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Abstract—Security Information and Event Management (SIEM) 
systems perform complex event processing over a large number of 
event streams at high rate. As event streams increase in volume 
and event processing becomes more complex, traditional 
approaches such as scaling up to more powerful systems quickly 
become ineffective. This paper describes the design and 
implementation of DRES, a distributed, rule-based event 
evaluation system that can easily scale to process a large volume 
of non-trivial events. DRES intelligently forwards events across a 
cluster of nodes to evaluate complex correlation and aggregation 
rules. This approach enables DRES to work with any rules engine 
implementation. Our evaluation shows DRES scales linearly to 
more than 16 nodes. At this size it successfully processed more 
than half a million events per second. 

Keywords—Distributed event analysis, enterprise security;  

I. INTRODUCTION 
Today enterprises need to cope with a vast amount of diverse 

data. Several trends are contributing to this data tsunami. First, 
is the impending reality of the Internet of Things—Gartner 
predicts that there will be 26 billion smart devices connected to 
a network by 2020 [1]. Each of these devices will be able to 
produce and send data of various types and on various 
timescales. Second, Web sites (e.g., social networks) track 
increasingly fine-grained user behavior and capture every user 
action in order to increase the ability to personalize or monetize 
user experience. Third, enterprises monitor their IT 
infrastructure, associated software solutions, and services in 
real-time. Moreover, each component (asset) within an IT 
infrastructure may generate several different event streams. 

The proliferation of autonomous data monitoring, data-
processing and data-storage software has given enterprises an 
unprecedented level of visibility into these data. For large 
enterprises with many such event streams, there is a significant 
technical challenge to maintain the systems that monitor, 
manage and secure their entire pool of IT assets. The primary 
challenge facing these enterprises is to ingest and analyze an 
increasingly large volume and variety of data in real-time, and 
to do this on such a granularity to create immediate and 
actionable insights.  

For example, generating dynamic firewall rules based on a 
single malicious stream of network traffic—out of possible tens 
of thousands of benign streams—is a critical and time-sensitive 
task required to protect the security of the enterprise’s IT 
infrastructure. In a production scenario, the detection rules and 
corresponding actions are often much more complex, requiring 
complex rules written by operators with significant domain 
expertise. Common batch oriented data-processing frameworks 
used for scalable data ingestion and analysis, such as Hadoop [2] 
are unable to provide results in real-time. Newer real-time data-
streaming frameworks such as Apache Storm [3] or Spark 

Streaming [4] only support generic compute models, and 
therefore require significant event processing logic to be 
embedded in code that must then be reviewed by an IT specialist. 
In practice, this makes it very difficult to incorporate the 
knowledge and intuition of human domain experts. As a result, 
most enterprises rely on more sophisticated systems for Security 
Information and Event Management (SIEM). These systems 
process and analyze data streams in real-time to detect 
interesting events or patterns. They are explicitly designed to 
allow event processing logic to be specified as rules in a format 
that is intuitive and easily understood, reviewed and edited by 
domain experts rather than IT experts. This enables rapid 
development and easy maintenance of the system. 

Unfortunately, current SIEM systems are not scalable. The 
nature of their design requires a centralized software 
architecture. To understand why, we provide a brief sketch of a 
typical SIEM system. 

A SIEM system performs automated event processing on 
data streams and generates customizable output for a system 
infrastructure or network administrator. In the IT management 
scenario, the SIEM system typically connects to various data 
sources (e.g., system loggers, HTTP loggers) and allows an 
administrator to specify patterns in the form of predicates or 
rules to detect noteworthy events within the data stream. A basic 
rule typically consists of three parts: (i) event type (e.g., a HTTP 
log entry), (ii) conditions that need to be met (i.e., predicates on 
event attributes, such as “ip_address = 10.10.10.10”), and (iii) 
actions that will be triggered if an incoming event matches a 
particular type and predicates are satisfied. More sophisticated 
rules might specify conditions that invoke actions only for a 
minimum number of relevant events within a sliding time 
window (this is referred to as “time aggregation”). Similarly, 
conditions can range in complexity, from simple string matching 
to a lookup within an updatable internal data structure. Another 
complex feature of such systems are rules that use “event joins”. 
These join rules correlate events of different event types, such 
as correlating HTTP log events with DNS log events. For 
effective event analysis, SIEM systems should be able to not just 
process the current stream of events but also be stateful. 
Statefulness in this context means to store relevant state in 
internal data structures for future reference. This is important 
because the significance of future events may change depending 
on past events. This can be achieved with lookups in the internal 
data structures. 

However, current SIEM systems that support stateful event 
correlation and aggregation are centralized software systems. A 
centralized system is inherently a serialization point for 
incoming data, thereby significantly limiting the rate that events 
that can be ingested.  
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We present the design and implementation of a distributed, 
rule-based event evaluation system, called DRES (Distributed 
Rule Evaluation System). This system provides similar 
functionality to a centralized SIEM system, while using an 
architecture that can scale-out across a cluster of commodity 
servers. The distributed architecture permits a more cost-
effective approach to scaling system throughput. In practice, we 
observe that when using a more traditional scale-up approach to 
increase throughput, marginal cost of doubling the throughput 
increases significantly for higher throughput values. This is 
because servers with twice the CPU and memory capacity 
typically cost significantly more than twice the amount in 
dollars. If we are able to provide higher throughput using a 
cluster of cheaper, commodity servers, we can scale the system 
throughput at lower cost. 

The key contributions from this paper are: 

� The design and implementation of a distributed, rule-
based event evaluation system that can scale with the 
volume of the input event streams. 

� An evaluation of our system using production test 
workloads from a real enterprise security management 
product. We present detailed performance results that 
show that our prototype scales linearly with the number 
of available servers. 

� A discussion of the trade-offs and design decisions of 
providing scalable event-processing in the context of 
SIEM systems. 

The remainder of this paper is organized as follows. Section 
II introduces the event flow of typical SIEM systems using a 
simple example rule set. Section III describes the architecture 
and design of our DRES prototype and Section IV presents 
empirical evaluation results. Section V explores related work 
and Section VI concludes with final remarks and future work. 

II. RULE-BASED EVENT EVALUATION 
This section describes how a centralized rule-based event 

evaluation system works and defines the terms used in the rest 
of the paper.  

An event represents any happening of interest monitored by 
the system. Our event is a collection of key-value pairs. The key 
is also referred to as event field and the value as event value. A 
set of events with n key fields can be represented as E<f1, f2 ... 
fn> and a specific event can be represented as e<v1, v2…vn>. In 
this notation, fi represents the name of the event field and vi
represents the value of an event e for the corresponding field fi. 
Events are reported to the SIEM system by connectors, which 
are located at the source of the event. For most SIEM systems 
there exist connectors to a wide variety (>350) of commercial 
applications, such like DNS servers, firewalls, anti-virus/anti-
spam software, etc. Connectors convert events into a common 
event format that is then forwarded to the SIEM system. The 
SIEM system ingests these events and reacts accordingly.  

A set of rules defines what happens when an event is 
ingested by the SIEM system. For each event, all rules are 
evaluated. A simple rule comprises of a condition and action. 
Action refer to any activity that is triggered when the rule 

condition is evaluated to true. We refer to such rules as simple 
rules because they are fully evaluated for each event and their 
outcome is not dependent on events other than the one being 
processed. A rule condition can consist of sub-conditions that 
are combined with logical operators such as AND or OR. In 
addition to simple rules there are more complicated rules that 
require multiple events to trigger actions. First, there are join 
rules. Join rules correlate two or more events. For example, a 
join rule may correlate a “multiple failed logins attempts” event 
with one “successful login attempt” event to determine 
suspicious logins. Join rules have the structure <E1, E2, …, En, 
J>, where every Ei is a condition representing a specific kind of 
event and J represents the join condition that correlates events of 
different kinds. The join condition J can also be composed of 
sub-conditions. Second, there are aggregation rules. 
Aggregation rules identify groups of events with identical and/or 
unique field values over a specified time frame. Rules can also 
have join and aggregation components in them at the same time.  

Figure 1 shows two example rules. The first rule, ‘Rule1: 
Suspicious login attempt’, checks if the value of the field 
‘event.name’ is equal to the string ‘Failed login attempt’. Such 
a failed login attempt event may be generated by a monitoring 
software attached to a desktop machine or server and be 
forwarded by an attached connector. This aggregation rule is 
defined such that its action is executed when there are five such 
‘Failed login attempt’ events within a time span of two minutes. 
The action of Rule 1 will generate a new event that has the name 
‘Suspicious login attempt’ and its userid field will be set to the 
userid value of the events that contributed to triggering this rule. 

 

 
Figure 1: Example rules 

Rule1: Suspicious login attempt
Event condition
�event.name = 'Failed login attempt'
Aggregation condition
�5 matches in 2 minutes with same value 

for event.userid
Action
�Generate 'Suspicious login attempt' 

event, set event.name to'Suspicious 
login attempt' and event.userid to 
userid

Rule2: System compromised 
Event-1 condition
�AND

�event.name = 'Suspicious login attempt'
�event.userid in {inactive user list}{ }

Event-2 condition
�event.name = 'Successful login'
Join condition
�Event-1.userid = Event-2.userid

Action
�Alert security admin
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We note that userid is part of the aggregation condition and thus 
identical for all the five events that contributed to the action 
being executed. The second rule in Figure 1, ‘Rule 2: System 
compromised’ is a join rule that correlates two events. The 
Event-1 condition checks for an event that is generated from 
Rule 1 and has a userid value that is found in a list of known 
inactive users. Event-2 checks for a successful login event. 
There may be many successful login events, however we are 
only interested in the ones that have the same userid as the 
‘Suspicious login attempt’ event. In Rule 2, this correlation 
condition between the two events is expressed using the join 
condition ‘Event-1.userid = Event-2.userid’. If the system finds 
an event that matches Event-1 conditions as well as an event that 
matches the Event-2 condition and the correlation condition is 
met, then the corresponding action will be executed.  

Rule 2 in the above example also has a condition where a 
lookup in an internal data list is required as is expressed using 
the ‘in’ clause. Data lists are dynamic tables that collect 
specified field values of event data. They serve as a community 
bulletin board for tracking specific event data over long periods 
(days or weeks) so it can be available on demand for lookups. 
E.g., we can define a ‘hostile attempt’ rule that places systems 
that show hostile activity into a data list called ‘hostile systems’. 
Another rule may poll this ‘hostile systems’ data list to only 
consider events that stem from assets considered hostile.  

A. Rules engine 
As can be seen in the example rules above, rules take the 

form of ‘If <conditions> Then <action>’ statements. A rule is 
said to be matched or fire when the conditions of the rule become 
true. The SIEM system first needs to evaluate the conditions of 
a rule in order to identify if the rule can be fired. For simple rules 
this is straight forward. However, for correlation rules this is 
more complicated as participating events may arrive at different 
points in time. To facilitate this, information about the event and 
results from condition evaluation are maintained as facts in a 
working memory. A working memory is a specialized data 
structure for storing such facts. E.g., when one event with 
‘event.name = Failed Login attempt’ is processed, it partially 
matches the aggregation rule, Rule 1 in our example. This means 
that the current event may contribute to the rule being fired in 
future, but we cannot fire the rule yet. We refer to such facts 
using the term ‘partial match info’. Similar logic applies for join 
rules. While processing Rule 2, details of an event that matched 
Event-1 conditions may already be in the working memory 
when a new event arrives. We use the term rules engine to 
describe the set of algorithms and data structures that perform 
the rule matching. In short, the rules engine looks at the facts in 
the working memory and generates the list of correlation rules 
that can be fired. A naïve way to identify rules to be fired is to 
match each rule condition against all known facts in the working 
memory. Different rules engines use different algorithms and 
data structures offering different tradeoffs in terms of execution 
time and memory usage. Most of these algorithms are enhanced 
versions of the RETE algorithm [5].  

B. Event flow  
The flow of an event through a rule-based SIEM system is 

shown in Figure 2. Events arrive and are buffered in an event 
pool. The rules engine itself consists of multiple worker threads 

that can process events in parallel. The steps of operations 
performed by the worker thread for each event are described 
below. 

1. The worker thread picks up the next event from the 
event pool for processing. 

2. For each rule, corresponding conditions are evaluated 
against the event field values.  

3. If the event matches all conditions of a simple rule, then 
that rule’s actions are triggered immediately. Simple 
rules do not produce any partial match info and hence 
no facts are inserted into the rules engine. The event 
may also partially match a join or aggregation rule. In 
such cases, the partial match info is inserted into the 
working memory of the rules engine. This step is 
performed for all the rules in the system. 

4. After all partial match information is inserted, the rule 
matching algorithm in the rules engine is triggered. The 
rule matching algorithm goes through all existing and 
newly added facts in the working memory to identify 
rules that need to fire. If any matching rules are found, 
then the corresponding actions are triggered. 

Figure 2 also shows how data lists are used. Actions 
triggered by simple, correlation or aggregation rules can make 
changes to the data lists by adding, updating or removing entries. 
These data lists can be queried during rule condition evaluation. 

III. DRES ARCHITECTURE 
This section describes the design of DRES, our distributed 

rule evaluation system and its implementation.  

A. Design challenges 
We use the term node to refer to a physical or virtual machine 

on which a DRES instance runs. The main challenges of 
building DRES are described below: 

1. A single node should not become a bottleneck when scaling 
up throughput. 

2. An event may be processed by any node. Events that match 
an aggregation rule thus may be spread across instances on 
different nodes. E.g., if we consider Rule 1 from Figure 1, 
it is possible that two ‘failed login attempt’ events arrive at 
node A and three ‘failed login attempt’ events arrive at node 
B. If this happens, none of the two nodes by themselves can 
detect that there are five matching events in total. DRES 

 
Figure 2: Event flow 
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needs to ensure that such situations will be detected and the 
corresponding actions will be fired. The same holds true for 
join rules.  

3. As explained in Section II, rule conditions can query 
dynamic data lists and rule actions may update data lists. 
This implies that an event being processed on node A may 
generate a data list update that affects how events are 
processed in node B.  

B. Design  
1) Overview 

One key requirement of DRES was that it should provide the 
same functional behavior as an existing centralized single node 
rule evaluation system. As a first step, we evaluated the 
bottlenecks in such a single node solution. We found that 
condition evaluation of rules accounted for 80% of the total 
processing time that an event spends in the event flow. We note, 
that this is the case although the condition evaluation is already 
thread parallelized and heavily optimized (e.g., conditions that 
are part of multiple rules are only evaluated once and 
intermediate results are buffered).  

Figure 3 shows a simplified high level architecture of DRES. 
Each dotted box represents the components of a DRES instance 
that runs in one node. Each node has its own event receivers, 
condition evaluation component, rules engine, and a component 
that fires actions. Rules and configurations are synchronized 
between nodes. We assume a high performance load distributor 
that deliver events from various connectors to DRES event 
pools. Event receivers in each DRES instance pick an event from 
the event pool and start processing it by performing condition 
evaluation. This works well because condition evaluation for an 
event is mostly independent from condition evaluation of other 
events. The only exception to this rule is data list lookups. To 
facilitate fast lookups, data lists are replicated in each DRES 
instance as described in Section III.B.3). This enables every 
node in a cluster to perform condition evaluation, the most time 
consuming process in the event flow.  

Partial match information generated by one node may be 
processed by another node in the cluster. The exact semantics 
and details of how partial match info is forwarded to nodes is 
discussed in Section III.B.2). Each node processes the partial 
match info assigned to it by inserting the information into its 

rules engine. The rules engine checks for rule matches and 
triggers actions if matches are found. Simple rules can be 
completely processed locally on a node as these do not generate 
partial matches or make use of the rules engine. Actions from 
simple rules can be triggered locally as well. Further, actions of 
simple, join or aggregation rules can make updates to one or 
multiple data lists. Data lists are dynamic. DRES maintains its 
data lists in such a way that all nodes in the cluster see updates 
to the data lists in the same order. Details of how we handle 
updates to data lists are shown in Section III.B.3).  

2) Partial match forwarding  
If an event partially matches an aggregation or join condition 

then it follows the sequence of operations illustrated in Figure 4. 
Below we describe the sequence of operations that occur when 
an event e generates a partial match in DRES: 

1. The node that is processing event e generates a list of 
rules that e partially matches. 

2. For each rule in the list, DRES creates a hash value by 
considering a specific subset of event field values. For a 
join rule these are the fields that are part of the join 
equality condition. This means, if we have a join rule of 
the form <E1, E2, J> and an event e that produces a 
partial match by satisfying either of the E1 or E2 
condition, then we consider the values of the fields that 
occur in the equality conditions in J to create the hash 
value. This ensures that for an event e all events that 
potentially can be joined with e will have an identical 
hash value. Similarly, for an aggregation rule we use all 
the identical fields over which events are aggregated to 
create the hash value. We use the term partial match 
hash to refer to this hash value. 

3. The partial match hash value from the previous step is 
then converted to a node id (an integer between 0 and 
N-1, where N is the total number of nodes in the system) 
using a consistent hashing [6] function.  

4. The partial match information for each rule is forwarded 
to the node with the corresponding node id. If for any 
rule the node id corresponds to the local node’s id (the 
node that received and started processing event e), then 
the partial match information is inserted into the local 
rules engine directly. The size of partial match 

 
Figure 3: DRES Architecture 
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information is only a small fraction of the actual event 
size as received by the node. Thus, this approach 
minimizes the intra cluster communication, which is 
critical for scaling to a large number of nodes.  

 

Figure 4 shows an example of the distributed partial match 
forwarding sequence for an event e that partially matches Rule1 
and Rule3. The field lookup table in the figure lists the fields 
used in join equality conditions for join rules and identical 
aggregation fields for aggregation rules. Using this lookup table, 
DRES identifies the fields of e that must be considered for 
generating the partial match hash. Using the hash function h(), 
DRES then computes h(e.v2) for computing the partial match 
hash value x for Rule1 and h(e.v3, e.v6) for computing the partial 
match hash value y for Rule3. The partial match hash values are 
then converted to node ids using the consistent hashing function 
g(). Assuming g(h(e.v2)) identifies node n1, the partial match 
info for Rule1 is forwarded to node n1. 

The intuition behind this approach is that two events can 
match a join rule only if the values of the join condition fields 
are identical. Thus we can achieve correctness if we can 
maintain the invariant that one node will receive all partial match 
information of events that can be joined with each other, 
irrespective of which node processed the events. By creating a 
hash value of events per rule that is partially matched and based 
on all fields in the equality join conditions, the join partner 
events will have the same hash value. So, forwarding to a node 
based on the generated partial match hash value ensures this 
invariant. Similarly for aggregation rules, creating a hash value 
per partially matched rule and based on all fields in the 
aggregation clause ensures that events that can be aggregated 
together will have the same partial match hash value.  

Once the partial match hash is created and the node id is 
identified, the event, the partial match info for the event, and the 
corresponding rule id is forwarded to the determined node. In 
the event flow, this happens after condition evaluation and 
generation of partial match results. This means that the node that 
initially received the event from the connector has already done 
80% of the computation before forwarding it.  

3) Data lists consistencys 
 Rule condition evaluation often requires data lists lookups. 

These frequent reads from data lists during condition evaluation 

heavily impact the overall system performance. Ensuring 
minimal latency for data list reads is critical for system 
performance. Maintaining data lists in a remote node (e.g., a 
centralized data list repository) would increase read latency and 
thus negatively affect performance. Further, writes to the data 
lists are orders of magnitude less frequent than reads. Thus, we 
maintain replicas of data lists within each DRES node, allowing 
very fast local lookups during condition evaluation. To ensure 
that DRES provides the same functional behavior as the 
previous single node system, the data list replicas are maintained 
eventually consistent using Paxos [7]. Paxos is a protocol used 
to achieve consensus among multiple nodes. Consensus refers 
to the process by which all nodes in the system agree on one 
result. In DRES all nodes agree on the order in which updates 
are applied to data lists. The initial state of the data lists in all 
DRES instances after system initialization is identical. This 
means, if the order in which updates are applied to this initial 
state is the same across nodes, then the data list state will be 
eventually consistent across all nodes.  

4) Scalability, portability 
The main advantage of our system is the ability to scale out 

as load (measured in events per second, EPS) increases. 
Distributing the compute intensive condition evaluation, event 
correlation and aggregation enables linear scaling of the total 
event throughput with the number of available nodes in the 
cluster up to clusters of tens of nodes as shown in Section IV. 
The partial match forwarding technique outlined above has the 
advantage that there are no changes necessary to the rule 
correlation engine itself. The actual code for aggregation and 
joins remains unchanged regardless of the mode of operation 
(single node or distributed). This is an important factor for 
legacy reasons as well. Further there is no requirement to 
distribute the set of rules across the nodes as all nodes process 
all rules. 

C. Implementation 
This section describes how we implemented the distributed 

architecture described above. We built DRES by modifying the 
existing centralized, single node SIEM system, which is 
implemented in Java. For generating the partial match hash 
values and consistent hashing we use the Guava library [8]. For 
forwarding the partial match messages, we implemented a 
messaging system using ZMQ [9]. ZMQ is a library based, 

 
 

Figure 4: Distributed partial match forwarding 
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broker less transport layer messaging framework for distributed 
applications. ZMQ sockets are initialized when DRES starts up 
and kept alive throughout the life of the application. Each node 
maintains one pull socket that reads incoming partial matches 
from all the other nodes. A node also maintains a push socket 
for every other node to which partial match information is 
forwarded. To reduce the latency overhead caused by serializing 
and deserializing the outgoing and incoming partial match 
information messages, respectively, we use the Kryo [10] 
serialization library. Once the condition evaluation component 
identifies a partial match, the event and the corresponding partial 
match information are serialized and inserted into the send 
queue. A worker thread picks up the serialized byte array and 
sends it to the destination node using the ZMQ push sockets. 
One event may partially match multiple rules and information 
for each partial match may need to be forwarded to a different 
node.  

For maintaining data list consistency, we use the JPaxos [11] 
implementation of Paxos. JPaxos provides a simple and efficient 
Java library for Paxos replication. Each DRES instance 
maintains a local Paxos thread that propagates data list updates. 
Data list updates determined by the protocol are picked up by a 
separate thread running on each DRES instance. This thread 
then executes these updates to the local data list. 

D. Discussion 
1) Rule partitioning 

With respect to distributing computation, another option that 
we explored was partitioning the set of rules among nodes. This 
would address two of the three design challenges mentioned in 
Section III.A). We decided against it for the following reasons:  

� Expert knowledge is required to distribute a rule set into 
multiple smaller rule sets. As events can match multiple 
rules it is difficult to determine smaller rule sets without 
the need of duplicating too many events. 

� Additional logic is required at the connectors to identify 
the nodes to which an event needs to be forwarded. 

� The number of matches per rule is not uniform. We have 
use cases where at times one or two rules are responsible 
for a vast majority of the join or aggregation partial 

matches. This will result in a large number of 
underutilized nodes and few over utilized nodes.  

� Scaling the number of nodes becomes difficult as it 
requires changing logic at the connectors as well as re-
partitioning the set of rules. 

2) Fault tolerance 
Our system design also ensures fault tolerance as discussed 

below.  

� Since we use consistent hashing ([6], [12], [13]) to 
identify the nodes to which partial match information is 
forwarded, in case of a failure, we can redistribute the 
partial match forwarding targets among the remaining 
nodes with comparatively little disruption. The target 
node for a partial match is identified based on the partial 
match hash value. In case of a naïve scheme to identify 
the target node (e.g., hash value mod N), if a node is 
added or removed, the target node corresponding to each 
partial match hash value may change and require 
remapping. Consistent hashing ensures that only 1/Nth of 
the total possible hash values require remapping for a 
cluster of N nodes.  

� Using Paxos for replicating data list updates across all 
nodes also allows us to tolerate node failures. Paxos 
enables the system to make progress as long as a majority 
of the nodes are alive. This ensures progress even when 
some nodes fail. Paxos also allows failed nodes to catch 
up on updates from persistent logs during recovery. 

IV. EVALUATION 
This section evaluates the performance of DRES compared 

to other solutions. In detail we evaluate (i) scalability of DRES 
under normal and heavy workload, (ii) network utilization of 
DRES and (iii) the effect of forwarding partial matches.  

A. Experiment Setup 
Our experiments were run on HP SL servers, each having 

two 6-core 2.66 GHz Intel Xeon X5650 CPUs (effectively 24 
cores with Hyper-Threading enabled), 96GB of DRAM and a 
128GB SSD. All servers are connected via 10Gbit Ethernet 
NICs and we use a dedicated server per DRES instance. To 
generate client traffic we use a tool that generates a workload by 

 
Figure 5: Scalability under normal trace 
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creating a stochastic stream of events from an input trace file. 
We use two different traces. Both represent real workloads 
reflecting a system at periods with many security breaches. 
These workloads are replayed to benchmark a real and widely 
used enterprise security management product. For the 
experiments in this work, we use one workload generator for 
each node in the DRES cluster. This removes the potential 
bottleneck of a load distribution component and lets us focus on 
the performance of DRES itself. We note that the workload 
generators are running on a different set of servers than the 
system under test. The generators adjust their workload and 
communicate with the SIEM system (consider feedback) to 
determine the maximum event rate that the system under test can 
handle. After a short warm-up phase, the workload generators 
produce load for 20 minutes. After 20 minutes, the workload 
generators terminate and report the average sustained event rate 
expressed in events per second (EPS) that they were able to send 
to their DRES node without overloading it. We then sum up the 
event rates of each generator to determine the total event rate of 
the DRES system. 

TABLE 1.  WORKLOAD CHARACTERSITIC 
 Normal 

trace 
Heavy 
trace 

Join matches 29% 84% 
Aggregation matches 4% 50% 
Rules fired (per 1000 events) 1.26 1.34 
State updates (per 1000 events) 0.19 0.32 

 

We present results for two different workload traces; normal 
trace and heavy trace. TABLE 1 describes the nature of the two 
workload traces. In the table, ‘Join matches’ refers to the number 
of partial matches generated by events matching join rules in 
relation to the total number of events. Similar, ‘aggregation 
matches’ refers to the number of partial matches generated by 
events matching aggregation rules in relation to the total number 
of events. ‘Rules fired (per 1000 events)’ refers to the average 
number of rules that are completely matched (and actions 
executed) when 1000 events from the trace are processed. ‘State 
updates (per 1000 events)’ refers to the average number of data 
list updates triggered by the workload. State updates are 

triggered by a subset of the actions that are executed. ‘Normal 
trace’ represents a typical client load with respect to the number 
of join and aggregation matches and actions triggered. ‘Heavy 
trace’ is intended to further stress test the system by heavily 
increasing the number of events that partially match a join or 
aggregation rule.  

Both the normal and heavy event traces are executed against 
a real production rule set used in active deployments. This rule 
set contains 167 rules. Rule conditions contain a total of 153 
instances of lookups from one or more data lists. There are also 
a total of 91 unique instances of rule actions updating a data list. 
46 of the rules contain aggregation components that group more 
than 1 event in a sliding window and 27 rules contain join 
conditions. At a more fine grained level, the rule set contains a 
total of 863 AND conditions and 308 OR conditions. 

B. Evaluated SIEM Systems 
This section describes the three different systems used for 

evaluation. Rules and relevant configurations remain the same 
in all three systems described below during the evaluation. 

1) Monolithic server 
This refers to the standalone, single server version of our 

SIEM system. The SIEM system uses the same rules engine and 
has the same event flow and functionality of DRES.  

2) Distrubuted single handler (DSH)  
In order to evaluate the gains of a fully distributed version, we 
also built a distributed single handler (DSH) version of the rules 
evaluation engine. In DSH, we designate one node as the handler 
node and rest as worker nodes. The connectors forward events 
to any of the worker nodes. Each worker node then performs 
condition evaluation and forwards all generated partial match 
info to the designated handler node. Again, simple rules are 
evaluated locally. The handler node inserts the received partial 
match information into its rules engine and checks for rule 
matches. This means, all join and aggregation rule actions will 
be triggered at the designated handler node. We note that data 
list updates still can be triggered by all nodes in the system as 
simple rule actions are triggered directly after condition 
evaluation at any worker node. Updates to data lists are 
forwarded to the handler node. The handler node receives all 

 
Figure 6: Scalability under heavy trace 
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data list updates, orders them, applies them locally and then 
broadcasts the ordered updates to all workers. The worker nodes 
then apply them locally to their data list replicas. As with Paxos, 
this ensures that the order of data list updates remains the 
identical on all nodes ensuring the same eventual consistency 
guarantee as offered by DRES. 

3) Distributed rule evaluation system (DRES) 
This refers to our fully distributed rule evaluation system as 

presented in Section III. 

C. Scalability 
In order to study the scalability of our solution, we evaluate 

how well total system throughput scales with the number of 
nodes. We note that for DSH deployments one node is a 
dedicated handler node, i.e., there are a total of #nodes-1 worker 
nodes available that accept events from the clients. For DRES 
deployments, all nodes accept incoming events. Figure 5 shows 
the total system throughput against the normal trace and Figure 
6 shows the throughput against the heavy trace. In both figures, 
the black horizontal line represents the EPS of the standalone 
server which is around 49K. As can be observed from Figure 5, 
both DSH and DRES scale well under the normal workload, 
crossing half a million EPS with 16 nodes. We note that this is 
more than ten times the throughput of the highly optimized 
monolithic server (49K) installation. Already with two nodes, 
DRES supports more EPS than the monolithic server. Under the 
normal workload DSH is also able to scale well.  

Figure 6 shows how the systems perform under the heavy 
trace. DRES still scales linearly because all nodes perform 
aggregations and joins and thus distribute the load among each 
other. As can be observed, DSH throughput peaks at around 10 
nodes. The heavy workload trace generates a much higher 
number of join matches than the normal workload resulting in a 
higher number of partial matches being forwarded to the handler 
node in DSH. For larger cluster sizes the central handler node in 
DSH requires a very high amount of DRAM to maintain all 
partial match info in the correlation engine. This saturates the 
handler and limits overall system performance. 

D. Network Load 
Figure 7 and Figure 8 compare the network load of the DSH 

handler node with the network load of one node in the DRES 
cluster under both, the normal and the heavy trace, respectively. 

We note that all nodes in the DRES cluster exhibit a very similar 
network traffic. As expected for DSH, network load increases 
linearly for the DSH handler node with the number of nodes in 
the cluster until the handler node gets saturated. This stems from 
a single node performing all join and aggregation processing. As 
the number of nodes increases, the DSH handler has to deal with 
receiving partial match information from more nodes. In 
contrast, the DRES cluster shows no significant increase in 
network load at any node in the cluster as all nodes perform join 
and aggregations and thus the load is shared between them. 

E. Partial Match Forwarding 
Figure 9 compares the number of partial matches forwarded 

in DSH and DRES under the normal trace. For the DSH 
deployment, forwarded matches represents the sum of partial 
matches forwarded by each node to the central handler node. For 
DRES, forwarded matches represents the sum the all partial 
matches that are not handled locally by nodes. Figure 10 shows 
the same comparison for the heavy workload trace. In both 
evaluations, we can observe that the total number of events 
forwarded by DSH and DRES are similar. For DRES, the 
number of partial matches forwarded to other nodes is expected 
to be 1/N smaller than in DSH (with N being the number of 
nodes) due to local processing of correlations. However in most 
experiments this reduction is offset by the slightly higher EPS 
of DRES. Further, for the heavy load trace, the total number of 
forwarded partial matches of DSH drops for clusters larger than 
eight nodes. This results from the central handler node being 
overloaded and thus limiting overall system throughput.  

F. Summary 
We showed that DRES scales linearly to at least 17 nodes 

supporting much more than half a million events per second. 
This is over 11x increase over the monolithic, standalone server. 
The results also showed that our system could scale up well 
beyond the DSH deployment under heavy workload. Network 
load on the DRES nodes remain stable under both workloads 
showing promise of even higher scaling opportunities. 

V. RELATED WORK 
This section summarizes related work on SIEM systems and 

other event monitoring and analysis frameworks. 

 
Figure 7: Network load under normal trace 

 
 

Figure 8: Network load under heavy trace 
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A. Infrastructure monitoring 
One of the tasks done by SIEM systems is to perform 

infrastructure monitoring. Some of the most popular and widely 
used systems that perform distributed infrastructure monitoring 
are Ganglia [14] and Nagios [15]. Ganglia is a distributed 
monitoring system for compute clusters and scales to large 
clusters using a hierarchical design. Nagios is an IT 
infrastructure monitoring tool that can monitor network 
communication, disk usage and other parameters of the cluster. 
Though good for monitoring cluster metrics, neither system 
supports rule-based knowledge inference, event joins and 
actions based on rules. Rule defining support in Nagios is basic 
and is limited to generating alerts when systems fail. We note 
that both, Ganglia and Nagios, can be used to collect data, which 
is then forwarded to DRES for further processing. 

B. Big data analysis 
There are two primary approaches to processing Big Data: 

batch processing and stream processing. In batch processing, 
data is at rest, finite and known before the computation starts. 
Whereas in stream processing, streams are assumed to be 
infinite and stream processing systems report results as soon as 

they are ready. Examples of popular batch processing systems 
include MapReduce [16], Dryad [17] and various languages 
implemented on top like Pig Latin [18]. The Hadoop Online 
Prototype [19] [20] makes MapReduce ‘online’, allowing it to 
support continuous queries, which enable programs to be written 
for applications such as event monitoring and stream processing. 
Themis [21] further improves the performance of  I/O bound 
MapReduce jobs by reducing the amount of disk writes. Many 
popular data stream processing systems can also perform joins 
and aggregations over event streams. Apache Storm [3], 
provides a generic computation framework that allows 
programmers to define topologies that perform computation 
over data streams. Programmers can develop topologies that 
aggregate events in a specified time interval or perform arbitrary 
computation. Schneider et al. present a compiler and runtime 
system [22] [23] that automatically extract data parallelism for 
distributing stateful streaming applications. Apache Spark [4] 
allows big data analytics over distributed, in-memory data sets. 
The Muppet [24] system allows programmers to process stream 
data by proving a map and update interface. The update function 
can maintain state across the system by writing to a storage data 
structure called slate. Though these systems are capable of event 
processing, their primary focus is to provide a generic 
computation framework for streaming data. Event evaluation 
systems like DRES, focus on providing a non-programmatic 
rule-based interface to the end user. This means, the end user 
simply provides a set of predicates and actions, and the complex 
task of matching rules against predicates falls to DRES.  

C. Distributed event correlation 
IBM’s System S/Infosphere Streams [25] perhaps represents 

the state-of-the-art in distributed stream processing. System S 
offers an analytic platform that allows user-developed 
applications to analyze and correlate information as it arrives, in 
real-time. System S also uses an operator-based programming 
language called SPADE [26]. Similar to System S, Esper [25] 
also allows complex event processing and can scale by 
executing its operators inside Spark or Storm executors [27].  
However, both System S and Esper do not support dynamically 
varying patterns that depend on shared state. 
StreamSQL+Streambase is another stream processing language 
but is not distributed and does not support dynamic patterns. 
Event correlation has also been explored in the context of 
content based publish-subscribe systems. In the publish-
subscribe model, information flow into the system as events or 
messages that come from multiple publishers. Such systems 
(e.g., SIENA [28] and Gryphon [29]) rely on a broker network 
to deliver events to subscribers and networks typically rely on 
advertisements issued by subscribers or publishers to create a 
routing network to forward events. Rules engines like Jess [30] 
and Drools [31], support dynamic patterns but are neither 
scalable nor distributed, and have well-known performance 
problems when the heap size of the associated Java Virtual 
Machine (JVM) is increased beyond 2GB. The DCEP complex 
event processing system developed as part of the PLAY project 
[32] [33] also aims to provide a cloud based middleware 
platform to combine heterogeneous events in a distributed 
fashion. DCEP relies on a distributed event store to query events 
but the event evaluation itself is done by a single component. 
Our implementation reveals opportunities for different and 
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perhaps complementary optimizations, such as distribution of 
event ingest, aggregation and correlation. 

Other recent approaches to scaling complex event 
processing include RIP [34], which tries to identify patterns in 
event streams in order to distribute input events that belong to 
individual run instances of a pattern to different nodes, thereby 
providing fine-grained partitioned data parallelism. RIP applies 
this approach to multi core processors and does not explore 
distribution over the network. Brenna et al. [35] also 
implemented a distributed event pattern matching system on top 
of Cayuga [36] and Spread [37]. They try to scale by partitioning 
the queries and running multiple queries in multiple machines in 
parallel. This suffers from similar drawbacks as the rule 
partitioning approach that we discussed in Section III.D.1).  

VI. CONCLUSION AND FUTURE WORK 
In this paper we presented DRES, a distributed rule 

evaluation and event management system for enterprise level 
monitoring. This system enables real-time processing of the ever 
increasing number of arriving events. Using various production 
test workloads, we demonstrate that it scales very well and can 
perform aggregations and joins on more than half a million 
events per second using a cluster of 17 nodes. This is 11 times 
more than any comparable single node system can achieve 
today. We outline the design goals, architecture and 
implementation of the system and show how the system 
performs under a normal and heavy workload trace.  

In our current implementation we focus on the correlations 
between two events. For the next version, we plan to support 
correlations between multiple events. This can be achieved by 
forwarding intermediate correlation results between instances 
using the presented hashing technique for partial match 
information. Further, we are investigating techniques for DRES 
to handle node failures automatically. This presents two 
orthogonal challenges: First, for no-loss recovery we need to be 
able to recover the rule state in the failed node from persistent 
storage, backup processes etc., or an ability to replay parts of the 
event queue. Second, we need to be able to reassign the 
processing done by the failed node to the other operational 
nodes. 
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