1999)
21. Nielson, F., Nielson, H.R., Hankin, C.: Principles of Program Analysis. Springer-

Verlag New York, Inc., Secaucus, NJ, USA (1999)
22. OWASP: Top 10 Project 2017 (March 2018),

https://www.owasp.org/index.php/Category:OWASP Top Ten Project
23. Pierce, B.C.: Types and Programming Languages. The MIT Press, 1st edn. (2002)
24. Sabelfeld, A., Myers, A.C.: Language-based Information-flow Security. IEEE J.Sel.

A. Commun. 21(1), 5–19 (Sep 2006)
25. Spoto, F.: The Julia Static Analyzer for Java. In: Proceedings of SAS ’16. Lecture

Notes in Computer Science, Springer (2016)
26. Tip, F., Palsberg, J.: Scalable propagation-based call graph construction algo-

rithms. In: Proceedings of OOPSLA ’00. ACM, New York, NY, USA (2000)
27. Tripp, O., Pistoia, M., Fink, S.J., Sridharan, M., Weisman, O.: TAJ: Effective

Taint Analysis of Web Applications. In: Proceedings of PLDI ’09. ACM (2009)
28. Wikipedia: Static program analysis, https://en.wikipedia.org/wiki/Static program analysis

