
Distributed Real-time Event Analysis
Julian James Stephen � Daniel Gmach � Rob Block � Adit Madan � Alvin AuYoung �

� Purdue University, West Lafayette � HP Labs, Palo Alto � HP Software, Sunnyvale

Abstract—Security Information and Event Management (SIEM)
systems perform complex event processing over a large number of
event streams at high rate. As event streams increase in volume
and event processing becomes more complex, traditional
approaches such as scaling up to more powerful systems quickly
become ineffective. This paper describes the design and
implementation of DRES, a distributed, rule-based event
evaluation system that can easily scale to process a large volume
of non-trivial events. DRES intelligently forwards events across a
cluster of nodes to evaluate complex correlation and aggregation
rules. This approach enables DRES to work with any rules engine
implementation. Our evaluation shows DRES scales linearly to
more than 16 nodes. At this size it successfully processed more
than half a million events per second.

Keywords—Distributed event analysis, enterprise security;

I. INTRODUCTION
Today enterprises need to cope with a vast amount of diverse

data. Several trends are contributing to this data tsunami. First,
is the impending reality of the Internet of Things—Gartner
predicts that there will be 26 billion smart devices connected to
a network by 2020 [1]. Each of these devices will be able to
produce and send data of various types and on various
timescales. Second, Web sites (e.g., social networks) track
increasingly fine-grained user behavior and capture every user
action in order to increase the ability to personalize or monetize
user experience. Third, enterprises monitor their IT
infrastructure, associated software solutions, and services in
real-time. Moreover, each component (asset) within an IT
infrastructure may generate several different event streams.

The proliferation of autonomous data monitoring, data-
processing and data-storage software has given enterprises an
unprecedented level of visibility into these data. For large
enterprises with many such event streams, there is a significant
technical challenge to maintain the systems that monitor,
manage and secure their entire pool of IT assets. The primary
challenge facing these enterprises is to ingest and analyze an
increasingly large volume and variety of data in real-time, and
to do this on such a granularity to create immediate and
actionable insights.

For example, generating dynamic firewall rules based on a
single malicious stream of network traffic—out of possible tens
of thousands of benign streams—is a critical and time-sensitive
task required to protect the security of the enterprise’s IT
infrastructure. In a production scenario, the detection rules and
corresponding actions are often much more complex, requiring
complex rules written by operators with significant domain
expertise. Common batch oriented data-processing frameworks
used for scalable data ingestion and analysis, such as Hadoop [2]
are unable to provide results in real-time. Newer real-time data-
streaming frameworks such as Apache Storm [3] or Spark

Streaming [4] only support generic compute models, and
therefore require significant event processing logic to be
embedded in code that must then be reviewed by an IT specialist.
In practice, this makes it very difficult to incorporate the
knowledge and intuition of human domain experts. As a result,
most enterprises rely on more sophisticated systems for Security
Information and Event Management (SIEM). These systems
process and analyze data streams in real-time to detect
interesting events or patterns. They are explicitly designed to
allow event processing logic to be specified as rules in a format
that is intuitive and easily understood, reviewed and edited by
domain experts rather than IT experts. This enables rapid
development and easy maintenance of the system.

Unfortunately, current SIEM systems are not scalable. The
nature of their design requires a centralized software
architecture. To understand why, we provide a brief sketch of a
typical SIEM system.

A SIEM system performs automated event processing on
data streams and generates customizable output for a system
infrastructure or network administrator. In the IT management
scenario, the SIEM system typically connects to various data
sources (e.g., system loggers, HTTP loggers) and allows an
administrator to specify patterns in the form of predicates or
rules to detect noteworthy events within the data stream. A basic
rule typically consists of three parts: (i) event type (e.g., a HTTP
log entry), (ii) conditions that need to be met (i.e., predicates on
event attributes, such as “ip_address = 10.10.10.10”), and (iii)
actions that will be triggered if an incoming event matches a
particular type and predicates are satisfied. More sophisticated
rules might specify conditions that invoke actions only for a
minimum number of relevant events within a sliding time
window (this is referred to as “time aggregation”). Similarly,
conditions can range in complexity, from simple string matching
to a lookup within an updatable internal data structure. Another
complex feature of such systems are rules that use “event joins”.
These join rules correlate events of different event types, such
as correlating HTTP log events with DNS log events. For
effective event analysis, SIEM systems should be able to not just
process the current stream of events but also be stateful.
Statefulness in this context means to store relevant state in
internal data structures for future reference. This is important
because the significance of future events may change depending
on past events. This can be achieved with lookups in the internal
data structures.

However, current SIEM systems that support stateful event
correlation and aggregation are centralized software systems. A
centralized system is inherently a serialization point for
incoming data, thereby significantly limiting the rate that events
that can be ingested.

2015 IEEE 12th International Conference on Autonomic Computing

978-1-4673-6971-8/15 $31.00 © 2015 IEEE

DOI 10.1109/ICAC.2015.12

11

We present the design and implementation of a distributed,
rule-based event evaluation system, called DRES (Distributed
Rule Evaluation System). This system provides similar
functionality to a centralized SIEM system, while using an
architecture that can scale-out across a cluster of commodity
servers. The distributed architecture permits a more cost-
effective approach to scaling system throughput. In practice, we
observe that when using a more traditional scale-up approach to
increase throughput, marginal cost of doubling the throughput
increases significantly for higher throughput values. This is
because servers with twice the CPU and memory capacity
typically cost significantly more than twice the amount in
dollars. If we are able to provide higher throughput using a
cluster of cheaper, commodity servers, we can scale the system
throughput at lower cost.

The key contributions from this paper are:

� The design and implementation of a distributed, rule-
based event evaluation system that can scale with the
volume of the input event streams.

� An evaluation of our system using production test
workloads from a real enterprise security management
product. We present detailed performance results that
show that our prototype scales linearly with the number
of available servers.

� A discussion of the trade-offs and design decisions of
providing scalable event-processing in the context of
SIEM systems.

The remainder of this paper is organized as follows. Section
II introduces the event flow of typical SIEM systems using a
simple example rule set. Section III describes the architecture
and design of our DRES prototype and Section IV presents
empirical evaluation results. Section V explores related work
and Section VI concludes with final remarks and future work.

II. RULE-BASED EVENT EVALUATION
This section describes how a centralized rule-based event

evaluation system works and defines the terms used in the rest
of the paper.

An event represents any happening of interest monitored by
the system. Our event is a collection of key-value pairs. The key
is also referred to as event field and the value as event value. A
set of events with n key fields can be represented as E<f1, f2 ...
fn> and a specific event can be represented as e<v1, v2…vn>. In
this notation, fi represents the name of the event field and vi
represents the value of an event e for the corresponding field fi.
Events are reported to the SIEM system by connectors, which
are located at the source of the event. For most SIEM systems
there exist connectors to a wide variety (>350) of commercial
applications, such like DNS servers, firewalls, anti-virus/anti-
spam software, etc. Connectors convert events into a common
event format that is then forwarded to the SIEM system. The
SIEM system ingests these events and reacts accordingly.

A set of rules defines what happens when an event is
ingested by the SIEM system. For each event, all rules are
evaluated. A simple rule comprises of a condition and action.
Action refer to any activity that is triggered when the rule

condition is evaluated to true. We refer to such rules as simple
rules because they are fully evaluated for each event and their
outcome is not dependent on events other than the one being
processed. A rule condition can consist of sub-conditions that
are combined with logical operators such as AND or OR. In
addition to simple rules there are more complicated rules that
require multiple events to trigger actions. First, there are join
rules. Join rules correlate two or more events. For example, a
join rule may correlate a “multiple failed logins attempts” event
with one “successful login attempt” event to determine
suspicious logins. Join rules have the structure <E1, E2, …, En,
J>, where every Ei is a condition representing a specific kind of
event and J represents the join condition that correlates events of
different kinds. The join condition J can also be composed of
sub-conditions. Second, there are aggregation rules.
Aggregation rules identify groups of events with identical and/or
unique field values over a specified time frame. Rules can also
have join and aggregation components in them at the same time.

Figure 1 shows two example rules. The first rule, ‘Rule1:
Suspicious login attempt’, checks if the value of the field
‘event.name’ is equal to the string ‘Failed login attempt’. Such
a failed login attempt event may be generated by a monitoring
software attached to a desktop machine or server and be
forwarded by an attached connector. This aggregation rule is
defined such that its action is executed when there are five such
‘Failed login attempt’ events within a time span of two minutes.
The action of Rule 1 will generate a new event that has the name
‘Suspicious login attempt’ and its userid field will be set to the
userid value of the events that contributed to triggering this rule.

Figure 1: Example rules

Rule1: Suspicious login attempt
Event condition
�event.name = 'Failed login attempt'
Aggregation condition
�5 matches in 2 minutes with same value

for event.userid
Action
�Generate 'Suspicious login attempt'

event, set event.name to'Suspicious
login attempt' and event.userid to
userid

Rule2: System compromised
Event-1 condition
�AND

�event.name = 'Suspicious login attempt'
�event.userid in {inactive user list}{ }

Event-2 condition
�event.name = 'Successful login'
Join condition
�Event-1.userid = Event-2.userid

Action
�Alert security admin

12

We note that userid is part of the aggregation condition and thus
identical for all the five events that contributed to the action
being executed. The second rule in Figure 1, ‘Rule 2: System
compromised’ is a join rule that correlates two events. The
Event-1 condition checks for an event that is generated from
Rule 1 and has a userid value that is found in a list of known
inactive users. Event-2 checks for a successful login event.
There may be many successful login events, however we are
only interested in the ones that have the same userid as the
‘Suspicious login attempt’ event. In Rule 2, this correlation
condition between the two events is expressed using the join
condition ‘Event-1.userid = Event-2.userid’. If the system finds
an event that matches Event-1 conditions as well as an event that
matches the Event-2 condition and the correlation condition is
met, then the corresponding action will be executed.

Rule 2 in the above example also has a condition where a
lookup in an internal data list is required as is expressed using
the ‘in’ clause. Data lists are dynamic tables that collect
specified field values of event data. They serve as a community
bulletin board for tracking specific event data over long periods
(days or weeks) so it can be available on demand for lookups.
E.g., we can define a ‘hostile attempt’ rule that places systems
that show hostile activity into a data list called ‘hostile systems’.
Another rule may poll this ‘hostile systems’ data list to only
consider events that stem from assets considered hostile.

A. Rules engine
As can be seen in the example rules above, rules take the

form of ‘If <conditions> Then <action>’ statements. A rule is
said to be matched or fire when the conditions of the rule become
true. The SIEM system first needs to evaluate the conditions of
a rule in order to identify if the rule can be fired. For simple rules
this is straight forward. However, for correlation rules this is
more complicated as participating events may arrive at different
points in time. To facilitate this, information about the event and
results from condition evaluation are maintained as facts in a
working memory. A working memory is a specialized data
structure for storing such facts. E.g., when one event with
‘event.name = Failed Login attempt’ is processed, it partially
matches the aggregation rule, Rule 1 in our example. This means
that the current event may contribute to the rule being fired in
future, but we cannot fire the rule yet. We refer to such facts
using the term ‘partial match info’. Similar logic applies for join
rules. While processing Rule 2, details of an event that matched
Event-1 conditions may already be in the working memory
when a new event arrives. We use the term rules engine to
describe the set of algorithms and data structures that perform
the rule matching. In short, the rules engine looks at the facts in
the working memory and generates the list of correlation rules
that can be fired. A naïve way to identify rules to be fired is to
match each rule condition against all known facts in the working
memory. Different rules engines use different algorithms and
data structures offering different tradeoffs in terms of execution
time and memory usage. Most of these algorithms are enhanced
versions of the RETE algorithm [5].

B. Event flow
The flow of an event through a rule-based SIEM system is

shown in Figure 2. Events arrive and are buffered in an event
pool. The rules engine itself consists of multiple worker threads

that can process events in parallel. The steps of operations
performed by the worker thread for each event are described
below.

1. The worker thread picks up the next event from the
event pool for processing.

2. For each rule, corresponding conditions are evaluated
against the event field values.

3. If the event matches all conditions of a simple rule, then
that rule’s actions are triggered immediately. Simple
rules do not produce any partial match info and hence
no facts are inserted into the rules engine. The event
may also partially match a join or aggregation rule. In
such cases, the partial match info is inserted into the
working memory of the rules engine. This step is
performed for all the rules in the system.

4. After all partial match information is inserted, the rule
matching algorithm in the rules engine is triggered. The
rule matching algorithm goes through all existing and
newly added facts in the working memory to identify
rules that need to fire. If any matching rules are found,
then the corresponding actions are triggered.

Figure 2 also shows how data lists are used. Actions
triggered by simple, correlation or aggregation rules can make
changes to the data lists by adding, updating or removing entries.
These data lists can be queried during rule condition evaluation.

III. DRES ARCHITECTURE
This section describes the design of DRES, our distributed

rule evaluation system and its implementation.

A. Design challenges
We use the term node to refer to a physical or virtual machine

on which a DRES instance runs. The main challenges of
building DRES are described below:

1. A single node should not become a bottleneck when scaling
up throughput.

2. An event may be processed by any node. Events that match
an aggregation rule thus may be spread across instances on
different nodes. E.g., if we consider Rule 1 from Figure 1,
it is possible that two ‘failed login attempt’ events arrive at
node A and three ‘failed login attempt’ events arrive at node
B. If this happens, none of the two nodes by themselves can
detect that there are five matching events in total. DRES

Figure 2: Event flow

Action Handler

Event Pool

Event Join

Time Aggregation

Actions

Condition Evaluation

Da
ta

 L
ist

Rules Engine

13

needs to ensure that such situations will be detected and the
corresponding actions will be fired. The same holds true for
join rules.

3. As explained in Section II, rule conditions can query
dynamic data lists and rule actions may update data lists.
This implies that an event being processed on node A may
generate a data list update that affects how events are
processed in node B.

B. Design
1) Overview

One key requirement of DRES was that it should provide the
same functional behavior as an existing centralized single node
rule evaluation system. As a first step, we evaluated the
bottlenecks in such a single node solution. We found that
condition evaluation of rules accounted for 80% of the total
processing time that an event spends in the event flow. We note,
that this is the case although the condition evaluation is already
thread parallelized and heavily optimized (e.g., conditions that
are part of multiple rules are only evaluated once and
intermediate results are buffered).

Figure 3 shows a simplified high level architecture of DRES.
Each dotted box represents the components of a DRES instance
that runs in one node. Each node has its own event receivers,
condition evaluation component, rules engine, and a component
that fires actions. Rules and configurations are synchronized
between nodes. We assume a high performance load distributor
that deliver events from various connectors to DRES event
pools. Event receivers in each DRES instance pick an event from
the event pool and start processing it by performing condition
evaluation. This works well because condition evaluation for an
event is mostly independent from condition evaluation of other
events. The only exception to this rule is data list lookups. To
facilitate fast lookups, data lists are replicated in each DRES
instance as described in Section III.B.3). This enables every
node in a cluster to perform condition evaluation, the most time
consuming process in the event flow.

Partial match information generated by one node may be
processed by another node in the cluster. The exact semantics
and details of how partial match info is forwarded to nodes is
discussed in Section III.B.2). Each node processes the partial
match info assigned to it by inserting the information into its

rules engine. The rules engine checks for rule matches and
triggers actions if matches are found. Simple rules can be
completely processed locally on a node as these do not generate
partial matches or make use of the rules engine. Actions from
simple rules can be triggered locally as well. Further, actions of
simple, join or aggregation rules can make updates to one or
multiple data lists. Data lists are dynamic. DRES maintains its
data lists in such a way that all nodes in the cluster see updates
to the data lists in the same order. Details of how we handle
updates to data lists are shown in Section III.B.3).

2) Partial match forwarding
If an event partially matches an aggregation or join condition

then it follows the sequence of operations illustrated in Figure 4.
Below we describe the sequence of operations that occur when
an event e generates a partial match in DRES:

1. The node that is processing event e generates a list of
rules that e partially matches.

2. For each rule in the list, DRES creates a hash value by
considering a specific subset of event field values. For a
join rule these are the fields that are part of the join
equality condition. This means, if we have a join rule of
the form <E1, E2, J> and an event e that produces a
partial match by satisfying either of the E1 or E2
condition, then we consider the values of the fields that
occur in the equality conditions in J to create the hash
value. This ensures that for an event e all events that
potentially can be joined with e will have an identical
hash value. Similarly, for an aggregation rule we use all
the identical fields over which events are aggregated to
create the hash value. We use the term partial match
hash to refer to this hash value.

3. The partial match hash value from the previous step is
then converted to a node id (an integer between 0 and
N-1, where N is the total number of nodes in the system)
using a consistent hashing [6] function.

4. The partial match information for each rule is forwarded
to the node with the corresponding node id. If for any
rule the node id corresponds to the local node’s id (the
node that received and started processing event e), then
the partial match information is inserted into the local
rules engine directly. The size of partial match

Figure 3: DRES Architecture

Event Receiver

Condition Evaluation

Actions

AggregationJoin
Partial Match Info

Data Lists, Rules ,Configs

Event Receiver

Condition Evaluation

Actions

AggregationJoin

Partial Match Info

Data Lists, Rules ,Configs

Local to node Forwarded to specific nodes Forwarded to all nodes

Rules Engine Rules Engine

DRES Instance DRES Instance

14

information is only a small fraction of the actual event
size as received by the node. Thus, this approach
minimizes the intra cluster communication, which is
critical for scaling to a large number of nodes.

Figure 4 shows an example of the distributed partial match
forwarding sequence for an event e that partially matches Rule1
and Rule3. The field lookup table in the figure lists the fields
used in join equality conditions for join rules and identical
aggregation fields for aggregation rules. Using this lookup table,
DRES identifies the fields of e that must be considered for
generating the partial match hash. Using the hash function h(),
DRES then computes h(e.v2) for computing the partial match
hash value x for Rule1 and h(e.v3, e.v6) for computing the partial
match hash value y for Rule3. The partial match hash values are
then converted to node ids using the consistent hashing function
g(). Assuming g(h(e.v2)) identifies node n1, the partial match
info for Rule1 is forwarded to node n1.

The intuition behind this approach is that two events can
match a join rule only if the values of the join condition fields
are identical. Thus we can achieve correctness if we can
maintain the invariant that one node will receive all partial match
information of events that can be joined with each other,
irrespective of which node processed the events. By creating a
hash value of events per rule that is partially matched and based
on all fields in the equality join conditions, the join partner
events will have the same hash value. So, forwarding to a node
based on the generated partial match hash value ensures this
invariant. Similarly for aggregation rules, creating a hash value
per partially matched rule and based on all fields in the
aggregation clause ensures that events that can be aggregated
together will have the same partial match hash value.

Once the partial match hash is created and the node id is
identified, the event, the partial match info for the event, and the
corresponding rule id is forwarded to the determined node. In
the event flow, this happens after condition evaluation and
generation of partial match results. This means that the node that
initially received the event from the connector has already done
80% of the computation before forwarding it.

3) Data lists consistencys
 Rule condition evaluation often requires data lists lookups.

These frequent reads from data lists during condition evaluation

heavily impact the overall system performance. Ensuring
minimal latency for data list reads is critical for system
performance. Maintaining data lists in a remote node (e.g., a
centralized data list repository) would increase read latency and
thus negatively affect performance. Further, writes to the data
lists are orders of magnitude less frequent than reads. Thus, we
maintain replicas of data lists within each DRES node, allowing
very fast local lookups during condition evaluation. To ensure
that DRES provides the same functional behavior as the
previous single node system, the data list replicas are maintained
eventually consistent using Paxos [7]. Paxos is a protocol used
to achieve consensus among multiple nodes. Consensus refers
to the process by which all nodes in the system agree on one
result. In DRES all nodes agree on the order in which updates
are applied to data lists. The initial state of the data lists in all
DRES instances after system initialization is identical. This
means, if the order in which updates are applied to this initial
state is the same across nodes, then the data list state will be
eventually consistent across all nodes.

4) Scalability, portability
The main advantage of our system is the ability to scale out

as load (measured in events per second, EPS) increases.
Distributing the compute intensive condition evaluation, event
correlation and aggregation enables linear scaling of the total
event throughput with the number of available nodes in the
cluster up to clusters of tens of nodes as shown in Section IV.
The partial match forwarding technique outlined above has the
advantage that there are no changes necessary to the rule
correlation engine itself. The actual code for aggregation and
joins remains unchanged regardless of the mode of operation
(single node or distributed). This is an important factor for
legacy reasons as well. Further there is no requirement to
distribute the set of rules across the nodes as all nodes process
all rules.

C. Implementation
This section describes how we implemented the distributed

architecture described above. We built DRES by modifying the
existing centralized, single node SIEM system, which is
implemented in Java. For generating the partial match hash
values and consistent hashing we use the Guava library [8]. For
forwarding the partial match messages, we implemented a
messaging system using ZMQ [9]. ZMQ is a library based,

Figure 4: Distributed partial match forwarding

15

broker less transport layer messaging framework for distributed
applications. ZMQ sockets are initialized when DRES starts up
and kept alive throughout the life of the application. Each node
maintains one pull socket that reads incoming partial matches
from all the other nodes. A node also maintains a push socket
for every other node to which partial match information is
forwarded. To reduce the latency overhead caused by serializing
and deserializing the outgoing and incoming partial match
information messages, respectively, we use the Kryo [10]
serialization library. Once the condition evaluation component
identifies a partial match, the event and the corresponding partial
match information are serialized and inserted into the send
queue. A worker thread picks up the serialized byte array and
sends it to the destination node using the ZMQ push sockets.
One event may partially match multiple rules and information
for each partial match may need to be forwarded to a different
node.

For maintaining data list consistency, we use the JPaxos [11]
implementation of Paxos. JPaxos provides a simple and efficient
Java library for Paxos replication. Each DRES instance
maintains a local Paxos thread that propagates data list updates.
Data list updates determined by the protocol are picked up by a
separate thread running on each DRES instance. This thread
then executes these updates to the local data list.

D. Discussion
1) Rule partitioning

With respect to distributing computation, another option that
we explored was partitioning the set of rules among nodes. This
would address two of the three design challenges mentioned in
Section III.A). We decided against it for the following reasons:

� Expert knowledge is required to distribute a rule set into
multiple smaller rule sets. As events can match multiple
rules it is difficult to determine smaller rule sets without
the need of duplicating too many events.

� Additional logic is required at the connectors to identify
the nodes to which an event needs to be forwarded.

� The number of matches per rule is not uniform. We have
use cases where at times one or two rules are responsible
for a vast majority of the join or aggregation partial

matches. This will result in a large number of
underutilized nodes and few over utilized nodes.

� Scaling the number of nodes becomes difficult as it
requires changing logic at the connectors as well as re-
partitioning the set of rules.

2) Fault tolerance
Our system design also ensures fault tolerance as discussed

below.

� Since we use consistent hashing ([6], [12], [13]) to
identify the nodes to which partial match information is
forwarded, in case of a failure, we can redistribute the
partial match forwarding targets among the remaining
nodes with comparatively little disruption. The target
node for a partial match is identified based on the partial
match hash value. In case of a naïve scheme to identify
the target node (e.g., hash value mod N), if a node is
added or removed, the target node corresponding to each
partial match hash value may change and require
remapping. Consistent hashing ensures that only 1/Nth of
the total possible hash values require remapping for a
cluster of N nodes.

� Using Paxos for replicating data list updates across all
nodes also allows us to tolerate node failures. Paxos
enables the system to make progress as long as a majority
of the nodes are alive. This ensures progress even when
some nodes fail. Paxos also allows failed nodes to catch
up on updates from persistent logs during recovery.

IV. EVALUATION
This section evaluates the performance of DRES compared

to other solutions. In detail we evaluate (i) scalability of DRES
under normal and heavy workload, (ii) network utilization of
DRES and (iii) the effect of forwarding partial matches.

A. Experiment Setup
Our experiments were run on HP SL servers, each having

two 6-core 2.66 GHz Intel Xeon X5650 CPUs (effectively 24
cores with Hyper-Threading enabled), 96GB of DRAM and a
128GB SSD. All servers are connected via 10Gbit Ethernet
NICs and we use a dedicated server per DRES instance. To
generate client traffic we use a tool that generates a workload by

Figure 5: Scalability under normal trace

16

creating a stochastic stream of events from an input trace file.
We use two different traces. Both represent real workloads
reflecting a system at periods with many security breaches.
These workloads are replayed to benchmark a real and widely
used enterprise security management product. For the
experiments in this work, we use one workload generator for
each node in the DRES cluster. This removes the potential
bottleneck of a load distribution component and lets us focus on
the performance of DRES itself. We note that the workload
generators are running on a different set of servers than the
system under test. The generators adjust their workload and
communicate with the SIEM system (consider feedback) to
determine the maximum event rate that the system under test can
handle. After a short warm-up phase, the workload generators
produce load for 20 minutes. After 20 minutes, the workload
generators terminate and report the average sustained event rate
expressed in events per second (EPS) that they were able to send
to their DRES node without overloading it. We then sum up the
event rates of each generator to determine the total event rate of
the DRES system.

TABLE 1. WORKLOAD CHARACTERSITIC
 Normal

trace
Heavy
trace

Join matches 29% 84%
Aggregation matches 4% 50%
Rules fired (per 1000 events) 1.26 1.34
State updates (per 1000 events) 0.19 0.32

We present results for two different workload traces; normal
trace and heavy trace. TABLE 1 describes the nature of the two
workload traces. In the table, ‘Join matches’ refers to the number
of partial matches generated by events matching join rules in
relation to the total number of events. Similar, ‘aggregation
matches’ refers to the number of partial matches generated by
events matching aggregation rules in relation to the total number
of events. ‘Rules fired (per 1000 events)’ refers to the average
number of rules that are completely matched (and actions
executed) when 1000 events from the trace are processed. ‘State
updates (per 1000 events)’ refers to the average number of data
list updates triggered by the workload. State updates are

triggered by a subset of the actions that are executed. ‘Normal
trace’ represents a typical client load with respect to the number
of join and aggregation matches and actions triggered. ‘Heavy
trace’ is intended to further stress test the system by heavily
increasing the number of events that partially match a join or
aggregation rule.

Both the normal and heavy event traces are executed against
a real production rule set used in active deployments. This rule
set contains 167 rules. Rule conditions contain a total of 153
instances of lookups from one or more data lists. There are also
a total of 91 unique instances of rule actions updating a data list.
46 of the rules contain aggregation components that group more
than 1 event in a sliding window and 27 rules contain join
conditions. At a more fine grained level, the rule set contains a
total of 863 AND conditions and 308 OR conditions.

B. Evaluated SIEM Systems
This section describes the three different systems used for

evaluation. Rules and relevant configurations remain the same
in all three systems described below during the evaluation.

1) Monolithic server
This refers to the standalone, single server version of our

SIEM system. The SIEM system uses the same rules engine and
has the same event flow and functionality of DRES.

2) Distrubuted single handler (DSH)
In order to evaluate the gains of a fully distributed version, we
also built a distributed single handler (DSH) version of the rules
evaluation engine. In DSH, we designate one node as the handler
node and rest as worker nodes. The connectors forward events
to any of the worker nodes. Each worker node then performs
condition evaluation and forwards all generated partial match
info to the designated handler node. Again, simple rules are
evaluated locally. The handler node inserts the received partial
match information into its rules engine and checks for rule
matches. This means, all join and aggregation rule actions will
be triggered at the designated handler node. We note that data
list updates still can be triggered by all nodes in the system as
simple rule actions are triggered directly after condition
evaluation at any worker node. Updates to data lists are
forwarded to the handler node. The handler node receives all

Figure 6: Scalability under heavy trace

17

data list updates, orders them, applies them locally and then
broadcasts the ordered updates to all workers. The worker nodes
then apply them locally to their data list replicas. As with Paxos,
this ensures that the order of data list updates remains the
identical on all nodes ensuring the same eventual consistency
guarantee as offered by DRES.

3) Distributed rule evaluation system (DRES)
This refers to our fully distributed rule evaluation system as

presented in Section III.

C. Scalability
In order to study the scalability of our solution, we evaluate

how well total system throughput scales with the number of
nodes. We note that for DSH deployments one node is a
dedicated handler node, i.e., there are a total of #nodes-1 worker
nodes available that accept events from the clients. For DRES
deployments, all nodes accept incoming events. Figure 5 shows
the total system throughput against the normal trace and Figure
6 shows the throughput against the heavy trace. In both figures,
the black horizontal line represents the EPS of the standalone
server which is around 49K. As can be observed from Figure 5,
both DSH and DRES scale well under the normal workload,
crossing half a million EPS with 16 nodes. We note that this is
more than ten times the throughput of the highly optimized
monolithic server (49K) installation. Already with two nodes,
DRES supports more EPS than the monolithic server. Under the
normal workload DSH is also able to scale well.

Figure 6 shows how the systems perform under the heavy
trace. DRES still scales linearly because all nodes perform
aggregations and joins and thus distribute the load among each
other. As can be observed, DSH throughput peaks at around 10
nodes. The heavy workload trace generates a much higher
number of join matches than the normal workload resulting in a
higher number of partial matches being forwarded to the handler
node in DSH. For larger cluster sizes the central handler node in
DSH requires a very high amount of DRAM to maintain all
partial match info in the correlation engine. This saturates the
handler and limits overall system performance.

D. Network Load
Figure 7 and Figure 8 compare the network load of the DSH

handler node with the network load of one node in the DRES
cluster under both, the normal and the heavy trace, respectively.

We note that all nodes in the DRES cluster exhibit a very similar
network traffic. As expected for DSH, network load increases
linearly for the DSH handler node with the number of nodes in
the cluster until the handler node gets saturated. This stems from
a single node performing all join and aggregation processing. As
the number of nodes increases, the DSH handler has to deal with
receiving partial match information from more nodes. In
contrast, the DRES cluster shows no significant increase in
network load at any node in the cluster as all nodes perform join
and aggregations and thus the load is shared between them.

E. Partial Match Forwarding
Figure 9 compares the number of partial matches forwarded

in DSH and DRES under the normal trace. For the DSH
deployment, forwarded matches represents the sum of partial
matches forwarded by each node to the central handler node. For
DRES, forwarded matches represents the sum the all partial
matches that are not handled locally by nodes. Figure 10 shows
the same comparison for the heavy workload trace. In both
evaluations, we can observe that the total number of events
forwarded by DSH and DRES are similar. For DRES, the
number of partial matches forwarded to other nodes is expected
to be 1/N smaller than in DSH (with N being the number of
nodes) due to local processing of correlations. However in most
experiments this reduction is offset by the slightly higher EPS
of DRES. Further, for the heavy load trace, the total number of
forwarded partial matches of DSH drops for clusters larger than
eight nodes. This results from the central handler node being
overloaded and thus limiting overall system throughput.

F. Summary
We showed that DRES scales linearly to at least 17 nodes

supporting much more than half a million events per second.
This is over 11x increase over the monolithic, standalone server.
The results also showed that our system could scale up well
beyond the DSH deployment under heavy workload. Network
load on the DRES nodes remain stable under both workloads
showing promise of even higher scaling opportunities.

V. RELATED WORK
This section summarizes related work on SIEM systems and

other event monitoring and analysis frameworks.

Figure 7: Network load under normal trace

Figure 8: Network load under heavy trace

0
5

10
15
20
25
30
35

2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17

M
B/

s

nodes

DSH Handler Node
DRES Node

0

20

40

60

80

100

120

2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17

M
B/

s

nodes

DSH Handler Node
DRES Node

18

A. Infrastructure monitoring
One of the tasks done by SIEM systems is to perform

infrastructure monitoring. Some of the most popular and widely
used systems that perform distributed infrastructure monitoring
are Ganglia [14] and Nagios [15]. Ganglia is a distributed
monitoring system for compute clusters and scales to large
clusters using a hierarchical design. Nagios is an IT
infrastructure monitoring tool that can monitor network
communication, disk usage and other parameters of the cluster.
Though good for monitoring cluster metrics, neither system
supports rule-based knowledge inference, event joins and
actions based on rules. Rule defining support in Nagios is basic
and is limited to generating alerts when systems fail. We note
that both, Ganglia and Nagios, can be used to collect data, which
is then forwarded to DRES for further processing.

B. Big data analysis
There are two primary approaches to processing Big Data:

batch processing and stream processing. In batch processing,
data is at rest, finite and known before the computation starts.
Whereas in stream processing, streams are assumed to be
infinite and stream processing systems report results as soon as

they are ready. Examples of popular batch processing systems
include MapReduce [16], Dryad [17] and various languages
implemented on top like Pig Latin [18]. The Hadoop Online
Prototype [19] [20] makes MapReduce ‘online’, allowing it to
support continuous queries, which enable programs to be written
for applications such as event monitoring and stream processing.
Themis [21] further improves the performance of I/O bound
MapReduce jobs by reducing the amount of disk writes. Many
popular data stream processing systems can also perform joins
and aggregations over event streams. Apache Storm [3],
provides a generic computation framework that allows
programmers to define topologies that perform computation
over data streams. Programmers can develop topologies that
aggregate events in a specified time interval or perform arbitrary
computation. Schneider et al. present a compiler and runtime
system [22] [23] that automatically extract data parallelism for
distributing stateful streaming applications. Apache Spark [4]
allows big data analytics over distributed, in-memory data sets.
The Muppet [24] system allows programmers to process stream
data by proving a map and update interface. The update function
can maintain state across the system by writing to a storage data
structure called slate. Though these systems are capable of event
processing, their primary focus is to provide a generic
computation framework for streaming data. Event evaluation
systems like DRES, focus on providing a non-programmatic
rule-based interface to the end user. This means, the end user
simply provides a set of predicates and actions, and the complex
task of matching rules against predicates falls to DRES.

C. Distributed event correlation
IBM’s System S/Infosphere Streams [25] perhaps represents

the state-of-the-art in distributed stream processing. System S
offers an analytic platform that allows user-developed
applications to analyze and correlate information as it arrives, in
real-time. System S also uses an operator-based programming
language called SPADE [26]. Similar to System S, Esper [25]
also allows complex event processing and can scale by
executing its operators inside Spark or Storm executors [27].
However, both System S and Esper do not support dynamically
varying patterns that depend on shared state.
StreamSQL+Streambase is another stream processing language
but is not distributed and does not support dynamic patterns.
Event correlation has also been explored in the context of
content based publish-subscribe systems. In the publish-
subscribe model, information flow into the system as events or
messages that come from multiple publishers. Such systems
(e.g., SIENA [28] and Gryphon [29]) rely on a broker network
to deliver events to subscribers and networks typically rely on
advertisements issued by subscribers or publishers to create a
routing network to forward events. Rules engines like Jess [30]
and Drools [31], support dynamic patterns but are neither
scalable nor distributed, and have well-known performance
problems when the heap size of the associated Java Virtual
Machine (JVM) is increased beyond 2GB. The DCEP complex
event processing system developed as part of the PLAY project
[32] [33] also aims to provide a cloud based middleware
platform to combine heterogeneous events in a distributed
fashion. DCEP relies on a distributed event store to query events
but the event evaluation itself is done by a single component.
Our implementation reveals opportunities for different and

Figure 9: #Partial matches forwarded under normal

trace

Figure 10: #Partial matches forwarded under heavy

trace

0

5

10

15

20

25

30

35

2 3 4 5 6 7 8 9 10

Fo
rw

ar
de

d
m

at
ch

es
 (m

ill
io

ns
)

#nodes

DSH DRES

0

20

40

60

80

100

120

140

2 3 4 5 6 7 8 9 10

Fo
rw

ar
de

d
m

at
ch

s (
m

ill
io

ns
)

#nodes

DSH DRES

19

perhaps complementary optimizations, such as distribution of
event ingest, aggregation and correlation.

Other recent approaches to scaling complex event
processing include RIP [34], which tries to identify patterns in
event streams in order to distribute input events that belong to
individual run instances of a pattern to different nodes, thereby
providing fine-grained partitioned data parallelism. RIP applies
this approach to multi core processors and does not explore
distribution over the network. Brenna et al. [35] also
implemented a distributed event pattern matching system on top
of Cayuga [36] and Spread [37]. They try to scale by partitioning
the queries and running multiple queries in multiple machines in
parallel. This suffers from similar drawbacks as the rule
partitioning approach that we discussed in Section III.D.1).

VI. CONCLUSION AND FUTURE WORK
In this paper we presented DRES, a distributed rule

evaluation and event management system for enterprise level
monitoring. This system enables real-time processing of the ever
increasing number of arriving events. Using various production
test workloads, we demonstrate that it scales very well and can
perform aggregations and joins on more than half a million
events per second using a cluster of 17 nodes. This is 11 times
more than any comparable single node system can achieve
today. We outline the design goals, architecture and
implementation of the system and show how the system
performs under a normal and heavy workload trace.

In our current implementation we focus on the correlations
between two events. For the next version, we plan to support
correlations between multiple events. This can be achieved by
forwarding intermediate correlation results between instances
using the presented hashing technique for partial match
information. Further, we are investigating techniques for DRES
to handle node failures automatically. This presents two
orthogonal challenges: First, for no-loss recovery we need to be
able to recover the rule state in the failed node from persistent
storage, backup processes etc., or an ability to replay parts of the
event queue. Second, we need to be able to reassign the
processing done by the failed node to the other operational
nodes.

REFERENCES
[1] “Gartner,” Gartner Says the Internet of Things Installed Base Will Grow

to 26 Billion Units By 2020, 12-Dec-2013. [Online]. Available:
http://www.gartner.com/newsroom/id/2636073.

[2] “Hadoop.” [Online]. Available: http://hadoop.apache.org/.
[3] “Apache Storm.” [Online]. Available:

https://storm.incubator.apache.org/.
[4] M. Zaharia, M. Chowdhury, M. J. Franklin, S. Shenker, and I. Stoica.

Spark: Cluster Computing with Working Sets. In HotCloud '10.
[5] C. L. Forgy, Rete: A fast algorithm for the many pattern/many object

pattern match problem. Artif. Intell., vol. 19, no. 1.
[6] D. Karger, E. Lehman, T. Leighton, R. Panigrahy, M. Levine, and D.

Lewin, Consistent Hashing and Random Trees: Distributed Caching
Protocols for Relieving Hot Spots on the World Wide Web. In ToC '97.

[7] L. Lamport. The Part-time Parliament. ACM Trans Comput Syst, '98.
[8] “Guava.” [Online]. Available: https://github.com/google/guava.

[9] “ZMQ.” [Online]. Available: http://zeromq.org/.
[10] “Kryo.” [Online]. Available: https://github.com/EsotericSoftware/kryo.
[11] “JPaxos.” [Online]. Available: https://github.com/JPaxos/JPaxos.
[12] A. Dury. Peer-to-Peer Computing in Distributed Hash Table Models

Using a Consistent Hashing Extension for Access-Intensive Keys. In
AP2PC '04

[13] G. Swart, Spreading the Load Using Consistent Hashing: A Preliminary
Report. In PDC '04.

[14] M. L. Massie, B. N. Chun, and D. E. Culler. The ganglia distributed
monitoring system: design, implementation, and experience. In Parallel
Comput., vol. 30, no. 7. '04.

[15] “Nagios.” [Online]. Available: http://www.nagios.org/.
[16] J. Dean and S. Ghemawat. MapReduce: Simplified Data Processing on

Large Clusters. In OSDI '04.
[17] M. Isard, M. Budiu, Y. Yu, A. Birrell, and D. Fetterly. Dryad: Distributed

Data-parallel Programs from Sequential Building Blocks. In EuroSys
'07..

[18] C. Olston, B. Reed, U. Srivastava, R. Kumar, and A. Tomkins. Pig Latin:
A Not-so-foreign Language for Data Processing. In SIGMOD '08.

[19] T. Condie, N. Conway, P. Alvaro, J. M. Hellerstein, J. Gerth, J. Talbot,
K. Elmeleegy, and R. Sears. Online Aggregation and Continuous Query
Support in MapReduce. In SIGMOD '10.

[20] T. Condie, N. Conway, P. Alvaro, J. M. Hellerstein, K. Elmeleegy, and
R. Sears. MapReduce Online. In NSDI '10.

[21] A. Rasmussen, V. T. Lam, M. Conley, G. Porter, R. Kapoor, and A.
Vahdat. Themis: an I/O-efficient MapReduce. In SOCC '12.

[22] S. Schneider, M. Hirzel, B. Gedik, and K.-L. Wu. Auto-parallelizing
Stateful Distributed Streaming Applications. In PACT '12.

[23] S. Schneider, H. Andrade, B. Gedik, A. Biem, and K.-L. Wu. Elastic
Scaling of Data Parallel Operators in Stream Processing. In PDP '09.

[24] W. Lam, L. Liu, S. Prasad, A. Rajaraman, Z. Vacheri, and A. Doan.
Muppet: MapReduce-style Processing of Fast Data. In VLDB '12.

[25] “IBM Infosphere.” [Online]. Available: http://www-
03.ibm.com/software/products/en/infosphere-streams.

[26] B. Gedik, H. Andrade, K.-L. Wu, P. S. Yu, and M. Doo. SPADE: The
System s Declarative Stream Processing Engine. In SIGMOD '08.

[27] N. Zygouras, N. Zacheilas, V. Kalogeraki, D. Kinane, and D. Gunopulos.
Insights on a Scalable and Dynamic Traffic Management System. In
EDBT '15.

[28] A. Carzaniga, D. S. Rosenblum, and A. L. Wolf. Design and evaluation
of a wide-area event notification service. ACM Trans Comput Syst, vol.
19, no. 3, pp. 332–383, 2001.

[29] R. E. Strom, G. Banavar, T. D. Chandra, M. A. Kaplan, K. Miller, B.
Mukherjee, D. C. Sturman, and M. Ward. Gryphon: An Information Flow
Based Approach to Message Brokering. In CoRR '98.

[30] “Jess Rules Engine.” [Online]. Available: http://www.jessrules.com/.
[31] P. Browne, JBoss Drools Business Rules. Packt Publishing, 2009.
[32] R. St¨uhmer, Y. Verginadis, I. Alshabani, T. Morsellino, and A. Antonio.

PLAY: Semantics-based Event Marketplace. In Virtual Enterprises '13.
[33] N. D. Stojanovic, L. Stojanovic, and R. Stuehmer. Tutorial: Personal Big

Data Management in the Cyber-physical Systems - the Role of Event
Processing. DEBS '13.

[34] C. Balkesen, N. Dindar, M. Wetter, and N. Tatbul. RIP: Run-based Intra-
query Parallelism for Scalable Complex Event Processing. In DEBS '13.

[35] L. Brenna, J. Gehrke, M. Hong, and D. Johansen. Distributed event
stream processing with non-deterministic finite automata. In DEBS '09.

[36] L. Brenna, A. Demers, J. Gehrke, M. Hong, J. Ossher, B. Panda, M.
Riedewald, M. Thatte, and W. White. Cayuga: A High-performance
Event Processing Engine. In SIGMOD '07.

[37] Y. Amir, C. Danilov, and S. Stanton. A low latency, loss tolerant
architecture and protocol for wide area group communication. In DSN
'00.

20

